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RESUMO

O presente estudo possui como centralidade uma pesquisa que inclui uma análise

teórica, didática e prática entre a integração de Inteligência Artificial (AI) e Sistemas

Embarcados, com foco na aplicação do framework TensorFlow Lite (LiteRT) no microcon-

trolador ESP32. A motivação surgiu devido à crescente demanda por soluções inteligentes

e eficientes em um mundo cada vez mais tecnológico, onde a necessidade de atingir me-

lhores resultados em dispositivos com recursos limitados se torna maior e mais relevante,

especialmente em Internet das Coisas (IoT) e automação. O principal objetivo é fornecer

um material didático de fácil compreensão, que possa contribuir com estudantes, pesqui-

sadores, profissionais da área e entusiastas do assunto, abordando conceitos primordiais

e apresentando um exemplo prático da previsão de uma onda senoidal utilizando redes

neurais artificiais. A metodologia constitui-se na adaptação de um projeto já desenvolvido,

contendo a criação, treinamento e otimização de um modelo de Aprendizado de Máquina

(ML) no TensorFlow, seguido da conversão desse modelo para o formato TensorFlow Lite e

a implementação no microcontrolador ESP32. Os resultados foram promissores, indicando

uma alta precisão do modelo desenvolvido e demonstrando a eficácia da solução proposta.

Conclui-se que o TensorFlow Lite no ESP32, além de permitir a execução de modelos de

Aprendizado de Máquina mais complexos, o mesmo apresenta uma excelente eficácia e

mostra-se promissor para tais desenvolvimentos de soluções em dispositivos embarcados.

Palavras-chave: Inteligência Artificial (AI); Sistemas Embarcados; Aprendizado de

Máquina (ML); ESP32; TensorFlow Lite (LiteRT).



ABSTRACT

The present study focuses on research that includes a theoretical, didactic, and

practical analysis of the integration between Artificial Intelligence (AI) and Embedded

Systems, with an emphasis on applying the TensorFlow Lite (LiteRT) framework to the

ESP32 microcontroller. The motivation arose from the growing demand for intelligent and

efficient solutions in an increasingly technological world, where the need to achieve better

results in devices with limited resources becomes more significant and relevant, especially

in Internet of Things (IoT) and automation applications. The main objective is to provide

an easy-to-understand didactic material that can contribute to students, researchers,

professionals in the field, and enthusiasts of the subject, addressing fundamental concepts

and presenting a practical example of sine wave prediction using artificial neural networks.

The methodology consists of adapting an already developed project, including the creation,

training, and optimization of a Machine Learning (ML) model in TensorFlow, followed

by the conversion of this model to the TensorFlow Lite format and its implementation

on the ESP32 microcontroller. The results were promising, indicating high accuracy of

the developed model and demonstrating the effectiveness of the proposed solution. It is

concluded that TensorFlow Lite on ESP32 not only allows the execution of more complex

Machine Learning models but also demonstrates excellent efficiency and proves to be a

promising approach for developing solutions in embedded devices.

Keywords: Artificial Intelligence (AI); Embedded Systems; Machine Learning (ML);

ESP32; TensorFlow Lite (LiteRT).
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1 INTRODUÇÃO

1.1 Contextualização

Diante de tamanho avanço tecnológico global, no que diz respeito à Inteligência

Artificial (do inglês, Artificial Intelligence (AI)) tem-se uma revolução em termos de

inteligência e eficiência, permitindo que máquinas atuem de forma autônoma, com qualidade

e produtividade. Dentre as áreas de influência da AI ressalta-se a de sistemas embarcados,

com a junção de hardware, software e interfaceamento de dispositivos integrados na

execução de determinadas tarefas. Este sistema se encontra cada vez mais presente no dia

a dia das pessoas, fornecendo serviços essenciais e permitindo que agora dispositivos com

menores demandas de consumo de energia e com recursos limitados executem tarefas que

anteriormente eram realizadas apenas por máquinas com maior poder computacional.

No passado, modelos de AI, especialmente Aprendizado de Máquina (do inglês,

Machine Learning (ML)), eram utilizados apenas em ambientes computacionais altamente

robustos, como por exemplo: data centers e supercomputadores. Contudo, com o crescente

poder de processamento, sendo cada vez maior com o passar do tempo, o mundo em que

vivemos a cada dia se torna mais micro conectado, com isso, têm-se o avanço de hardwares

menores, otimização de algoritmos e consequentemente criação de novos frameworks, que é

o caso do TensorFlow Lite (TF Lite) e Aprendizado de Máquina Minúsculo (do inglês, Tiny

Machine Learning (TinyML)), que fazem a interconexão entre AI e sistemas embarcados.

