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RESUMO

Os modelos de sobrevivéncia sao amplamente utilizados em estudos que analisam o tempo
até a ocorréncia de um evento de interesse. Esses modelos lidam com conjuntos de
dados onde, para algumas observagoes, o evento pode nao ocorrer durante o periodo de
acompanhamento, resultando em dados censurados, nos quais o tempo até o evento nao
¢é completamente conhecido. Tradicionalmente, tais modelos tém sido aplicados na area
médica para avaliagdo de tempos de vida, de recidiva de doencgas e na modelagem de
problemas de confiabilidade como, por exemplo, para determinacao de tempos de falhas
em componentes mecanicos ou eletronicos. Mais recentemente, também tém encontrado
aplicagoes em ciéncias sociais na modelagem de problemas relacionados a internet, como
a determinacao do tempo até o abandono de um emprego, a avaliagao do periodo para
saida de plataformas digitais e, até mesmo, na determinagdo temporal para conclusao
de sessoes de navegacao. Neste contexto, o modelo semiparamétrico de Buckley-James
(BJ) surge como alternativa. Este pode ser visto como uma extensao da regressao linear
para situagoes com censura permitindo, assim, o uso de minimos quadrados ordinarios nos
processos de estimacao. Diferentemente do modelo de Cox, o BJ ndo exige a suposicao
de proporcionalidade dos riscos. No entanto, a eficiéncia do modelo BJ é comprometida
quando a relacdo entre covaridveis e resposta nao é linear e/ou quando ha presenca de
observagoes extremas (outliers). Este trabalho propoe uma abordagem computacional
adaptativa para modelos de sobrevivéncia com censura a direita, construida no ambito do
modelo BJ. A proposta integra em um processo de aprendizagem um comité de regressores
baseado nas Maquinas de Aprendizado Extremo, que sdo redes neurais conhecidas pela sua
eficiéncia computacional em um esquema L2 Boosting com ponderacao de casos baseada
na distribuicao ¢-Student. Essa formulacao substitui a combinacao linear de covariaveis do
modelo BJ pela funcao de saida do comité, permitindo que o modelo desenvolvido selecione
automaticamente entre estruturas lineares e nao lineares e, adicionalmente, incorpore
robustez na presenca de observagoes extremas. A escolha da funcao de ativacdo nos ELM
possibilita capturar diferentes padroes de relagdo entre covariaveis e resposta, enquanto os
graus de liberdade da distribuigdo t-Student controlam a sensibilidade do modelo a valores
extremos. Os resultados obtidos a partir de experimentos com dados simulados e com
conjuntos de dados referenciados na literatura, avaliados por métricas como C-Index e IBS,
evidenciam ganhos significativos de flexibilidade e desempenho, constituindo a base para o
desenvolvimento de um método geral e unificado. Adicionalmente, a proposta é aplicada a
um conjunto de dados de pacientes brasileiros com doenca renal cronica, demonstrando

sua relevancia pratica e o potencial para andlises em cendrios clinicos reais.

Palavras-chave: Anadlise de Sobrevivéncia. Modelo de Buckley-James. Maquina de

Aprendizado Extremo. Boosting L.2. Distribuicao t-Student.



ABSTRACT

Survival models are widely used in studies that analyze the time until the occurrence of
an event of interest. These models deal with datasets in which, for some observations, the
event may not occur during the follow-up period, resulting in censored data where the time
to the event is not fully known. Traditionally, such models have been applied in the medical
field for the evaluation of lifetimes, disease recurrence, and in the modeling of reliability
problems, such as determining failure times in mechanical or electronic components. More
recently, they have also found applications in the social sciences for modeling problems
related to the internet, such as determining the time until job abandonment, evaluating
the period until leaving digital platforms, and even determining the time to conclude

browsing sessions.

In this context, the semiparametric Buckley-James (BJ) model emerges as an alternative.
It can be seen as an extension of linear regression to censored situations, thus allowing the
use of ordinary least squares in estimation processes. Unlike the Cox model, BJ does not
require the assumption of proportional hazards. However, the efficiency of the BJ model is
compromised when the relationship between covariates and response is not linear and/or

when extreme observations (outliers) are present.

This work proposes an adaptive computational approach for right-censored survival models,
built within the BJ framework. The proposal integrates into a learning process a committee
of regressors based on Extreme Learning Machines, which are neural networks known for
their computational efficiency, in an 1.2 Boosting scheme with case weighting based on the
Student’s t-distribution. This formulation replaces the linear combination of covariates in
the BJ model with the output function of the committee, allowing the developed model to
automatically select between linear and nonlinear structures and, additionally, incorporate
robustness in the presence of extreme observations. The choice of activation function
in the ELM enables capturing different patterns of relationships between covariates and
response, while the degrees of freedom of the Student’s t-distribution control the model’s

sensitivity to extreme values.

The results obtained from experiments with simulated data and datasets referenced in the
literature, evaluated by metrics such as C-Index and IBS, demonstrate significant gains in
flexibility and performance, forming the basis for the development of a general and unified
method. Additionally, the proposal is applied to a dataset of Brazilian patients with
chronic kidney disease, demonstrating its practical relevance and potential for analyses in

real clinical scenarios.



Keywords: Survival Analysis. Buckley-James model. Extreme Learning Machine. boosting
L2. t-Student distribution.



1.1
1.2
1.3
14

2.1
2.2

3.1
3.1.1
3.1.2
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.14
3.2

3.3
3.3.1
3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.11.1
3.11.1.1
3.11.1.2
3.11.1.3
3.12

SUMARIO

INTRODUGCAO . . . .t oot e e e e e e e e e e e 11
CONTEXTUALIZACAO DO PROBLEMA . . . . . . ... ... .... 11
MOTIVACAO . . . . . . 13
OBJETIVOS . . . o o 15
ORGANIZACAO DO TRABALHO . . . . . .. . ... .. ... ... 15
REVISAO BIBLIOGRAFICA . . . ... v iiiiii .. 17
METODOS ESTATISTICOS . . . . o oo i 17
METODOS DE APRENDIZADO DE MAQUINA . . ... ... .... 20

FUNDAMENTACAO E DESENVOLVIMENTO METODOLO-

GICO . . . . e e e e e e e e e e e 24
ANALISE DE SOBREVIVENCIA . . . . ... ... ... ... ..... 24
Tipos de estudos . . . . . . . . . . ... L 24
Modelagem de dados de sobrevivéncia . . . . . .. . ... ... .. 25
Caraterizacao dos dados de sobrevivéncia . . . . . .. .. .. ... 26
Obtencao de dados . . . . . . . . . . . .. ... 26
Variavel resposta . . . . . . . . . 26
Censura nos dados . . . . . . . . . . e 27
O tempo de sobrevivéncia . ... ... ... . ... ... ...... 28
ESTIMADOR DE KAPLAN-MEIER . . ... ... ... ... ..... 29
MODELO DE RISCOS PROPORCIONAIS DE COX . . ... ... .. 30
Formalizacadto domodelo . . . . . . . . ... ... ... ... ... . 30
UM EXEMPLO DE ANALISE DE SOBREVIVENCIA . ... ..... 31
MODELO BUCKLEY-JAMES (BJ) . . . . ... .. .. .. ... .... 34
A DISTRIBUICAO t-STUDENT . . . . . . . . ... ... ... ..... 35
MODELO DE REGRESSAO t-STUDENT . . . .. .. ... ...... 37
TESTE RESET DE RAMSEY . . . . . . . ... ... ... ... .... 38
MAQUINA DE APRENDIZADO EXTREMO (ELM) . . ... ... .. 40
ALGORITMO BOOSTING L2 . . . . . . ... ... o ... 41
DESENVOLVIMENTO METODOLOGICO . . . . ... ........ 42
Formulacao do modelo proposto . . . . . . ... .. ... ... .. ... 43
Determinagao da estrutura linear/nao linear . . . . . . ... ... ... 43
Inclusao de robustez nomodelo . . . . . . .. ..o 44
Integracao de ELM e Buckley—-James com erros ¢t-Student . . . . . . .. 46

Integragao Boosting L2 com BJ-ELM- ¢-Student . . . . . . . . ... .. 47



3.13
3.13.1

4.1

4.1.1
4.1.2
4.2

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7
4.2.8
4.3

4.3.1
4.3.2

5.1
5.2
9.3
5.4
5.4.1
5.4.2
5.4.3
0.4.4
9.5
0.6
5.7

Algoritmo Adaptativo BJ-ELM-¢-Student com Boosting 1.2 . . . . . .. 48

Algoritmo proposto . . . . ... 49
RESULTADOS . . . . . e e e e e e e e e e e e 53
MEDIDAS DE DESEMPENHO . . . .. ... ... ... ........ 53
Concordance Index (C-Index) . . . . . . .. .. ... .. ... 53
Integrated Brier Score (IBS) . . . . ... .. ... oL 53
ESTUDOS DE SIMULACAO . . .. ... ... ... ... ....... 54
Especificacao dos Cenarios Simulados . . . . . . . . .. .. .. .. ... 54
Modelos avaliados . . . . . . . . . ... 56
Avaliacdo do cendrio 1 . . . . . . . . . ... 56
Avaliagdo do cendrio 2 . . . . . . ... 58
Avaliacdo do cendrio 3 . . . . . . . ... 59
Avaliacdo do cendrio 4 . . . . . . . . ... 60
Avaliagdo do cendrio b . . . . . . ... 61
Avaliagao do cendrio 6 . . . . . . . ... 62
APLICACAO EM DADOS REAIS . . . . . .. ... ... ... ..... 63
Avaliacao de inclusao de robustez no modelo . . . . . . ... ... ... 63
Avaliacdo do modelo adaptativo proposto . . . . . .. .. .. ... ... 65
DADOS SOBRE DOENCA RENAL CRONICA . ....... 72
DESCRICAO DO ESTUDO . . . .. ... ... . ... 72
DEFINICOES PARA PRE-PROCESSAMENTO DE DADOS . . . . . . 75
CONSTRUCAO DO ARQUIVO PARA ANALISE . . . .. ... .... 76
DESCRICAO DE DADOS PARA ANALISE . . ... ... ....... 78
Caracteristicas sociodemograficas . . . . . . .. .. ... .. .. ... .. 81
Escala de Desempenho de Karnofsky . . . . . . .. ... ... ... ... 83
Comorbidades . . . . . . . . .. 84
Varidveis clinicas e laboratoriais . . . . . . .. .. ... ... .. .. .. 85
Modelo de Cox preliminar para avaliacdo de covariaveis . . . . . . . .. 91
Aplicacao de modelo adaptativo sobre banco reduzido . . . . ... . .. 94
Aplicacao de modelo adaptativo sobre banco completo . . . . . . . . .. 95

CONCLUSOES DO TRABALHO E PROPOSTAS FUTURAS 98

REFERENCIAS . . . o o e e e e e e e e s s s e, 101



11

1 INTRODUCAO

1.1 CONTEXTUALIZACAO DO PROBLEMA

Desde 1662, ano em que John Graunt apresentou alguns resultados descritivos
sobre niimeros de nascimentos e mortes e a relagdo destes com certas doencas na Inglaterra,
utilizando um formato rudimentar de tabelas de vida [1], o interesse por estudar as
populagoes para avaliar a natalidade, mortalidade e os padroes de fecundidade, associados

a alguns atributos e eventos tornou-se importante.

Graunt realizou um trabalho puramente empirico, avaliando dados reais registrados
em pardquias e obtidos por buscadoras. A partir desses dados, construiu as tabelas de
vida considerando alguns intervalos de idade e calculando taxas de sobrevivéncia que
foram associadas as causas de morte registradas. Considera-se que este trabalho mostrou
a importancia da demografia e da ciéncia atuarial, além de ter estabelecido as bases para

o que conhecemos atualmente como epidemiologia.

Durante os trés séculos seguintes, a pouca disponibilidade de dados, a falta de
precisao e sistematizacao na coleta destes, e a auséncia de dados obtidos por procedimentos
experimentais e planejados, levaram a obtencao de conclusdes empiricas e descritivas sobre
o comportamento das populagoes. Durante este periodo, propuseram-se funcoes tedricas
explicitas para descrever a mortalidade populacional [2], sendo duas das mais conhecidas

a aproximagao linear de De Moivre (1725) e a aproximacao de Gompertz (1825).

Apods o fim da segunda guerra mundial, o grande interesse por duas areas especificas
tornou-se fundamental para o desenvolvimento e formalizacdo do que é conhecido como
Analise de Sobrevivéncia, em inglés Survival Analysis. Por um lado, havia o interesse no
melhoramento da satide e da medicina preventiva, e, por outro, o interesse na melhoria
da qualidade e confiabilidade de produtos e servigos. Para esse fim, foram introduzidas

diversas técnicas estatisticas de andlise de dados para esses tipos de situagoes.

Na area da saude, a busca por respostas a muitos problemas epidemiologicos
levou a realizacao de diversas pesquisas. Um interesse especial foi dado a estudos sobre
cancer. A identificagdo de fatores de risco (comportamentais, habitos e ambientais, entre
outros) e a avaliagao do tempo de sobrevida de individuos que possuem carateristicas
formadas por uma combinacao dos fatores avaliados, assim como a comparacao dos tempos
de sobrevida entre grupos submetidos a determinado tratamento e um grupo controle,
tornaram-se frequentes. Além disso, ensaios e testes para diversas vacinas desenvolvidas
foram frequentes neste periodo. Como exemplo, podemos citar o estudo que gerou a

publicacao de um relatério embleméatico que associava o tabagismo ao cancer de pulmao
em 1964 [3].

Por outro lado, a busca continua pela qualidade levou ao surgimento da denomi-

nada engenharia de confiabilidade, a qual faz uso de diversos métodos estatisticos para
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alcancar seus objetivos. Ao definir a confiabilidade como a qualidade de um produto ao
longo do tempo, todos os envolvidos nestes processos consideram que essa carateristica é
indispensavel para competir nos mercados atuais. Considerando uma definicao mais formal
da confiabilidade como sendo a probabilidade de uma unidade desempenhar sua funcao até
o tempo especificado, sob as condigoes de uso encontradas [4], foram propostos modelos
estatisticos para estimar os tempos de desempenho, inicialmente usando a distribuicao

exponencial e posteriormente distribui¢goes Weibull e Lognormal [5].

Em anos recentes, a Analise de Sobrevivéncia foi aplicada em outras areas de
pesquisa. Dirick (2017) [6] apresenta uma visao geral do uso dessas andlises na modelagem
de risco de crédito, uma area com grande interesse e potencial de pesquisa nos dias atuais.
Uma revisdao que descreve diversos trabalhos com aplicagbes da Anélise de Sobrevivéncia
em diversas areas ¢ apresentado por Wang (2019) [7]. Neste trabalho sdo mencionadas
aplicagoes na area social, onde se avaliam o tempo para reinsercao no mercado de trabalho,
explicado por carateristicas sociodemograficas do individuo e indicadores econémicos, e
o tempo de desisténcia escolar, explicado por carateristicas demograficas, financeiras e
académicas do aluno. O trabalho também apresenta aplicacdes associadas ao uso de
internet que em anos recentes tomou grande relevancia. Uma primeira aplicagdo avalia o
tempo para a compra de um determinado servigo, explicado por dados sociodemogréficos
e carateristicas do produto e da loja virtual; uma segunda aplicacao avalia o tempo para o
sucesso de um projeto em financiamentos colaborativos (em inglés, Crowdfunding) explicado
por carateristicas do projeto, dos criadores e de carateristicas comunicacionais via Twiter; e,
numa terceira aplicacao, avalia-se o tempo para visualizacao de propaganda explicado por
carateristicas demograficas e interesses do usuario, bem como carateristicas da propaganda
na pagina eletronica. Considera-se que estudos desse tipo tém grande potencial futuro,
devido aos constantes e rdpidos avancos no uso da internet e a enorme quantidade de
informacao que é produzida e possivel de ser analisada. Finalmente, sdo descritas aplicagoes
recentes e cada vez mais frequentes em ciéncias da satde e bioinformatica, que incluem
informacoes de expressao genética, levando a andalises com uma grande quantidade de

atributos (em inglés, high dimensional data).

Embora as técnicas estatisticas utilizadas na Andlise de Sobrevivéncia sejam muito
conhecidas e estabelecidas, elas sao o ponto de partida para o desenvolvimento de modelos
que tentam lidar de forma mais eficaz com as novas situagoes trazidas pela disponibilidade
de uma grande quantidade de informacoes e pelos avangos computacionais recentes. Por
um lado, a disponibilidade de grande quantidade de informacao conduz a trés questoes
que devem ser consideradas: o modelo deve ser capaz de lidar com uma grande quantidade
de atributos disponiveis para a explica¢ao de um fenémeno (high dimensional), as relagoes
nao lineares presentes na estrutura do modelo e ser robusto em relagao a presenca de dados
extremos (outliers) dentro do conjunto de informagoes disponivel. Os avangos na area

computacional, por sua vez, permitem a criacao de modelos estatisticos estruturalmente
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mais complexos e com novas abordagens probabilisticas, descrevendo com maior fidelidade

os fenomenos investigados.

Nesta linha de pesquisa, algoritmos de Aprendizado de Maquina sao propostos para
a solugao de problemas em Anélise de Sobrevivéncia, demostrando grande desempenho
quando avaliados por seus resultados preditivos. Diversos estudos que combinam Anélise de
Sobrevivéncia com algoritmos de Aprendizado de Maquina para obter melhores resultados
na predicao do tempo até a ocorréncia do evento vem sendo desenvolvidos recentemente

(Wang, 2019 [7]).

1.2 MOTIVACAO

O trabalho é motivado por um problema real relacionado a dados médicos associados
ao tratamento de Doenga Renal Cronica (DRC). A questao principal é propor um algoritmo
computacional para a obtengao de previsoes confidveis do tempo de sobrevida (em meses) de

pacientes com DRC levando em consideracao um conjunto de caracteristicas dos pacientes.

Desta forma, além do registro do tempo de sobrevida do paciente com DRC, o
banco de dados contém varidveis demograficas, médicas, laboratoriais, de avaliacao clinica
e de qualidade de vida. A ocorréncia de heterogeneidade das informagoes provenientes de
diversas fontes e as relagoes entre as variaveis medidas indicam que o modelo proposto
deve lidar com estruturas mais complexas para descrever o fendmeno estudado. Isso inclui
um alto nimero de atributos, relagdoes nao lineares entre os tempos de sobrevida e os
atributos considerados, e a possibilidade de presenca de dados extremos. Neste contexto,
a utilizacdo de um algoritmo de Aprendizado de Méaquinas torna-se uma boa alternativa

para lidar com este conjunto de situagoes.

A busca por algoritmos de Aprendizado de Maquina para a soluc¢ao de problemas
de dados médicos, como o descrito acima, conduziu a constatacao de duas situagoes
recorrentes na atualidade. Primeiro, a crescente utilizagdo da Analise de Sobrevivéncia
em diversos contextos (veja por exemplo, Dirick (2017) [6] e Wang (2019) [7]). Pode-se
encontrar aplicagoes que ilustram a versatilidade da Anélise de Sobrevivéncia ao tratar
de tempos até eventos em areas tao diversas quanto satude, economia e comportamento
social. Segundo, diversos algoritmos de Aprendizado de Maquina tém sido propostos
para lidar com as caracteristicas complexas dos dados, como alta dimensionalidade, nao
linearidade e a presenca de outliers. Por exemplo, técnicas como Redes Neurais e Florestas
Randomicas tém mostrado melhor desempenho em contextos de alta dimensionalidade e
nao linearidade (Ishiwaran, 2007 [8] e Zhao et al., 2019 [9]), enquanto métodos baseados
em Boosting e Maquinas de Vetores Suporte sao frequentemente utilizados para garantir
robustez na presenga de dados extremos (Chen et al., 2016 [10] e Zhu et al. [11] ).

Observa-se que todas as propostas e avancos apresentados refletem a crescente

importancia de adaptar os algoritmos as especificidades dos dados, garantindo maior
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precisao nas previsoes. Assim, antes da resolucdo do problema que motiva o trabalho
decidiu-se que em primeiro lugar deveria se propor um algoritmo de Aprendizado de
Maquina que possa ser utilizado em diversos problemas de Anélise de Sobrevivéncia e
que sejam flexiveis para incorporar (considerar ou incluir) na analise as especificidades do

problema que esta sendo estudado.

Nos ultimos anos, a Maquina de Aprendizado Extremo (ELM) (Huang et al., 2004
; 2006 [12] [13]) tem sido utilizada para diferentes tarefas de aprendizado. Wang et al. [14]
apresentam uma revisao sobre o ELM indicando seu uso em tarefas de aprendizado para
classificagdo, clusterizagao e regressao, onde sua utilizacao é justificada principalmente pela
rapidez de treinamento e o custo custo computacional mais baixo comparado com redes
neurais profundas ou métodos baseados em retropropagagio. Wang et al. (Veja [15] e [16])
apresentam duas propostas do uso do ELM em problemas de Andlise de Sobrevivéncia
que consideram o modelo de Cox e o Modelo Buckley-James, e Kong et al. [17] utiliza
um algoritmo Boosting 1.2 baseado em ELM e o modelo Buckley-James, mostrando uma

melhora nas previsoes de tempos de sobrevivéncia quando os modelos sao nao lineares.

O modelo de Cox de Riscos Proporcionais [18], é amplamente utilizado em Anélise
de Sobrevivéncia e, apesar de sua complexidade computacional ser baixa, depende da
suposicao de riscos proporcionais (a razao de riscos entre diferentes grupos ou individuos,
controlada pelas covaridveis, é constante ao longo do tempo), a qual é dificil de ser
satisfeita em problemas reais. A interpretacao deste modelo é feita a partir da razao de
riscos e o tempo de sobrevivéncia é obtido indiretamente. Em contrapartida, o modelo
de Buckley-James (Buckley, 1979 [19]) estima diretamente o tempo de sobrevivéncia e
dispensa a suposicao de riscos proporcionais, apresentando o modelo como uma adaptacao
da regressao linear que lida com censura, usando minimos quadrados e substituindo os

valores censurados pelas suas esperancas condicionais.

A abordagem tradicional em modelos de regressao pressupoe, em geral, a normali-
dade dos erros e emprega o método de minimos quadrados na estimagao dos parametros.
No entanto, um modelo normal sofre de falta de robustez no sentido de ser muito sensivel
quando existem observagoes extremas (outliers). Assim, relaxar a suposicao de normali-
dade, utilizando uma distribuicao simétrica com caudas mais pesadas que a distribuicao
normal, tem-se mostrado uma alternativa interessante para reduzir a influéncia dos dados
extremos no processo de estimacao. Muitos trabalhos sobre a utilizacao destas distribuicoes
simétricas foram apresentados ao longo das tltimas duas décadas, dentre eles, Massuia et
al [20] apresenta um modelo de regressao t-Student para dados censurados. Neste contexto,
a ideia de considerar um modelo Buckley-James com distribuicao simétrica diferente da
normal (especificamente t-Student) torna-se possivel.

Considerando todos os elementos apresentados, o algoritmo de Aprendizado de

Maquinas proposto considera o modelo Buckley-James robusto com distribuicao de erros

t-Student para o melhor tratamento de dados extremos, assim como a inclusdo do ELM e
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o Boosting L2 para o tratamento de nao linearidade.

1.3 OBJETIVOS

O objetivo principal deste trabalho de doutorado é propor um algoritmo para o
modelo de sobrevivéncia semiparamétrico que combina a ideia do modelo Buckley-James
[19] considerando uma distribuigdo de probabilidade t-Student, robusta a presenca de
dados extremos (outliers) em lugar da distribui¢do normal com o uso da Maquina de
Aprendizado Extremo (ELM) para a busca da melhor solu¢ao na predigdo de dados de
sobrevida, com posterior aplicacao e validagdo do algoritmo proposto na analise de dados

de pacientes com doenca renal cronica em tratamento por didlise peritoneal.

Os objetivos especificos do trabalho podem ser resumidos em:

(i) Apresentar detalhadamente o algoritmo proposto descrevendo as suposigoes e os

parametros que devem ser considerados.

(ii) Avaliar os resultados da aplicagao do algoritmo proposto a partir de diversos estudos
de simulagdo de Monte Carlo. Os estudos de simulacao incluem avaliacoes do
algoritmo sob diversas carateristicas de conjunto de dados e comparacoes com outras

metodologias apresentadas na literatura.

(iii) Aplicar o algoritmo proposto em dados reais conhecidos na literatura e comparar os

resultados com as outras metodologias apresentadas nos estudos de simulacao.

(iv) Analisar os dados médicos de pacientes associados ao tratamento de Doenga Renal
Cronica (DRC), aplicando o algoritmo proposto e as outras metodologias apresentadas

neste trabalho.

Dentre as metodologias disponiveis na literatura para Analise de Sobrevivéncia,
este trabalho concentra suas comparagoes principalmente no modelo de Cox, por ser o
mais difundido e amplamente utilizado nesse tipo de estudo. Além disso, sdo considerados
modelos baseados na formulacao de Buckley—James, descritos em estudos prévios, de modo
a avaliar o desempenho da proposta em relacao a metodologias classicas e semiparamétricas

consolidadas.

1.4 ORGANIZACAO DO TRABALHO

Este trabalho de tese contém seis capitulos, sendo organizados como segue abaixo.

Uma revisao bibliografica sobre os principais modelos utilizados na Analise de
Sobrevivéncia é apresentada no Capitulo 2, com énfase tanto em métodos estatisticos
classicos quanto em abordagens baseadas em Aprendizado de Maquina. Os métodos

estatisticos sao agrupados em trés grandes categorias: nao paramétricos, como o estimador
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de Kaplan-Meier; semiparamétricos, com destaque para o modelo de riscos proporcionais
de Cox e o modelo de Buckley-James, adequado para lidar com censura; e paramétricos,
que incluem modelos baseados em distribui¢oes conhecidas, como exponencial, Weibull e
log-normal. No campo do Aprendizado de Maquina, sao discutidas técnicas adaptadas
para dados censurados, com destaque para as arvores de sobrevivéncia (como as Random
Survival Forests), as redes neurais profundas (como DeepSurv e DeepHit) e as maquinas
de vetores de suporte para sobrevivéncia (Survival SVM). Tais abordagens vém ganhando
espaco por sua capacidade de modelar relagoes complexas entre covariaveis e tempos de
evento, especialmente em contextos com grandes volumes de dados e miiltiplas fontes de

informacao.

No Capitulo 3, apresenta-se a fundamentagao tedrica necessaria e, na sequéncia, a
metodologia desenvolvida neste trabalho. Os conceitos associados a Analise de Sobrevivén-
cia com énfase em censura a direita; o modelo de Buckley-James; a técnica de Maquina de
Aprendizado Extremo (ELM), a distribui¢ao de probabilidade t-Student como alternativa a
normal para o tratamento robusto de dados extremos (outliers); o modelo de Boosting; e o
teste RESET de Ramsey, utilizado para avaliar a presenga de nao linearidade. Finalmente,
é apresentada a forma como esses fundamentos sao integrados, culminando na proposta do
algoritmo desenvolvido para o tratamento de dados de sobrevivéncia e previsao de tempos

de vida.

Os resultados de diversos estudos de simulagao para avaliacao do algoritmo proposto,
bem como sua aplicagao em dados reais conhecidos na literatura, sao apresentados no
Capitulo 4. A comparacao com outras técnicas conhecidas em Anélise de Sobrevivéncia é
também discutida. As medidas de desempenho C-index e IBS, utilizadas nas avalia¢oes

quantitativas, sao descritas e definidas neste capitulo.

