Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/15895
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
viniciuslagrotarodriguesdacosta.pdf1.57 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Tese
Título: A quantum-resistant advanced metering infrastructure
Autor(es): Costa, Vinícius Lagrota Rodrigues da
Primeiro Orientador: Ribeiro, Moisés Vidal
Co-orientador: Hernández, Julio César López
Membro da banca: Andrade Filho, Luciano Manhães de
Membro da banca: Silva, Leandro Rodrigues Manso
Membro da banca: Oliveira, Fábio Borges de
Membro da banca: Kowada, Luis Antonio Brasil
Resumo: Esta tese de doutorado foca na discussão e implementação de uma Infraestrutura de Medição Avançada com Resistência Quântica (do inglês, Quantum-Resistant Advanced Metering Infrastructure - QR-AMI), que emprega esquemas criptográficos assimétricos e simétricos com resistência quântica para suportar ataques proveniente tanto de computadores quânticos, como clássicos. A solução proposta envolve a integração de um Módulo Criptográfico Dedicado com Resistência Quântica (do inglês, Quantum-Resistant Dedicated Cryptographic Modules - QR-DCMs) com Medidores Inteligentes (do inglês, Smart Meter - SM). Os QR-DCMs são projetados para embarcar esquemas criptográficos com resistência quântica adequados para aplicação em AMI. Nesse sentido, é investigado esquemas criptográficos assimétricos com resistência quântica baseado em fortes princípios criptográficos e abordagem com baixo uso de recursos para AMIs. Além disso, é analisado a implantação prática de um esquema com resistência quântica em QR-AMIs. Dois candidatos do processo de padronização da criptografia pós-quântica (do inglês, post-quantum cryptography - PQC) do Instituto Nacional de Padrões e Tecnologia (do inglês, National Institute of Standards and Technology - NIST), FrodoKEM e CRYSTALS-Kyber, são avaliados devido à adesão a fortes princípios criptográficos e abordagem com baixo uso de recursos. A viabilidade de embarcar esses esquemas em QR-DCMs em um contexto de AMI é avaliado por meio de implementação em software em hardwares de baixo custo, como um microcontrolador e processador, e implementações conjunta hardware/software usando um sistema em um chip (do inglês, System-on-a-Chip - SoC) com Arranjo de Porta Programável em Campo (do inglês, Field-Programmable Gate Array - FPGA). Resultados experimentais mostram que o tempo de execução para os esquemas FrodoKEM e CRYSTALSKyber em dispositivos SoC FPGA é, ao menos, um terço mais rápido que implementações em software. Além disso, os tempos de execuções atingidos e o uso de recursos demonstram a viabilidade desses esquemas para aplicações em AMI. O esquema CRYSTALS-Kyber parece ser uma escolha superior em todos os cenários, exceto quando fortes primitivas criptográficas são necessárias, ao menos teoricamente. Devido à falta de SMs no mercado que suportem esquemas criptográficos assimétricos com resistência quântica, um QR-DCM embarcando esquemas com resistência quântica é implementado e avaliado. Quanto à escolha do hardware para os QR-DCMs, microcontroladores são preferíveis em situações que requerem poder de processamento reduzido, enquanto dispositivos SoC FPGA são mais adequados para quando é demandado maior poder de processamento. O uso de recurso e o resultado do tempo de execução demonstram a viabilidade da implementação de AMI baseada em QR-DCMs, ou seja, uma QR-AMI, usando microcontroladores e dispositivos SoC FPGA.
Abstract: This dissertation focuses on discussing and implementing a Quantum-Resistant Advanced Metering Infrastructure (QR-AMI) that employs quantum-resistant asymmetric and symmetric cryptographic schemes to withstand attacks from both quantum and classical computers. The proposed solution involves the integration of Quantum-Resistant Dedicated Cryptographic Modules (QR-DCMs) within Smart Meters (SMs). These QR-DCMs are designed to embed quantum-resistant cryptographic schemes suitable for AMI applications. In this sense, it investigates quantum-resistant asymmetric cryptographic schemes based on strong cryptographic principles and a lightweight approach for AMIs. In addition, it examines the practical deployment of quantum-resistant schemes in QR-AMIs. Two candidates from the National Institute of Standards and Technology (NIST) post-quantum cryptography (PQC) standardization process, FrodoKEM and CRYSTALS-Kyber, are assessed due to their adherence to strong cryptographic principles and lightweight approach. The feasibility of embedding these schemes within QRDCMs in an AMI context is evaluated through software implementations on low-cost hardware, such as microcontroller and processor, and hardware/software co-design implementations using System-on-a-Chip (SoC) devices with Field-Programmable Gate Array (FPGA) components. Experimental results show that the execution time for FrodoKEM and CRYSTALS-Kyber schemes on SoC FPGA devices is at least one-third faster than software implementations. Furthermore, the achieved execution time and resource usage demonstrate the viability of these schemes for AMI applications. The CRYSTALS-Kyber scheme appears to be a superior choice in all scenarios, except when strong cryptographic primitives are necessitated, at least theoretically. Due to the lack of off-the-shelf SMs supporting quantum-resistant asymmetric cryptographic schemes, a QRDCM embedding quantum-resistant scheme is implemented and evaluated. Regarding hardware selection for QR-DCMs, microcontrollers are preferable in situations requiring reduced processing power, while SoC FPGA devices are better suited for those demanding high processing power. The resource usage and execution time outcomes demonstrate the feasibility of implementing AMI based on QR-DCMs (i.e., QR-AMI) using microcontrollers or SoC FPGA devices.
Palavras-chave: Infraestrutura avançada de medição
Medição inteligente
Criptografia pós-quântica
Segurança
Privacidade
Arranjo de porta programável em campo
Processador
Microcontrolador
Advanced metering infrastructure
Smart metering
Post-quantum cryptography
Security
Privacy
Field programmable gate array
Processor
Microcontroller
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: Faculdade de Engenharia
Programa: Programa de Pós-graduação em Engenharia Elétrica
Tipo de Acesso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/15895
Data do documento: 15-Jun-2023
Aparece nas coleções:Doutorado em Engenharia Elétrica (Teses)



Este item está licenciado sob uma Licença Creative Commons Creative Commons