Com o crescimento acelerado da quantidade de dados coletados por dispositivos móveis e

de Internet das Coisas (do inglês, Internet of Things (IoT)), faz com que haja um destaque

em computação de borda, pois essa necessita distribuição em que parte da computação

ocorra perto de onde os dados são criados, tendo um processamento local e diminuindo os

servidores remotos, mostrando ser fundamental ML em sistemas embarcados (WARDEN,

P.; SITUNAYAKE, D., 2020).

As aplicações de AI vem otimizando vários serviços e abrangendo diversas áreas,

como é o caso da automação residencial, que utiliza dispositivos Internet das Coisas (do

inglês, Internet of Things (IoT)) para controlarem e automatizarem vários dispositivos da

casa, como iluminação, janelas, câmeras e muito mais (SILVA et al., 2022); saúde, com

monitoramento de saúde, como pulseiras inteligentes e relógios, permitindo aos pacientes

acompanharem diversos parâmetros da saúde, como frequência cardíaca e pressão arterial,

tudo de maneira contínua e autônoma (OLIVEIRA & SANTOS, 2021); agrícultura, como

a transformação de aparelhos tradicionais em “pulverizadores inteligentes”, essa foi uma

proposta criada por uma empresa brasileira chamada SAVEFARM., a qual ao deixar

esses aparelhos inteligentes faz com que os mesmos sejam capazes de otimizar a aplicação

de agroquímicos (SAVEFARM., 2023). Além disso, a indústria automotiva se beneficia

também dessas tecnologias, um exemplo é a direção autonôma, que usa ML para processar
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dados de sensores e câmeras, os quais identificam possíveis riscos na pista que o veículo

está percorrendo e evita que ocorra um acidente, dessa maneira aumenta a segurança do(s)

passageiro(s) (GOMES & PEREIRA, 2020).

Conforme apontado por Vijay Madisetti e Arshdeep Bahga em MADISETTI, V.;

BAHGA, A. Embedded Systems: Fundamentals and Applications, 2017, “os sistemas em-

barcados inteligentes representam uma convergência de tecnologia que exige um equilíbrio

delicado entre funcionalidade avançada e as restrições inerentes ao hardware”, isso nos

mostra que mesmo com grandes avanços ainda existem barreiras a serem quebradas,

desafios que a cada dia vem sendo superados. (MADISSETI & BAHGA, 2017)

Um framework/biblioteca criado de suma importância para desenvolvimento dessa

tecnologia é o TensorFlow Lite, o qual faz essa união de ML com dispositivos de pequeno

porte, ou seja, aplicação de ML em microcontroladores e outros dispositivos usando alguns

kilobytes de memória. Assim como TensorFlow Lite, o TinyML tem a mesma função, que

é executar modelos de ML em microcontroladores.

Por mais que o TensorFlow Lite e o TinyML pareçam ser a mesma coisa, na

realidade são duas abordagens distintas. O TinyML tem um foco maior na execução de

modelos de ML em dispositivos minúsculos, menores que os executados pelo TensorFlow

Lite. O TinyML representa o campo de técnicas de otimização, compactação de modelos e

algoritmos para permitir AI em hardwares muito restritos (TINYML FOUNDATION.,

2023). O TensorFlow Lite pode-se dizer que é uma biblioteca mais geral e aplicável a gama

de dispositivos com recursos limitados muito maior, enquanto o TinyML é voltado para

dispositivos onde consumo e tamanho são críticos, como sensores inteligentes e wearables

(WARDEN, P.; SITUNAYAKE, D., 2020).

1.2 Motivação

A AI ganha cada vez mais holofotes na sociedade, impactando cada vez mais a

economia e os avanços tecnológicos nas mais variadas áreas. A junção de AI juntamente

com sistemas embarcados não é diferente, ela irá permitir novas soluções, sendo mais

baratas e de consumo energético baixo, o que no caso de AI baseada em nuvem não é

possível. Diante disso, novas perspectivas tecnológicas são alcançaveis. O presente estudo

tem como motivação a inovação e revolução que a junção das tecnologias poderão causar

no futuro, proporcionando novos empregos, pesquisas e desenvolvimentos.