O Capitulo 5 apresenta a andlise detalhada dos dados sobre doenga renal cronica
em pacientes submetidos a didlise peritoneal, incluindo a descricao do estudo, a construcao
do banco de dados para andlise, as variaveis utilizadas e uma caracterizacao inicial por
meio de andlises descritivas. Em seguida, sao apresentados os resultados obtidos, que
abrangem a aplicacao do algoritmo proposto e sua comparacao com as demais metodologias

consideradas neste trabalho.

Finalmente, o Capitulo 6 apresenta as conclusoes e consideragoes finais deste
trabalho, reunindo os principais resultados obtidos e discutindo suas implicagoes no
contexto da Analise de Sobrevivéncia. O capitulo também destaca as limitagoes observadas

e propoe possiveis diregoes para pesquisas futuras.
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2 REVISAO BIBLIOGRAFICA

As técnicas propostas para a Analise de Sobrevivéncia buscam modelar o tempo
em que ocorre um evento de interesse considerando a presenca de censuras, tendo como
objetivo principal realizar previsdes do tempo de sobrevivéncia e estimar a probabilidade
de sobrevivéncia no tempo de sobrevivéncia estimado. Para este fim, nos primeiros
desenvolvimentos da area foram apresentados alguns métodos estatisticos para o tratamento
de dados com censura que estao fundamentadas em teorias probabilisticas. Em pesquisas
recentes, diversos algoritmos de Aprendizado de Maquina foram adaptados para lidar com
dados censurados num contexto onde os dados reais apresentam algumas carateristicas
desafiadoras que, em muitos casos, levam a violagao de algumas suposi¢oes que os modelos
estatisticos tradicionais, resultando em desempenho reduzido ou limitacoes praticas. A
seguir apresenta-se uma visao global sobre os métodos de Analise de Sobrevivéncia mais

conhecidos na literatura.

2.1 METODOS ESTATISTICOS

Os métodos estatisticos tradicionais de Anélise de Sobrevivéncia foram desenvolvi-
dos com o objetivo de caracterizar probabilisticamente os tempos até a ocorréncia de um
evento de interesse, definindo as propriedades estatisticas dos estimadores dos parame-
tros do modelo e da curva de sobrevivéncia. Para esse fim, diferentes abordagens foram
propostas, cada uma baseada em suposic¢oes especificas sobre a distribuicao dos tempos
de sobrevivéncia e sobre a natureza das variaveis aleatérias envolvidas. Quando essas
suposicoes sao satisfeitas, tais métodos oferecem estimativas consistentes e interpretaveis,
especialmente em cenarios de baixa dimensionalidade. No entanto, em aplicagoes reais,
muitas dessas condigoes nao sao plenamente atendidas, o que motivou o desenvolvimento
de novas metodologias ou adaptacoes das existentes. Entre essas extensoes modernas
destacam-se os métodos de regularizacao, como o Lasso, que permitem lidar com dados de

alta dimensionalidade e complexidade, comuns em estudos genémicos e biomédicos.

Uma classificagdo amplamente utilizada para organizar esses métodos esta associada
as suposicoes sobre a distribuicao dos dados e a forma das relagoes entre variaveis. Assim,
eles podem ser agrupados em modelos paramétricos, semiparamétricos e nao paramétricos.
Essa forma de apresentacao pode ser encontrada em Colosimo et al. [42] e Wang et al.
[7], entre outros, e constitui a base para a compreensao das diferentes estratégias de

modelagem em sobrevivéncia.

Os modelos nao paramétricos nao fazem suposicoes fortes sobre a distribuicao dos
dados tornando-se mais flexiveis ao modelar relagoes complexas, porém podem apresentar
menos eficiéncia nas estimagoes (especialmente com amostras pequenas) e maior dificuldade

nas interpretacoes. Estes modelos sdo tteis quando nao se conhece a distribuicao explicita
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dos dados e alcangam uma boa precisao com amostras grandes.

Os métodos nao paramétricos sao mais eficientes quando nao ha distribuicao
subjacente para o tempo de evento ou a suposi¢ao de risco proporcional nao se mantém, o
objetivo é a obtencao de uma estimativa empirica da funcao de sobrevivéncia. O método
nao paramétrico mais conhecido e usado é o de Kaplan-Meier (KM) proposto em 1958
([21]). De forma geral, qualquer estimador de KM para a probabilidade de sobrevivéncia
no tempo de sobrevivéncia especificado serd um produto da mesma estimativa até o tempo
anterior e a taxa de sobrevivéncia observada para esse tempo determinado, por isto, o
método KM também é referido como um método de limite de produto. Um segundo
método é o de Nelson-Aalen (NA) ([22] e [23]), que utiliza na sua construgao algumas
técnicas modernas de processos de contagem, este apresenta essencialmente as mesmas
carateristica de KM. Finalmente, método de Tabela de Vida (LT) (Cutler et al. 1958 [24])
¢é construido a partir da aplicacao do método KM a dados de sobrevivéncia agrupados por

intervalos.

Os modelos semiparamétricos combinam componentes paramétricos e nao para-
métricos, fazendo algumas suposi¢oes paramétricas e flexibilizando certas suposi¢oes no
conjunto de dados, sao interpretaveis com dificuldade mas com uma implementacao mais
complexa e com menor eficiéncia que os modelos paramétricos pois as distribui¢oes dos

resultados nao sao conhecidas.

O modelo de Cox ([18] e [25]), também conhecido como modelo de riscos proporci-
onais de Cox, é um dos métodos mais utilizados na Analise de Sobrevivéncia. Ele é um
modelo semiparamétrico, o que significa que ele faz algumas suposi¢oes paramétricas sobre
os efeitos das covariaveis, mas nao assume uma distribuicao especifica para o tempo de
sobrevivéncia. No modelo de Cox, a taxa de risco (ou fungdo de risco) para um individuo
em um determinado tempo, dado um conjunto de covariaveis, é modelada considerando
uma taxa de risco de base (a parte ndo paramétrica do modelo) e outra parte paramétrica,
que descreve como as covariaveis influenciam o risco. O modelo de Cox é amplamente
utilizado quando o interesse esta em avaliar o efeito das covariaveis sobre o risco de um
evento, como morte ou faléncia de um equipamento, sem a necessidade de especificar a

forma exata da funcao de risco ao longo do tempo.

As principais suposi¢oes do modelo de Cox incluem a de riscos proporcionais, o
que implica que a razao de risco entre dois individuos é constante ao longo do tempo, e
que as covariaveis tém um efeito multiplicativo sobre o risco. Essa suposicao pode ser
limitante em alguns casos, como quando os efeitos das covariaveis mudam com o tempo
(produzindo uma violagdo da suposigao de proporcionalidade). As vantagens do modelo
de Cox incluem sua flexibilidade, a possibilidade de incluir multiplas covaridveis, quando
existem dados censurados. No entanto, uma das desvantagens ¢ que, se a suposi¢ao de
riscos proporcionais for violada, as inferéncias podem ser equivocadas, este modelo sera

tratado com mais detalhe no préximo capitulo.
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Existem varias variagoes do modelo de Cox que sao tteis em contextos especificos.
O modelo de Cox estratificado permite que a taxa de risco de base varie entre estratos
(grupos) sem assumir uma estrutura paramétrica para o efeito de grupo (Veja Klein, 2003
[26] e Therneau, 2000 [27]) . O modelo de Cox com covaridveis dependentes do tempo
permite que as covariaveis mudem ao longo do tempo, acomodando a possibilidade de
variagoes nos efeitos das covaridveis sobre o risco (Kalbfleisch, 2002 [28]). Outra varia¢ao
¢ o modelo de Cox penalizado, que é 1til para selecao de variaveis e regularizacao em
problemas de alta dimensionalidade, sendo frequentemente empregado em Aprendizado
de Méquina, onde o CoxNet (uma versao regularizada com penalidade LASSO ou Ridge)
pode ser usado para sele¢ao de varidveis em grandes conjuntos de dados (Veja Tibshirani,
1997 [31], Simon et al., 2011 [31] e Hastie et al.,2009 [33]).

O modelo de Buckley—James (BJ), apresentado em 1979 [19], é uma abordagem
semiparamétrica alternativa desenvolvida para lidar com dados de sobrevivéncia. Ele
pode ser considerado uma extensao do modelo de regressao linear para dados censurados,
adaptado ao contexto de sobrevivéncia, permitindo incorporar observacoes censuradas na
estimagao dos parametros de regressao. Diferentemente do modelo de Cox, o BJ nao assume
a proporcionalidade de riscos, uma condi¢ao que, em situacoes reais, frequentemente nao
¢é satisfeita, o que o torna uma alternativa relevante para modelagem de sobrevivéncia.
Este modelo estima os tempos de sobrevivéncia diretamente, considerando o efeito das
covariaveis. A estimacgdo dos tempos censurados é realizada com base na funcao de
sobrevivéncia obtida pelo método de Kaplan—-Meier (KM), e em seguida ajusta-se um
modelo linear para o logaritmo do tempo de sobrevivéncia, considerando simultaneamente

as observagoes nao censuradas e as aproximagcoes dos tempos censurados.

O modelo de BJ é particularmente ttil quando se deseja evitar as suposigoes
fortes dos modelos paramétricos (como a distribuigao exata dos tempos de sobrevivéncia),
mas ainda assim obter uma estimativa confiavel do efeito das covariaveis sobre o tempo
de sobrevivéncia. Se apresenta como uma boa alternativa ao modelo de Cox quando a
suposicao de riscos proporcionais nao ¢é valida. Para lidar com dados de sobrevivéncia de
alta dimensionalidade, Wang et al. (2008) [34] aplicaram o regularizador Elastic Net na

regressao BJ.

Os métodos paramétricos (Veja por exemplo Colosimo et al[42]) assumem distribu-
icoes especificas para os dados e sdo baseados em um nitimero fixo de parametros que sao
determinados pela forma funcional do modelo proposto. As principais suposi¢oes necessa-
rias para este tipo de abordagem incluem: a especificacdo de uma distribuicao conhecida
para os tempos de sobrevivéncia e a independéncia estatistica entre as observagoes, o
que implica, consequentemente, uma distribuicdo probabilistica para os erros. Quando as
suposigoes sao cumpridas, estes modelos se tornam mais eficientes e faceis de interpretar.
No entanto, em situagoes reais, muitas das suposi¢oes podem nao ser cumpridas e ao ter

uma forma funcional fixa podem falhar se existem relagoes mais complexas nos dados o
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que os torna pouco 6timos.

Este tipo de modelos constitui uma alternativa aos modelos semiparamétricos,
pois assume-se que os tempos de sobrevivéncia seguem uma distribuicao de probabilidade
previamente especificada. Além da distribui¢do normal (assumida para o logaritmo do
tempo, como no caso do modelo de Buckley—James), outras distribuigoes frequentemente
utilizadas incluem a exponencial, Weibull, logistica, log-normal e log-logistica, todas
definidas para valores positivos, como ocorre com o tempo de sobrevivéncia. Os modelos
de regressao paramétrica censurada partem da hipotese de que os tempos de sobrevivéncia
de todas as instdncias seguem uma distribuigao tedrica particular (Lee et al., 2003 [35]).
Esses modelos oferecem alternativas relevantes aos semiparamétricos baseados em Cox e
sao amplamente aplicados em diversos dominios, fornecendo uma abordagem simples e
eficiente para prever o tempo até o evento de interesse. Em geral, modelos paramétricos
de sobrevivéncia produzem estimativas consistentes com a distribuicao teodrica assumida, o

que pode ser vantajoso quando essa suposicao é plausivel para os dados analisados.

O Modelo de Tempo de Falha Acelerado (AFT) é caracterizado por uma relagao
linear entre o logaritmo do tempo de sobrevivéncia e as covariaveis. O termo de erro segue
uma distribuicao semelhante ao do logaritmo do tempo de sobrevivéncia. Normalmente,
considera-se de forma paramétrica que essa variavel de erro segue uma das distribui¢oes
mencionadas no paragrafo anterior. Nesse caso, a sobrevivéncia depende tanto da covariavel
quanto da distribuicao subjacente. Isso significa que a tinica distingdo entre um modelo
AFT e os métodos lineares regulares seria a inclusao das informagoes censuradas no
problema de analise de sobrevivéncia. O modelo AFT ¢é aditivo com relagao ao logaritmo
do tempo de sobrevivéncia mas multiplicativo com relagdo a tempo de sobrevivéncia.
Kalbfleisch et al. [28] é uma excelente fonte de referéncia sobre o modelo AFT e outros

modelos paramétricos de sobrevivéncia.

2.2 METODOS DE APRENDIZADO DE MAQUINA

Os métodos de Aprendizado de Maquina sao propostos com o intuito de prever
a ocorréncia de eventos em um determinado momento, isto, é determinar o tempo de
sobrevida. Os algoritmos propostos combinam métodos estatisticos conhecidos e métodos
de Aprendizado de Maquinas. Esta combinag¢do os torna mais eficientes quando se tem
dados de alta dimensionalidade e com maior flexibilidade para tratar as dependéncias e nao

linearidades das covariaveis e os diversos comportamentos dos tempos de sobrevivéncia.

Dentre as varias abordagens basicas de Aprendizado de Maquina desenvolvidas para
a Analise de Sobrevivéncia descrevemos as mais conhecidas: As arvores de sobrevivéncia,

as redes neurais e maquinas de vetores suporte.

As arvores de sobrevivéncia (Veja, Bou-Hamad et al. [30]) sao uma extensao das

arvores de decisdo (Breiman et al. [29]), utilizadas para analisar dados de sobrevivéncia.
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Assim como as arvores de decisao para classificacao e regressao, essas arvores segmentam
os dados em subgrupos com base nas covariaveis, mas, no caso de sobrevivéncia, o objetivo
é modelar o tempo até o evento de interesse (como falha ou morte) e lidar com dados
censurados (quando o evento nao ocorre para todos os individuos durante o periodo de
estudo).

No contexto de arvores de sobrevivéncia, a divisao dos dados é feita com base
na maximizagao da diferenca nas fungoes de sobrevivéncia (ou risco) entre os grupos
resultantes de cada divisao. Em vez de prever uma classe ou valor numeérico, a arvore
de sobrevivéncia estima a funcao de sobrevivéncia ou a funcao de risco para cada né
terminal (grupo), o que permite comparar como diferentes covariaveis influenciam o tempo

de sobrevivéncia.

Entre as vantagens deste método pode-se mencionar a flexibilidade, pois as arvores
de sobrevivéncia nao fazem suposicoes paramétricas sobre a forma da funcao de risco ou da
funcao de sobrevivéncia, tornando-as uma abordagem nao paramétrica poderosa. Também
quanto a facilidade de interpretagao, pois as arvores de sobrevivéncia criam uma estrutura
hierarquica de divisdes com base em variaveis explicativas faceis de visualizar. Finalmente,
pode-se capturar interagoes complexas entre covariaveis sem a necessidade de especifica-las
explicitamente. Por outro lado, as arvores de sobrevivéncia podem ser sensiveis a pequenas
variacoes nos dados, levando a diferentes divisdes, o que pode impactar a estabilidade do

modelo.

Uma variacao popular das arvores de sobrevivéncia é o método Random Survival
Forests (RSF) (veja Ishwaran et al., 2007 [36], que combina varias arvores de sobrevivéncia
para aumentar a precisao e a estabilidade do modelo, aplicando uma técnica de agregacao

para gerar varias arvores a partir de amostras diferentes dos dados.

As redes neurais tém sido aplicadas a Analise de Sobrevivéncia para modelar dados
complexos e nao lineares, especialmente em cenarios onde métodos tradicionais, como
o modelo de Cox, podem nao capturar adequadamente as relagoes entre covariaveis e
o tempo de sobrevivéncia. Um dos primeiros trabalhos importantes nessa area foi o
de Faraggi e Simon (1995) [37], que introduziu uma rede neural baseada em maxima
verossimilhanca para dados censurados, inspirada no modelo de riscos proporcionais de
Cox. A rede neural utiliza a fungao de verossimilhanga parcial do modelo de Cox como
funcao de perda, permitindo a rede aprender a funcao de risco proporcional de forma mais
flexivel e nao linear. Diferente do modelo de Cox classico, que pressupoe uma relacao linear
entre as covariaveis e o logaritmo do risco, a rede neural proposta por eles pode capturar
relagbes nao lineares entre as covaridaveis e o tempo de sobrevivéncia. Ao maximizar
a verossimilhanca durante o treinamento, a rede neural é capaz de prever o tempo de

sobrevivéncia e lidar com dados censurados de maneira eficaz.

Apesar da rede neural oferecer uma generalizagao nao linear do modelo de Cox,
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permitindo modelar dados complexos que envolvem interagoes complicadas entre as
variaveis preditoras existe um problema da interpretagao. Enquanto o modelo de Cox
oferece coeficientes que podem ser interpretados diretamente, as redes neurais, com suas
multiplas camadas e nos, dificultam a interpretagdo dos efeitos individuais das covariaveis.
Além disso, o risco de sobreajuste é mais elevado em redes neurais, especialmente quando

ha poucos dados disponiveis.

Uma expansao da proposta de Faraggi, denominada DeepSurv, foi desenvolvida por
Katzman et al. em 2018 [38]). Este modelo utiliza redes neurais profundas para generalizar
o modelo de Cox em contextos mais modernos e computacionalmente avancados. Essas
redes podem lidar com dados de alta dimensionalidade, oferecendo previsoes mais precisas

ao capturar interagoes nao lineares complexas entre covariaveis.

O ELM (Huang et al, 2006 [13]) é uma técnica de redes neurais que também foi
adaptada para a Analise de Sobrevivéncia, oferecendo uma abordagem rapida e eficiente
para modelar dados complexos com censura. Por ser uma rede neural de camada tinica
destaca-se pela sua capacidade de treinamento extremamente rapido, uma vez que os pesos
das camadas ocultas sao gerados aleatoriamente e os parametros de saida sao ajustados
através de uma simples inversao de matriz. A adaptacao de ELM para sobrevivéncia
envolve ajustar a funcao de perda para incorporar dados censurados, semelhante ao que
é feito com redes neurais tradicionais, mas preservando a rapidez de treinamento que é

caracteristica do ELM.

Uma abordagem comum é combinar o modelo de riscos proporcionais de Cox ou
outro modelo conhecido com a arquitetura ELM, permitindo que a rede aprenda uma
relagdo entre as covariaveis e o tempo de sobrevivéncia sem precisar assumir linearidade

ou relagoes paramétricas rigidas.

Conforme apresentado por Huang et al. [12, 13], a alta velocidade de treinamento
em comparacgao as redes neurais tradicionais oferece vantagem quando ¢é preciso analisar
grandes conjuntos de dados, como em estudos de coorte médica ou dados genémicos. Por
outro lado, a arquitetura do Extreme Learning Machine (ELM) ¢é simples, com poucos
parametros a serem ajustados, o que pode reduzir a suscetibilidade a problemas de ajuste
excessivo em relacdo a arquiteturas mais complexas. Assim como outras redes neurais, o
ELM mantém a capacidade de capturar relacdes ndo lineares entre covariaveis e o tempo

de sobrevivéncia.

As Méquinas de Vetores Suporte (SVM) foram adaptadas para lidar com dados
censurados, como tempos de sobrevivéncia ou falha, oferecendo uma alternativa nao
paramétrica ao modelo de Cox e outras abordagens tradicionais. As SVMs convencionais
sao projetadas para resolver problemas de classificacdo e regressao com margens maximas,
mas quando aplicadas a analise de sobrevivéncia, a principal dificuldade esta em lidar

com dados censurados — casos em que o evento de interesse (como morte ou falha)
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nao foi observado dentro do periodo de estudo. Para adaptar as SVMs a este contexto,
surgiram diferentes variagoes, como as Rank-SVM ou Survival-SVM, que incorporam
informagoes de censura no processo de modelagem. Van Belle et al. (2011) [39], oferece
uma comparacao detalhada entre diferentes métodos baseados em SVM para anélise
de sobrevivéncia, incluindo o Survival-SVM e o Rank-SVM, discutindo suas respectivas

vantagens e desvantagens em cenarios de dados censurados.

A Rank-SVM para sobrevivéncia é uma adaptacao das Maquinas de Vetores Suporte
(SVM) focada na ordenacao (ranking) dos tempos de sobrevivéncia, em vez de prever
diretamente o tempo de falha. Essa técnica é ttil para dados censurados, onde nem todos
os eventos de interesse sao observados. A Rank-SVM ordena os tempos de sobrevivéncia
com base no risco, permitindo que a censura seja tratada de maneira eficiente. A ideia
principal é formular o problema como um aprendizado por ranking, onde a func¢ao objetivo

visa a maximiza¢ao da margem entre pares de observacoes ordenadas.

O Survival-SVM é uma extensdo das Maquinas de Vetores Suporte (SVM) que lida
especificamente com dados de sobrevivéncia e dados censurados. Essa abordagem combina
a flexibilidade das SVMs com as necessidades especificas da analise de sobrevivéncia,
permitindo a modelagem de fungoes de risco ou diretamente dos tempos de sobrevivéncia.
Diferente do Rank-SVM, que foca em ordenar tempos de sobrevivéncia, o Survival-SVM

busca prever o risco de falha ou o tempo de sobrevivéncia de maneira mais direta.

Van Belle et al. 2011 [39] apresenta uma comparacao detalhada entre diferentes
métodos baseados em SVM para analise de sobrevivéncia, incluindo o Survival-SVM e o
Rank-SVM, discutindo suas respectivas vantagens e desvantagens em cenarios de dados

censurados.

Finalmente, métodos de Boosting sao especialmente tteis em problemas com alta
dimensionalidade ou quando existem muitas covariaveis que podem influenciar o risco de
falha, como em dados genomicos, medicina personalizada e em grandes estudos clinicos.
Como o Boosting trabalha iterativamente corrigindo erros, ele pode lidar bem com ruido nos
dados, oferecendo modelos preditivos robustos. Um dos métodos mais comuns de Boosting
em analise de sobrevivéncia é o CoxBoost, que adapta o modelo de riscos proporcionais de
Cox a estrutura do Boosting. Ele aplica o conceito de Boosting para selecionar covariaveis
e construir um modelo forte com base na funcao de risco do modelo de Cox. Neste
contexto, entende-se por modelo forte a combinacao de varios modelos fracos — cada um
com desempenho limitado isoladamente — em um preditor tinico e mais robusto, capaz de
alcangar maior precisao e poder explicativo na analise de sobrevivéncia. Outro exemplo é
o Gradient Boosting Machine (GBM) adaptado para dados de sobrevivéncia, que usa a

fun¢ao de perda do log-partial likelihood do modelo de Cox na orientacao do aprendizado.
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3 FUNDAMENTACAO E DESENVOLVIMENTO METODOLOGICO

Neste capitulo, sdo apresentados os principais conceitos tedricos que fundamentam a
construcao do algoritmo de aprendizado de maquinas que sera desenvolvido neste trabalho.
Primeiramente, sdo introduzidos os conceitos tedricos da Analise de Sobrevivéncia, onde
descreve-se com detalhe o estimador de Kaplan-Meier e Modelo de Riscos Proporcionais
de Cox devido a serem muito utilizados nas técnicas de Aprendizado de Maquinas para
dados de sobrevivéncia. Um exemplo simples é apresentado para um melhor entendimento
dos conceitos e modelos descritos. A seguir, apresentam-se os modelos BJ e um modelo de
regressao linear com erros com distribuicao t-Student. Duas técnicas de aprendizado de
maquinas, o ELM e o algoritmo boosting 1.2 sao apresentados para concluir as ferramentas
que serao usadas no trabalho. Finalmente, descreve-se como esses fundamentos tedricos
sao integrados na formulagdo metodolégica, culminando na proposta do algoritmo para o

tratamento de dados de sobrevivéncia e previsao de tempos de vida.

3.1 ANALISE DE SOBREVIVENCIA

Na analise de sobrevivéncia, a variavel resposta corresponde ao tempo transcorrido
até a ocorréncia de um evento de interesse. E usual na literatura defini-la como tempo
de falha. Apesar da conotagao negativa da frase, ela ndo necessariamente é uma situacao

desfavoravel, um exemplo disto é o tempo de reinsercio ao mercado de trabalho.

3.1.1 Tipos de estudos

O planejamento do procedimento para a obtencao de dados é importante para a
Analise de Sobrevivéncia. Estes sdo obtidos a partir de estudos longitudinais, isto é, os
registros sao realizados ao longo de um intervalo de tempo predefinido, portanto, com
custos mais altos que os estudos transversais e adicionalmente, investe-se um periodo
de tempo longo na coleta de informagoes. Por isto, a necessidade de realizar um estudo

planejado e sistematizado que otimize custos de tempo e dinheiro torna-se primordial.

Na area da saude, alguns tipos de estudos clinicos sao mais conhecidos, algumas
carateristicas especificas os diferenciam. Quando se planeja um estudo observacional e
prospectivo podem ser realizados dois tipos: o descritivo, no qual se acompanha uma
amostra de doentes e identifica-se alguns fatores de risco para a doenca, e o estudo
denominado coorte onde dois grupos que foram expostos ou nao a um fator de interesse
sao acompanhados num periodo de tempo para avaliar a incidéncia ou doenca de interesse.
Um estudo observacional retrospectivo é denominado caso-controle, no qual também se
comparam dois grupos (por exemplo, doentes e ndo doentes) avaliando diversos fatores de
interesse, neste estudo utilizam-se informacgoes ja conhecidas como o historico clinico, assim

estes resultam de custos mais baratos, porém podem ser menos precisos, pois dependem da
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qualidade da informacao historica obtida. Finalmente, tem-se o estudo clinico aleatorizado
que ¢é prospectivo e experimental, no qual aloca-se de forma aleatéria os tratamentos aos
pacientes. O importante nestes estudos é a definicao e a obtengao do tempo até a ocorréncia
do evento de interesse, a literatura mostra que aplicagoes da andlise de sobrevivéncia
sao mais frequentes sobre estudos de coorte e clinicos aleatorizados. Informagoes mais

detalhadas sobre estes estudos pode ser encontrado em Rothman et al., (1998) [40].

Estudos na area de confiabilidade sao geralmente experimentais, planejados si-
mulando situacoes reais e sao realizados em areas de testes nas empresas. Um caso
interessante sao os teste de vida acelerados (Veja Nelson et al, 1990 [41]), no qual as
unidades amostrais sdo estressadas com a finalidade de que falhem mais rapido reduzindo
o tempo do experimento, o que se torna mais util em testes de item que por sua natureza

tem durabilidade grande.

Estudos epidemioldgicos, denominados coortes, frequentemente sdo conduzidos ao
longo de anos e com custos altos, portanto um cuidado no planejamento, sistematizacao e
acompanhamento do estudo é muito importante. O mesmo deve ser aplicado em estudos
de confiabilidade, onde se acompanha o tempo de durabilidade de uma pega, por exemplo,

devendo ser entendido completamente para determinar algumas carateristicas do mesmo.

3.1.2 Modelagem de dados de sobrevivéncia

Um modelo estatistico tem o objetivo de explicar as relagoes existentes num conjunto
de dados considerando uma relagao funcional que descreva da melhor maneira possivel
o padrao observado, seja para fins de ajuste, previsao ou interpretagao. Para que essa
aproximacao seja considerada estatisticamente valida, é necessario que certas suposigoes
sejam atendidas, como a independéncia das observagoes, a especificacao correta da forma
funcional do modelo e, em alguns casos, a definicdo de uma distribuicao probabilistica para
0s erros ou para os tempos de sobrevivéncia. Neste contexto, modelos de sobrevivéncia
apresentam algumas carateristicas especificas que devem ser consideradas durante as
analises. Estes modelos vem mostrando um crescimento desde o final do século passado.
Nos tempos atuais, a intensificacao e aperfeicoamento das técnicas estatisticas junto ao
desenvolvimento acelerado das ferramentas computacionais, especialmente dos algoritmos

de aprendizado de maquinas, explicam o seu grande avanco e uso frequente.

