Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/3541
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
carolinemendoncacosta.pdf8.5 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Modelagem da microestrutura de tecidos cardíacos
Autor(es): Costa, Caroline Mendonça
Orientador: Santos, Rodrigo Weber dos
Miembros Examinadores: Toledo, Elson Magalhães
Miembros Examinadores: Duczmal, Denise Burgarelli
Resumo: Há algumas décadas atrás acreditava-se que o tecido cardíaco era contínuo e uniformemente conectado. Atualmente, sabe-se que as células do tecido cardíaco são conectadas umas às outras por canais especiais chamados junções gap, por onde há fluxo de corrente entre células vizinhas. Estas células por sua vez estão arranjadas em distintas camadas formando fibras de músculo cercadas por espaços extracelulares e tecido conectivo. A modelagem da eletrofisiologia cardíaca é uma importante ferramenta na compreensão de fenômenos cardíacos, como arritmias e outras doenças. Um dos modelos mais utilizados para descrever a atividade elétrica no coração é o modelo Monodomínio, no qual considera-se um tecido contínuo e uniformemente conectado obtido através da técnica de homogeneização. Em condições normais esta é uma aproximação adequada, uma vez que a influência da microestrutura do tecido não é tão evidente. Por outro lado, sabe-se que algumas condições patológicas alteram a conectividade do tecido, como em casos de infarto do miocárdio, onde é observada uma redução no acoplamento intercelular formando uma barreira parcial à propagação elétrica e no caso de fibrose, onde é observado um aumento do tecido conectivo formando uma barreira total à propagação. Nestas circunstâncias, estudos mostram que o modelo Monodomínio não é capaz de reproduzir os efeitos destas barreiras microscópicas na propagação elétrica. Sendo assim, neste trabalho serão apresentadas algumas das limitações deste modelo em casos de acoplamento intercelular reduzido e também uma técnica numérica baseada no método dos elementos finitos para reproduzir barreiras microscópicas causadas pela presença de espaços extracelulares e tecido conectivo no tecido cardíaco.
Resumen : A few decades ago the cardiac tissue was believed to be an uniformly connected continumm. Currently, it is known that the cardiac cells are connected to each other via special protein channels called gap junctions, through which the ionic current flows between neighboring cells. The cardiac cells are arranged in distinct layers of muscle fibers surrounded by extracellular space and connective tissue. The cardiac electrophysiology modeling is an important tool in understanding cardiac phenomena, such as arrythmias and other cardiac diseases. The Monodomain model is extensively used to describe the electrical activity in the heart. In this model the cardiac tissue is considered an uniformly connected continumm obtained by the application the homogenization technique. This is a reasonably approximation for normal physiological conditions, as in this case the cardiac microstructure is not so evident. On the other hand, some pathological conditions are known to modify the connectivity of the tissue. In isquemic and infarcted tissue it is observed a reduction in the intercellular coupling representing a partial barrier to the electrical propagation. In adittion, during fibrosis it is observed an excessive growth of the conective tissue, representing a total barrier to the electrical propagation. In such cases, recent simulation studies show that the Monodomain model can not reproduce such microscopic barrier effect on the electrical propagation. In this work we present some limitations of this model for the case of low intercellular coupling and also a numerical technique based on the finite element method to reproduce microscopic barrier caused by the presence of extracellular spaces and connective tissue in the cardiac tissue
Palabras clave : Modelagem da eletrofisiologia cardíaca
Equações diferenciais
Métodos numéricos
Métodos computacionais
Homogeneização
Cardiac electrophysiology modeling
Diferential equations
Numerical methods
Computational methods
Homogenization
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Modelagem Computacional
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/3541
Fecha de publicación : 28-feb-2011
Aparece en las colecciones: Mestrado em Modelagem Computacional (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.