A justificativa para a escolha do TensorFlow Lite se deve à sua capacidade de

conversão de modelos pré-treinados do Tensor Flow em formatos especiais otimizados para

velocidade e armazenamento. Modelos com o Lite são muito leves de maneira a obter uma

baixa latência em dispositivos de ponta e dispositivos incorporados, como por exemplo

ambiente Mobile e microcontroladores, respectivamente.
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1.3 Objetivos

O presente trabalho objetiva proporcionar uma abordagem mais teórica e didática,

fornecendo um arcabouço relevante para estudantes, profissionais da área e entusiastas no

assunto de AI em sistemas embarcados. tendo um foco maior em ML, utilizando a aborda-

gem TensorFlow Lite, mas citando outra relevante nesse contexto, TinyML. O exemplo

prático de implementação que será abordado mais adiante usa um microcontrolador, o

ESP32, destacando sua importância nessa tecnologia.

1.4 Divisão do Trabalho

Este trabalho foi dividido em cinco capítulos, os quais se interagem entre si, o intuito

deles é fornecer uma estrutura clara, coesa e que deixe o fluxo de ideias da proposta do

trabalho de fácil compreensão, tornando o aprendizado mais acessível e valioso, oferecendo

abordagens teóricas e práticas sobre o uso de AI em sistemas embarcados, como o uso do

framework TensorFlow Lite. Diante dessa ideia, será apresentado a estrutura de forma

minuciosa.

O primeiro capítulo, Introdução, foi dividido em quatro subcapítulos. O primeiro é

a Contextualização, que apresenta uma introdução ao tema do trabalho, oferecendo uma

visão geral da AI em sistemas embarcados, com foco em ML, destacando seus avanços,

relevância atual e futura, além dos desafios.

Na parte que diz respeito a Motivação, há a justificativa da escolha do tema,

importância das tecnologias e o impacto delas na atualidade.

Nos Objetivos, são apresentados o intuito geral do trabalho, especificando o público

alvo e as tecnoligias utilizadas, exemplificadas por meio de um problema prático, com a

finalidade de fornecer um material didático acadêmico.

O capítulo 2 aborda uma revisão sobre o TensorFlow Lite visa fornecer uma

fundamentação teórica sobre essa framework, abordando a estrutura do software e também

a história e funcionamento interno da biblioteca.

O capítulo 3 apresenta um tutorial de utilização do ESP32. Há um passo a passo

para a implementação de ML nesse microcontrolador, descrevendo de forma eficaz e

detalhada de como se utiliza o TensorFlow Lite no ESP32. Antes desse passo a passo, há

uma breve teoria sobre o ESP32 para posteriormente, entrar nas abordagens supracitadas.

O capítulo 4 traz um exemplo de utilização, será apresentado uma aplicação

prática, tendo o desenvolvimento e implementação de um modelo de ML utilizando

o microcontrolador ESP32, onde terá todo o problema de forma detalhada, objetivos,

mostrando cada etapa da construção do projeto e seus resultados. O intuito desse capítulo

é ilustrar os conceitos discutidos no trabalho.
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Por fim, o capítulo V traz a conclusão do trabalho, que é a parte final, onde é

discutido sobre tudo que foi abordado anteriormente, refletindo os resultados das teorias

e as contribuições. São mostradas as limitações da AI no microcontrolador ESP32 com

o uso do TensorFlow Lite e sugestões para diminuir essas limitações, contribuindo para

trabalhos futuros.



15

2 REVISÃO SOBRE O TENSORFLOW LITE

Este capítulo abordará uma revisão sobre o TensorFlow Lite, desde o seu surgimento

até suas vantagens, detalhando os conceitos e estruturas desse software, apresentando seus

principais aspectos e funções.

Antes de abordar diretamente o TensorFlow Lite, é imprescindível falar sobre

o TensorFlow, o qual foi desenvolvido pelo Google e foi disponibilizado ao público em

2015. O TensorFlow é uma biblioteca de ML utilizada globalmente em grande escala,

e uma característica notável é que sua plataforma é de código aberto (do Inglês, open

source). Seus desenvolvedores aderiram um lema muito famoso que a grande maioria dos

apaixonados por tecnologia, em especial ML, o conhecem: “Uma estrutura de Aprendizado

de Máquina (ML) de código aberto para todos”, tendo como principal linguagem de

interface o Python (WARDEN, P.; SITUNAYAKE, D., 2020).

Criada com o intuito de ser utilizada em desktops e servidores Linux, Windows e

macOS, o TensorFlow fornece muitas ferramentas e exemplos para que modelos de ML sejam

executados, otimizados, treinados e implantados em modelos na nuvem, além de vários

tutoriais disponíveis auxiliando quem deseja explorá-lo. Suas ações são executadas em

processadores que são as Unidades Centrais de Processamento (do inglês, Central Processing

Unit (CPU)), Unidades de Processamento Gráfico (do inglês, Graphics Processing Unit

(GPU)) e também por Unidades de Processamento de Tensor (do inglês, Tensor Processing

Unit (TPU)). As TPUs são circuitos integrados de aplicação específica projetados pelo

Google para redes neurais. São otimizados para treinar modelos de Aprendizado Profundo

(do inglês, Deep Learning) maiores e mais complexos. Entretanto, há limitações quando

se trata de dispositivos móveis, como Android e iOS, os quais possuem menos Memória

de Acesso Aleatório (do inglês, Random-Acess Memory (RAM)) e menor espaço de

armazenamento (WARDEN, P.; SITUNAYAKE, D., 2020).