Os métodos estatisticos desenvolvidos e mais usados incluem os nao paramétricos
no qual a estimacao de Kaplan-Meier é mais utilizada, os semiparamétricos, onde o
modelos de Cox sao os mais conhecidos, e finalmente os modelos paramétricos que utilizam
distribuigoes de probabilidade conhecidas como a exponencial, weibull ou logistica para
modelar a variavel de interesse, neste caso, o tempo. Por outro lado, os métodos de
Aprendizado de Maquinas incluem as arvores de sobrevivéncia, redes neurais, maquinas de

vetores suporte e comité de classificadores. Uma descricao dos diversos métodos usados na
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analise de sobrevivéncia podem ser encontrada em [7].

As aplicagoes da Andlise de Sobrevivéncia podem ser encontradas em diversas
areas de pesquisa, estas sao referenciadas em [42] e [7]. As mais frequentes ocorrem
na area médica, onde se estuda o tempo de ocorréncia de um evento associado a uma
doenga (uma situagdo comum em estudos de céncer é a recidiva, isto é, o retorno da
doenga apds tratamento, em vez do registro de cura ou morte). Em tempos recentes, a
inclusdo de informacoes de expressoes genéticas levam ao tratamento de dados com alta
dimensionalidade. Assim, desenvolvimentos de novas técnicas para analises de sobrevivéncia

que contornem esta situagao foram apresentados, veja por exemplo [32] e [43].

Na area de engenharia, problemas de confiabilidade de dispositivos ou sistemas
usam a Andlise de Sobrevivéncia para avaliar o tempo de falha de alguns componentes.
Nas areas de economia e sociologia utiliza-se para analisar historicos de eventos como
nascimentos, casamentos, acessos a empregos, transagoes em mercados financeiros, retengao
de estudantes entre outros. Finalmente, o crescimento do uso da internet, levou ao uso da
analise de sobrevivéncia para avaliar os tempos para retorno sobre financiamentos coletivos,
para compra de determinado servigo, para acesso a propaganda e outros. Desta forma,
pode-se considerar que é uma técnica com uma perspectiva promissora em aplicagoes

futuras.

3.1.3 Caraterizacao dos dados de sobrevivéncia

A seguir, descrevem-se formalmente algumas caracteristicas fundamentais dos dados
utilizados em analises de sobrevivéncia, tomando como referéncia os trabalhos de Colosimo
et al. [42] e Wang et al. [7].

3.1.3.1 Obtencao de dados

Os dados para as analises sao obtidos ao longo de uma dimensao que apresente
um ordenamento, em geral considera-se o tempo. Em estudos médicos este tipo de coleta
de dados é denominado coorte, ja no caso de estudos sociais estes sao conhecidos como
painéis. Sao planejados para acontecer num periodo longo de tempo, porém devem ter

uma data determinada para sua finalizagao.

3.1.3.2  Varidvel resposta

A variavel resposta corresponde ao tempo de ocorréncia do evento de interesse, é
comumente denominada Tempo de Falha. Como mencionado anteriormente, o tempo é
a medida mais comum para a variavel resposta, no entanto, em problemas associados a
confiabilidade algumas outras escalas de medida ordenadas sao consideradas, por exemplo

distancia percorrida.
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3.1.3.3 Censura nos dados

Mesmo considerando estudos que sejam realizados em periodos longos de tempo,
tem-se uma data fixada para a finalizacdo deste. Assim, espera-se que nem todos os
individuos que formam parte do estudo falhem no periodo de tempo considerado, isto
é, sobrevivem ao tempo determinado para sua finalizacdo. Assim, esta carateristica,
denominada censura, deve ser considerada. Esta carateristica a diferencia dos modelos de

regressao linear classica que sao amplamente conhecidos.

Em analises de sobrevivéncia, a censura corresponde a uma observacao incompleta
da variavel resposta. Ela pode ocorrer de trés formas principais: a direita, quando o evento
nao é observado até o fim do acompanhamento; a esquerda, quando se sabe que o evento
ocorreu antes de certo momento, mas nao se conhece o tempo exato; e intervalar, quando

o evento é apenas conhecido por ter acontecido dentro de um intervalo de tempo.

A censura a direita é definida como uma observagao parcial (ou incompleta) da
resposta. Isto é, quando um individuo nao apresenta uma falha até o final estipulado do
estudo, esta informagao se torna incompleta, pois nao é possivel determinar um tempo
exato de falha, porém é possivel afirmar que o tempo de falha é maior que o tempo de

finalizacao observada.

Formalmente, considerando uma censura aleatéria a direita e definindo duas varia-
veis aleatérias T: Tempo de falha e C: Tempo de censura que ¢é independente de T'. No

estudo observa-se:

lseT <C
OseT >C

t =min(T,C) e d=

Desta forma, considerando uma amostra de tamanho n, a representacao dos dados
de sobrevivéncia é o conjunto das n observagoes, onde a i-ésima observacao, i = 1,..,n, é
(t;,0:,%;), onde t; é o tempo de falha ou censura da observacao i, ¢; é o indicador de falha
ou censura na observacao ¢ adotando o valor 1 se é tempo de falha e 0 se é censura, e x; o

vetor de covariaveis medidas para a observagao 4.

A Figura 1 mostra um esquema de obtencao de dados com censura aleatéria a
direita na area médica que inclui duas varidveis explicativas (atributos): Idade e Grau de

doenca. O tempo de falha, nesta situacao, corresponde ao 6bito do paciente.

A seguir, descreve-se outro exemplo, desta vez relacionado a area de confiabilidade.
Neste caso, o objetivo é modelar o tempo de falha de uma pega do motor de um veiculo.
Para isso, coletam-se dados sobre a peca do motor ao longo de um periodo de tempo
predeterminado, registrando o tempo decorrido até a falha ocorrer. A presenca de censura
é considerada, pois assume-se que nem todos os veiculos testados apresentarao falha na
peca do motor até o final do periodo estipulado para o estudo. Algumas variaveis de

interesse consideradas sao a idade do veiculo, quilometragem rodada e o desgaste das



28

. Representagao
o Covariaveis
OBSERVAGCAO ) de dados
Final do
Estudo X1 ) (t, 8, x5, Xz)

1 . 43 2 (9,1,43,2)

2 56 3 (12,0,56,3)
———————————————————————————————————————————— 0

3 ' 61 2 (3,1,61,2)

4 ' 54 1 (11,1,54,1)

5 75 3 (12,0,75,3)
-------------------------------------------- 0

6 _’ 35 2 (7,1,35,2)

7 O 59 2 (5,0,59,2)

3 ' 68 3 (2,1,68,3)

L 55 2 (12,1,55,2)

10 ' 47 1 (8,1,47,1)
Tempo de Falha 2 4 6 8 10 12

0 rma Xt |dade
O Censura X2*  Grau de doenga

Figura 1 — Ilustracao para conjunto hipotético de dados clinicos que apresentam censura aleatoria.

pecas do veiculo.

A censura a direita é caracterizada quando o tempo de ocorréncia de evento
medido encontra-se ao lado direito do tempo registrado. Quando o tempo registrado é
maior que o tempo de falha apresenta-se censura a esquerda. Em alguns casos pode-se
apresentar simultaneamente censuras a direita e esquerda, isto é, duplamente censuradas.
A metodologia utilizada para censura a direita pode ser utilizada nas outras situacoes

desde que os dados sejam organizados adequadamente.

O fato de considerar os dados censurados na andlise é justificado porque, mesmo
parcialmente, esses dados fornecem informacoes valiosas sobre o tempo de falha. A
eliminacao dos dados censurados nas analises leva a obtencao de resultados enviesados,
pois os tempos de falha que excedem os valores da censura nao sao considerados, embora,

na realidade, eles ocorram.

3.1.4 O tempo de sobrevivéncia

O tempo de sobrevivéncia pode ser definida como uma variavel aleatéria que é
usualmente continua e que ¢é especificada a partir de uma funcao de sobrevivéncia ou uma

taxa de falha (ou risco).

A fungao de sobrevivéncia, denotada por S(t), é definida como a probabilidade de
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nao falhar até um tempo t, isto é, sobreviver ao tempo t. Assim, tem-se que:
St)=P(T =1), (3.1)

de onde a funcao de distribuigdo acumulada de T é Frp(t) =1 — S(?).

Para determinar a probabilidade de falha ocorrer no intervalo [t1, t5) faz-se S(t1) —
S(t2). Finalmente, apresenta-se a taxa de falha no intervalo é a probabilidade ocorrer
falha nesse intervalo, dado que nao ocorreu antes de t; dividida pelo seu comprimento,

dada por:
S(ty) — S(t2)

(t2 —11)S(t1)
Define-se A(t) como a taxa de falha instantdnea no tempo t condicional & sobrevivéncia

até o tempo t, obtida considerando [t, At) com At pequeno. Assim, tem-se que:

_S(t) = S(t+ At)
Al = At S(t)

A fungao de taxa de falha A(¢) é maior que zero e descreve a distribuigao de tempo de
vida. Esta funcao é mais informativa que a funcdo de sobrevivéncia, diferentes fungoes de
sobrevivéncia podem ter formas semelhantes, porém suas fungoes de taxa de falha podem

diferir drasticamente. Algumas relagoes importantes entre estas duas fungoes sao:

A(t) = giﬁ; = 2 (10g 5(4)

A= " Aw)du = —log S(#)
S(t) =exp{—A(t)} = exp {— /Ot /\(u)ﬁu}
3.2 ESTIMADOR DE KAPLAN-MEIER

Como sugerido por [44], o passo inicial na analise é resumir os tempos de sobrevi-
véncia t;. O estimador de Kaplan-Meier [21] é utilizado para computar o tempo médio de
sobrevivéncia considerando a presenca de observagoes censuradas. O algoritmo a seguir

descreve a obtencao deste estimador:

1. Determinar as k falhas distintas entre as n observagoes amostradas, identificando o

tempo em que acontece cada uma delas (k < n).
2. Ordenar os k tempos identificados t; <ty < ... < t;.

3. Calcular d;, o nimero de observacoes que apresentam falha no tempo ¢;, onde
1=1,2,..., k.



30

4. Calcular n;, o nimero de observagoes sob risco no tempo t;, onde i = 1,2, ..., k. O
valor corresponde as observagoes que nao apresentam falha ou censura até o tempo
t;.

5. Calcular o estimador de Kaplan-Meier considerando a seguinte expressao

S0= T (%), 32
Jitj<t U

Observe que uma curva de sobrevivéncia Kaplan-Meier é calculada a partir de probabi-

lidades que refletem o fato que para sobreviver a um tempo t deve-se superar todos os

acontecimentos até o momento t.

3.3 MODELO DE RISCOS PROPORCIONAIS DE COX

O modelo de riscos proporcionais de Cox foi apresentado em 1972 ([18]) e desde
entao, é um dos artigos mais citados na area de estatistica. Algumas caracteristicas do

modelo de Cox sao descritas em [44] e [45] onde, as mais relevantes sao:

o O modelo ¢ intimamente ligado a curva de sobrevivéncia de Kaplan-Meier e estima

as diferencas de risco experimentadas por grupos com diferentes caracteristicas.

e O modelo de riscos proporcionais nao depende de uma distribuicao de probabilidade
especifica e assume que todos os grupos apresentam o mesmo risco basal (uma
funcao do tempo) e que aumenta ou diminui de acordo a um fator multiplicativo

que depende das caracteristicas do grupo (covariaveis).

e O modelo proposto elimina o risco de linha basal na analise, utilizando para isto a
verosimilhanca parcial [25], assim é possivel medir o efeito das covaridveis considera-

das.
e O modelo lida adequadamente com censura (sobrevivéncia apés o final do estudo),
covariaveis e variagdes no tempo, situagoes comuns em problemas aplicados.
3.3.1 Formalizacao do modelo

O modelo de riscos proporcionais de Cox considera:

Atx) =X () g (x"B), (3.3)

onde os componentes do modelo sdo:
T . .

x = (21, 29,...,x,) sdo0 p covaridveis consideradas,
T, A

B = (B1, P2, ..., Bp) ¢ o vetor de pardmetros,

A (t|x) é a fungao de risco, isto é, a probabilidade de que um individuo com covaridveis x
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apresente falha no tempo t, dado que o individuo nao falhou antes de ¢,
g(.) é uma funcgao nao negativa, tal que g(0) =1, e
Ao (t) é a funcao base, tal que A (t|x) = Ao (£) se x = 0.
Este modelo é considerado semiparamétrico, assim é possivel observar que a funcao

de risco A (t|x) é explicada por dois componentes:

Uma componente nao paramétrica, que corresponde a funcao base X (t), que é

uma fungao nao negativa do tempo ¢ que nao é especificada.

Uma componente paramétrica, que corresponde a funcao g (XT ,B) que usualmente
considera exp {XTB } = exp {f1x1 + Poxa + ... + By, }. Observe que nao se considera um

pardmetro [y pois ele é absorvido por Ag (%).

A estimacao dos parametros 3 é realizada a partir da verosimilhanca parcial que
usa a mesma, construcao proposta no método Kaplan-Meier de produtos no tempo, isto
é, obtida ao calcular a probabilidade em cada evento de tempo t; como um produto de

probabilidades condicionais.

A funcao de verosimilhanca parcial depende dos parametros 8, a qual é maximizada
visando encontrar os estimadores de maximo verosimilhanca parcial 8. Adicionalmente,
nao é requerida a especificacdo da fungao base A (), fazendo que o método seja flexivel e

robusto.

A suposicao de riscos proporcionais implica que a relagao entre a funcao de risco
A (t|x) e a fungdo base ndo depende do tempo, portanto é um fator constante que depende
de x e dos parametros 8. Da mesma forma, ao considerar dois individuos diferentes ¢
ej,ondei#jet,j=12,..n,arazao das funcoes de risco destes é constante e nao

dependem do tempo, isto é:

N Mg (x]8)
N A () g (X}ﬂ)

O modelo de riscos proporcionais de Cox permite realizar inferéncias, isto é, obter

= exp {XiTﬁ — X]-T,B} (3.4)

estimativa de parametros, erros padrao e intervalos de confianca, da mesma forma que o
modelo de regressao usual permite. Além disto, permite modelar covariaveis dependentes
do tempo, isto é, covariaveis medidas varias vezes durante o estudo. O modelo é aplicavel
para todos os tipos de censura descritos. Adicionalmente, existem versoes penalizadas que
lidam com dados com alta dimensao e outras que utilizam ferramentas de aprendizado de
maquinas como ¢é o caso de florestas aleatérias e aprendizado profundo (Veja por exemplo
[16], [32], [38], [43] entre outros).

3.4 UM EXEMPLO DE ANALISE DE SOBREVIVENCIA

Objetivo deste exemplo é utilizar o estimador Kaplan-Meier e o modelo de Cox

num conjunto de dados clinicos reais para entender a relacao entre estas duas técnicas e
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entender alguns pontos especificos de cada uma delas.

O conjunto de dados analisado é apresentado em [42] e corresponde aos resultado de
um estudo clinico aleatorizado em 29 pacientes que investigou o efeito de uma terapia com
esteroide no tratamento de hepatite viral aguda. O estudo durou 16 semanas e registrou-se
o tempo até a morte do paciente. A censura é registrada quando o acompanhamento é
perdido ou o estudo é finalizado e o paciente continua vivo. Dos 29 pacientes, 15 formam
parte do grupo controle e 14 receberam a terapia com esteroide . Os dados sao apresentados
na Tabela 1.

Tabela 1 — Dados observados no estudo de hepatite viral aguda.

Controle Terapia

Id Tempo Censura | Id Tempo Censura
1 1 0 16 1 1
2 2 0 17 1 1
3 3 1 18 1 1
4 3 1 19 1 0
5 3 0 20 4 0
6 5) 0 21 5 1
7 5 0 22 7 1
8 16 0 23 8 1
9 16 0 24 10 1
10 16 0 25 10 0
11 16 0 26 12 0
12 16 0 27 16 0
12 16 0 28 16 0
14 16 0 29 16 0
15 16 0

A Tabela 2 apresenta os respectivos calculos da curva de sobrevivéncia Kaplan-
Meier para os grupos controle e terapia dos dados analisados, seguindo as etapas descritas
na segao 3.2. A biblioteca SURVIVAL do software R [46] efetua estes célculos, a Figura 2
apresenta o grafico das curvas de sobrevivéncia correspondentes aos resultados apresentados

na Tabela 2 e calculados no R.

Algumas interpretacoes das curvas de sobrevivéncia sdo apresentadas a seguir: a
funcao de sobrevivéncia, isto é, a probabilidade de sobreviver a trés semanas no grupo
controle é 84,6% enquanto que a no grupo com terapia é 78,6%. O grupo controle apresenta
probabilidade de sobrevivéncia maior que o grupo com terapia em todos os tempos, assim

pode-se supor que a terapia testada nao é benéfica.

A aplicacao do modelo de Cox sobre os dados analisados inicia-se considerando
que a covariavel ¢ o indicador do grupo, onde o grupo controle assume o valor 0 e o grupo
com a terapia de esteroide assume o valor 1. Considera-se, adicionalmente, duas taxas de

falha Ao(t) e A1 (t) para os grupos 0 e 1, respectivamente.
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Tabela 2 — Calculo das curvas de sobrevivéncia no estudo de hepatite viral aguda para grupos
controle e terapia.

Controle Terapia
3 2 13 0846 1 3 14 0,786
5 1 9 0,698
7 1 8 0611
8 1 7 0,524
10 1 6 0437
5 2
~ - Controle
o 7 —— Terapia
S T T T T
0 5 10 15

Tempo em semanas

Figura 2 — Curvas de sobrevivéncia para grupos controle e terapia.

Assume-se uma proporcionalidade entre as duas taxas, isto é, k = A;(t)/Ao(t), onde

k é uma razao das taxas de falha constante para todo t, também chamada de risco relativo.

Considerando:

0 se é grupo controle
x = sHp e k =exp{fz},
1 se é grupo com terapia

temos:
M(t) = Xo(t)exp{B} se z=1
Ao(t) se =0

A(t) =

A biblioteca SURVIVAL do software R [46] também é usada para a obtengao do
modelo de Cox. Neste exemplo, o intuito é apresentar a formalizacao da construcao do
modelo de Cox e nao os resultados, pois busca-se observar as diferencas com o modelo

Buckley-James que sera apresentado na proxima segao.
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3.5 MODELO BUCKLEY-JAMES (BJ)

O modelo Buckley-James é definido como:

Yi=x/B+e, (3:5)

onde Y; = In(T;), B = (Bo,B1,--,Bp—1)" é um vetor de pardmetros desconhecidos de
dimensao p, x; = (1, x1;, ..., xl(p_l))T é a i-ésima linha da matriz de desenho X de dimensao
n X p, n > p, e os erros aleatérios €y,...,6, sdo independentes e identicamente distribuidos
como ¢; 9N (0,0%), parai=1,...,n, onde 0% é um paradmetro desconhecido maior que
ZEro.

Considerando que a amostra tem tamanho n, a representacao dos dados de sobrevi-
véncia da i-ésima observagao, i = 1,..,n, é (¢;,0;,%;), onde t; = min(T;, C;) com T; o tempo
de sobrevivéncia e C; o tempo de censura, §; = I(T; < C;) é o indicador da censura, x; é o
vetor (de dimensao p) de covaridveis medidas para a observagao i.

Pode-se considerar que o modelo BJ é do tipo AFT (tempo de falha acelerado)

tradicional, que estabelece a relagao linear entre o logaritmo do tempo de sobrevivéncia e

as covariaveis.

Quando néo hé censura, o modelo (3.5) é um modelo tradicional de regressao linear
multipla. Portanto, o coeficiente de regressao pode ser estimado pelo métodos de minimos
quadrados:

— 1

B=X"X)'XY e o2= — p(Y —XB)' (Y —XB) (3.6)

No entanto, no contexto de analise de sobrevivéncia, o método dos minimos
quadrados e outros modelos de regressao comuns nao podem ser implementados diretamente,
devido a censura existente nos dados. Buckley e James propuseram estimar as observacoes
censuradas por sua esperanga condicional, dada a observagao do logaritmo do tempo de

censura correspondente T; e das covariaveis x;:

yi =0y + (1 =6 E(TIT; > yi,x;),i=1,..,n (3.7)

Numa observacao sem censura ¥y, = y;, isto é, o verdadeiro valor do logaritmo do
tempo de sobrevivéncia. Quando a observagao é censurada, o logaritmo do verdadeiro
tempo de sobrevivéncia é obviamente maior que o observado e portanto, é adequado
estimar 7T; da observacao censurada considerando sua esperanga condicional, dado o tempo
de censura correspondente e as covariaveis E(T;|T; > y;,%;). Teoricamente é possivel
provar que E(Y;*) = E(T;) = x, 8 o que garante que y; é um estimador ndo enviesado

para T;.
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No modelo BJ, pelo exposto anteriormente, a esperanga condicional E(T;|T; > y;, X;)
¢igual a E(x/ B+ ¢|x; B+ € > y;) = x/ B+ E(ele; > y; — x; B). Portanto, esta pode

ser calculada como:

E(T|T; > yi,x;) =% B+ /OO tdF (1) (3.8)

z‘—xiT:B 1— F(yi _Xz‘T/B)’
onde F(.) é a funcdo de distribui¢do acumulada do erro aleatério €;(e; = y; — x; 3).

Supondo que o vetor de coeficientes de regressao B foi estimado como B, entao
pode-se obter valores de residuos observados com censura (e;,d;), onde €; = y; — x, 3 para
1 =1,...,n. Com base nestes residuos observados, pode-se estimar a fun¢ao de distribuicao
F(.) pelo método Kaplan-Meier (KM).

De acordo com o método KM, é preciso ordenar os residuos observados de forma a

ter €1 < €3 < ... < €, e reordenar os dados de sobrevivéncia observados (y;, d;,%;), para

1=1,...,n de acordo com a ordem de classificacao dos residuos observados.

Considerando a funcao de sobrevivéncia denotada e definida como S(.) =1 — F(.),

uma estimativa S(.) pode ser obtida pelo método KM. Consequentemente, a esperanca

condicional do logaritmo do tempo de sobrevivéncia pode ser calculada por:

E(T|T, > yi,x;) = x; B+ S(e;) ™! > €;0;AS(e;),i=1,...,n, (3.9)
€5 >€;
onde AS(e;) é o valor do salto da funcdo estimada S(.) no residuo ¢;. Portanto, 3 pode

ser calculado por:

* T3 . §(.\-1 a .
Y, = 513/1 + (1 — 51) X, B + S(EZ) Z €j5]’AS(€j) , 1= 1, ., n. (310)
€5 >€;
Depois de estimar todos os T} censurados por y;, o tempo de sobrevivéncia de todas as
observagoes encontram-se sem censura. Assim, os coeficientes de regressao e a variancia

podem ser estimado segundo (3.6), considerando Y* = (yi, v5, ..., ).

No método BJ, o vetor de coeficientes de regressao precisa ser estimado iterati-
vamente, pois os valores y; sao calculados sob a condi¢ao de que os B sao conhecidos,

enquanto os coeficientes de regressao 8 sob a condigao de que os y; sao conhecidos.

3.6 A DISTRIBUICAO t-STUDENT

De acordo com Casella et al. [60], considere uma amostra aleatéria X, Xo, ..., X,
proveniente de uma populacao normal com média p e varidncia desconhecida o?. A

estatistica _
X —p

=i
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segue uma distribuicdo t-Student com n — 1 graus de liberdade, onde X é a média
amostral e S ¢ o desvio padrao amostral, definido a partir da varidncia amostral S? =
e Y (X = X))

Esse resultado evidencia o papel fundamental da distribuicao ¢-Student na inferéncia
estatistica, sendo especialmente relevante em situagoes de amostras pequenas e variancia
populacional desconhecida. A distribuicdo é amplamente utilizada na construgao de
intervalos de confianca e na realizacao de testes de hipétese. Além disso, a distribuicao
t-Student pode ser obtida como a razao entre uma variavel normal padrao e a raiz quadrada

de uma variavel qui-quadrado independente dividida por seus graus de liberdade.

Algumas propriedades importantes desta distribuicao sao:

e Simetria: é simétrica em torno de zero.

« Caudas pesadas: possui caudas mais espessas que a distribui¢ao normal, tornando-a

mais conservadora em testes de hipdteses.
» Convergéncia: quando v — co, converge para a normal padrao.
o Meédia: igual a zero para v > 1.
 Variancia: igual a -*; para v > 2; indefinida para v < 2.

e Moda e mediana: ambas localizadas em zero.

Observe que muitas dessas propriedades sdo compartilhadas com a distribuicao
normal padrao. As caudas mais pesadas estao associadas ao numero de graus de liberdade,
e a distribuicao se aproxima da normal a medida que esse nimero aumenta. Isso faz com
que a distribuicao t-Student seja frequentemente utilizada em modelos robustos, como

alternativa a normal em presenca de outliers.

Para a construcao de modelos robustos, um caminho usado é considerar as distri-
buigdes normal e ¢-Student como casos particulares dentro da classe das Distribuicoes de
Mistura de Escala Normal (MEN), proposta por Andrews ¢ Mallows (1974) [56] . Essa
classe abrange distribuigoes simétricas que compartilham uma estrutura comum: sao
construidas como misturas de distribuigdes normais com diferentes escalas (varidncias),
o que permite modelar caudas mais pesadas ou mais leves conforme necessario. Huaira
Contreras (2014) [57] discute com detalhe esta classe de distribui¢oes e apresenta uma
aplicagao para modelos com ponto de mudanca.

Essa perspectiva unificada permite compreender a t-Student como uma extensao
natural da normal, adaptada para cenédrios com maior variabilidade e menor informacao
sobre a populacao.

A estrutura MEN admite uma representacao estocdstica til para simulacao e

interpretacao:
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Y = u+rY3U)Z, (3.11)
onde:
o Z ~N(0,0?) é uma varidvel normal padrdo,
o U é uma varidvel aleatéria positiva com distribui¢ao H (u;v), independente de Z,
e k(-) é uma funcgdo de ponderagao positiva.

Essa representagao mostra que a variavel Y é construida como uma normal com
variancia aleatoria, controlada por U. No caso da distribuicao t-Student, essa variancia
aleatoria reflete a incerteza sobre a variancia populacional, enquanto na distribuicao normal
ela é fixa. Assim, dentro da classe MEN, as distribui¢bes normal e ¢-Student podem ser

descritas como:

+ Distribuigdo Normal N(u,0?): Representa o caso mais simples da classe MEN,
onde a fun¢ao de ponderagao é constante rx(u) =1 e a varidvel U é degenerada, ou
seja, assume valor fixo. Isso implica que nao ha variabilidade na escala, resultando em
uma distribuicdo com caudas finas e comportamento padrao. A normal é, portanto,

uma MEN com estrutura deterministica. O momento condicional é ¢(d) = 1.

« Distribuigdo t-Student #(u, 02 v): Representa a distribuigdo com v graus de
liberdade. Caracteriza-se por x(u) = 1/u e U ~ Gamma(v/2,v/2), o que introduz
variabilidade na escala. Essa estrutura gera caudas mais pesadas, tornando a t-
Student mais robusta em presenca de outliers e incertezas na variancia populacional.
A distribui¢do t surge como uma mistura de normais com variancias aleatorias,

controladas pela varidvel U. O momento condicional é ¢(d) = (v — 1)/(v — d).

