https://repositorio.ufjf.br/jspui/handle/ufjf/3544
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
grasielereginaduarte.pdf | 2.49 MB | Adobe PDF | Visualizar/Abrir |
Clase: | Dissertação |
Título : | Um algoritmo inspirado em colônias de abelhas para otimização numérica com restrições |
Autor(es): | Duarte, Grasiele Regina |
Orientador: | Lemonge, Afonso Celso de Castro |
Co-orientador: | Fonseca, Leonardo Goliatt da |
Miembros Examinadores: | Barbosa, Helio José Corrêa |
Miembros Examinadores: | Silva, Eduardo Krempser da |
Resumo: | Os problemas de otimização estão presentes em diversas áreas de atuação da sociedade e o uso de algoritmos bio-inspirados para a resolução de problemas complexos deste tipo vem crescendo constantemente. O Algoritmo Colônia de Abelhas Artificiais (ABC – do inglês Artificial Bee Colony) é um algoritmo bio-inspirado proposto em 2005 para a resolução de problemas de otimização multimodais e multidimensionais. O fenômeno natural que inspirou o desenvolvimento do ABC foi o comportamento inteligente observado em colônias de abelhas, mais especificamente no forrageamento. O ABC foi proposto inicialmente para ser aplicado na resolução de problemas sem restrições. Este trabalho avalia o desempenho do ABC quando aplicado na resolução de problemas de otimização com restrições. Para o tratamento das restrições, métodos de penalização serão incorporados ao ABC. São analisados diversos métodos de penalização, de diferentes tipos, com o objetivo de identificar com qual deles o algoritmo apresenta melhor desempenho. Além disto, são avaliadas possíveis limitações e cuidados que devem ser tomados ao combinar métodos de penalização ao ABC. O algoritmo proposto é avaliado através da resolução de problemas de otimização encontrados na literatura. Vários experimentos computacionais são realizados e gráficos e tabelas são gerados para demonstração dos resultados obtidos que também são discutidos. |
Resumen : | Optimization problems are present in several areas of society and the use of bio-inspired algorithms to solve complex problems of this type has been growing constantly. The Artificial Bee Colony Algorithm (ABC) is a bio-inspired algorithm proposed in 2005 for solving multimodal and multidimensional optimization problems. The natural phenomenon that inspired the development of the ABC was intelligent behavior observed in bee colonies, more specifically in foraging. The ABC was initially proposed to be applied to solve unconstrained problems. This study evaluates the performance of ABC when applied in solving constrained optimization problems. For the treatment of constraints, penalty methods will be incorporated into the ABC. Several penalty methods, of different types, are analyzed with the goal of identifying which of these penalty methods offers better performance. Furthermore, possible limitations and care that should be taken when combining penalty methods to ABC are evaluated. The proposed algorithm is evaluated by solving optimization problems found in the literature. Several computational experiments are performed and graphs and tables are generated for demonstration of the obtained results which are also discussed. |
Palabras clave : | Algoritmo colônia de abelhas artificiais Otimização com restrições Métodos de penalização Artificial Bee Colony Algorithm Constrained optimization Penalties methods |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Idioma: | por |
País: | Brasil |
Editorial : | Universidade Federal de Juiz de Fora (UFJF) |
Sigla de la Instituición: | UFJF |
Departamento: | ICE – Instituto de Ciências Exatas |
Programa: | Programa de Pós-graduação em Modelagem Computacional |
Clase de Acesso: | Acesso Aberto |
URI : | https://repositorio.ufjf.br/jspui/handle/ufjf/3544 |
Fecha de publicación : | 6-mar-2015 |
Aparece en las colecciones: | Mestrado em Modelagem Computacional (Dissertações) |
Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.