Diante dessa limitação que o TensorFlow não era capaz de atender, foi desenvolvido

também pelo próprio Google, em 2017, o TensorFlow Lite, que atualmente sofreu uma

alteração em seu nome, passando a ser chamado de Tempo de Execução Leve (do inglês,

Lite Runtime (LiteRT)) (GOOGLE., 2024). A partir desse momento, no decorrer de todo

o restante do trabalho, ele será referenciado somente como LiteRT.

O LiteRT é uma biblioteca que tem como propósito permitir a execução de modelos

de redes neurais em dispositivos móveis, sendo eficiente e de fácil implementação. Os

desenvolvedores do LiteRT para atender essa demanda foram modificando os recursos, tipos

de dados e reduziram as operações do TensorFlow, para que fosse possível tal execução

nos dispositivos com rescursos bem menores. Reduziram tamanho e a complexidade da

estrutura, dispensando recursos que não haveria necessidade ou seriam poucos utilizados

nessas plataformas, como por exemplo, o suporte ao treinamento de modelos. Também
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não há suporte a tipos de dados os quais há no TensorFlow em LiteRT (WARDEN, P.;

SITUNAYAKE, D., 2020).

Com essas retiradas, o LiteRT tornou-se mais compacto, facilitando seu encaixe para

melhor adequação em aplicativos com restrições de tamanho, tornando-se dessa maneira

ideal para esses casos. Além disso, ele tem bibliotecas otimizadas para determinadas CPUs

e também um suporte de aceleração por meio de APIs - Interface de Programação de

Aplicação (do Inglês, Application Programming Interface) de redes neurais do Android. As

APIs tornam mais fáceis a integração entre os modelos de ML em sistemas embarcados,

como por exemplo a conversão de modelo TensorFlow em LiteRT. Uma vantagem expressiva

é a melhora no desempenho da inferência, alcançada através de caminhos para utilização

de uma execução otimizada para dados menores e assim uma redução significativa em

tamanhos de modelos (WARDEN, P.; SITUNAYAKE, D., 2020).

A equipe do Google, responsável pelo desenvolvimento do LiteRT viu o sucesso

que foi o framework para dispositivos móveis, porém não atendia outros produtos dentro

do próprio Google assim como produtos exteriores no mercado global, os quais também

poderiam se beneficiar do ML para otimizar seus serviços. Vale ressaltar que o maior

empecilho ainda era o tamanho do arquivo binário, mesmo sendo relativamente pequeno

centenas de quilobytes (do inglês, kilobytes (KB)), o mesmo ainda precisava ser menor, ou

seja, mais compacto (WARDEN, P.; SITUNAYAKE, D., 2020).

Como consequência, em 2018, os desenvolvedores do Google começaram a adaptar e

experimentar o LiteRT exclusivamente para sistemas embarcados. Nesse processo o objetivo

era reutilizar o máximo possível das tecnologias já bem estruturadas dos dispositivos móveis,

de maneira a atender os requisitos dos ambientes embarcados. Primeiramente, a equipe

teve em mente algo prático, de uso real, que foi o reconhecimento de uma palavra falada

para ativar e acessar os serviços (WARDEN, P.; SITUNAYAKE, D., 2020).

Diante dessa ideia, de uma assistente virtual que faz reconhecimento de palavras,

surgiu a Siri, em 2011, que foi introduzida no iPhone 4S, uma aquisição da Apple. Ela

foi pioneira nessa tecnologia para smartphones e expandiu ainda mais sua capacidade,

indo além do simples reconhecimento de palavras, podendo realizar inúmeras tarefas,

como reproduzir músicas de vários aplicativos de mídia, programar eventos de calendário,

lembretes e alarmes, traduzir idiomas, entre outras funções (MCDONOUGH, 2025). Com

isso, outras empresas aderiram a essa ideia e, um pouco mais tarde, a Amazon desenvolveu

sua própria assistente, a Alexa, lançada em 2014 junto com a Echo, que basicamente

possui as mesmas funções da Siri (KITAMURA, 2023).