3.7 MODELO DE REGRESSAO t-STUDENT

O modelo de regressao t-Student é definido como

Y; =x; B +e, (3.12)

onde B = (B, B1, .-, Bp-1)" é um vetor de pardmetros desconhecidos de dimensdo p,
x; = (1, x4, -, xl(p,l))T é a i-ésima linha da matriz de desenho X de dimensao n xp,n > p
e, 0s erros aleatorios €q,...,6, sao independentes e identicamente distribuidos como ¢; i
t(0,0%,v), parai = 1,...,n, onde g% é um pardmetro desconhecido maior que zero e v
sao os graus de liberdade da distribuicao t-Student, considerando a distribuicao dentro da
classe MEN.
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Sugere-se que os graus de liberdade v sejam considerados conhecidos e uma avalia-
¢ao de varios possiveis valores de v devera ser feita para definir o modelo. Quando v — oo

a distribuicao t-Student converge a normal.

A estimacao dos parametros pelo estimador de maxima verossimilhanca é dada por

~ —~ 1
B=X"PX)'X'PY, o2=—-(Y-XB)"P(Y-Xp), (3.13)
n
onde
L v+l _(Yi—xﬂ/ﬁ)? o
P_dzag(ph)pn)’ bi = V+dz dZ_T Z—l,...,’l’L.

Observa-se que o calculo de d; requer os valores de B8 e o2 estimados, indicando
que a solu¢ao do modelo requer do uso de um método iterativo. Finalmente, o modelo
de regressao t-Student ¢ uma alternativa ao modelo de regressao normal para modelar de
forma mais robusta conjuntos com presenca de dados extremos. Desta forma, é possivel
adicionar dentro do modelo BJ os conceitos do modelo ¢-Student e oferecer uma alternativa

que possa lidar melhor com dados extremos.

3.8 TESTE RESET DE RAMSEY

O Regression Equation Specification Error Test (RESET), proposto por Ramsey
(1969) [58], é um teste estatistico utilizado para avaliar a adequagao da especificagdo
funcional de um modelo de regressao linear. Foi proposto para detectar se o modelo
linear estimado omite varidveis relevantes ou se a forma funcional escolhida nao captura

corretamente a relacao entre as variaveis independentes e a variavel dependente.

Assim, o teste RESET avalia as seguintes hipéteses:

o Hy: O modelo esté corretamente especificado. Os termos adicionais (42,43, ...) nio

sao significativos.

o H;: O modelo esta mal especificado. Os termos adicionais sao significativos, indicando

que a forma funcional original ndo captura toda a relagao entre as variaveis.

Para testar as hipoteses propostas segue-se o seguinte raciocinio, se o0 modelo linear
esta corretamente especificado, entao os valores ajustados ¢ ndo devem conter informacao
adicional que explique a variavel dependente além das covariaveis originais. Para verificar
isso, o teste adiciona ao modelo original termos polinomiais dos valores ajustados, como

92, 72, etc., e testa se esses termos sdo estatisticamente significativos.
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Desta forma, ao rejeitar Hy sugere-se que o modelo linear pode estar omitindo
variaveis ou necessitar de transformagoes nao lineares, consequentemente sugere-se a

adocao de um modelo nao linear.

O teste RESET encontra-se implementado no software R [46] como a funcao

resettest () do pacote lmtest. Os passos seguidos para realizar o teste sao:

1. Estima-se o modelo linear original com 1m().
2. Calculam-se os valores ajustados g.
3. Adicionam-se ao modelo os termos polinomiais de .

4. Testa-se se os coeficientes desses termos sao diferentes de zero.

Zeiles et al. (2002) [59] descreve a implementagao do teste RESET no pacote
1mtest) do software R. Por configuracao padrao, o teste adiciona termos quadréticos e
ctibicos ao modelo, isto ¢, §% e §3, de modo a verificar a presenca de efeitos desses graus.
Logo, o teste avalia simultaneamente a existéncia de efeitos quadraticos e ciibicos dos
valores ajustados. E possivel avaliar outros graus polinomiais, basta utilizar o argumento
power, definindo os graus que se deseja avaliar. Para rejeitar Hy, isto é, existir evidéncia
estatistica suficiente para considerar que um modelo nao linear é o adequado, basta que

um efeito seja significativo.

Como um exemplo apresentamos um codigo simples que descreve o uso do teste
RESET no sofware R para validar polinémios até o grau 4, para isto consideramos um

conjunto dados denominado Dados.Teste que tem as variaveis y, 1 e x2. Assim temos

library(lmtest)

# Modelo linear

modelo <- 1m(y ~ x1 + x2, data = dados.Teste)

# Teste RESET com configuragdo até grau 4 (power = 2:4)
resettest(modelo, power=2:4)

# Teste RESET com configuragdo default (power = 2:3)

A seguir apresenta-se a formalizacao do teste.

Considerando o modelo linear:
y=Xp+e
onde X é a matriz de covaridveis e € é o erro. O teste RESET estima o modelo ampliado:

y=XB+ng +7’ e
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O teste RESET é baseado na estatistica F' de Snedecor. Este compara o modelo restrito

(sem termos adicionais) com o modelo ampliado. A estatistica de teste é dada por:

F = (SQRT - SQRa)/q
RSS{Z/(” —k— Q)

onde SQR, é a soma dos quadrados dos residuos do modelo restrito, SQR, é a soma dos
quadrados dos residuos do modelo ampliado, ¢ é o niimero de termos adicionais e n — k — ¢

sao os graus de liberdade. Se F for significativo, rejeita-se H.

3.9 MAQUINA DE APRENDIZADO EXTREMO (ELM)

A Méquina de Aprendizado Extremo (ELM) (Huang et al, 2004 e 2006 [12] [13]) é
uma rede neural do tipo Rede Neural Feedforward de Camada Unica (SLFN). Se diferencia
dos algoritmos tradicionais de aprendizagem baseados em gradiente para SLFN, pois os
parametros da camada oculta (pesos e termos de viés) sdo atribuidos aleatoriamente, sem
ajuste, enquanto os pesos da camada de saida sdo determinados encontrando a soluc¢ao por
minimos quadrados. Por essa razao, é um algoritmo de aprendizado rapido, apresentando
vantagens como bom desempenho de generalizacao, maior rapidez de treinamento em
comparacao as redes treinadas por backpropagation e desempenho competitivo frente as
Maquinas de Vetor de Suporte (SVM).

O uso do ELM é diversificado. No aprendizado de maquina supervisionado, o ELM
¢é aplicado para a resolugao de problemas de classificagao e regressao. Ja no aprendizado
nao supervisionado, o ELM pode ser utilizado para resolver problemas de clusterizacao e

reducao de dimensionalidade.

Para um problema de regressao, considera-se uma amostra de treinamento de
tamanho n, onde a i-ésima observagao é dada por (x;,y;),sendo x; de dimensdo p e y; de
dimensao 1 (i = 1,2, ...,n). Uma rede neural SLFN com uma fungao de ativacdo g(.) e @

neurodnios ocultos é definida como:

fo(x;) = ig(xjwq +by)a, =G(x; W+B)a,i=1,...n (3.14)

q=1
onde W = (w1, Wa, ..., wg) e B = (by,bo, ..., bg) representam os pesos e termos de viés da
camada oculta, G(x; W + B) = (g(x; w4+ b1), g(x] wa + ba), ..., g(x; wg + bg)) é o vetor
de saida de dimensdo @ da camada oculta em relagio a x;, e @ = (aq,az,...,ag)’ €0
vetor de pesos de saida que conecta a camada oculta a camada de saida. Os parametros
de camada oculta W e B sao gerados aleatoriamente a partir de duas fungoes arbitrarias

de distribuicao de probabilidade continua considerando dimensdes p e 1, respectivamente.

Além disso, considerando a matriz de entrada X e a matriz de destino Y da rede:
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11 Ti2 .- T1p hn
To1 T2 ... Tp Y2

X=1_ Sl oe Y=/ (3.15)
Tn1 Tp2 -« Tnp Yn

A matriz de saida da camada oculta é:

G(x{ W + B) g(x{wi +b1) g(x]wy+b) ... g(x{wg+bg)
G(x; W+ B) g(Xg w1 +b1) g(xgwa+bo) ... g(xywg+bg)

H=

(3.16)
Gx,W+B)| |g(x,wi+b) g(x,Wa+bs) ... g(x,wq+Dbg)
Assim, a partir de (3.14) e (3.16), a rede neural SLFN pode ser formulada como
fo(X) =Ha. (3.17)

Como os parametros da camada oculta W e B sdo gerados aleatoriamente, a matriz
de saida H pode ser determinada. Em seguida, o vetor de pesos de saida a pode ser
estimado resolvendo uma solu¢ao de minimos quadrados, utilizando a pseudo-inversa de

Moore-Penrose:

a=H'Y = (HHTHY, n<Q . (3.18)
H'(HH")'Y, n>Q

Em (3.18), H' denota a inversa generalizada de Moore—Penrose da matriz H.
Quando o niimero de neur6nios ocultos é maior que o nimero de amostras de treinamento,
n < @, a matriz H de ordem n x () é uma matriz de posto completo em colunas.
Consequentemente, a matriz H'H de ordem @ x @ é invertivel. De acordo com a definicao
da inversa generalizada de Moore-Penrose, a matriz (H"H) 'H é a inversa generalizada
de Moore—Penrose da matriz H. De forma similar, quando n > @), a matriz H é uma
matriz de posto completo em linhas e a matriz HH' de ordem n x n é invertivel. A matriz

H'(HH')™! ¢ a inversa generalizada de Moore-Penrose da matriz H.

3.10 ALGORITMO BOOSTING L2

Um algoritmo de boosting que ajusta iterativamente o vetor do gradiente negativo
por meio de um procedimento base é essencialmente um algoritmo de Functional Gradient
Descent (FGD). Friedman (2001) [49] apresentou uma estrutura geral de aprendizado para
o algoritmo FGD.

Na estrutura geral de aprendizado do algoritmo FGD, a selecao de diferentes funcgoes

de perda I(y, f(z)) para boosting pode gerar vérios algoritmos de boosting correspondentes.
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O algoritmo de Boosting L.2 é o mais simples para regressao, utilizando o erro quadratico
(y— f(x))? como funcao de perda. Ao usar a funcio de perda do erro quadrético, o vetor do
gradiente negativo é igual ao vetor residual ordinario. Portanto, no algoritmo de Boosting
L2, ajustamos o vetor residual ordinario por meio de um modelo base a cada iteragao.
Ao aplicar o algoritmo de Boosting L2 para resolver problemas de regressao, precisamos

escolher um regressor base (por exemplo, regressao linear simples).

Em termos simples, um modelo fraco é um modelo de previsao muito basico, que
sozinho nao consegue explicar toda a complexidade dos dados. Ele pode ser, por exemplo,
uma regressao linear simples ou uma arvore de decisao muito rasa. Embora cada modelo
fraco tenha desempenho limitado, o algoritmo de boosting combina muitos desses modelos
em sequéncia, de forma que cada um corrige os erros do anterior. O resultado final é
um modelo forte, capaz de alcancar alta precisdo ao aproveitar a forca coletiva de varios

modelos fracos.

Assim, o conceito fundamental por tras do Boosting L2 é a minimizagao da funcao
de perda quadratica, onde o modelo é ajustado iterativamente. A cada iteragdo, um novo
modelo é treinado para prever os residuos do modelo anterior. Isso é feito utilizando uma
combinagcao linear de modelos fracos. O Boosting L2 ajusta os coeficientes dos modelos
fracos de forma a minimizar a funcao de perda global, empregando técnicas de otimizagao

como o gradiente descendente. O Algoritmo 1 ilustra a abordagem descrita.

Algorithm 1: Algoritmo Boosting L2
Data: Dados de treino (X, y),
nimero de aprendizes base M,
taxa de aprendizado y
Result: Modelo final fy/(z)
1 Inicializar o modelo fy(x) =7;
2 for m =1 até M do
3 Calcular os residuos egm) =y — fm_1(x;);

Ajustar o modelo base u,,(x) nos residuos ™

5 Atualizar o modelo: f,,(z) = f—1(z) + yum(x);

'y

6 Retornar o modelo final fy;(x);

O estudo de Friedman [49] mostra que, no algoritmo de Boosting L2, a selegao da
taxa de aprendizado v tem pouco impacto, desde que seja escolhida pequena o suficiente,
como v = 0.1. O ntimero de regressores base M é um parametro de ajuste no algoritmo,

que pode ser determinado, por exemplo, por um esquema de validacao cruzada (CV).

3.11 DESENVOLVIMENTO METODOLOGICO

Nesta se¢ao sao apresentados os conceitos e as articulagoes que fundamentam a

metodologia proposta. O desenvolvimento metodolégico aqui exposto faz uso de ferramen-
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tas estatisticas e de aprendizado de maquina. Tais conceitos, além de consistentes, sao
amplamente conhecidos e consolidados, garantindo que a proposta esteja fundamentada

em bases tedricas e praticas reconhecidas.

3.11.1 Formulagao do modelo proposto

Considerando que se propoe um modelo adaptativo capaz de avaliar a presenca ou
auséncia de linearidade, incorporando robustez frente a observagoes extremas em dados de
sobrevivéncia, e que tal abordagem se fundamenta no modelo de Buckley-James aliado a
um comité L2 Boosting de ELM, descrevem-se, a seguir, as articulagoes que sustentam a

proposta.

3.11.1.1 Determinacao da estrutura linear/nao linear

O teste RESET foi introduzido por James B. Ramsey em 1969, em um contexto
em que a econometria buscava métodos mais robustos para avaliar a validade dos modelos
lineares classicos. A preocupacao central residia no fato de que tais modelos frequentemente
omitiam variaveis relevantes ou nao capturavam adequadamente relagoes nao lineares, o
que podia conduzir a inferéncias incorretas. Desde entao, o RESET consolidou-se como
uma ferramenta padrao nos diagnodsticos de regressao, sendo amplamente empregado em
aplicagoes econométricas. Situacao analoga ocorre em dados da area médica, em especial

em estudos de sobrevivéncia, nos quais os modelos mais utilizados também sao lineares.

Em situagoes praticas, em que a forma funcional da relagao entre varidveis nao é
evidente, como em estudos longitudinais, pode-se observar a necessidade de incorporar
efeitos nao lineares do tempo ou de variaveis biomédicas. Especificamente, em modelos
de sobrevivéncia, embora o RESET tenha sido originalmente desenvolvido para regressao
linear, sua utilizagdo também se justifica em modelos de Buckley-James, uma vez que, por

construcao, estes sao formulados como modelos de regressao com dados censurados.

Cabe destacar que o teste RESET nao indica qual variavel é nao linear. Este
apenas sinaliza que o modelo linear nao é consistente. Para esta situacdo, o uso do ELM
avalia conjuntamente todas as covaridveis e consequentemente, e uma vez que o teste
RESET indique nao linearidade, o ELM mostra capacidade de tratar relagoes nao lineares

de forma eficiente.

E importante salientar que o teste RESET néo permite identificar quais covaridveis
apresentam especificagoes nao lineares; sua fungao é apenas indicar que a forma linear do
modelo é insuficiente. Diante dessa limitacao, a utilizacao do ELM torna-se adequada, pois
avalia simultaneamente todas as covariaveis e, uma vez que o RESET sinalize a presenga
de nao linearidade, o ELM apresenta capacidade de modelar tais relagoes de maneira

eficiente e abrangente.
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Para a utilizacao de teste RESET na proposta avalia-se o valor p, considerando o

seguinte critério para decisao:

» Se o valor-p do teste for menor que 0,05, rejeita-se Hy, indicando que o modelo pode

estar mal especificado.

e Se o valor-p for maior ou igual a 0,05, ndo ha evidéncia de erro de especificacao.
Finalmente, algumas limitagoes do teste RESET sao discutidas:

« Baixo poder discriminativo em alguns cenarios: pode nao detectar especi-
ficagoes incorretas se os termos polinomiais nao capturam bem a forma funcional
verdadeira. Nesta situacao, o uso de ELM pode tratar outros tipos de relagoes nao
lineares. Por outro lado, relacoes quadraticas ou cibicas explicam um grande nimero

de relagoes nao lineares.

e Sensibilidade ao niimero de termos: incluir muitos termos pode levar a sobrea-
juste ou resultados espurios. Isto pode ser contornado fazendo uma anélise preliminar
para selecionar covariaveis significativas para o modelo ou incluindo métodos de

regularizacao nos modelos.

O teste RESET constitui uma ferramenta robusta para avaliar a adequacao da
especificagdo de modelos lineares. Sua implementacao em R é direta e, por padrao,
incorpora termos quadraticos e cibicos dos valores ajustados. Em aplicagoes praticas,
como em estudos longitudinais ou em modelos de regressao de maior complexidade,
o RESET pode ser utilizado como parte do processo de validacdo, conferindo maior
consisténcia a interpretacao dos resultados. Ademais, a integracdo com métodos baseados
em aprendizado de maquina, como o ELM, potencializa sua aplicacdo ao oferecer maior

capacidade de captura de relagoes nao lineares.

3.11.1.2 Inclusado de robustez no modelo

A distribuicao t-Student constitui uma alternativa robusta a normal, pois incorpora
caudas mais pesadas e reduz a influéncia de observagoes extremas (outliers) nos proce-
dimentos de inferéncia. Essas caracteristicas a tornam particularmente adequada para

modelagem robusta em cendarios com dados extremos.

Na classe MEN, as distribui¢oes normal e t-Student podem representar diferentes
comportamentos de cauda, mantendo a simetria e a estrutura normal como base. Além
disso, por possuirem formas fechadas e distribui¢bes conhecidas para U, sdo especialmente

adequadas para aplicagdes computacionais e inferéncia estatistica.

A Figura 3 mostra que, para distribui¢des normais com diversos valores de média e

variancia, é possivel encontrar alternativas de distribuicoes t-Student com caudas pesadas,
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considerando as defini¢oes da classe MEN. Observa-se que a simetria é mantida, mas
as formas — especialmente nas caudas — apresentam diferencas que dependem dos
pardmetros proprios destas distribuigoes. A convergéncia para a distribuicdo normal ocorre
no limite em que v — oo, reforcando a ideia de que a t-Student constitui uma generalizagao

robusta da normal.

v=4 v=10 =30

0.5
0.5

0.4

0.4

0.3
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0.3
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0.1
0.1

0.0
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Figura 3 — Algumas distribuigoes t-Student (linha cheia) como alternativas para N(—2,0.5),
N(0,1) e N(3,2) (linha pontilhada).

Dessa forma, a incorporagao da distribuicao ¢-Student fortalece a especificacao
dos modelos, ao oferecer flexibilidade para acomodar diferentes niveis de variabilidade e

assegurar maior consisténcia estatistica em aplicacoes praticas.

A robustez conferida pela distribuicao t-Student pode ser incorporada de forma
natural em modelos de sobrevivéncia, em particular no modelo de Buckley—James, que

consiste em uma extensao da regressao linear para dados censurados.

A integracao com erros t-Student amplia a capacidade do modelo Buckley—James
ao lidar com observagoes extremas. Como discutido anteriormente, a distribuicao t-Student
possui caudas mais pesadas que a normal, o que reduz a influéncia de outliers e torna os
estimadores mais robustos. Dessa forma, ao substituir a suposi¢ao de erros normais por
erros t-Student, o modelo Buckley—James passa a oferecer maior consisténcia estatistica
em cenarios praticos, especialmente em estudos longitudinais ou biomédicos, nos quais a

presenca de dados aberrantes é comum.

Do ponto de vista computacional, essa integracao ¢ viavel porque tanto o Buc-
kley—James quanto a regressao com erros t-Student podem ser formulados em termos
matriciais e resolvidos por métodos iterativos, como algoritmos de minimos quadrados
ponderados (WLS) ou esquemas EM/IRLS. A estimagao dos pardmetros segue a mesma
logica: os residuos censurados sao imputados e, em seguida, ponderados de acordo com
os pesos derivados da distribuicao ¢-Student, resultando em estimativas robustas para os

coeficientes e para a variancia.

Em sintese, a combinagao entre o modelo Buckley—James e a distribuicao t-Student
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constitui uma extensao robusta da andlise de sobrevivéncia. Essa abordagem preserva
a estrutura linear do modelo original, mas adiciona flexibilidade para lidar com caudas
pesadas e observacoes extremas, tornando-se uma alternativa poderosa em aplicagoes
médicas, econométricas e em outras areas nas quais a censura e a nao normalidade dos

dados sao caracteristicas recorrentes.

3.11.1.3 Integracao de ELM e Buckley—James com erros t-Student

O Buckley—James é uma extensao da regressao linear para dados censurados,
mas sua formulacao linear pode ser limitada quando a relagdo entre covariaveis e tempo
de sobrevivéncia apresenta componentes nao lineares. Nesse contexto, o ELM oferece
flexibilidade ao permitir diferentes fungoes de ativacao, como identidade para capturar
linearidade ou sigmoide para modelar rela¢cbes nao lineares, ampliando a capacidade de

representacao do modelo.

Um dos principais desafios em modelos de sobrevivéncia é a presenca de observagoes
extremas (outliers), que podem distorcer estimativas e comprometer a inferéncia, o
tratamento de dados extremos pode ser incorporado ao Buckley—James por meio da
substituicdo da suposicdo de erros normais por erros t-Student. A distribuicao t-Student,
por possuir caudas mais pesadas, reduz a influéncia de observagoes aberrantes e confere
maior robustez as estimativas. Dessa forma, o modelo Buckley—James com erros t-Student
passa a oferecer maior consisténcia estatistica em cenarios praticos, especialmente em

estudos biomédicos e longitudinais.

Algumas ideias propostas por Chen et al. (2017) [61] foram aproveitadas para
o modelo Buckley—James robusto. O uso de pesos iterativos, como no método IRLS,
permite que os residuos sejam ponderados de forma adaptativa, atribuindo menor peso as
observagoes extremas e garantindo que os coeficientes estimados nao sejam dominados
por outliers. Além disso, a integragdo com o ELM fornece flexibilidade para modelar
linearidade ou nao linearidade, enquanto o esquema de pesos derivados da distribuicao

t-Student assegura robustez contra caudas pesadas.

Em sintese, a integragao proposta ocorre substituindo a matriz de covariaveis X
do modelo Buckley—-James pela matriz H obtida a partir da aplicacdo da Maquina de
Aprendizado Extremo (ELM). Essa matriz H resulta da aplicacao de fungoes de ativagao
sobre combinagoes lineares das covariaveis originais, permitindo ampliar o espacgo de
representacao. Quando se utiliza a funcao de ativacao identidade, o modelo preserva a
linearidade; ja com a funcao sigmoide, torna-se capaz de capturar relagoes nao lineares

entre as covariaveis e o tempo de sobrevivéncia.

A estimacdo dos pardmetros de saida a é realizada por meio de um esquema

iterativo de minimos quadrados ponderados, em que os residuos sao reponderados de
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acordo com a distribuicao t-Student. A solugao na iteracao k + 1 é dada por
o) = (H'PWH)  H'PWY, (3.19)
onde P%) = diag(p,, ..., pn) é a matriz diagonal de pesos, com

Cver o (exTB)

)

v+d;’ o2

. di=1,...,n. (3.20)

Di

Dessa forma, o modelo Buckley—James com ELM e erros t-Student preserva a
estrutura de andlise de sobrevivéncia, mas adiciona flexibilidade para lidar com linearidade
ou nao linearidade e robustez contra observacoes extremas. Essa integracao constitui uma
alternativa poderosa em cenarios praticos, como aplicagoes biomédicas, econométricas e

longitudinais, nos quais censura, nao normalidade e dados extremos coexistem.

3.12 Integracdo Boosting L2 com BJ-ELM- t-Student

A integragao entre o modelo Buckley—James, a Maquina de Aprendizado Extremo
(ELM) e a distribuicao t-Student pode ser ampliada por meio do algoritmo de Boosting L2.
Nesse contexto, o Boosting atua como um mecanismo de ajuste iterativo, em que cada
iteragdo corresponde ao treinamento de um novo ELM. Assim, o modelo final é construido
como uma combinacgao linear de multiplos ELMs, construidos através da correcao dos

residuos de forma sequencial.

O papel do ELM permanece central: a matriz de covariaveis X é substituida
pela matriz H, obtida a partir das fungoes de ativacao aplicadas as combinacoes lineares
das covariaveis originais. A funcao identidade preserva a linearidade, enquanto a funcao
sigmoide permite capturar rela¢cbes nao lineares. Dessa forma, o Boosting L2 adiciona
flexibilidade ao processo, permitindo que o modelo se adapte tanto a estruturas lineares

quanto nao lineares.

A robustez é garantida pela incorporagao da distribuicao t-Student, que confere
menor peso as observagoes extremas por meio da matriz de ponderacdo P. A cada
iteracao, os residuos sao recalculados e ponderados, reduzindo a influéncia de outliers e
assegurando maior consisténcia estatistica. O esquema iterativo do Boosting 1.2, aliado ao

reponderamento via P, resulta em estimativas mais estaveis e confidveis.

Um resultado classico mostra que o Boosting L2, quando aplicado com regressao
linear como modelo de aprendizado base, ndao consegue evoluir além da solugao tnica de
minimos quadrados ordindrios. Seja X a matriz de covariaveis e y o vetor resposta. A

solugdo de minimos quadrados ¢ dada por:

Bors = (X'X)"'XTy.

As previsoes resultantes sao:
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y=XB=Hy, H=XX"X)"'X".

O vetor de residuos é:

e=y—-y=>1-H)y,
com a propriedade de ortogonalidade X'Te = 0.

Se o segundo modelo de aprendizado base for também uma regressao linear, suas

previsoes seriam:

v, = X(X'X)"'XTe
= X(X'X)"'XT(I-H)y
= X(X'X)"' XTI -X(X"X)"'X ")y
=(H-H)y =0.

Conclui-se que as previsoes do segundo modelo sdo nulas. A regressao linear
subsequente é incapaz de detectar qualquer padrao nos residuos, pois estes, por construcao,
nao possuem componente linear explicavel pelas variaveis preditoras X. Consequentemente,

o processo iterativo de Boosting L2 torna-se ineficaz.

Essa limitacao nao se verifica quando utilizamos o Fxtreme Learning Machine
(ELM) como modelo base. Diferentemente da regressao linear classica, o ELM gera uma
matriz de saida H construida a partir de fungoes de ativagao e parametros (W, B) que
podem ser redefinidos a cada iteracao. Isso significa que, mesmo com a funcao identidade,
novas matrizes H sao geradas em cada passo, projetando os residuos em subespagos

distintos e evitando a ortogonalidade rigida que bloqueia o aprendizado sequencial.

Quando se utiliza a funcao sigmoide, o ganho é ainda maior, pois o espago de
representacao é expandido de forma nao linear, permitindo que cada nova matriz H capture
padroes residuais complexos. Assim, tanto com identidade quanto com sigmoide, desde
que novas matrizes H sejam geradas a cada iteracao, o Boosting L2 com ELM nao sofre da
incompatibilidade fundamental observada na regressao linear. O resultado é um processo
iterativo eficaz, capaz de lidar com censura, nao linearidade e dados extremos de forma

robusta.

