https://repositorio.ufjf.br/jspui/handle/ufjf/8081
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
raffaelbechararameh.pdf | 4.28 MB | Adobe PDF | Visualizar/Abrir |
Tipo: | Dissertação |
Título: | Aproximações dos modelos de Hodgkin-Huxley e FitzHugh-Nagumo usando equações diferenciais com atraso |
Autor(es): | Rameh, Raffael Bechara |
Primeiro Orientador: | Santos, Rodrigo Weber dos |
Membro da banca: | Rocha, Bernardo Martins |
Membro da banca: | Oliveira, Rafael Sachetto |
Resumo: | Para representar diferentes fenômenos e sistemas modelos matemáticos são largamente utilizados. Muitos deles são fundamentados em sistemas de equações diferenciais ordinárias (EDOs), isto é, baseiam-se em conjuntos de igualdades que envolvem variáveis dependentes, suas derivadas de primeira ordem e a variável independente. Neste trabalho, estudamos a modelagem da geração do potencial de ação em células excitáveis, como os neurônios. Existem dois modelos tradicionais e pioneiros que se destacam nessa área: Hodgkin-Huxley e FitzHugh-Nagumo. O objetivo desta dissertação é avaliar a possibilidade de modelar a geração do potencial de ação via uma única equação diferencial com atraso. Equações diferenciais com atraso são importantes por sua capacidade em reproduzir uma grande diversidade de fenômenos. Porém, seu uso na modelagem do potencial de ação de células excitáveis é ainda incipiente. Nesta dissertação, o método usado para alcançar este objetivo se baseou no desenvolvimento, inicialmente, de uma equação integro-diferencial que aproxima o sistema de EDOs. Em seguida, desenvolvemos uma aproximação para as integrais que usa termos tanto no instante atual quanto em instante anteriores, i.e., atrasados no tempo. Dessa forma, mostramos que é possível aproximar cada um dos sistemas de EDOS dos modelos de Hodgkin-Huxley e FitzHugh-Nagumo por uma única equação diferencial com atraso. Por fim, estes novos modelos são comparados com os originais, e são apontadas direções para a continuidade desta pesquisa. |
Abstract: | To represent different phenomena and systems mathematical models are widely used. Many of them are based on systems of ordinary differential equations (ODEs), that is, they are based on sets of equalities involving dependent variables, their derivatives of first order and the independent variable. In this work, we study the modeling of action potential generation in excitable cells, such as neurons. There are two traditional and pioneering models that stand out in this area: Hodgkin-Huxley and FitzHugh-Nagumo. The objective of this dissertation is to evaluate the possibility of modeling the generation of the action potential via a single differential equation with delay. Differential equations with delay are important because of their capacity to reproduce a great diversity of phenomena. However, its use in modeling the action potential of excitable cells is still incipient. In this dissertation, the method used to achieve this goal was based on the development, initially, of an integral-differential equation that approximates the ODE system. Next, we develop an approximation for integrals that uses terms at both the current instant and the previous instant, i.e., time delayed. Thus, we show that it is possible to approximate each of the ODEs systems of the Hodgkin-Huxley and FitzHugh-Nagumo models by a single differential equation with delay. Finally, these new models are compared with the original ones, and directions are indicated for future works. |
Palavras-chave: | Potencial de ação Neurônio Modelo computacional Equação diferencial com atraso Hodgkin-Huxley FitzHugh-Nagumo Action potential Neuron Computational model Delay differential equation Hodgkin-Huxley FitzHugh-Nagumo |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal de Juiz de Fora (UFJF) |
Sigla da Instituição: | UFJF |
Departamento: | ICE – Instituto de Ciências Exatas |
Programa: | Programa de Pós-graduação em Modelagem Computacional |
Tipo de Acesso: | Acesso Aberto |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/8081 |
Data do documento: | 31-Ago-2018 |
Aparece nas coleções: | Mestrado em Modelagem Computacional (Dissertações) |
Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.