Outras aplicações práticas que podem ser citadas em que o LiteRT está sendo

aplicado são: sistemas de segurança e automação industrial. Uma aplicação importante

do uso dessa tecnologia é em dispositivos médicos portáteis, como monitores de glicose e

oxímetros, no qual o modelo de ML permite diagnosticar com rapidez e precisão sem a
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necessidade de conexão em nuvem (CHEN, J et al., 2020).

Um outro exemplo do uso do LiteRT é em veículos autônomos e sistemas de

assistência ao motorista. Nesse caso, a alta eficiência energética e a baixa latência são

críticas, diante desse cenário, o LiteRT entra com a função de permitir a execução de

modelos de visão computacional direto e exclusivo nos sistemas embarcados desses veículos

(GRIGORESCU, S. et al., 2020).

Essa tecnologia também é amplamente usada em IoT, onde ela processa informações

em tempo real, fazendo com que a resposta do sistema seja melhorada devido à diminuição

da dependência com servidores que são remotos (LANE, N. D., 2015).

O LiteRT para microcontroladores tem como uma de suas principais propostas

tornar o uso de ML de fácil aplicação e entendimento para os mais diversos dispositivos,

impactando diretamente no desenvolvimento de software embarcado. Além disso, um de

seus principais recursos e vantagens é a capacidade de otimização, que torna os modelos de

ML mais eficientes e compactos. A otimização preserva a precisão dos modelos, enquanto

diminui o tamanho dos recursos computacionais assim como o próprio modelo. Uma técnica

largamente utilizada com esse intuito é a quantização, a qual faz os ajustes necessários e

remove aquilo que é desnecessário no modelo (EITCA ACADEMY., s.d.).

A quantização faz um ajuste essencial que faz com que o modelo fique menor e

que acelere a inferência, impactando minimamente a precisão, a qual faz uma redução

nos números utilizados no modelo, passando os valores de 32 bits, que são floats, para 8

bits, que são inteiros, ou seja, descartando as casas decimais (JACOB et al., 2018). Dessa

maneira ela também permite que hardwares que não possuam unidades de ponto flutuante

possam utilizar o LiteRT, aumentando ainda mais sua compatibilidade com dispositivos

mais limitados.

Para dispositivos com baterias limitidas, o LiteRT dispõe de uma técnica chamada

poda, a qual remove conexões desnecessárias das redes neurais, sejam elas redundantes

e/ou pouco significativas para essas redes, tornando o modelo de tamanho menor e consumo

mais reduzido de energia (HAN et al., 2015).

Dentre os vários recursos do LiteRT, pode-se destacar os mais relevantes. Com

relação às restrições, pode-se citar a latência, privacidade, conectividade e consumo de

energia. Quanto aos suportes, eles podem ser divididos em dois: suporte as plataformas,

tendo compatibilidade com dispositivs Android e iOS, Linux incorporado e, o principal

nesse estudo, microcontroladores; o outro suporte são as várias linguagens de programação

que o mesmo comporta, o tradicional C e C++ e o Python, que vem sendo amplamente

utilizado, além de outras linguagens (EITCA ACADEMY., s.d.).

O LiteRT também têm opções de modelos com vários frameworks e um recurso

fundamental: a aceleração de hardware, que vem aumentando em grande escala o desem-
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penho. Todas essas vantagens vem ampliando a viabilidade da execução de AI em vários

aplicativos e sistemas embarcados, permitindo soluções únicas (EITCA ACADEMY., s.d.).

Assim como toda tecnologia existente em que há vantagens e desvantagens, para o

LiteRT não é diferente, ela enfrenta desafios e limitações significativos. Por mais que o

LiteRT tenha compatibilidade com diversos dispositivos ela ainda enfrenta problemas de

portabilidade entre diferentes arquiteturas de hardware, sendo assim, a otimização para

cada plataforma específica pode exigir ajustes manuais, tornando o desenvolvimento dessa

aplicação mais dificultosa e complexa (LIN et al., 2021).

Com relação ao futuro do LiteRT ele está intrinsecamente ligado à computação de

borda. A computação de borda é o processamento, análise e armazenamento de dados o

mais próximo possível de onde eles foram gerados, com o objetivo de tornar as respostas

mais rápidas assim como a análise, sendo praticamente tudo em tempo real. Seu uso pode

ser efetuado em diversas áreas, como o varejo, que teria o objetivo de deixar o fornecimento

e o desenvolvimento de produtos mais eficiente, um exemplo é a utilização de sensores e

câmeras para se obter os objetivos ditos anteriormente (INTEL, 2025).