3.13 Algoritmo Adaptativo BJ-ELM-t-Student com Boosting L2

O modelo BJ-ELM-t-Student pode ser estendido para uma versao adaptativa, na
qual decisoes fundamentais sdo tomadas automaticamente ao final de cada ciclo k do
algoritmo. Essa adaptacao confere maior flexibilidade ao processo, permitindo que o
modelo se ajuste dinamicamente as caracteristicas dos dados e otimize seu desempenho

sem necessidade de intervencao manual.
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Escolha Automatica da Funcao de Ativagao

A primeira escolha adaptativa refere-se a determinagao da linearidade ou nao do
modelo. Para isso, aplica-se o teste RESET, conforme descrito na Subsecao 3.11.1.1. O
resultado do teste orienta a selecao da funcao de ativacao utilizada na construcao da matriz
H do ELM. Se o teste indicar adequacao de uma estrutura linear, utiliza-se a funcao
identidade; caso contrario, adota-se uma func¢ao nao linear, como a sigmoide. Importante
destacar que essa escolha é realizada apenas ao final de cada ciclo k, quando os valores
imputados y*®) sao atualizados segundo o conceito do modelo Buckley-James. Dessa
forma, evita-se a incompatibilidade fundamental observada em regressoes lineares simples,
uma vez que novas matrizes H sdo geradas a cada ciclo, seja no espago linear ampliado ou

em espacos nao lineares mais expressivos.

Atualizacao Adaptativa dos Graus de Liberdade

A segunda escolha adaptativa envolve a atualizacdo do grau de liberdade v da
distribuigao t-Student. Essa atualizagao é realizada ao final de cada ciclo k, por meio de

um processo de otimizacao que consiste em maximizar a expressao:

235 (’%1)
T(%)(di+v)s

sendo I'(z) a fungdo gama avaliada em x. Esse procedimento busca o valor 6timo de

ZlogKi, onde K; =

v, ajustando a robustez do modelo de acordo com a presenca de observacoes extremas.
Como os valores y*(*) sdo atualizados apenas ao final de cada ciclo, é nesse momento que

a adaptacao da robustez se torna consistente.

Flexibilidade e Automatizacao no Ciclo BJ

Essas escolhas automaticas — da funcao de ativagao e do grau de liberdade — sao
realizadas ao final de cada ciclo k£ do algoritmo BJ-ELM com Boosting L2. O resultado é
um processo adaptativo que combina linearidade ou nao linearidade conforme necessario,
ajusta a robustez estatistica em fun¢do da estrutura dos dados e, ao mesmo tempo,
aproveita o mecanismo iterativo do boosting para corrigir residuos sucessivos dentro de
cada ciclo. Em sintese, o BJ-ELM-t-Student adaptativo com Boosting L2 representa uma
metodologia robusta e versatil, capaz de se ajustar dinamicamente as condi¢oes empiricas

e oferecer ganhos adicionais de desempenho.

3.13.1 Algoritmo proposto

Como descrito em (3.5), o modelo BJ ajusta o logaritmo do tempo de sobrevivén-
cia, considerando uma relagao linear com as covariaveis e assumindo uma distribuicao

normal dos erros do modelo. Entretanto, as aplicagoes reais de analise de sobrevivéncia
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demonstram que os efeitos das covariaveis sao frequentemente mais complexos. Relagoes
de interacao entre covariaveis e a presenca de nao linearidade sao comuns, e a ocorréncia
de dados extremos pode comprometer a suposicao de normalidade dos erros, resultando

em degradagao da capacidade preditiva do modelo BJ.

Considerando dados de sobrevivéncia com censura a direita, a proposta consiste
em um algoritmo do tipo Boosting L2 baseado em ELM, com o objetivo de superar
as dificuldades do modelo BJ em processar dados que apresentam interacoes ou nao
linearidade. Além disso, propoe-se a adocao da distribuicao t-Student como alternativa
a suposicao de normalidade dos erros, conferindo maior robustez frente a observagoes

extremas.

Primeiramente, o modelo proposto substitui a combinagao linear de covariaveis
do modelo BJ apresentado em (3.5) pela fun¢ao de saida nao linear obtida a partir da

aplicagao de um algoritmo Boosting L2 baseado em ELM, isto é:

onde Y; = In(T;) e f(x;) é a fungdo de saida do modelo Boosting L.2 baseada em ELM com

M aprendizes base para o individuo 7, 1 = 1,2, ...,n. Assim, esta funcao é expressa como:

f(x) = % G(x; WM 1 Bm)g(m), (3.22)
m=1

A cada iteracao do método BJ, ajusta-se o logaritmo do tempo de sobrevivéncia por

um modelo de refor¢o baseado em ELM com o mesmo ntimero de covariaveis base em vez
de um modelo de regressao linear multipla, considerando o método de estimacao proposto
para um modelo ¢-Student que inclui a matriz de ponderagdo P como definido em (3.13).
Essa matriz P é construida a partir das densidades da distribuicao ¢-Student, atribuindo
menor peso as observagoes com residuos extremos. A atualizacao de v é realizada por
meio da maximizagao da soma dos logaritmos das densidades, garantindo que o modelo se

ajuste dinamicamente ao nivel de robustez necessario.

Logo, os valores vy, para @ = 1,2, ...,n, sao calculados por:

yi =6+ (1—6;) | f(x:) + S(er) ™ ) ¢0;85(¢;) | (3.23)

€5>€4

~

onde €; < €5 < ... < €, sao residuos observados ordenados e calculados por ¢; = y; — f(x;).

Para incluir flexibilidade no algoritmo proposto, de forma que relagoes de interacao
entre covariaveis e a presenca de nao linearidade sejam melhor tratadas, duas fungoes de

ativagao ¢(.) sao utilizadas: a func¢ao identidade e a fungao sigmoide, definidas como:

g(x) ==, g(x) = : (3.24)
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O processo adaptativo ocorre ao final de cada ciclo k do algoritmo BJ: aplica-se
o teste RESET sobre os valores y**) para decidir se a funcio de ativacio permanece
identidade ou se deve ser atualizada para sigmoide, e simultaneamente otimiza-se o
grau de liberdade v da distribuicao t-Student. Dessa forma, o algoritmo combina o
mecanismo iterativo do Boosting L2 com decisdes automaticas de linearidade e robustez,
evitando a incompatibilidade fundamental da regressao linear e ampliando a capacidade

de generalizagao frente a dados complexos e extremos.

Em sintese, o modelo BJ-ELM-t-Student adaptativo combina o mecanismo iterativo
do Boosting L2 com decisoes automaticas de linearidade/nao linearidade e robustez,
superando as limitagoes do modelo BJ classico e ampliando sua capacidade de generalizagao.
A implementacao foi realizada no software R, e o fluxo completo do procedimento é descrito,

a seguir, no Algoritmo 2.
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Algorithm 2: Algoritmo BJ-ELM-¢-Student Adaptativo com Boosting L2

Data: Dados de treino (X, y),
numero de neurdnios ocultos (),
numero de aprendizes base M,
taxa de aprendizado 7,
numero pequeno positivo ¢

Result: Modelo final f(x)
1 Inicializar y*© =y, k =0, P© =1, f(2)® = 0,001, fungio de ativagio inicial

9() =1
2 repeat
3 k<+ k—+1;

// Etapa de Boosting L2 com ELM
4 Ajustar o logaritmo do tempo de sobrevivéncia utilizando um modelo de

boosting baseado em ELM ponderado por matriz P:

5
M
fx)® =3 Gx/wkm . BEM)ghm =1 n
m=1
6 Calcular os residuos atuais: € = y; — Fx)®, i=1,... n;
7 | Atualizar P,
8 Ordenar €; < €5 < ... < €, e reorganizar os dados de sobrevivéncia imputados

(yiaéiaxi>;
9 Atualizar yf(k) =0y +(1—=6) f(xi)(k) + §(€§k))_1 > (B egk)éjAg(é-k)) :
j i

// Etapas adaptativas realizadas ao final de cada ciclo k
10 Aplicar o teste RESET sobre y**) para decidir a funcio de ativacio:

« Se linearidade confirmada — manter g(.) = I;
 Caso contrario — atualizar g(.) = sigmoide.

Atualizar o grau de liberdade v da distribuicao t-Student via otimizagao:

) = arg mELXZlog K;, K;=

179" 7ot D
1760

12 Retornar f(x);

11 unti < p;
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4 RESULTADOS

Neste capitulo sao apresentados os resultados de estudos destinados a avaliar e
validar o desenvolvimento de um modelo adaptativo para andlise de sobrevivéncia. As
avaliagoes utilizam duas métricas amplamente empregadas na literatura, o C-Index e o
IBS, que permitem mensurar, respectivamente, a capacidade discriminativa e a calibracao

dos modelos.

Os estudos seguem a abordagem proposta por Kong et al. [17], contemplando
duas etapas principais. A primeira consiste na aplicacdo de diferentes algoritmos sobre
diversos conjuntos de dados simulados, criados para avaliar separadamente caracteristicas
fundamentais do modelo adaptativo. A segunda etapa envolve a andlise de seis conjuntos
de dados clinicos reais, amplamente utilizados na literatura e disponiveis em pacotes do
software R [46].

4.1 MEDIDAS DE DESEMPENHO

4.1.1 Concordance Index (C-Index)

O C-index foi proposto por Harrell et al. (1996) [47]. E uma medida frequentemente
usada para avaliar a precisao preditiva de modelos em analise de sobrevivéncia. Reflete
a consisténcia entre a previsao de sobrevivéncia de um modelo e a situagao real de
sobrevivéncia, medindo a proporg¢ao dos pares de individuos cujas previsoes de sobrevivéncia
tém o mesmo ordenamento com seu tempo de evento verdadeiro e todos os pares de
individuos, para os quais o tempo de evento é comparavel. Esta medida pode ser calculada

por
1 Zj;éi ]((f(xz) - f(xj)(yz - yj) > 0)
D i >t comp(i, j)

onde f representa um modelo de previsao de sobrevivéncia e comp(i, j) representa um par

C — Index(f) = (4.1)

de individuos cujo tempo de sobrevivéncia real é comparavel e pode ser calculado como

1 se 0;=0;=1ou(d;=1,0; =0ey; <y,
compli, §) = ( j ) ou ( j i < Yj) (4.2)
0 outro caso .
Na andlise de sobrevivéncia, o valor do C-Index estd entre 0 e 1. Um valor maior
do indice indica uma consisténcia mais alta entre resultados de predicao do modelo e o

tempo real de sobrevivéncia, e assim, um melhor desempenho preditivo.

4.1.2 Integrated Brier Score (IBS)

O Brier score (BS), um erro preditivo dependente do tempo na Anélise de Sobrevi-
véncia, proposto por Graf et al. (1999) [48], é definido como a média dos quadrados das

diferencas entre a probabilidade de sobrevivéncia prevista e o estado de sobrevivéncia real,
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ponderado pela probabilidade inversa de censura. A medida BS no tempo ¢ é calculada

como

S(t
Bty = 13- [ CUED iy g1y 4 Iz, @
n3 G( )
onde S(.) é a funcao de sobrevivéncia prevista pelo modelo e G(.) é o estimador KM da

distribuicao de censura.

De (4.3), pode-se observar que o BS é um erro quadratico de predigdo que depende
do ponto no tempo t. A selecao de ponto temporal ¢ pode levar a grandes diferencas na
avaliagao do desempenho preditivo do modelo. Assim, uma medida de erro de previsao
mais abrangente é o denominado IBS, que é definido como a forma integral do BS e nao

depende da selecdo de um tinico ponto temporal . O valor do IBS é calculado por

1 mazi(ys)
[BS= / BS(#)dt. (4.4)
maz; (y;)
Na analise de sobrevivéncia, quanto menor for o IBS, melhor serda o desempenho

do modelo de sobrevivéncia.

4.2 ESTUDOS DE SIMULACAO

Nos estudos de simulagao sao explorados diferentes cenarios relacionados as carac-
teristicas do conjunto de dados. Sao aplicados dois modelos existentes e trés variagoes do
modelo proposto, com o objetivo de avaliar a robustez no sentido de verificar a capaci-
dade dos modelos em lidar com dados extremos, bem como o desempenho em termos de
capacidade discriminativa (C-Index) e calibragao (IBS) em comparagao com modelos ja
consolidados na literatura. Para cada cenario foram simuladas 30 amostras Monte Carlo,
e em cada uma delas aplicaram-se os cinco modelos avaliados. A seguir, apresentam-se em

detalhe os cenarios considerados e a descricao dos modelos testados.

4.2.1 Especificagdo dos Cenéarios Simulados

Foram considerados seis cenarios para o conjunto de dados. As configuragdes destes

cendrios sao descritas a seguir.

e Cenério 1: Dados com efeitos lineares e nao correlacionados

O tempo do evento segue um modelo AFT log-normal. O logaritmo do tempo do

evento T é gerado a partir do modelo
T=05+X"8+e¢,

onde
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O termo de erro aleatério € é gerado a partir de N(0, 3).
Os elementos de B sao 0.4,0,5,0.6,0.7,0.8 repetidos 6 vezes.

X é um vetor de covaridveis de dimensao 30 extraido de N3(0,X) onde ¥ é matriz

diagonal de dimensao 30 com valores de diagonal 0.95 e fora da diagonal 0.

O tempo de censura é gerado a partir de uma distribui¢do uniforme [0, 20].

Cenario 2: Dados com efeitos lineares e interagoes

O tempo do evento segue um modelo AFT log-normal. O logaritmo do tempo do

evento T' ¢ gerado a partir do modelo
T=05+X"8+e¢,

onde
O termo de erro aleatério € é gerado a partir de N(0, 3).
Os primeiros 15 elementos de 3 sao 0.4 e os tltimos 15 elementos sao 0.

X ¢é um vetor de covaridveis de dimensao 30 extraido de N3,(0,X) onde ¥ =
diag((J,J,J,1]).

J é matriz diagonal de dimensao 5 com valores de diagonal 1,01 e fora da diagonal

1, e I ¢ uma matriz identidade de ordem 15.

O tempo de censura é gerado a partir de uma distribui¢ao uniforme [0, 20].

Esta configuragdo corresponde ao primeiro cenario de dados com efeitos lineares
apresentado por Wang et al. (2010) [50].

Cenario 3: Dados com efeitos nao lineares

O logaritmo do tempo do evento T' é gerado a partir do modelo
T=fX")+e

onde
O termo de erro aleatdrio € é gerado a partir de N(0,0.75).

X é um vetor de covariaveis de dimensao 4 gerado de uma distribuicdo normal
com média zero e uma estrutura autoregresiva de correlagao, tal que corr(z;,z;) =
0.7 4,5 =1,2,3,4.

O logaritmo do tempo de censura C' é gerado a partir de uma distribuigao N(0,0.75).

Segundo Wang et al. (2010) [50], f(X) = f1(X1) + fo(X2) + f5(X3) + f1(X4), onde
fl(Xl) == 4X12>,f2<X2) == sm(6X22), fg(Xg) == COS(6X3) — 1, (§] f4(X4) = 4X§f) + Xz%
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e Cenario 4: Dados com efeitos lineares e nao correlacionados com erros
t-Student

Mantém todas as configuragoes do cenario 1, menos a geracao do erro aleatorio que

agora ¢é gerado por uma distribuigdo t-Student com 10 graus de liberdade.

o Cenario 5: Dados com efeitos lineares e interagdes com erros t-Student

Mantém todas as configuragoes do cenario 2, menos a geracao do erro aleatério que

agora ¢ gerado por uma distribui¢ao t-Student com 10 graus de liberdade.

e Cenario 6: Dados com efeitos nao lineares com erros t-Student

Mantém todas as configuracoes do cenario 3, menos a geracao do erro aleatério que

agora ¢ gerado por uma distribuicao ¢-Student com 10 graus de liberdade.

4.2.2 Modelos avaliados

Foram avaliados cinco modelos, dois dos quais sao conhecidos na literatura e trés
resultantes das variagoes de algoritmo proposto. A descricao destes modelos se apresentam

a seguir:

« Modelo CPH: Corresponde ao modelo de Riscos Proporcionais de Cox [18] , é o

mais conhecido e usado na Andélise de Sobrevivéncia.

« Modelo BJ-ELM: Proposto por Kong e Zhan (2023) [17]. Corresponde ao Modelo
de boosting de Buckley—James baseado em ELM. Este modelo é mais eficiente que

outros modelos mais conhecidos quando existe nao linearidade.

e Modelo BJ-ELML: Primeira variacao da proposta. Considera a funcao de ativacao

g(x) = x.

« Modelo BJ-ELMR: Proposta robusta que considera distribuicio t-Student com 10

graus de liberdade e fungao de ativagdo g(x) sigmoide.

e« Modelo BJ-ELMLR: Proposta robusta que considera distribuicao ¢-Student com

10 graus de liberdade e fungao de ativagao g(z) = z.

4.2.3 Avaliagao do cenario 1

O cenério 1 simula uma situacao considerada ideal para a aplicacao de modelos
lineares, caracterizada pela independéncia entre covaridveis (correlagdo praticamente nula)
e erros seguindo uma distribuicdo normal. Nessas condigoes, a estrutura linear é suficiente
para representar adequadamente os dados. A Tabela 3 mostra que, para ambas as medidas
de desempenho, os piores resultados correspondem aos modelos nao lineares. Entre os

modelos do tipo BJ, o BJ-ELML apresenta melhor desempenho segundo ambas métricas. O
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modelo CPH apresenta desempenho muito similar aos modelos BJ lineares, o que pode ser
explicado pela condicao ideal de linearidade do dado simulado. A Figura 4, que apresenta
em conjunto os box-plots das distribui¢oes de C-Index (na parte superior) e de IBS (na
parte inferior) para os cinco métodos avaliados, indica variabilidade equivalente entre
eles no C-Index e refor¢a a conclusao anterior sobre o melhor desempenho dos métodos
lineares. Em relagao ao IBS, observa-se que o modelo CPH apresenta maior variabilidade
quando comparado aos demais quatro métodos, confirmando a tendéncia ja identificada

nas medidas de desempenho.

Tabela 3 — Avaliagdo de Cenario 1: Resultados para C-Index e IBS em modelos avaliados.

Modelo C — INDEX IBS

CPH 0.756 (0.727,0.785) 0.180 (0.152,0.208)
BJ-ELM  0.750 (0.717,0.782) 0.188 (0.174,0.202)
BJ-ELML  0.760 (0.727,0.793) 0.181 (0.167,0.195)
BJ-ELMR  0.751 (0.718,0.784)  0.188 (0.173,0.203)
BJ-ELMLR  0.756 (0.726,0.787) 0.183 (0.169,0.198)

C-Index - Simulagéo 1 (Linear)

ccccc C_BJ_ELMI
Modelo
IBS - Simulagéo 1 (Linear)

1BS

| | | | ‘ |

——

Figura 4 — Avaliagdo de Cenério 1: Box-Plot para C-Index e IBS em modelos avaliados.

1BS_BJ_ELML
Modelo
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4.2.4  Avaliacdo do cenario 2

O cenario 2 simula uma situacdo em que hé interacao entre algumas covariaveis. A
Tabela 4 mostra um equilibrio nos desempenhos de todos os modelos avaliados. A Figura 5,
que apresenta em conjunto os box-plots das distribuigoes de C-Index (na parte superior) e
de IBS (na parte inferior) para os cinco métodos, indica menor variabilidade no modelo
BJ-ELMR e reforca a conclusao de similaridade no desempenho entre os métodos. Em
relacdo ao IBS, observa-se novamente que o modelo CPH apresenta maior variabilidade

quando comparado aos demais quatro modelos.

Tabela 4 — Avaliagdo de Cenéario 2: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-—INDEX IBS

CPH 0.753 (0.713,0.792) 0.176 (0.148,0.203)
BJ-ELM 0.759 (0.719,0.799) 0.180 (0.165,0.194)
BJ-ELML  0.758 (0.721,0.796) 0.178 (0.162,0.194)
BJ-ELMR  0.759 (0.719,0.798) 0.180 (0.164,0.195)
BJ-ELMLR 0.757 (0.720,0.793) 0.178 (0.161,0.195)

C-Index - Simulagao 2 (Linear1)

C-Ind

C_BJ_ELML
Modelo
IBS - Simulag&o 2 (Linear1)

———

1BS

1BS_BJ_ELML
Modelo

Figura 5 — Avaliagdo de Cenario 2: Box-Plot para C-Index e IBS em modelos avaliados.
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4.2.5 Avaliacdo do cenario 3

O cendrio 3 simula uma situagdo em que ha nao linearidade entre as covariaveis. A
Tabela 5 evidencia o melhor desempenho dos modelos nao lineares em ambas as medidas de
avaliacao, diferenga que se mostra bastante clara. A Figura 6, que apresenta em conjunto os
box-plots das distribuigdes de C-Index (na parte superior) e de IBS (na parte inferior) para
os cinco métodos, confirma essa conclusao ao mostrar menor variabilidade nos modelos
nao lineares. Em relacao ao IBS, observa-se que todas as medidas apresentam valores
elevados em algumas repetigoes, reforcando a complexidade deste cenario e a necessidade

de modelos capazes de lidar com estruturas nao lineares.

Tabela 5 — Avaliagdo de Cenario 3: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-INDEX IBS

CPH 0.882 (0.838,0.927) 0.232 (0.000,0.467)
BJ-ELM 0.917 (0.879,0.955) 0.185 (0.038,0.333)
BJ-ELML  0.878 (0.834,0.923) 0.213 (0.033,0.394)
BJ-ELMR  0.921 (0.884,0.958) 0.181 (0.032,0.330)
BJ-ELMLR 0.880 (0.836,0.924) 0.226 (0.016,0.437)

C-Index - Simulagéo 3 (Nonlinear)

——

C-Index

C_BJ_ELML
Modelo

IBS - Simulagédo 3 (Nonlinear)

1BS

—

.
.
T T T
S_BJ_ELML
Modelo

Figura 6 — Avaliacao de Cenério 3: Box-Plot para C-Index e IBS em modelos avaliados.
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4.2.6 Avaliacdo do cenario 4

O cenario 4 reproduz o cenario 1, porém com a inclusao de dados extremos,
e apresenta avaliagoes semelhantes. A Tabela 6 mostra que os piores desempenhos
correspondem aos modelos nao lineares, enquanto o modelo CPH apresenta resultados muito
proximos aos modelos BJ lineares. A Figura 7, que retine os box-plots das distribui¢oes de
C-Index (na parte superior) e de IBS (na parte inferior) para os cinco métodos, confirma
o melhor desempenho dos modelos lineares, com menor variabilidade no C-Index. Em
relagdo ao IBS, observa-se que o CPH apresenta valores médios mais baixos, mas também

maior variabilidade quando comparado aos demais quatro modelos.

Tabela 6 — Avaliacdo de Cendrio 4: Resultados para C-Index e IBS em modelos avaliados.

Modelo C — INDEX IBS
CPH 0.901 (0.884,0.918) 0.080 (0.058,0.103)
BJ-ELM  0.883 (0.859,0.907) 0.142 (0.132,0.153)
BJ-ELML  0.896 (0.877,0.915) 0.136 (0.125,0.146)
BJ-ELMR  0.886 (0.862,0.909) 0.142 (0.131,0.153)
BJ-ELMLR 0.897 (0.876,0.917) 0.135 (0.124,0.146)

C-Index - Simulag@o 4 (Lineart)

—Eme=e

IBS - Simulag&o 4 (Lineart)

C-Index

1BS

S_BJ_ELML
Modelo

Figura 7 — Avaliagao de Cenério 4: Box-Plot para C-Index e IBS em modelos avaliados.



61

4.2.7 Avaliacdo do cenario 5

O cenario 5 simula uma situacdo em que ha interagao entre algumas covariaveis
combinada com a presenca de dados extremos. A Tabela 7 evidencia um equilibrio nos
desempenhos de todos os modelos avaliados. A Figura 8, que apresenta em conjunto os
box-plots das distribuigdes de C-Index (na parte superior) e de IBS (na parte inferior),
confirma essa tendéncia ao mostrar desempenhos semelhantes entre os métodos. Em
relacao ao IBS, observa-se que o modelo CPH apresenta valores médios mais favoraveis,
embora com maior variabilidade em comparacao aos demais quatro modelos. Os resultados

guardam estreita semelhanca com aqueles obtidos para o cenério 2.

Tabela 7 — Avaliagdo de Cenario 5: Resultados para C-Index e IBS em modelos avaliados.

Modelo C — INDEX IBS

CPH 0.908 (0.888,0.928) 0.072 (0.049,0.094)
BJ-ELM  0.910 (0.890,0.930) 0.128 (0.116,0.141)
BJ-ELML  0.906 (0.885,0.927) 0.131 (0.117,0.145)
BJ-ELMR  0.909 (0.891,0.928) 0.131 (0.120,0.142)
BJ-ELMLR  0.908 (0.888,0.928) 0.130 (0.116,0.145)

C-Index - Simulag&o 5 (Linear1t)

C-Index

IBS - Simulagao 5 (Linear1t)

1BS

S_BJ_ELML
Modelo

Figura 8 — Avaliacao de Cenério 5: Box-Plot para C-Index e IBS em modelos avaliados.
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4.2.8 Avaliacdo do cenario 6

O cenario 6 simula uma situacao em que ha nao linearidade entre as covariaveis
combinada com a presenca de dados extremos. A Tabela 8 evidencia o melhor desempenho
dos modelos nao lineares, destacando-se entre eles 0 BJ-ELMR. A Figura 9, que apresenta
em conjunto os box-plots das distribui¢bes de C-Index (na parte superior) e de IBS (na
parte inferior), confirma essa conclusdo ao mostrar menor variabilidade nos modelos nao
lineares. De modo geral, as avaliacoes obtidas neste cenario sao similares as verificadas no

cenario 3.

Tabela 8 — Avaliacdo de Cenério 6: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-—INDEX IBS

CPH 0.883 (0.840,0.926) 0.194 (0.039,0.348)
BJ-ELM 0.911 (0.871,0.952) 0.153 (0.088,0.218)
BJ-ELML  0.873 (0.826,0.920) 0.176 (0.094,0.259)
BJ-ELMR  0.914 (0.876,0.952) 0.148 (0.096,0.201)
BJ-ELMLR 0.878 (0.832,0.925) 0.176 (0.101,0.251)

C-Index - Simulagao 6 (Nonlineart)

C-Inde

C_BJ_ELML
Modelo
IBS - Simulag&o 6 (Nonlineart)
1.00

1BS

1BS_BJ_ELML 1BS_BJ_ELMR

Figura 9 — Avaliacao de Cenério 6: Box-Plot para C-Index e IBS em modelos avaliados.
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4.3 APLICACAO EM DADOS REAIS

Neste secao apresentam-se dos conjuntos de aplicagoes sobre seis conjuntos de
dados reais presentes em diversas pacotes do software R [46]. Sobre estes conjuntos de
dados serao feitos dois estudos. O primeiro estudo avalia a inclusdo de robustez no modelo
proposto por Kong et al. (2023) [17]. O segundo estudo avalia a performance do algoritmo
adaptativo proposto, que ja inclui a opcao de linearidade ou nao e o uso da distribuicao

t-Student para garantir robustez ao respeito de dados extremos.

A descricao dos seis conjuntos de dados sao apresentados na Tabela 9 a seguir:

Tabela 9 — Descricao do bancos de dados usados.

