Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/5418
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
raphaelpereiracordeiro.pdf16.63 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Agrupando dados e kernels de um simulador cardíaco em um ambiente multi-GPU
Autor(es): Cordeiro, Raphael Pereira
Orientador: Lobosco, Marcelo
Co-orientador: Santos, Rodrigo Weber dos
Co-orientador: Oliveira, Rafael Sachetto
Miembros Examinadores: Rocha, Bernardo Martins
Miembros Examinadores: Xavier, Carolina Ribeiro
Miembros Examinadores: Bentes, Cristiana Barbosa
Resumo: A modelagem computacional é uma ferramenta útil no estudo de diversos fenômenos complexos, como o comportamento eletro-mecânico do coração em condições normais e patológicas, sendo importante para o desenvolvimento de novos medicamentos e métodos de combate às doenças cardíacas. A alta complexidade de processos biofísicos se traduz em complexos modelos matemáticos e computacionais, o que faz com que simulações cardíacas necessitem de um grande poder computacional para serem executadas. Logo, o estado da arte em simuladores cardíacos é implementado para ser executado em arquiteturas paralelas. Este trabalho apresenta a implementação e avaliação de um método com dados e kernel agregados, método este utilizado para reduzir o tempo de computação de códigos que executam em ambientes computacionais compostos de múltiplas unidades de processamento gráfico (Graphics Processing Unit ou simplesmente GPUs). Este método foi testado na computação de uma importante parte da simulação da eletrofisiologia do coração, a resolução das equações diferenciais ordinárias (EDOs), resultando em uma redução pela metade do tempo necessário para a sua resolução, quando comparado com o esquema onde este método não foi implementado. Com o uso da técnica proposta neste trabalho, o tempo total de execução das simulações cardíacas foi reduzido em até 25%.
Resumen : Computational modeling is a useful tool to study many distinct and complex phenomena, such as to describe the electrical and mechanical behavior of the heart, under normal and pathological conditions. The high complexity of the associated biophysical processes translates into complex mathematical and computational models. This, in turn, translates to cardiac simulators that demand a lot of computational power to be executed. Therefore, most of the state-of-the-art cardiac simulators are implemented to run in parallel architectures. In this work a new coalesced data and kernel scheme is evaluated. Its objective is to reduce the execution costs of cardiac simulations that run on multi-GPU environments. The new scheme was tested for an important part of the simulator, the solution of the systems of Ordinary Differential Equations (ODEs). The results have shown that the proposed scheme is very effective. The execution time to solve the systems of ODEs on the multi-GPU environment was reduced by half, when compared to a scheme that does not implemented the proposed data and kernel coalescing. As a result, the total execution time of cardiac simulations was 25% faster.
Palabras clave : Modelagem computacional
Computação paralela
GPU
Eletrofisiologia cardíaca
Computação de alto desempenho
Computational modeling
Parallel computing
GPU
Cardiac electrophysiology
High performance computing
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Modelagem Computacional
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/5418
Fecha de publicación : 10-mar-2017
Aparece en las colecciones: Mestrado em Modelagem Computacional (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.