Os dispositivos cada vez mais vêm incorporando modelos de ML, isso faz com

que aumente a demanda por bibliotecas mais leves e eficientes, que é o caso do LiteRT,

tornando sua aplicação cada vez maior. Um destaque que tende a ser cada vez mais

promissor é a união entre LiteRT e frameworks de aprendizado federado, que é uma

configuração de ML, o qual faz os modelos treinarem de forma colaborativa, mantendo a

conservação dos dados (KAIROUZ et al., 2019).

Além disso, pode-se esperar melhorias no suporte de hardwares especializados,

como Arranjos de Portas Programáveis em Campo (do inglês, Field Programmable Gate

Array (FPGA)) e Unidades de Processamento Neural (do inglês, Neural Processing Unit

(NPU)). Esses hardwares são especializados em executar modelos de AI, o qual oferecem

maiores desempenhos, com a união com o LiteRT, faz com que potencialize ainda mais

esses hardwares e amplie suas capacidades (JOUPPI et al., 2017).
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3 TUTORIAL DE UTILIZAÇÃO NO ESP32

Antes de abordar como se utiliza o ESP32 com ML, será apresentada uma breve

introdução sobre sua história e conceitos.

O ESP32 é um microcontrolador criado e desenvolvido pela empresa chinesa

Espressif, o qual alia alta performance e um baixo consumo de energia. Destaca-se pelo

baixo custo de aquisição e por seus recursos de conectividade, tendo como principais o wifi

e o bluetooth, ambos integrados, o que a torna uma excelente escolha para projetos de

robótica, automação e IoT (SMARTKITS, 2023).

A parte física do ESP32 é dotada de um processador dual-core de 32 bits e possui

520 kB de memória flash. Com relação a pinagem, o mesmo possui 34 pinos GPIO, que

são pinos digitais e pinos analógicos, dentre esses 34, 22 são digitais e 12 são analógicos,

permitindo a interação do ESP32 com outros dispositivos eletrônicos, sensores e também

atuadores (VICTOR VISION, 2023).

Os pinos digitais e analógicos têm suas funcionalidades no qual o digital são pinos

configuráveis que podem atuar tanto na entrada quanto na saída, já os pinos analógicos

são utilizados para leitura de sinais analógicos, como variações de temperatura e tensão

(VICTOR VISION, 2023).

Com relação a programação, o mircrocontrolador ESP32 é bem versátil, pois é

compátivel com várias linguagens de programação, dentre as quais se destacam C, C++ e

Python. A escolha da linguagem vai depender de qual o principal objetivo do projeto: o

Python é amplamente utilizado para projetos de AI, IoT e projetos de prototipagem, já

o C e C++ se configuram mais em projetos que exigem alto desempenho e controle de

hardware, sendo mais utilizados em projetos de sistemas embarcados (VICTOR VISION,

2023).

No que tange ao desenvolvimento com o ESP32, há inúmeras ferramentas que têm

compatibilidade com o microcontrolador e podem ser utilizadas sem grandes dificuldades. O

uso dessas ferramentas vai depender exclusivimente das necessidades do projeto, assim como

a familiaridade do desenvolvedor com os diversos tipos de ferramentas. Será apresentado

neste momento alguma das ferramentas mais comumentemente utilizadas com o ESP32:

O ESP-IDF é o framework desenvolvido pela própria criadora do ESP32, sendo

assim o ambiente de desenvolvimento oficial do microcontrolador, o qual oferece um amplo

conjunto de ferramentas, bibliotecas e exemplos práticos, facilitando o entendimento

e proporcionando maior capacidade de desenvolvivemento e aplicações, sendo eficiente

e robusto. O grande destaque quanto às vantagens é o completo suporte ao ESP32

(EMBARCADOS, 2023).

Eclipse IDE é uma plataforma de desenvolvimento extensível e integrada, sendo uma
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das plataformas mais populares nesse meio. Ela em conjunto com o plugin do ESP-IDF

torna o ambiente para com o ESP32 mais robusto. Por possuir uma vasta flexibilidade isso

a torna extremamente compatível e ideal com projetos mais complexos, proporcionando

excelentes gerenciamentos, avançadas ferramentas de depuração e uma integração direta

com o ESP-IDF (STARTBIT, 2023).

MicroPython é uma implementação reduzida e eficiente que tem algumas bibliotecas

padrões da linguagem de programação Python tendo como função a otimização para rodar

em microcontroladores e também em ambientes com recursos limitados. Seu ambiente é

interativo onde você pode utilizar os comandos do Python no próprio microcontrolador,

por ser muito compacto ele cabe e roda em no máximo 256k de espaço para código e 16k de

memória RAM, também possui diversos suportes a módulos específicos para determinado

tipo de hardware, como GPIO e PWM. No ESP32 as principais utilidades do MicroPython

estão na prototipagem rápida e acesso ao hardware (MICROPYTHON, 2023).