Nome Origem Casos Censura (%) Numero de covariaveis
Pbc randomForestSRC 418 61% 17
Lung survival 226 2% 8
WPBC TH.data 198 24% 32
StageC rpart 146 63% 6
Veteran survival 137 ™% 6
Prca SubgrPlots 475 29% 7

4.3.1 Avaliacao de inclusao de robustez no modelo

Nesta subsecao apresenta-se os resultados da aplicagao do modelo proposto em dados
reais, e avalia-se o seu desempenho em contextos praticos. Antes de iniciar esta avaliagao
devemos resumir algumas conclusoes gerais obtidas dos cenarios simulados: Primeiro, o
método CPH ¢é adequado para algumas situacoes, entretanto apresenta variabilidade maior
que os modelos BJ, o que faz que seja menos consistente. Por outro lado, os modelos BJ
acomodam-se melhor as caracteristicas de linearidade ou nao dos conjuntos simulados e sao
mais consistentes, assim, o uso de uma adequada funcao de ativagdo torna-se importante.
Finalmente, existe um pequeno indicativo da necessidade de uso de métodos robustos, a
aplicacao do método robusto sobre dados reais visa clarificar a necessidade do uso de este

tipo de modelo.

Os seis conjuntos de dados nos quais se avaliam os métodos robustos propostos
foram analisados por Kong et al. (2023) [17], eles concluem que, para todos eles, o método
BJ-ELM é adequado. Considerando esta conclusao, o modelos BJ-ELMR com distintos
graus de liberdade serao avaliados e comparados com os resultados do BJ-ELM, usando as

medidas de desempenho C-Index e IBS.
Como o método BJ-ELMR, proposto depende da escolha do grau de liberdade da

distribuicao t-Student, uma grade de valores é definida. Assim, sdo avaliados modelos
BJ-ELMR com valores (5,10, 15, 20, 25, 30) no grau de liberdade.
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Observe-se as Tabelas 10-15 onde se observa que cada conjunto de dados obtém

um melhor desempenho em valores diferentes de graus de liberdade, assim, mostra-se a

importancia do uso dos graus de liberdade para melhorar os desempenhos de predigao.

Quando o grau de liberdade é muito grande os resultados se aproximam do BJ-ELM.

Tabela 10 — Pbc: Resultados para C-Index e IBS em modelos avaliados.

Modelo

C—-INDEX

IBS

BJ-ELM
BJ-ELMR (5)
BJ-ELMR (10)
BJ-ELMR (15)
BJ-ELMR (20)
BJ-ELMR (25)
BJ-ELMR (30)

0.829 (0.816,0.842)
0.829 (0.815,0.843)
0.827 (0.814,0.840)
0.825 (0.812,0.839)
0.830 (0.817,0.843)
0.828 (0.815,0.841)
0.826 (0.814,0.838)

0.185 (0.155,0.215)
0.183 (0.153,0.212)
0.185 (0.156,0.215)
0.185 (0.155,0.215)
0.183 (0.153,0.214)
0.183 (0.154,0.211)
0.186 (0.155,0.218)

Tabela 11 — Lung: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-—INDEX IBS

BJ-ELM 0.617 (0.600,0.634) 0.207 (0.174,0.240)
BJ-ELMR (5)  0.627 (0.608,0.646) 0.204 (0.172,0.235)
BJ-ELMR (10) 0.626 (0.610,0.642) 0.204 (0.172,0.237)
BJ-ELMR (15) 0.622 (0.605,0.638) 0.206 (0.172,0.239)
BJ-ELMR (20) 0.621 (0.603,0.639) 0.207 (0.173,0.241)
BJ-ELMR (25) 0.623 (0.606,0.641) 0.205 (0.173,0.237)
BJ-ELMR (30) 0.624 (0.606,0.642) 0.206 (0.173,0.239)

Tabela 12 — WPBC: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-—INDEX IBS

BJ-ELM 0.643 (0.622,0.663) 0.160 (0.154,0.165)
BJ-ELMR (5)  0.649 (0.629,0.669) 0.159 (0.154,0.164)
BJ-ELMR (10) 0.623 (0.599,0.648) 0.163 (0.158,0.168)
BJ-ELMR (15) 0.648 (0.623,0.674) 0.159 (0.154,0.164)
BJ-ELMR (20) 0.644 (0.621,0.667) 0.159 (0.154,0.163)
BJ-ELMR (25) 0.642 (0.626,0.659) 0.159 (0.153,0.166)
BJ-ELMR (30) 0.633 (0.614,0.653) 0.161 (0.155,0.166)




Tabela 13 — StageC: Resultados para C-Index e IBS em modelos avaliados.

Modelo C —INDEX 1BS

BJ-ELM 0.724 (0.686,0.762) 0.167 (0.150,0.185)
BJ-ELMR (5)  0.726 (0.694,0.757) 0.170 (0.151,0.190)
BJ-ELMR (10) 0.717 (0.683,0.751) 0.167 (0.150,0.183)
BJ-ELMR (15) 0.719 (0.685,0.754) 0.168 (0.150,0.185)
BJ-ELMR (20) 0.722 (0.684,0.759) 0.168 (0.151,0.185)
BJ-ELMR (25) 0.721 (0.686,0.757) 0.169 (0.151,0.186)
BJ-ELMR (30) 0.722 (0.687,0.757) 0.170 (0.149,0.192)

Tabela 14 — Veteran: Resultados para C-Index e IBS em modelos avaliados.

Modelo C — INDEX IBS

BJ-ELM 0.761 (0.740,0.783) 0.423 (0.159,0.687)
BJ-ELMR (5)  0.757 (0.736,0.779) 0.420 (0.160,0.681)
BJ-ELMR (10) 0.755 (0.732,0.777) 0.416 (0.153,0.679)
BJ-ELMR (15) 0.751 (0.727,0.776) 0.426 (0.158,0.694)
BJ-ELMR (20) 0.753 (0.733,0.774) 0.412 (0.160,0.664)
BJ-ELMR (25) 0.756 (0.734,0.778) 0.430 (0.158,0.701)
BJ-ELMR (30) 0.751 (0.728,0.773) 0.427 (0.162,0.692)

Tabela 15 — Prca: Resultados para C-Index e IBS em modelos avaliados.
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Modelo C—-—INDEX IBS

BJ-ELM 0.638 (0.625,0.651) 0.400 (0.337,0.464)
BJ-ELMR (5)  0.641 (0.628,0.654) 0.403 (0.340,0.465)
BJ-ELMR (10) 0.640 (0.628,0.652) 0.402 (0.339,0.464)
BJ-ELMR (15) 0.638 (0.625,0.651) 0.400 (0.339,0.461)
BJ-ELMR (20) 0.640 (0.628,0.653) 0.401 (0.338,0.464)
BJ-ELMR (25) 0.640 (0.626,0.653) 0.401 (0.339,0.464)
BJ-ELMR (30) 0.639 (0.627,0.651) 0.402 (0.339,0.465)

4.3.2 Avaliacdo do modelo adaptativo proposto

Nesta subsecao apresentam-se os resultados da aplicacao de cinco modelos sobre os
seis conjuntos reis usados encontrados na literatura. O desempenho foi avaliado por meio

das métricas C-Index e IBS, amplamente utilizadas em andlises de sobrevivéncia.

Antes da apresentacao e discussao de resultados, apresenta-se a descricao do
procedimento usado para estas avaliagoes. O procedimento seguido é diferente do usado
na primeira avaliagdo. Desta vez, considera-se que os modelos podem ser lineares ou nao

de forma que a proposta adaptativa possa ser avaliada completamente.

O procedimento baseia-se na validagao cruzada, que sera repetida 20 vezes. Em
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cada uma das repeticoes, os dados foram particionados em 80% para treinamento e 20%
para teste e os modelos avaliados foram ajustados no conjunto de treinamento e avaliados
no conjunto de teste, gerando valores de C-Index e IBS. A repeticao desse processo permitiu
capturar a variabilidade dos resultados e, a partir das execugoes, construir tabelas e graficos

que sintetizam o desempenho comparativo dos modelos.

Os modelos comparados nesta avaliagdo sao:

« CPH (Cox Proportional Hazards): modelo classico e frequentemente usado em

estudos de sobrevivéncia. Baseia-se em relagoes lineares entre covariaveis e risco.

o BJ-LS (Buckley-James): modelo linear proposto como alternativa ao modelo de

Cox.

« BJ-ELM (Extreme Learning Machine): modelo proposto por Kong et al. [17],

que considera nao linearidade e usa ELM.

« BJ-ELML (Adaptativo): versao adaptativa que avalia linearidade a partir do
teste RESET, e usa funcoes de ativacao identidade ou sigmoide no proceso ELM, é

uma primeira variacao de BJ-ELM.

« BJ-ELMLR (Adaptativo Robusto): versao adaptativa baseada no BJ-ELML

que inclue o tratamento de dados extremos com o uso da distribuicao t-Student.

Um primeiro resultado relevante associado ao modelo proposto BJ-ELMLR (Adapta-
tivo Robusto) refere-se aos valores médios dos graus de liberdade da distribuigao t-Student,
que variam de acordo com cada conjunto de dados analisado. Especificamente, os valores
estimados (arredondados) foram 26, 16, 19, 30, 17 e 27 para os bancos Pbc, Lung, WPBC,
StageC, Veteran e Prca, respectivamente. Esses resultados evidenciam que o algoritmo
proposto incorpora, de forma adaptativa, a informagao proveniente de observacoes extre-
mas quando necessario, ajustando a robustez do modelo as caracteristicas especificas de

cada base de dados.

Comparativamente, alguns resultados diferem daqueles reportados por Kong et al.
(2023) [17]. Apenas dois conjuntos de dados (Pbc e Lung) apresentaram evidéncias de
nao linearidade segundo a avaliacao pelo C-Index, enquanto os demais mostraram melhor
desempenho sob modelos lineares. Essa divergéncia pode ser atribuida ao procedimento de
validagao cruzada adotado: enquanto Kong et al. [17] realizaram sele¢oes independentes
de dados para teste e validagao em cada método avaliado, neste estudo foi utilizada uma
unica particao de dados aplicada de forma uniforme aos cinco métodos comparados. Ainda
assim, os resultados demonstram que os métodos adaptativos propostos acompanham as

variagoes estruturais dos dados, confirmando a flexibilidade da abordagem.

As Tabelas 16-21 evidenciam que os modelos adaptativos baseados em BJ-ELM

acompanham o desempenho dos modelos tradicionais. Em cenarios com indicativos de
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linearidade, os modelos CPH e BJ-LS alcancam valores superiores de C-Index e IBS, sendo
que os modelos adaptativos mantém desempenho préximo. Por outro lado, em situagoes
com indicativos de nao linearidade, os modelos da classe BJ-ELM apresentam métricas de
desempenho mais favoraveis. Em determinados casos, os métodos adaptativos ndo atingem
os melhores valores absolutos, mas permanecem proximos dos modelos considerados mais

adequados, reforcando sua capacidade de adaptacao as diferentes estruturas dos dados.

As Figuras 10-15 apresentam os box-plots das distribui¢bes de C-Index e IBS
obtidas em 20 repeti¢oes para os modelos avaliados, cada grafico correspondendo a um

conjunto de dados especifico.

A anélise dos graficos evidencia que os modelos adaptativos da classe BJ-ELM
apresentam desempenhos préximos ou superiores aos métodos tradicionais nao adaptativos
(CPH, BJ-LS ou BJ-ELM). Esses resultados sao consistentes com aqueles apresentados nas
tabelas, indicando que modelos adaptativos baseados em BJ-ELM podem ser considerados
uma alternativa flexivel, capaz de acompanhar a estrutura e as caracteristicas dos dados

em comparac¢ao com abordagens tradicionais consolidadas.

Tabela 16 — Pbc: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo C-Index IBS

CPH 0.804 (0.788, 0.819) 0.193 (0.140, 0.245)
BJ-LS 0.816 (0.800, 0.832) 0.219 (0.165, 0.272)
BJ-ELM 0.824 (0.809, 0.839) 0.184 (0.153, 0.214)
BJ-ELML (Adaptativo)  0.820 (0.806, 0.835) 0.184 (0.154, 0.215)
BJ-ELMLR (Adaptativo) 0.820 (0.805, 0.834) 0.183 (0.154, 0.213)

Tabela 17 — Lung: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo C-Index IBS

CPH 0.590 (0.572, 0.608) 0.210 (0.191, 0.229)

BJ-LS 0.578 (0.558, 0.598) 0.200 (0.180, 0.220)

BJ-ELM 0.596 (0.572, 0.619) 0.196 (0.178, 0.214)
( ) ( )
( ) ( )

BJ-ELML (Adaptativo) 0.597 (0.573, 0.621) 0.196 (0.178, 0.214
BJ-ELMLR (Adaptativo) 0.601 (0.577, 0.625) 0.195 (0.177, 0.214




Tabela 18 — WPBC: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo

C-Index

IBS

CPH

BJ-LS

BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

0.655 (0.628, 0.682)
0.648 (0.619, 0.677)
0.652 (0.622, 0.682)
0.651 (0.626, 0.676)
0.652 (0.628, 0.676)

0.169 (0.156, 0.182)
0.169 (0.155, 0.176)
0.163 (0.154, 0.171)
0.165 (0.156, 0.174)
0.165 (0.157, 0.174)

Tabela 19 — StageC: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo

C-Index

IBS

CPH

BJ-LS

BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

0.731 (0.702, 0.760)
0.697 (0.666, 0.727)
0.702 (0.677, 0.727)
0.736 (0.711, 0.760)
0.727 (0.703, 0.751)

0.198 (0.163, 0.233)
0.178 (0.157, 0.198)
0.191 (0.163, 0.219)
0.188 (0.160, 0.216)
0.192 (0.163, 0.220)

Tabela 20 — Veteran: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo

C-Index

IBS

CPH

BJ-LS

BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

0.697 (0.677, 0.717)
0.713 (0.694, 0.731)
0.687 (0.663, 0.710)
0.716 (0.696, 0.736)
0.717 (0.697, 0.737)

0.113 (0.028, 0.197)
0.122 (0.016, 0.228)
0.120 (0.042, 0.199)
0.119 (0.039, 0.199)
0.116 (0.039, 0.194)

Tabela 21 — Prca: Resultados comparativos para C-Index e IBS nos modelos avaliados.

Modelo

C-Index

IBS

CPH

BJ-LS

BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

0.621 (0.608, 0.633)
0.606 (0.595, 0.617)
0.617 (0.606, 0.629)
0.617 (0.605, 0.629)
0.618 (0.605, 0.630)

0.422 (0.338, 0.505)
0.431 (0.348, 0.513)
0.415 (0.340, 0.490)
0.419 (0.339, 0.498)
0.418 (0.341, 0.495)
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5 DADOS SOBRE DOENCA RENAL CRONICA

Um conjunto de dados referente a Doenga Renal Crénica (DRC) foi analisado. A
descri¢ao do conjunto de dados e todas as etapas da andalise sdo descritos com detalhe.
Primeiramente, descreve-se o estudo que gera o conjunto de dados analisados. Logo
apresenta-se o processo de construgao do conjunto de dados que sera utilizado para as
analises desenvolvidas neste trabalho e a avaliacao de algumas carateristicas a partir de
diversas analises descritivas. Finalmente, sdo apresentados os resultados para a analise de
sobrevivéncia que incluem alguns modelos de aprendizado de maquinas para previsao dos
tempos de sobrevida sao aplicados incluindo o modelo adaptativo proposto neste trabalho.
As comparagoes via C-Index e IBS sdo apresentados para avaliar os diversos modelos

utilizados.

51 DESCRICAO DO ESTUDO

O estudo avaliou pacientes com DRC que realizam o tratamento renal de didlise
peritonial, desde um estudo delineado como um coorte prospectivo em multiplos centros.
Assim, considerou-se 102 centros distribuidos em todas as regioes geograficas do Brasil
que realizam em didlise peritoneal em mais de dez pacientes. Quanto ao tempo de estudo,
este foi iniciado em dezembro de 2004 e finalizado em outubro de 2007, desta forma o
estudo teve duracao de 34 meses continuos de duragdao. Durante todo este periodo foram

avaliados 6198 pacientes com tratamento de dialise peritoneal.

O estudo foi submetido ao Comité de Etica Nacional em Pesquisa Humana e
aprovado sob o nimero 448 e adicionalmente cada clinica ao comité de ética local. Uma
descri¢ao mais detalhada sobre o desenho do estudo, as entidades e pessoas envolvidas, a
descricao do processo de obtencao e controle de dados obtidos, descrigao dos termos de
consentimento, procedimento para registro de informacdes e outras carateristicas relevantes

do estudo original encontra-se em Suassuna (2009) [51].

O estudo levantou um grande nimero de variaveis sobre diferentes carateristicas

dos pacientes. A seguir segue descritas estas variaveis:

 Varidveis demogréficas: Idade, raga, nivel educacional, renda (segundo defini¢do do
IBGE), distancia até o centro da didlise (Km).

o Varidveis Médicas: Registro de implantacao do cateter; complicagoes relaciona-
das ao cateter, avaliacdo do orificio de saida do cateter, volume de ultrafiltrado,
teste de ultrafiltracao, etiologia de DRC, cuidados pré-dialiticos, historia dialitica,

comorbidades, medicagoes em uso, infe¢bes prévias, hospitalizacao, causa de saida.

 Variaveis sobre qualidade de vida: indice de Karnofsky (medida mensalmente) e

questiondrio SF36 (Medido opcionalmente cada trimestre ou semestre).
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« Varidveis de avaliagao clinica: Edema, pressao arterial, peso e altura (todas elas

medidas mensalmente).

o Varidveis laboratoriais: Ureia, creatinina, ALT, potassio, calcio, fosfato, glicemia,
hemoglobina, hematécrito (todas elas medidas mensalmente), transferrina, ferritina,
ferro sérico, albumina, fosfatase alcalina (todas elas medidas trimestralmente),
PTHi, anti HBS, HBsAg, anti-HCV, -Kt/v renal e peritoneal (todas elas medidas
semestralmente) colesterol total, triglicérides, aluminio sérico, anti-HIV (todas elas

medidas anualmente).

A qualidade e a estrutura dos dados foram fundamentais para garantir a robustez
das andlises subsequentes. O banco de dados em questao apresenta uma heterogeneidade
significativa, manifestada através de varias caracteristicas distintas que sao consideradas

durante o pré-processamento e a modelagem. Essas caracteristicas sao:

Integridade e Qualidade dos Dados: Por um lado, a presenca de dados faltantes
(Missing Data), observando-se a ocorréncia de valores ausentes de forma parcial e apa-
rentemente casual em diversos registros. Por outro lado, a presenca de inconsisténcias e
erros de digitacao, apresentando registros que contém inconsisténcias e valores aberrantes
potencialmente resultantes de erros de entrada. A identificagdo ou remocao destes valores

foram essenciais para garantir uma melhor qualidade dos dados.

Natureza das Variaveis: a base de dados incluiu variaveis qualitativas que definem
grupos ou categorias, tais como sexo, raca e nivel educacional. Estas variaveis exigiram
codificagao apropriada como a criagao de variaveis binarias. Por outro lado, a presenca
de varidveis continuas, tais como idade e as diversas varidveis laboratoriais (e.g., pressao
arterial, colesterol, triglicerideos, peso, altura) sdo quantitativas e continuas que requerem

escalonamento ou normalizacdo para analises comparativas e algoritmos sensiveis a escala.

Unidades de Medida Diversificadas: As variaveis continuas, particularmente as clini-
cas e laboratoriais, sdo expressas em diferentes unidades (e.g., mmHg para pressao arterial,
cm para altura, kg para peso, mg/dL para colesterol e triglicerideos). Esta diversidade

impede a comparacao direta entre as variaveis e exige padronizagdo ou normalizagao.

Dinadmica Temporal do Acompanhamento: Datas de inicio, variavel em que os
pacientes ingressaram no estudo ao longo do periodo de coorte definido, resultando em

diferentes pontos de partida para o acompanhamento longitudinal de cada individuo.

Frequéncia de Mensuracao Heterogénea: A frequéncia de coleta de dados variou
substancialmente entre as variaveis, algumas variaveis foram medidas apenas uma vez,
enquanto que outras foram medidas repetidamente em intervalos mensais, trimestrais,

semestrais ou anuais.

Data de Término Fixa: O estudo possui uma data final de acompanhamento

predeterminada. A combinacgdo do inicio variavel com o término fixo, somada as diferentes
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frequéncias de medigdo, gera um problema de dados longitudinais desbalanceados. Os
pacientes tiveram um ntmero desigual de observagoes ao longo do tempo, dependendo de

quando ingressaram e da frequéncia de coleta de cada variavel.

Censura de Dados de Sobrevida: Para um subconjunto de pacientes acompanhados
até outubro de 2007, o tempo exato de sobrevida nao é conhecido. Sabe-se apenas que
esses individuos estavam vivos até aquela data especifica (outubro de 2007). Esta situagao

gera censura a direita.

Considerando as diversas caracteristicas descritas acima, o tratamento dos dados
utilizam diversos mecanismos que dependem do tipo de variavel e situacao tratada, nos
seguintes paragrafos se discutem os mecanismos de uso frequente e que encaixam no

tratamento deste banco especifico.

Para tratamento de dados faltantes e inconsisténcias, implementou-se a exclusao
de observagoes incompletas. Paralelamente, inconsisténcias de digitagao foram submetidas

a verificacdo manual, com realizacao de corre¢cdes quando aplicaveis.

Na abordagem as variaveis qualitativas, adotou-se codificacdo one-hot para gerar
representacoes bindrias por categoria original. Para varidveis quantitativas, devido a
diversidade de unidades (mmHg, kg, mg/dL), aplicou-se padronizagido (z-score) para

garantir comparabilidade.

Quanto a complexidade dos dados longitudinais - considerando inicio variavel por
paciente, frequéncias de medicdo heterogéneas e término fixo do estudo - desenvolveu-se
um resumo por paciente através de trés métricas sintéticas: primeiro, a média das medi¢oes
(tendéncia central); segundo, o desvio padrao (variabilidade intra-paciente); e terceiro, a

evolugao das medigoes ao longo do tempo (tendéncia temporal).

Esta estratégia permite integracao eficiente entre trajetérias individuais sintetizadas

e varidveis baseline medidas uma tnica vez.

Suassuna (2009) [51] apresenta uma breve caracterizagdo demografica dos 6.198
pacientes avaliados entre dezembro de 2004 e outubro de 2007. Do total, 277 tinham menos
de 12 anos, enquanto 5.921 ultrapassavam essa faixa etaria, com média de idade de 58,5
anos (variando de 13 a 101 anos). A distribuicao etaria revela que 25% dos participantes
tinham menos de 48 anos, 50% menos de 60 anos e 75% abaixo de 71 anos, sendo 2.156

idosos acima de 65 anos.

Quanto ao perfil de inclusao no estudo, 2.419 pacientes eram incidentes no tempo
zero do registro, e outros 2.281 ingressaram com mais de 90 dias de acompanhamento apés
o inicio do programa.

A composicao sociodemografica mostra equilibrio de género: 49,3% eram mulheres.
A distribui¢ao étnica aponta predominéncia de brancos (61%). No aspecto educacional,
observou-se que 11,9% eram analfabetos, 52,8% cursaram apenas o ensino fundamental,

22,6% o ensino médio e 7,6% possuiam ensino superior.
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Sobre renda familiar mensal, 31,5% recebiam até 2 saldrios minimos, 41,6% entre
2 e b salérios, e 14,8% de 5 a 10 saldrios. As faixas mais altas mostraram-se menos
expressivas: 4,1% declararam renda entre 10 e 20 salarios, e apenas 1,2% ultrapassavam

20 salarios minimos.

As andlises propostas neste trabalho serao realizadas sobre um conjunto de dados
que contém informagoes que vao além de aspectos demograficos. Incluem-se variaveis
relevantes associadas a condigoes médicas e a qualidade de vida. Dessa forma, torna-
se necessario um pré-processamento que considere as caracteristicas dessas variaveis de

maneira conjunta, conforme sera descrito nas se¢des seguintes.

5.2 DEFINICOES PARA PRE-PROCESSAMENTO DE DADOS

Como mencionado por Curioso et al. (2023) [52], a imputacao de dados se apresenta
como uma abordagem metodologicamente aceita para lidar com valores em falta, sendo
uma alternativa ao método de eliminagao. No entanto, no contexto especifico deste
conjunto de dados, optou-se pela aplicagdo criteriosa da eliminagdo (deletion). Esta
decisao foi fundamentalmente sustentada pela dimensao consideravel da coorte inicial, que
compreendeu 6.198 pacientes estudados. O processo de eliminacao adotado, que incluiu
a exclusao de registos com valores em falta criticos para a andlise, ainda mantém uma
base de dados com uma quantidade grande de paciente, mantendo um poder estatistico

amplamente suficiente para garantir a validade e robustez das andlises realizadas.

A opcao pela eliminacao ¢é ainda justificada pela natureza do desenho do estudo
e pelos objetivos analiticos propostos. Como a analise longitudinal planejada requer
acompanhamento temporais para calcular trajetérias individuais dos pacientes a partir dos
trés indicadores propostos, considera-se que imputacao de valores faltantes introduziria

distor¢oes indesejadas nos dados.

Para caracterizar os dados longitudinais de cada paciente, foram definidos trés

indicadores principais:

1. Tendéncia central — representada pela média ou, de forma mais robusta, pela
mediana dos registros. A mediana é preferida em séries clinicas devido a sua

resisténcia a valores extremos e variagoes abruptas.

2. Dispersao interna — medida pelo coeficiente de variagao (desvio padrao/média).
Como alternativa robusta, utilizou-se a razao entre o intervalo interquartilico (Q3-Q1)

e a mediana, que reduz a influéncia de outliers e distribui¢cdes assimétricas.

3. Tendéncia temporal — estimada pela inclinagdo de um modelo de regressao
linear simples ou, de forma mais robusta, pela mediana das diferencas sucessivas

(Xit1 — X;). Esta tdltima abordagem ¢é especialmente adequada para séries curtas
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(entre 5 e 15 observagoes por paciente) e para dados clinicos sujeitos a outliers ou

variacoes técnicas.

A escolha por indicadores robustos é sustentada pela literatura: Wilcox [53] destaca
que estimadores baseados em medianas sao menos sensiveis a observacoes atipicas, enquanto
Tukey [54] recomenda o uso de diferengas sucessivas como ferramenta exploratéria em
séries temporais. Dessa forma, o conjunto de indicadores adotado permite capturar
valores tipicos, variabilidade relativa e tendéncias clinicas relevantes sem comprometer a

estabilidade estatistica das estimativas.

5.3 CONSTRUCAO DO ARQUIVO PARA ANALISE

Os dados originais da pesquisa encontram-se em arquivos separados por tipos de
informacoes, desta forma eles foram tratados separadamente. O arquivo final para analise
foi construido a partir da busca de informagoes nos arquivos originais do estudo e ligadas
pelo registro de ID do paciente presente em cada um dos arquivos originais, as variaveis
selecionadas para analise foi sugerida por um especialista em nefrologia, que devam incluir
os fatores de risco classicos para DRC, tais como idade, comorbidades como diabetes e

doencas cardiovasculares, e resultados de medigoes de exames médicos e laboratoriais.

O processo de integragao de dados iniciou-se com o processamento de dados
imutaveis, padronizando variaveis alfanuméricas e atribuindo uma codificagao numérica
quando necessario. O resultado final deste processo é o registro de 6.128 pacientes com
variaveis demograficas essenciais: Idade, Sexo, Raca, Instrucao, Renda, entre outras. Esse
procedimento originou um primeiro arquivo composto por variaveis classificadas como

imutdaveis, por terem sido coletadas apenas uma vez ao longo do estudo.

Para o processamento das informacoes de ébito, filtrou-se o ultimo registro de
cada paciente para identificar o desfecho (ébito ou outras formas de saidas). Apds a
avaliacao de informagoes, obteve-se registros para 5.870 pacientes com as variavel Motivo
de Saida, utilizada para definir a informagao de censura. A partir desse processamento, foi
gerado um arquivo que inclui tanto o indicador de censura quanto o tempo de sobrevida

correspondente.

