Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/3245
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
liviaduraesreis.pdf633.53 kBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Representações induzidas de álgebras de Lie semissimples
Autor(es): Reis, Lívia Durães
Orientador: Santos, Laércio José dos
Co-orientador: Rabelo, Lonardo
Miembros Examinadores: França, Willian Versolati
Miembros Examinadores: Picanço, Rogerio Carvalho
Resumo: Neste trabalho estudamos representações com peso máximo de álgebras de Lie semissimples de dimensão finita. A ideia é construir um espaço de representação com peso máximo, universal no sentido em que qualquer outro espaço com peso máximo é um quociente deste. Esses espaços são definidos como uma representação torcida induzida por uma representação unidimensional de uma subálgebra de Borel e são chamados módulos de Verma. Os módulos de Verma M(λ), onde λ é um elemento do dual de uma subálgebra de Cartan, foram construídos a partir dos trabalhos de Verma [15] e alguns resultados foram obtidos por Bernstein-Gelfand-Gelfand [1]. A partir dessa construção, fizemos um estudo das propriedades gerais de módulos de Verma e uma caracterização das representações de dimensão finita com peso máximo. O resultado principal, nesse sentido, garante que as classes de equivalências das representações irredutíveis de dimensão finita são parametrizadas por l-uplas de inteiros não negativos, onde l é o posto da álgebra. Finalmente, fizemos um estudo da classe de submódulos que são isomorfos a algum módulo de Verma. Existe uma caracterização completa desta classe de submódulos. O resultado principal, nesta caracterização, garante que um submódulo de M(λ) é isomorfo a M(µ) se, e somente se, existe uma sequência finita de raízes positivas ligando λ com µ. Como consequência desse resultado temos que M(λ) é simples se, e somente se, os valores assumidos por λ em cada dual de raiz normalizada não é inteiro positivo.
Resumen : In this work we study the highest weight representations of finite dimensional semisimple Lie algebras. The idea is to build a universal highest weight representation space in the sense that any other highest weight space is a quotient of this. These spaces are defined as a twisted representation induced by a one-dimensional representation of a Borel subalgebra and are called Verma modules. The Verma modules M(λ), where λ is an element of the dual of a Cartan subalgebra, were built from Verma works [15] and some results were obtained by Bernstein-Gelfand-Gelfand [1]. From this construction, we made a study of the general properties of Verma modules and a characterization of finite dimensional representations with highest weight. The main result in this sense, ensures that the equivalence classes of finite dimensional irreducible representations are parameterized by l-tuples of non-negative integers, where l is the rank of the algebra. Finally, we made a study of the class of submodules that are isomorphic to some Verma module. A full characterization of this class of submodules already exists. The main result of this characterization, ensures that a submodule of M(λ) is isomorphic to M(µ) if and only if there is a finite sequence of positive roots linking λ with µ. As a consequence we have that M(λ) is simple if and only if the values assumed by λ in each normalized dual root is not a positive integer.
Palabras clave : Álgebra de Lie semissimples
Álgebra universal envelopante
Módulo de Verma
Representação com peso máximo
Representação induzida
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Mestrado Acadêmico em Matemática
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/3245
Fecha de publicación : 2-ago-2016
Aparece en las colecciones: Mestrado Acadêmico em Matemática (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.