PlatformIO é uma plataforma de desenvolvimento que suporta o microcontrola-

dor ESP32, assim como outros hardwares além desse. Além disso, possui suporte ao

MicroPython oferendo divesas funcionalidades que facilitam a implementação e desenvolvi-

mento, as principais são gerenciamento de projetos, depuração e instalação de bibliotecas

(PLATFORMIO, 2023).

3.1 Passo a passo para implementação

Como já se sabe, o LiteRT possibilita os desenvolvedores a criarem modelos de

ML em dispositivos limitados, que é o caso do microcontrolador ESP32. Dessa forma,

isso se torna extremamente importante, visto o aumento acelerado da utilização de redes

neurais com relação a AI, pois a mesma é capaz de reconhecer padrões complexos e realizar

previsões com alta precisão (ELETROGATE., 2023).

Diante desse cenário, destaca-se a Inteligência Artificial das Coisas (AIoT), que

é a união da AI com a IoT. Sabendo que a IoT consiste em dispositivos inteligentes

interconectados, equipados com sensores e atuadores, além da conectividade de rede, o

que possibilita a coleta e transmissão de dados, combina-se a AI com a IoT. Isso permite

que a AI analise os dados, processe-os em tempo real e tome decisões de forma autônoma,

automatizando a tarefa desejada. Como resultado, o sistema se torna mais otimizado,

preciso e extremamente adaptável (ELETROGATE, 2023).

Nesse contexto, as redes neurais artificais, foram baseadas/inspiradas na estrutura

neural do cérebro humano. Sua disposição se dá através dos neurônios, que são interligados

entre si e tendo sua organização em camadas. Suas camadas são divídidas basicamente em

três níveis, sendo a camada de entrada, as camadas intermediárias, podendo ser uma ou

mais, e por fim a camada de saída. Inicialmente a rede recebe um sinal, no qual a seguir
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serão aplicados pesos as entradas, tendo uma soma e uma função de ativação. O papel

dessa função é introduzir a rede a não-linearidade, fazendo com que a rede seja capaz de

aprender padrões ainda mais difíceis (ELETROGATE., 2023).

O que foi dito anteriormente recebe o nome de propagação feedforward, ou retro-

propagação. Onde o mesmo alimenta as entradas e saídas da rede. Para que ocorra o

treinamento dessa rede é essencial expor a mesma a um vasto conjunto de dados com

entradas e saídas conhecidas, diante dessa exposição ela será capaz de ajustar pesos e

vieses se baseando nos erros que foram obtidos na comparação entre a saída prevista e a

saída real. Desse modo, a rede se torna capaz de aprender com seus erros e com o passar

do treinamento consegue aprimorar sua capacidade de precisão nos dados. No término

dessa etapa, a rede é capaz de avaliar dados desconhecidos (ELETROGATE., 2023).

A Figura 1 resume bem o passo a passo de como proceder para implementar um

modelo de ML no ESP32 será mostrada e explicada a seguir:

– Figura 1 - Diagrama das etapas do modelo e seus respectivos frameworks

Fonte: blog.eletrogate.com, 2023

Primeiramente, é necessário treinar o modelo utilizando o TensorFlow, no qual há

etapas bem definidas a serem seguidas:

1. coletar os dados para alimentar o modelo;

2. processamento inicial dos dados, no qual há limpeza, pois podem haver valores

faltantes, erros e valores fora do padrão, depois tem que normalizar os dados e por

fim dividi-los em conjunto de treino e teste;

3. construir o modelo, ou seja, definir a rede neural;
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4. treinar o modelo com os dados que foram alimentados na entrada fazendo os ajustes

dos pesos e vies;

5. avaliar o modelo para verificar se está desempenhando bem sua função.

O segundo passo, como bem sugere a imagem, é fazer a conversão do TensorFlow

para o TensorFlow Lite (LiteRT). É utilizado uma ferramenta em Python para fazer essa

conversão, chamada “TFLiteConverter”, que transforma o modelo de formato .pb ou

SavedModel do TensorFlow para o formato .tflite do TensorFlow Lite (LiteRT). Dessa

maneira, otimizando os dados para os dispositivos limitados, além da redução do tamanho

do modelo, para o nosso caso o ESP32.