Os registros de comorbidades associadas a DRC encontram-se em outro arquivo,
neste caso foi feita a conversao das respostas qualitativas para valores numéricos. Apds
consolidar comorbidades individuais em um tnico arquivo, obteve-se um registro de 5.603
pacientes e varidveis ID do paciente, Diabetes, Doenga Cardiovascular (DCV) e Hipertensao
Arterial Sistémica (HAS).

A avaliacao de qualidade de vida é obtida a partir de cdlculo de escores como
Capacidade Funcional (CF), Satide Mental (MH) desde o questionario denominado SF36 e

o indice de Karnofsky. Logo, eles foram validados comparando com as datas de avaliacao
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da enfermagem eliminado registros sem data de registro. Finalmente, agregaram-se
médias/medianas por paciente, criando um arquivo de 5.892 pacientes com métricas

sumarizadas de Karnofsky e dominios do questionéario SF36.

Os registros de dados clinicos (tais como pressao arterial sistélica ou diastélica) e la-
boratoriais (como fésforo e potdssio) apresentam medigoes longitudinais. O processamento
consistiu na conversao de valores alfanuméricos em cédigos numéricos. Considerando
a quantidade limitada de observagoes longitudinais por paciente e a possibilidade de
registros extremos decorrentes de erros clinicos ou técnicos, optou-se pelo uso exclusivo de

indicadores robustos, sintetizados da seguinte forma:

o Tendéncia central — representada pela mediana dos registros, em substituicao a

média, por sua maior resisténcia a valores atipicos;

 Dispersao interna — expressa pela razao entre o intervalo interquartilico (Q3-Q1) e

a mediana, alternativa robusta ao coeficiente de variagao tradicional;

o Tendéncia temporal — definida pela mediana das diferencas entre medigoes sucessivas
(Xir1 — X;), em vez da regressao linear, dada a curta extensao das séries e o carater

ordinal dos registros temporais.

Desta forma, buscou-se nao apenas identificar o valor tipico e a variabilidade
intrinseca, mas também quantificar a direcdo e a taxa de mudanca de cada parametro
clinico ao longo do acompanhamento. Ao final desse processo, foi gerado um arquivo

contendo 5.697 pacientes com os indicadores sugeridos.

Finalmente, o arquivo final para analise unifica os dados provenientes de todos os
processos descritos, integrados por meio da varidvel de identificagdo do paciente (ID do
paciente). Dessa forma, o arquivo consolidado retine informacgao sobre tempo de sobrevida,
censura, desfechos, dados demograficos, comorbidades, métricas de qualidade de vida e

exames clinicos e laboratoriais.

A Figura 16 apresenta o fluxograma que ilustra as etapas descritas indicando a

quantidade de dados excluidos.

Observa-se que o resultado da fusdo destes dados inclui registros de 6.198 pacientes.
No entanto, foi necesséria a aplicagao de filtros de exclusao consecutivos: (1) 1.381 pacientes
sem exames clinicos e laboratoriais; (2) 145 pacientes sem registro de sexo; (3) 61 pacientes
sem registro de idade; e (4) 251 com idade menor que 18 anos. Assim, o arquivo final
contém dados de 4.360 pacientes disponiveis para as andlises, o que corresponde ao 70,35%

do total de participantes do estudo.

E importante ressaltar que as exclusdes foram baseadas na auséncia de dados
em variaveis consideradas relevantes, a principal causa de exclusao foi a auséncia de

informagao de exames clinicos e laboratoriais, que corresponde a 22,28% do total (75,51%
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Figura 16 — Fluxograma para construcao de banco de anélise.

das eliminagoes). As demais exclusoes decorreram da auséncia de registro de sexo ou idade.

Além disso, optou-se por nao incluir pacientes menores de idade.

5.4 DESCRICAO DE DADOS PARA ANALISE

Nesta secao apresenta-se uma descricao das varaveis consideradas para a analise de
sobrevivéncia, provenientes do banco de pacientes com DRC em tratamento por dialise
peritonial. Foi considerado o tempo de sobrevida até o desfecho, que neste corresponde ao
6bito. As covariaveis incluidas s@o os fatores classicos associados a este tipo de doenca. A

seguir descrevem-se as variaveis analisadas:

No contexto da modelagem de sobrevivéncia, duas variaveis centrais estruturam a

analise:

« Tempo de sobrevida, Neste caso, a variavel corresponde ao tempo de sobrevida do
paciente com DRC apds o inicio do tratamento por didlise peritoneal. Considerando

que a duracao do estudo é de 34 meses e que, segundo o protocolo, sao admitidos



79

pacientes com até trés meses em didlise peritoneal, os valores admissiveis para essa

variavel variam de 1 a 37 meses.

A Figura 17 apresenta os histogramas das distribui¢oes relativas para o tempo de
sobrevida e para sua transformagao logaritmica. Observa-se que a distribuicao
do tempo de sobrevida apresenta assimetria a direita, caracteristica comum em
variaveis relacionadas a duracao de eventos clinicos. Essa assimetria é evidenciada
pela discrepancia entre a forma empirica da distribuicao e a curva normal tedrica

sobreposta no grafico.

A transformagao logaritmica, exigida pelo modelo Buckley-James, tem como objetivo
aproximar a distribuicdo dos dados de uma forma mais simétrica. Essa aproximacao
é visivel no histograma da direita, onde a distribuicao transformada se apresenta mais
proxima da curva normal tedrica. No entanto, mesmo apés a transformacao, persistem
discrepancias nos extremos da distribuicao em relagao ao comportamento esperado
sob normalidade. A adoc¢ao de modelos robustos visa mitigar essas diferengas,

oferecendo maior flexibilidade para acomodar desvios nos dados observados.
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Figura 17 — Histogramas comparativos: distribuicdo dos tempos de sobrevida e da sua transfor-
macao logaritmica.

« Motivo de saida, variavel que define a ocorréncia de eventos ao longo do estudo e
a partir da qual é estabelecido o registro de censura. Esta variavel foi categorizada

em trés situagoes distintas:

1. Obito, representando o desfecho principal de interesse.
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2. Saida antecipada, caracterizada pela interrup¢do do acompanhamento sem
ocorréncia de oObito. Essa situacgao pode decorrer de diferentes motivos, como
recuperacao da funcao renal, transferéncia para hemodialise ou realizagao de

transplante renal.

3. Conclusao do estudo vivo, indicando individuos que permaneceram em

acompanhamento até o final do periodo estabelecido sem ocorréncia de 6bito.

Com base na variavel anterior, foi definida a variavel status para o modelo de
sobrevivéncia, cujo desfecho de interesse é o ébito. Trata-se de uma variavel binaria
que indica se o evento de interesse foi observado ou nao. Individuos que apresentaram
6bito durante o periodo de acompanhamento sao classificados como nao censurados (valor
1), enquanto aqueles que encerraram o acompanhamento por saida antecipada ou por

conclusdo do estudo vivos sao classificados como censurados (valor 0).

A definicao de censura considera que a saida antecipada corresponde a uma in-
terrupgdao do acompanhamento sem ocorréncia do evento de interesse, podendo decorrer
de causas clinicas ou administrativas, como recuperacao da funcao renal, transferéncia
para hemodidlise ou realizacado de transplante. Ja a conclusao do estudo vivo refere-se aos
participantes que permaneceram em acompanhamento até o final do periodo estabelecido
sem registro de 6bito. Em ambos os casos, o tempo de sobrevida observado ¢ incompleto
em relagao ao tempo total até o evento, justificando a classificacdo como censura. No
presente estudo, 78,3% dos dados foram censurados, sendo que a maioria destes (62,9%)
correspondeu a participantes que concluiram o estudo vivos. A Tabela 22 apresenta estas

quantificagoes.

Tabela 22 — Distribuicao da varidvel Status e motivo de saida do estudo

Status Motivo de saida n %
Obito — 947  21,7%
Censura Saida antecipada 669 15,3%
Conclusao do estudo vivo 2744 62,9%
Total censura 3413 78,3%
Total geral — 4360 100,0%

A Tabela 23 apresenta os valores de tempo de sobrevida observados no estudo.
Como discutido anteriormente, é possivel encontrar registros de sobrevida até 37 meses,
embora o acompanhamento tenha duracdo maxima de 34 meses. Observa-se que os pacien-
tes que evoluiram para Obito e aqueles com saida antecipada apresentam comportamento
semelhante, enquanto os individuos que concluiram o estudo vivos exibem tempos mais

elevados, como esperado. Verifica-se assimetria a direita em todas as categorias, caracteris-
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tica recorrente em estudos clinicos de sobrevida, refletindo a presenca de poucos pacientes

que sobrevivem por periodos mais longos.

Tabela 23 — Medidas resumo para Tempo de sobrevida segundo motivo de saida

Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo
Média 11,03 11,04 15,61 13,92
Mediana 10,00 9,00 15,00 13,00
Desvio padrao 6,68 6,50 7,99 7,82
Minimo 1,00 3,00 3,00 1,00
Percentil 25 6,00 6,00 9,00 7,00
Percentil 75 15,00 15,00 22,00 19,00
Maximo 36,00 31,00 32,00 36,00

As covariaveis incluidas correspondem as mais frequentemente analisadas em
estudos clinicos de DRC (veja, por exemplo, Suassuna (2009) [51]) e sdo reconhecidas
como relevantes por sua associagdo com a progressao da doenca. O conjunto considerado
foi validado por profissionais dedicados ao manejo da DRC, em especial no contexto da

dialise peritoneal.

A andlise descritiva que se segue permitira caracterizar o perfil da populagao
estudada, fornecendo uma visdo abrangente das distribui¢oes das variaveis e estabelecendo
a base para a modelagem estatistica subsequente. A apresentacao das frequéncias e medidas
de tendéncia central e dispersao possibilitara identificar padroes e heterogeneidades iniciais

entre os fatores de risco e os desfechos de interesse.

5.4.1 Caracteristicas sociodemograficas

As varidveis sociodemograficas consideradas para a andlise incluem raga/cor,
renda familiar e idade. Elas descrevem o perfil basico da populagao estudada e
permitem compreender a composi¢ao da coorte. As varidveis raga/cor e renda familiar sdo

qualitativas.

A distribui¢ao por raga/cor mostra predominincia de individuos brancos (63,9%),
seguidos por pardos (22,0%) e pretos (11,3%). As categorias amarela (2,9%) e indigena
(0,1%) apresentam baixa representatividade, motivo pelo qual podem ser agrupadas em

uma categoria denominada “outros”.

Em relagao a renda familiar, observa-se maior concentragao na faixa de 2 a
5 salarios minimos (44,2%), seguida por até 2 saldrios minimos (32,0%). Faixas mais
altas de rendimento (acima de 10 saldrios minimos) sdo pouco frequentes, representando
cerca de 6,5% do total. Por essa razao, foi criada uma categoria conjugada: “acima de 5

salarios minimos”. Esses resultados indicam que a coorte é composta majoritariamente
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por individuos de renda baixa a média e de cor branca, com participagao relevante de

pardos e pretos.

Os resultados, segundo motivo de saida, sao apresentados na Tabela 24. Em todas
as situacoes de saida, as distribuigoes de frequéncia se mostram similares. Para a anélise
de sobrevivéncia, cada categoria serd considerada uma variavel dicotomica. Em cada
varidvel, serd desconsiderada a categoria com menor frequéncia (sem rendimento para
renda e “outros” para raca/cor), a fim de evitar problemas tedricos de colinearidade e

singularidade da matriz.

Tabela 24 — Distribuigao percentual para varidveis renda e raga/cor segundo motivo de saida

Obito Saida Conclusao do Total
antecipada estudo vivo
Renda
Sem rendimento 1,0% 1,0% 1,3% 1,3%
Até 2 36,0% 32,7% 30,4% 32,0%
2ab 39,6% 42.2% 46,4% 44 2%
5a 10 16,9% 17,5% 16,3% 16,5%
10 a 20 5,0% 5,6% 5,4% 5,3%
Maior 20 1,6% 0,6% 1,2% 1,2%
Raga/cor
Branco 66,6% 68,6% 62,2% 63,9%
Preto 11,6% 9,4% 11,6% 11,3%
Pardo 18,9% 22.1% 22.8% 22.0%
Amarelo 2.7% 0,7% 3,3% 2.9%
Indigena 0,1% 0,1% 0,1% 0,1%
TOTAL 100% 100% 100% 100%
Tabela 25 — Medidas resumo para Idade e segundo motivo de saida
Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo

Média 66,90 54,60 57,58 59,15
Mediana 68,00 55,00 59,00 60,00
Desvio padrao 14,13 15,95 15,81 16,04
Minimo 20,00 18,00 18,00 18,00
Percentil 25 58,00 43,00 47,00 49,00
Percentil 75 77,00 67,00 69,00 71,00

Maximo 97,00 95,00 101,00 101,00
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A Tabela 25 apresenta as medidas da variavel idade segundo o motivo de saida,
evidenciando diferencas marcantes entre os grupos. Pacientes que evoluiram para 6bito
apresentam média de 66,9 anos, superior aqueles que tiveram saida antecipada (54,6 anos)

ou concluiram o estudo vivos (57,6 anos).

A mediana acompanha esse padrao, reforcando que o risco de ébito esta associado
a maior idade. O intervalo observado é amplo (18 a 101 anos), mas os percentis mostram
que trés quartos dos pacientes que faleceram tinham mais de 58 anos, enquanto nos demais
grupos predominam idades mais jovens. Esses achados confirmam a relevancia da idade

como fator de risco e justificam sua inclusao como covariavel na andalise de sobrevivéncia.

5.4.2 Escala de Desempenho de Karnofsky

A Escala de Desempenho de Karnofsky [55] é uma medida clinica desenvolvida
originalmente em 1949 para avaliar o estado funcional de pacientes, especialmente em
oncologia, mas também aplicada em outras areas como nefrologia e cuidados paliativos.
A escala varia de 0 a 100, em que valores mais altos indicam maior independéncia e
capacidade de realizar atividades diarias, enquanto valores mais baixos refletem dependéncia
significativa ou ébito. Trata-se de um instrumento amplamente utilizado para estimar

prognéstico e orientar decisoes terapéuticas.

A aplicacao da escala é realizada por médicos ou profissionais de satde treinados,
que avaliam a condicao geral do paciente considerando sintomas, necessidade de assisténcia
e capacidade de autocuidado. Por exemplo, um paciente com escore 80 ainda consegue
realizar atividades normais, embora com esforgo e sintomas leves, enquanto um paciente
com escore 40 ja apresenta incapacidade funcional importante e requer cuidados continuos.
Essa avaliacao, embora subjetiva, é padronizada e validada, o que garante sua utilidade

clinica.

O uso da Escala de Karnofsky permite comparar a efetividade de diferentes tera-
pias, estimar a tolerancia a tratamentos como quimioterapia, radioterapia ou dialise e
identificar pacientes que necessitam de suporte intensivo. Por sua simplicidade e relevancia
prognostica, essa escala permanece como uma ferramenta classica e essencial em estudos
clinicos e na pratica médica. Como comentario adicional, o estudo também levantou outras
avaliagoes de qualidade de vida; no entanto, elas foram descartadas como covariaveis, pois

1.245 pacientes (28,6%) nao apresentavam essas informagoes.

A Tabela 26 evidencia diferencas relevantes na Escala de Karnofsky segundo o
motivo de saida. Pacientes que evoluiram para 6bito apresentam média de 70,1 pontos,
inferior aqueles que tiveram saida antecipada (81,7) ou concluiram o estudo vivos (81,4),
indicando pior desempenho funcional associado ao desfecho mais grave. A mediana e os
percentis confirmam esse padrao, mostrando que trés quartos dos pacientes que faleceram

tinham escore abaixo de 80, enquanto nos demais grupos predominam valores mais elevados.
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O desvio padrao também sugere maior heterogeneidade entre os pacientes que foram a
Obito. Esses resultados reforcam a associagao entre menor desempenho funcional e maior
risco de mortalidade, justificando a inclusdo da Escala de Karnofsky como covariavel na

analise de sobrevivéncia.

Tabela 26 — Medidas resumo para FEscala de Karnofsky segundo motivo de saida

Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo
Média 70,11 81,65 81,40 78,99
Mediana 71,25 83,33 82,86 80,83
Desvio padrao 14,41 12,16 11,40 13,00
Minimo 12,50 27,00 25,00 12,50
Percentil 25 60,40 75,00 75,00 71,11
Percentil 75 80,00 90,00 90,00 88,00
Maximo 100,00 100,00 100,00 100,00

5.4.3 Comorbidades

A presenca de comorbidades é um aspecto central na analise de sobrevivéncia
em pacientes com DCR, pois condi¢oes associadas como doenga cardiovascular (DCV),
diabetes mellitus e hipertensao arterial sistémica (HAS) sao reconhecidas como fatores
de risco bem estabelecidos para progressao da doenca e aumento da mortalidade. Essas
variaveis permitem caracterizar o perfil clinico da populagao e avaliar sua influéncia sobre

os desfechos, justificando sua inclusao como covaridveis no modelo estatistico.

Tabela 27 — Prevaléncia de comorbidades segundo motivo de saida

Obito Saida Conclusao do Total
antecipada estudo vivo

DCV 70,7% 61,9% 60,2% 62,7%

Diabetes 45,8% 34,8% 39,1% 39,9%

HAS 16,1% 16,6% 16,8% 16,6%

A Tabela 27 apresenta a prevaléncia das comorbidades segundo o motivo de saida.
Observa-se que a DCV é mais frequente entre os pacientes que evoluiram para 6bito (70,7%)
em comparagdo com os demais grupos (cerca de 61%). O diabetes também mostra maior
prevaléncia entre os 6bitos (45,8%) em relagdo aos pacientes que permaneceram no estudo ou
nao faleceram (aproximadamente 35 e 39%). J4 a HAS apresenta distribuigao relativamente
homogénea entre os grupos, em torno de 16%, sem diferengas marcantes. Esses resultados

reforcam a associacao entre DCV e diabetes com maior risco de mortalidade, enquanto a
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HAS, embora relevante como fator de risco, nao se diferencia de forma expressiva entre os

desfechos.

5.4.4 Variaveis clinicas e laboratoriais

Além das comorbidades, foram incluidas no modelo variaveis clinicas e laboratoriais
com potencial impacto sobre a evolu¢ao da doenga renal cronica (DRC). A variavel
clinica considerada foi a pressao arterial sistélica (PAS), selecionada em detrimento
da diastélica devido a sua maior relevancia epidemioldgica e clinica. Estudos apontam
a PAS como um marcador mais sensivel de risco cardiovascular e renal, especialmente
em populagdes com comprometimento da fungao renal, sendo fortemente associada a

progressao da DRC e a mortalidade.

As varidveis laboratoriais selecionadas foram hemoglobina (HEM), potassio
(POT) e fésforo (FOS), todas com implicagoes diretas no estado metabdlico e na
estabilidade clinica dos pacientes. A hemoglobina é um indicador da presenca e gravidade
da anemia, condicdo comum em pacientes renais e associada a pior prognoéstico. O
potéssio, por sua vez, reflete o equilibrio eletrolitico e estd relacionado a complicagoes
cardiovasculares graves, como arritmias, especialmente em casos de hiperpotassemia. Ja o
fosforo é um marcador importante do metabolismo mineral, cuja elevacao esta associada a

calcificacao vascular, disfuncao endotelial e aumento do risco cardiovascular em pacientes

com DRC.

Essas variaveis foram monitoradas longitudinalmente ao longo do estudo. Para
lidar com a limitacao de registros por paciente e a presenca de valores extremos, optou-se
pelo uso de medidas robustas capazes de sintetizar os dados de forma confidvel. Conforme
justificado na se¢ao anterior, foram aplicadas propostas robustas para tendéncia central,

dispersao interna e tendéncia temporal.

A verificagao de dados faltantes e de registros com valores fora dos limites plausiveis
resultou na exclusao de 18 casos, o que corresponde a 0,4% do total de 4.360 pacientes.

Dessa forma, as analises subsequentes foram realizadas com 4.342 observagoes validas.

Os resultados apresentados na Tabela 28 evidenciam diferencas relevantes na pressao

arterial sistélica entre os grupos de saida.

Na dimensao de tendéncia central, observa-se que os pacientes que evoluiram para
6bito apresentaram valores médios e medianos mais baixos (130 mmHg), enquanto aqueles
que permaneceram no estudo ou tiveram saida antecipada registraram valores mais elevados
(em torno de 137-140 mmHg). Esse resultado sugere que niveis mais baixos de PAS podem
estar associados a maior risco de mortalidade, embora também reflitam a heterogeneidade
clinica da populacao.

Quanto a dispersao interna, os pacientes que faleceram apresentaram maior varia-

bilidade relativa (média de 19,06), em comparacao com os demais grupos (cerca de 17).
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Tabela 28 — Medidas resumo para a varidvel Pressdo Arterial Sistélica (PAS) segundo motivo de

saida

Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo

Tendéncia central
Média 130,63 137,69 137,22 135,87
Mediana 130,00 140,00 140,00 139,25
Desvio padrao 21,77 19,23 18,46 19,53
Minimo 80,00 78,00 78,00 78,00
Percentil 25 120,00 125,00 125,00 120,00
Percentil 75 140,00 150,00 150,00 150,00
Maximo 230,00 240,00 225,00 240,00
Dispersao interna
Média 19,06 17,10 17,07 17,90
Mediana 16,67 15,38 15,86 16,41
Desvio padrao 13,30 10,00 10,58 10,69
Minimo 0,00 0,00 0,00 0,00
Percentil 25 9,09 8,33 11,11 10,53
Percentil 75 25,00 23,08 23,08 23,35
Maéaximo 125,00 83,33 80,00 125,00
Tendéncia temporal
Média -1,51 -1,22 -0,24 -0,67
Mediana 0,00 0,00 0,00 0,00
Desvio padrao 8,05 7,07 5,82 6,58
Minimo -50,00 -45,00 -40,00 -50,00
Percentil 25 -2,00 0,00 0,00 0,00
Percentil 75 0,00 0,00 0,00 0,00
Maximo 52,00 30,00 35,00 52,00

Essa maior amplitude pode indicar instabilidade pressoérica, frequentemente relacionada a

pior prognostico em individuos com DRC.

Na dimensao de tendéncia temporal, a mediana das diferengas sucessivas foi

nula em todos os grupos, indicando auséncia de tendéncia sistematica de aumento ou

reducao da PAS ao longo do tempo. Entretanto, os valores extremos revelam oscilagoes

importantes, especialmente entre os pacientes que foram a 6bito, com varia¢oes negativas

acentuadas (minimo de —-50 mmHg). Essa instabilidade temporal reforga o papel da pressao

arterial como marcador dindmico de risco, cuja flutuacao pode impactar diretamente a

sobrevivéncia.
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Em conjunto, os resultados mostram que a PAS nao apenas difere em niveis
médios entre os desfechos, mas também apresenta padroes de variabilidade e instabilidade
temporal que devem ser considerados na modelagem estatistica e na interpretacao clinica

da progressao da DRC.

Tabela 29 — Medidas resumo para a varidvel Hemoglobina (HEM) segundo motivo de saida

Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo

Tendéncia central

Média 11,26 11,26 11,42 11,36
Mediana 11,30 11,30 11,50 11,40
Desvio padrao 1,66 1,65 1,58 1,61
Minimo 5,70 6,20 6,00 5,05
Percentil 25 10,20 10,18 10,45 10,30
Percentil 75 12,30 12,30 12,40 12,30
Maximo 16,90 18,30 23,05 23,05
Dispersao interna

Média 16,26 17,09 15,81 16,11
Mediana 13,48 13,98 13,24 13,70
Desvio padrao 12,64 15,35 10,54 11,87
Minimo 0,00 0,00 0,00 0,00
Percentil 25 8,89 8,41 9,08 8,94
Percentil 75 19,91 21,80 19,92 20,00
Maximo 152,54 180,71 164,76 180,71
Tendéncia temporal

Média 0,05 0,05 0,05 0,05
Mediana 0,00 0,00 0,00 0,00
Desvio padrao 0,57 0,93 0,48 0,59
Minimo -5,70 -3,20 -8,65 -8,65
Percentil 25 -0,10 -0,20 -0,10 -0,10
Percentil 75 0,20 1,20 0,40 0,40
Maximo 2,90 12,95 4,20 12,95

A Tabela 29 evidencia o comportamento da hemoglobina segundo o motivo de

saida dos pacientes.

Na dimensao de tendéncia central, os valores médios e medianos sao bastante
préximos entre os grupos, variando em torno de 11,3 a 11,4 g/dL. Isso indica que, em termos
gerais, os niveis de hemoglobina se mantém relativamente estaveis independentemente do

desfecho. Contudo, os valores minimos observados (entre 5 e 6 g/dL) revelam a presenca



38

de casos de anemia significativa, condi¢ao sabidamente associada a pior evolucao clinica

em pacientes com DCR.

Quanto a dispersao interna, nota-se maior variabilidade nos grupos de saida
antecipada e Obito, com desvios padrao mais elevados e amplitudes maiores. Essa maior
heterogeneidade sugere que oscilagoes nos niveis de hemoglobina podem estar relacionadas
a maior instabilidade clinica e risco de complicacoes. Ja o grupo que concluiu o estudo

vivo apresenta menor dispersao, o que pode refletir maior estabilidade hematolédgica.

Na dimensao de tendéncia temporal, a mediana das diferencas sucessivas é nula
em todos os grupos, indicando auséncia de tendéncia sistematica de aumento ou reducao
da hemoglobina ao longo do tempo. Entretanto, os valores extremos revelam quedas
acentuadas em alguns pacientes (minimos de até —8,65 g/dL), especialmente entre os que

faleceram, o que reforca a importancia da monitorizacdo continua da anemia.

Em sintese, os resultados mostram que, embora os niveis médios de hemoglobina
sejam semelhantes entre os grupos, a variabilidade interna e as oscilagoes temporais
desempenham papel relevante na caracterizagao do risco, justificando a inclusao dessa

variavel como covaridavel na andlise de sobrevivéncia.

A Tabela 30 apresenta os resultados descritivos para o potdssio, segundo o motivo

de saida dos pacientes.

Na dimensao de tendéncia central, os valores médios e medianos se mantém proximos
entre os grupos, variando em torno de 4,1 a 4,3 mEq/L, dentro da faixa considerada
fisiolégica. Entretanto, os valores méximos observados (até 7,4 mEq/L) indicam episédios
de hiperpotassemia, condicao critica em pacientes com DRC, por estar associada a risco

elevado de arritmias e mortalidade subita.

Quanto a dispersao interna, observa-se grande variabilidade, especialmente nos
grupos de saida antecipada e conclusao do estudo vivo, com desvios padrao elevados e
maximos extremos (até 935 mEq/L). Esses valores refletem a presenca de registros atipicos
ou erros de medicdo, mas também sugerem que oscilagoes significativas nos niveis de
potassio podem ocorrer ao longo do acompanhamento. O grupo de ébito apresenta menor
amplitude, mas ainda com variabilidade relevante, reforcando a importancia do controle

rigoroso desse parametro.

Na dimensao de tendéncia temporal, a mediana das diferencas sucessivas é nula
em todos os grupos, indicando auséncia de tendéncia sistematica de aumento ou reducao
do potéssio ao longo do tempo. Contudo, os valores minimos negativos (até 9,35 mEq/L)
e maximos positivos (até +1,45 mEq/L) revelam oscila¢oes pontuais que podem refletir

tanto ajustes terapéuticos quanto instabilidade clinica.

Em sintese, os resultados mostram que, embora os niveis médios de potassio se
mantenham dentro da faixa fisiologica, a variabilidade interna e as oscilagoes temporais

desempenham papel critico na caracterizagdo do risco. Isso justifica a inclusao do potassio
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Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo
Tendéncia central
Média 4,14 4,37 4,36 4,31
Mediana 4,10 4,25 4,31 4,25
Desvio padrao 0,74 0,71 0,64 0,68
Minimo 2,10 2,25 2,10 2,10
Percentil 25 3,60 3,60 3,91 3,85
Percentil 75 4,70 4,85 4,85 4,85
Maximo 6,80 7,40 6,80 7,40
Dispersao interna
Média 19,54 18,25 18,02 18,38
Mediana 16,67 15,56 15,91 15,91
Desvio padrao 13,38 19,87 20,40 20,21
Minimo 0,00 0,00 0,00 0,00
Percentil 25 10,87 10,14 11,27 11,11
Percentil 75 25,00 22,77 21,66 22,62
Maéaximo 102,60 444,19 935,29 935,29
Tendéncia temporal
Média -0,04 -0,02 -0,01 -0,02
Mediana 0,00 0,00 0,00 0,00
Desvio padrao 0,26 0,44 0,21 0,27
Minimo -1,40 -9,35 -1,70 -9,35
Percentil 25 0,00 0,00 0,00 0,00
Percentil 75 0,05 0,10 0,05 0,05
Maximo 1,45 1,15 1,40 1,45

como covariavel na analise de sobrevivéncia, dada sua relevancia clinica para complica¢oes

cardiovasculares e desfechos adversos em pacientes com DRC.

A Tabela 31 apresenta os resultados descritivos para o fésforo, segundo o motivo

de saida dos pacientes.

Na dimensao de tendéncia central, observa-se que os valores médios e medianos se

mantém préximos entre os grupos, variando em torno de 4,6 a 5,0 mg/dL, dentro da faixa

considerada aceitavel para pacientes em acompanhamento. Contudo, os valores maximos

(até 13,2 mg/dL) indicam episédios de hiperfosfatemia, condi¢ao associada a calcificagao

vascular, disfuncao endotelial e maior risco cardiovascular em individuos com DRC.

Quanto a dispersao interna, nota-se variabilidade significativa em todos os grupos,
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Estatistica Obito Saida Conclusao do Total
antecipada estudo vivo
Tendéncia central
Média 4,61 5,05 4,90 4,86
Mediana 4,50 4,85 4,80 4,70
Desvio padrao 1,33 1,36 2,14 1,23
Minimo 1,06 2,20 2,10 1,06
Percentil 25 3,70 4,10 4,00 4,00
Percentil 75 5,30 5,10 5,60 9,60
Maximo 13,20 12,55 10,20 13,20
Dispersao interna
Média 28,44 27,47 27,62 27,78
Mediana 24,46 23,96 25,00 24,74
Desvio padrao 19,08 17,39 16,07 17,29
Minimo 0,00 0,00 0,00 0,00
Percentil 25 16,13 16,28 17,73 17,14
Percentil 75 36,67 34,89 33,44 34,15
Maximo 133,33 121,05 342,57 342,57
Tendéncia temporal
Média -0,03 -0,02 -0,01 -0,01
Mediana 0,00 0,00 0,00 0,00
Desvio padrao 0,43 0,53 0,36 0,40
Minimo -2,45 -3,50 -2,85 -3,50
Percentil 25 0,10 0,10 0,10 0,10
Percentil 75 0,10 0,10 0,10 0,10
Maximo 2,55 3,00 2,30 3,00

com desvios padrao elevados (em torno de 16 a 19) e valores extremos que chegam a 342

mg/dL. Esses registros refletem tanto a presenca de dados atipicos quanto a instabilidade

do metabolismo mineral em pacientes renais. O grupo de 6bito apresenta ligeiramente

maior variabilidade, sugerindo que oscilagoes mais intensas nos niveis de fésforo podem

estar relacionadas a pior prognostico.

Na dimensao de tendéncia temporal, a mediana das diferencas sucessivas é nula em

todos os grupos, indicando auséncia de tendéncia sistematica de aumento ou reducao ao

longo do tempo. Entretanto, os valores minimos negativos (até —3,5 mg/dL) e maximos

positivos (até +3,0 mg/dL) revelam oscilagbes pontuais, que podem refletir tanto ajustes

terapéuticos quanto episédios de descontrole metabdlico.
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Em sintese, os resultados mostram que, embora os niveis médios de fosforo se
mantenham préoximos entre os grupos, a variabilidade interna e as oscilagoes temporais
desempenham papel relevante na caracterizagao do risco. Isso justifica a inclusao do
fésforo como covaridvel na andlise de sobrevivéncia, dada sua importancia clinica para

complicacoes cardiovasculares e progressao da DRC.

5.5 Modelo de Cox preliminar para avaliacao de covariaveis

O modelo de riscos proporcionais de Cox foi adotado nesta etapa como anélise
preliminar por ser amplamente utilizado em estudos de sobrevivéncia. Ele permite avaliar
simultaneamente o impacto das covariaveis sobre o tempo até o evento sem necessidade
de especificar a forma da funcao de risco de base, focando apenas no efeito relativo das
variaveis.

Neste modelo inicial foram incluidas todas as variaveis clinicas, laboratoriais e
demograficas selecionadas. O objetivo é verificar se o conjunto contribui para explicar a
ocorréncia do evento e identificar quais covariaveis apresentam significancia estatistica,

funcionando como filtro analitico para reduzir a dimensionalidade do banco de dados.

O modelo fornece estimativas dos coeficientes e das razoes de risco, que indicam
a direcdo e magnitude dos efeitos: valores acima de 1 representam aumento do risco e
abaixo de 1 indicam efeito protetor. Essa etapa preliminar estabelece uma base sélida
para a aplicacao posterior de técnicas de aprendizado de maquina, que poderao explorar

interacoes complexas e melhorar a capacidade preditiva.

O modelo de Cox foi ajustado com 4.342 pacientes, dos quais 938 (21,6%) apre-
sentaram o evento e 3.404 (78,4%) foram censurados. Nao houve exclusao de casos por
dados ausentes ou inconsisténcias, garantindo a integridade da amostra. O teste global
do modelo indicou significancia global do modelo (Qui-quadrado = 883,2; p < 0,001),
confirmando que o conjunto de covariaveis contribui para explicar o risco de ocorréncia do

evento.

Para a interpretacao dos resultados, considerou-se como critério de significancia
estatistica o valor de p < 0,05. Dessa forma, apenas as covariaveis com valores de p

inferiores a este limite foram analisadas quanto ao risco associado.

Entre as covariaveis analisadas, destacaram-se como fatores de risco a idade, em
que cada ano adicional aumenta em aproximadamente 2,3% a probabilidade de ocorréncia
do evento, e a tendéncia temporal da hemoglobina, cujas reduc¢oes sucessivas se associam
a um acréscimo de 27,5% no risco. Esses resultados reforcam que tanto o envelhecimento
quanto a instabilidade hematoldgica constituem elementos centrais na determinacao do

prognostico dos pacientes.

Por outro lado, foram identificados como fatores protetores o escore de de-

sempenho funcional (Karnofsky), associado a uma redugao de 3,6% no risco por ponto
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adicional; niveis mais elevados de pressao arterial sistélica, com 1,3% menos risco por
unidade; hemoglobina, com 11,5% menos risco por unidade; e potdssio, que reduz em
20,1% o risco por unidade adicional. Também se destacaram a estabilidade temporal da
pressao arterial, com 3,4% menos risco por unidade, e do potéssio, com 28,0% menos risco
por unidade. Em conjunto, esses achados evidenciam que melhores condigoes clinicas e
laboratoriais, associadas a manutenc¢ao de parametros estaveis ao longo do tempo, reduzem
significativamente a probabilidade de ocorréncia do evento. Assim, o modelo preliminar
de Cox permite distinguir variaveis que aumentam ou reduzem o risco, fornecendo uma

base sélida para andlises preditivas posteriores.

A Tabela 32 apresenta os resultados do modelo de Cox para todas as covaridveis

consideradas.

Tabela 32 — Resultados completos do modelo de Cox preliminar

Covariavel Coeficiente R. de risco Valor-p Significativa
(B) (Exp(B))
Branco 0,161 1,175 0,417 Nao
Preto 0,170 1,186 0,439 N#o
Pardo 0,229 1,257 0,278 Nao
Até 2 s.m. 0,452 1,572 0,209 Nio
Entre 2 e 5 s.m. 0,319 1,376 0,376 Nio
5 ou mais s.m. 0,403 1,496 0,268 Nao
Idade 0,023 1,023 < 0,001 Sim
Karnofsky -0,036 0,964 < 0,001 Sim
Doenca Cardiovascular 0,072 1,074 0,346 Nao
Diabetes 0,108 1,114 0,120 Nao
HAS 0,053 1,055 0,571 Nao
PAS (tendéncia Central) -0,013 0,987 < 0,001 Sim
HEM (tendéncia Central) -0,123 0,885 < 0,001 Sim
FOS (tendéncia Central) 0,004 1,004 0,907 Nao
POT (tendéncia Central) -0,225 0,799 < 0,001 Sim
PAS (Dispersao interna) 0,001 1,001 0,647 Nao
HEM (Dispersao interna) 0,032 1,033 0,281 Nao
FOS (Dispersao interna) -0,009 0,991 0,857 Nao
POT (Dispersao interna) -0,012 0,988 0,800 Nao
PAS (Tendéncia temporal)  -0,035 0,966 < 0,001 Sim
HEM (Tendéncia temporal) 0,243 1,275 0,002 Sim
FOS (Tendéncia temporal)  -0,052 0,949 0,654 Nao
POT (Tendéncia temporal) -0,328 0,720 0,014 Sim

Os resultados confirmam a relevancia da idade, estado funcional e de variaveis
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clinicas e laboratoriais como pressao arterial sistélica, hemoglobina e potassio na determi-
nacao do risco de evento. Além dos valores centrais, as tendéncias temporais mostraram-se
importantes, evidenciando que oscilagoes longitudinais carregam informacao prognostica
adicional. Esse modelo preliminar permite reduzir o banco de dados as covariaveis mais
relevantes, servindo como base para a etapa seguinte de aplicacao de algoritmos de apren-
dizado de maquina, que poderao explorar interagoes complexas e melhorar a capacidade

preditiva.

Entre os achados especificos, observou-se que niveis sustentados mais altos de
hemoglobina, pressao arterial sistolica e potassio estao associados a menor risco de evento,
enquanto a variabilidade das medidas nao apresentou significincia estatistica. Ja a ten-
déncia temporal da hemoglobina mostrou-se paradoxalmente associada a maior risco,
possivelmente refletindo gravidade clinica ou efeito de confusao. Em contraste, as ten-
déncias temporais da pressao arterial sistolica e do potassio reforcaram o efeito protetor,
sugerindo que a estabilidade longitudinal desses pardametros desempenha papel relevante
no prognostico.

Como conclusao, o modelo de Cox indica que medidas sustentadas e estaveis de
pressao arterial, hemoglobina e potassio sao protetoras, enquanto quedas longitudinais da
hemoglobina podem sinalizar maior risco. Esse contraste entre efeitos centrais e temporais
sugere que a suposi¢ao de riscos proporcionais pode nao ser plenamente atendida, apontando
para a possivel presenca de relagoes nao lineares ou interagdes complexas entre covariaveis.
Tal padrao justifica a adogao de técnicas mais flexiveis, como modelos dependentes do

tempo ou algoritmos de aprendizado de maquina, na etapa seguinte da analise.

Sobre as varidveis que nao apareceram como significativas no modelo de Cox,
algumas circunstancias especificas do tratamento dos pacientes podem gerar hipdteses

para essa falta de significancia:

» No caso das variaveis demograficas, como raca e renda, é possivel que o funcionamento
do SUS tenha reduzido diferencas de acesso ao tratamento. Como o atendimento
é custoso mas garantido pelo sistema publico, essas variaveis podem perder forca

estatistica, embora em contextos privados elas costumem influenciar bastante.

o Quanto as comorbidades, uma suspeita é que os pacientes ja se encontram em estagio
avancado da doenca renal cronica, pois estao em dialise peritoneal. Nesse cenario, o
impacto adicional de doencgas associadas pode ser menor, ja que a condi¢ao principal

domina o risco de sobrevida.

o Em relagao ao fésforo, mesmo sendo um marcador importante na DRC, o acompa-
nhamento continuo e abrangente realizado pelo SUS pode estar controlando seus
niveis de forma sistematica. Isso reduziria a variabilidade e, consequentemente, o

efeito estatistico no modelo.
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5.6 Aplicagdo de modelo adaptativo sobre banco reduzido

Nesta secao apresentam-se os resultados da aplicagao de cinco modelos sobre um
conjunto de dados de pacientes com DRC, considerando apenas as covariaveis significativas
identificadas na sec¢ao anterior. O desempenho foi avaliado por meio das métricas C-Index
e IBS, amplamente utilizadas em andlises de sobrevivéncia. Para a avaliagdo deste conjunto

de dados, empregou-se o mesmo procedimento descrito na Subsecao 4.3.2.

Um primeiro resultado relevante é que, nas 20 repeticoes realizadas, o modelo
adaptativo selecionou sempre a fungao de ativacao sigmoide. Esse comportamento sugere
que uma estrutura nao linear é a mais adequada para analisar este conjunto de dados. Além
disso, o valor médio dos graus de liberdade da distribuigao t-Student foi de aproximadamente
16,5, indicando um tratamento consistente de dados extremos, o que contribui para melhorar

as previsoes.

A Tabela 33 apresenta os valores médios e intervalos de confianca para C-Index e

IBS obtidos ao longo das 20 repeticoes.

Tabela 33 — DRC Reduzido: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-INDEX IBS

CPH 0.749 (0.740,0.758) 0.213 (0.153,0.273
BJ-LS 0.747 (0.739,0.754)  0.269 (0.171,0.367
BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

0.212 (0.159,0.264

)
)
0.792 (0.784,0.800)
)
) 0.210 (0.159,0.261

(
(

0.792 (0.784,0.800
(

( )

( )

0.212 (0.159,0.264)

( )

0.792 (0.784,0.799 ( )

A tabela mostra que o CPH obteve C-Index de 0.749 e IBS de 0.213, confirmando
seu desempenho solido, mas limitado frente a modelos mais modernos. O BJ-LS apresentou
resultados semelhantes em C-Index (0.747), porém com IBS mais elevado (0.269), indicando

pior calibragao e menor precisao preditiva.

Os modelos baseados em BJ-ELM destacaram-se: alcancaram C-Index de 0.792,
superior aos métodos tradicionais, e IBS em torno de 0.212, mostrando melhor equilibrio
entre discriminacao e calibragao. O BJ-ELML adaptativo manteve desempenho idéntico
ao BJ-ELM, evidenciando estabilidade. J4 o BJ-ELMLR adaptativo robusto obteve o
mesmo C-Index, mas reduziu ligeiramente o IBS para 0.210, sugerindo maior robustez

frente a dados extremos.

E importante destacar que, para o C-Index, os intervalos de confianca dos modelos
BJ-ELM, BJ-ELML e BJ-ELMLR nao se sobrepéem com os intervalos de CPH e BJ-
LS, reforcando a evidéncia de desempenho significativamente superior. No caso do IBS,
embora os valores médios dos modelos BJ-ELM sejam menores, ha sobreposicao parcial
dos intervalos de confianca, o que indica uma diferenca menos pronunciada, mas ainda

favoravel as versoes adaptativas e robustas.
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A Figura 18 apresenta os box-plots das distribui¢des de C-Index e IBS obtidas
nas 20 repetigdes para os modelos avaliados, permitindo visualizar a variabilidade dos

resultados e a presenca de dados extremos.
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Figura 18 — DRC Reduzido: Box-Plot para C-Index e IBS para modelos avaliados.

A analise dos gréficos evidencia que os modelos BJ-ELM e suas variantes adaptativas
apresentam desempenho superior aos métodos tradicionais (CPH e BJ-LS), com maior
capacidade discriminativa e melhor calibracao. Entre os modelos adaptativos, o BJ-ELMLR
se destaca como o mais promissor, por combinar alto poder preditivo com maior robustez,
tornando-se uma alternativa competitiva aos demais modelos avaliados. Essas conclusoes
sdo consistentes com os resultados apresentados nas tabelas, reforcando a superioridade

dos modelos baseados em BJ-ELM frente as abordagens tradicionais.

5.7 Aplicacdo de modelo adaptativo sobre banco completo

Como avaliagao final, nesta secao apresentam-se os resultados da aplicacao de
cinco modelos sobre um conjunto de dados de pacientes com DRC, considerando todas as
variaveis utilizadas no modelo Cox preliminar. O objetivo é verificar se alguma covaridvel
previamente excluida pode ser relevante por apresentar uma relacao nao linear nao
observada, contribuindo para aprimorar o modelo reduzido. O desempenho foi avaliado

nos mesmos moldes da secao anterior, seguindo o procedimento descrito na Subsegao 4.3.2.

Nesta avaliagao, o modelo adaptativo selecionou sempre a funcao de ativagao
sigmoide, sugerindo novamente que a estrutura nao linear é adequada. No entanto, o
valor médio dos graus de liberdade da distribuicao t-Student foi de aproximadamente 30,

indicando que nao é necessario o tratamento de dados extremos.
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A Tabela 34 apresenta os valores médios e intervalos de confianca para as métricas
C-Index e IBS, obtidos ao longo das 20 repeticoes no conjunto completo de dados de
pacientes com DRC. Observa-se que o modelo CPH manteve desempenho sélido (C-Index
= 0.746; IBS = 0.215), enquanto o BJ-LS apresentou resultados inferiores (C-Index = 0.721;
IBS = 0.255). Os modelos baseados em BJ-ELM e suas variantes adaptativas alcangaram
C-Index em torno de 0.781 e IBS proximo de 0.219-0.221, indicando desempenho superior

ao BJ-LS, mas sem vantagem clara em relagao ao CPH.

Tabela 34 — DRC Completo: Resultados para C-Index e IBS em modelos avaliados.

Modelo C—-INDEX IBS

CpPH 0.746 (0.737,0.755) 0.215 (0.154,0.276
BJ-LS 0.721 (0.713,0.728) 0.255 (0.181,0.328
BJ-ELM

BJ-ELML (Adaptativo)
BJ-ELMLR (Adaptativo)

)

( )
0.781 (0.775,0.788)
0.781 (0.775,0.788)
0.780 (0.774,0.787)

0.219 (0.162,0.275

( )
( )
0.219 (0.162,0.275)
( )
0.221 (0.164,0.278)

Quando comparados aos resultados obtidos no conjunto reduzido, nota-se que os
modelos BJ-ELM e variantes adaptativas apresentaram desempenho inferior no conjunto
completo: o C-Index caiu de 0.792 para aproximadamente 0.781 e o IBS aumentou de
cerca de 0.210-0.212 para 0.219-0.221. Essa diferenca sugere que a inclusao de todas
as covariaveis nao trouxe beneficio adicional e pode ter introduzido problemas como
multicolinearidade ou ruido, reduzindo a capacidade discriminativa e a calibracao dos
modelos. Assim, o conjunto reduzido mostrou-se mais eficiente e robusto para a analise de

sobrevivéncia.

A Figura 19 apresenta os box-plots das distribuigdes de C-Index e IBS obtidas nas
20 repeticoes para os cinco modelos avaliados no conjunto completo de dados de pacientes
com DRC. Observa-se que os modelos BJ-ELM e suas variantes adaptativas (BJ-ELML e
BJ-ELMLR) apresentam as maiores medianas de C-Index, indicando melhor capacidade
discriminativa. No entanto, esses modelos exibem maior dispersao e presenca de outliers em
algumas repetigoes, sugerindo instabilidade relativa. O modelo CPH mantém desempenho
solido, com mediana intermedidria e menor variabilidade, enquanto o BJ-LS apresenta os
piores resultados, com C-Index mais baixo e IBS mais elevado. Para o IBS, os modelos
BJ-ELM e variantes adaptativas mostram valores medianos proximos aos do CPH, mas
com maior variabilidade, ao passo que o BJ-LS novamente se destaca negativamente por

apresentar os maiores valores.

Ao comparar com os resultados obtidos no conjunto reduzido, nota-se que os
modelos avaliados no conjunto completo apresentam maior dispersdo e maior presenca
de outliers, especialmente nos modelos baseados em EML. No conjunto reduzido, os
modelos BJ-ELM e variantes adaptativas mostraram desempenho mais estavel, com menor

variabilidade e melhor calibragao (IBS mais baixo), além de C-Index superior. Isso reforca
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Figura 19 — DRC Completo: Box-Plot para C-Index e IBS para modelos avaliados.

a hipdtese de que a inclusao de variaveis irrelevantes ou colineares no conjunto completo
pode ter introduzido ruido e instabilidade, prejudicando a robustez dos modelos. Assim,
o conjunto reduzido se mostra mais eficiente e confiavel para analise de sobrevivéncia.
Dessa forma, os resultados evidenciam a importancia de se realizar uma etapa de andlise
preliminar, a fim de orientar a selecao adequada das covariaveis e indicar o caminho mais

consistente para a conclusao das analises.
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6 CONCLUSOES DO TRABALHO E PROPOSTAS FUTURAS

O presente trabalho de doutorado propds e avaliou um algoritmo adaptativo para
modelagem de dados de sobrevivéncia com censura a direita, capaz de lidar de forma
eficiente com relagoes complexas (iteragoes e nao linearidade) e presenga de dados extremos
(outliers). O algoritmo mostrou-se flexivel e adaptativo as caracteristicas especificas dos
conjuntos de dados analisados. O teste RESET foi empregado como ferramenta de
diagnoéstico para determinar a linearidade do modelo e orientar a escolha da funcao de
ativacdo no ELM, confirmando a adequacao dos diagnosticos realizados. A proposta,
fundamentada no modelo de Buckley-James (BJ), demonstrou maior consisténcia em
comparacao ao modelo de Cox, ao contornar a suposi¢ao de riscos proporcionais. Além
disso, a utilizagdo de um comité de Méaquinas de Aprendizado Extremo (ELM) com
estratégia de Boosting L2 conferiu a flexibilidade necesséria para tratar relagoes complexas,

enquanto a adocao da distribuicao t-Student para os erros aumentou a robustez do modelo.

A aplicacao do algoritmo ao conjunto de dados de pacientes com doenca renal
cronica em tratamento por didlise peritoneal mostrou-se bem-sucedida. O processo de
andlise evidenciou a importancia das etapas de pré-processamento e da definicdo de um
roteiro analitico. Nessas condigoes, o algoritmo proposto mostrou-se a melhor opcao para
a previsao dos tempos de sobrevida. O indicativo de nao linearidade sugerido na analise
preliminar; via modelo de Cox, foi corroborado pela aplicagdo do modelo desenvolvido,
cuja superioridade pdde ser verificada pela medida de desempenho C-Index, com intervalos
de confianca substancialmente superiores aos modelos lineares, e pela medida IBS, que

apresentou o menor valor.

Em sintese, as conclusdes confirmam o atendimento ao objetivo proposto, de-
monstrando que o algoritmo BJ-ELMLR Adaptativo constitui uma alternativa robusta e
eficiente para andlise de dados de sobrevivéncia em cenarios complexos. Além de validar
sua aplicagdo em pacientes renais, os resultados reforcam o potencial da metodologia para

estudos futuros em diferentes contextos clinicos e epidemiolégicos.

Com base nos resultados alcancados neste trabalho, algumas conclusoes especificas

podem ser destacadas:

o No geral, os resultados das simulagoes realizadas mostram que o método proposto
¢ mas eficiente e consistente comparado ao modelo de riscos proporcionais de Cox,

apresentando uma melhor adequacao as diversas caracteristicas dos dados;

o A escolha do teste RESET para avaliacao da linearidade do modelo mostrou-se
eficiente. O resultado do teste determina qual funcao de ativagao sera usada no
ELM, considerando um nivel de significincia de 5%. Assim, opta-se entre a funcao

identidade (modelo linear) ou a fungao sigmoide (modelo nao linear);
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A escolha da distribuicao t-Student como alternativa a normalidade dos erros in-
fluenciou positivamente o processo de estimacao dos parametros, melhorando as
predigoes segundo as medidas de desempenho avaliadas. Observou-se que o grau de
liberdade varia conforme o conjunto de dados, indicando que o modelo se adapta as

caracteristicas especificas de cada situacao;

» A flexibilidade proporcionada pela escolha de diferentes valores do grau de liberdade
da distribuigao t-Student, permite que o método ajuste uma ponderagao adequada
das observagoes no processo de estimagao. O ajuste dindmico desse grau de liberdade

em cada iteracao contribui para resultados mais consistentes;

o A possibilidade de atualizacdo automatica, tanto na escolha da funcao de ativagao
via teste RESET quanto na definicao do grau de liberdade da distribuigao t-Student,
reforca a capacidade adaptativa do modelo proposto as caracteristicas especificas

dos conjuntos de dados analisados;

» Nos testes iniciais com dados sintéticos da literatura, considerando o desempenho
avaliado pelas medidas C-Index e IBS, observa-se que a proposta apresentada oferece
melhora na predi¢ao dos tempos de sobrevida. Uma excecao ocorre quando as
covariaveis nao sao correlacionadas, condi¢do pouco frequente em situacoes reais.
Mesmo nesses casos, o modelo proposto aproxima-se dos modelos lineares mais

conhecidos;

o Na andlise dos dados de pacientes com doenca renal cronica em tratamento por
dialise peritoneal, o algoritmo proposto demonstrou desempenho superior em relagao
aos modelos lineares tradicionais. Os resultados evidenciaram intervalos de confianca
mais elevados para o C-Index e valores menores para o IBS, confirmando a capacidade
do método em capturar a nao linearidade presente nos dados clinicos e em fornecer

predig¢oes mais precisas dos tempos de sobrevida.

Considerando os resultados obtidos nesta tese, destacam-se algumas possibilidades

de investigacao a serem exploradas em trabalhos futuros:

e Incluir dentro do processo adaptativo critérios de regularizacao do modelo, como
a inclusao de Lasso, Ridge ou, de forma mais geral, Elastic Net. A regularizacao
contribui para reduzir sobreajuste, melhorar a estabilidade das estimativas e realizar
selecao automatica de variaveis, sendo especialmente 1til em contextos de alta

dimensionalidade;

e Incluir um fator de corre¢ao que controle a assimetria na variavel resposta. No modelo
Buckley-James, a transformacao logaritmica do tempo de sobrevida proporciona
maior simetria em relacao aos dados originais, mas pode ainda apresentar certa

assimetria;
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o Avaliar a possibilidade de utilizar os pesos da camada oculta e da camada de saida

do ELM para interpretar de forma descritiva os efeitos das covariaveis consideradas;

o Considerar melhorias no uso do teste RESET para determinacao da linearidade
ou nao do modelo. Do ponto de vista da inferéncia estatistica, o poder do teste
depende do niimero de covariaveis e do tamanho da amostra. Assim, pode-se pensar
em ajustes que levem em conta essa relagao, tornando o teste mais eficiente em

diferentes situagoes;

o Explorar o uso de modelos paramétricos de andlise de sobrevivéncia, aproveitando a
estrutura do algoritmo proposto para comparar desempenho e robustez em diferentes

Cenarios;

o Generalizar a proposta do algoritmo para modelos com dados censurados, ampliando
sua aplicacao além dos modelos de sobrevivéncia tradicionais. Dessa forma, o método
poderd ser utilizado em diferentes contextos estatisticos em que a censura esteja

presente.
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