O terceiro passo é a otimização do modelo, para alcançar modelos mais eficiente

e precisos. Como a capacidade de processamento do ESP32 é baixa, o modelo precisa

diminuir o consumo de memória e tempo de inferência, para isso, faz-se necessário quantizar

o modelo, ou seja, converter os pesos de float32 para int8, dessa maneira se reduz o tamanho

do modelo e melhorando seu desempenho. Mas a depender do modelo pode-se usar outras

ferramentas para otimizar, como: poda ou distilação de conhecimento.

O quarto passo é o Deploy no ESP32, que é carregar todos os passos anteriores no

microcontrolador, que vai depender da ferramenta utilizada para programar, podendo ser

um Arduíno IDE, ESP-IDF e etc.

Para finalizar, o quinto e último passo é a inferência, que é a alimentação do modelo

com dados novos. No ESP32 sua inferência é basicamente coletar os dados através de

sensores, processar os dados de maneira a ficar no formato que o modelo foi programado,

executar o modelo com o TensorFlow Lite para ter a previsão e para finalizar ele irá

interpretar os resultados obtido e tomará uma decisão de acordo com o que se deseja.
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4 EXEMPLO DE UTILIZAÇÃO

Nesta seção será implementado um projeto sobre toda a teoria vista nos capítulos

anteriores, a fim de comprovar através de um exemplo prático a combinação do ESP32 com

ML, no qual será usado como base todo o projeto desenvolvido pelo professor Abhishek

Singh. A abordagem em questão tem como tema a previsão de saída de uma onda senoidal

e visualização da rede de aprendizado profundo.

A motivação para esse projeto é devida a toda importância das ondas senoidais,

que são a forma de representação ondulatória natural de muitos fenômenos físicos, além

de serem as mais presentes no mundo real e, consequentemente, uma das mais estudadas

e trabalhadas. Isso ocorre pelo fato de que muitos fenômenos podem ser representados

matematicamente por essa forma de onda. Sua ocorrência é observada em sinais de corrente

alternada e em ondas de rádio, que são elementos comuns no cotidiano da humanidade.

No entanto, há diversas outras ocorrências dessas ondas além das mencionadas, como no

movimento pendular simples (SINGH, A. 2022).

O objetivo desse projeto é prever a saída da onda senoidal, e para isso será utilizado

um modelo de ML, o qual fará essa previsão. Posteriormente, para visualização será

utilizado o aplicativo de navegador Netron. (SINGH, A. 2022)

Será usado para implementação desse projeto a linguagem de programação Python

com o pacote Anaconda e o Google Colab para implementar a sintaxe da linguagem e

plotar os gráficos pertinentes. (SINGH, A. 2022)

Pelo fato de estarmos usando o Google Colab faz-se necessário primeiramente fazer

as seguintes instalções:

– Figura 2 - Instalações necessárias

Fonte: Elaborado pelo autor através do Google Colab

Os comandos “pip install” fornecem a instalação, atualização e o gerenciamento

de ferramentas que não vem pré instaladas no Google Colab, e nesse caso foi instalado

o TensorFLow para usar ML e a Keras para redes neurais, “–upgrade” faz com que seja

instalada a versão mais atual de cada biblioteca.

Tendo feitas as devidas instalações, o próximo passo será importar um conjunto de

bibliotecas para prosseguir com a proposta.
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– Figura 3 - Bibliotecas importadas

Fonte: Elaborado pelo autor através do Google Colab

Neste momento, será criado um conjunto de dados. Para esse exemplo em questão,

serão utilizadas 7000 amostras, nas quais a distribuição será da seguinte maneira: 20%

para validação, 20% para testes e 60% para treinamento. Dessa forma, será garantido

que o modelo seja capaz de aprender e ser avaliado da maneira necessária para dados não

vistos antes. A Figura 4 mostra o código utilizado para executar o que foi descrito:

– Figura 4 - Amostras, Validação, Teste e Treinamento

Fonte: Elaborado pelo autor através do Google Colab

Após executar o passo anterior, para prosseguir com o modelo, faz-se necessário

gerar um sinal aleatório. É isso que a Figura 5, a seguir, está mostrando: o código

responsável por gerar esse sinal aleatório.

– Figura 5 - Código para gerar um sinal aleatório

Fonte: Elaborado pelo autor através do Google Colab

Após compilar, com a utilização do Numpy (“np” no código), foi gerado um

sinal com as amostras, que não é uma onda senoidal pura, possuindo uma parcela de

aleatoriedade. Esse sinal, que combina a forma de onda senoidal com ruído, é descrito na

Figura 6. Em seguida, será criada a forma de onda senoidal com ruído, apresentado na

Figura 7. (SINGH, A. 2022)
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– Figura 6 - Sinal aleatório das amostras

Fonte: Elaborado pelo autor através do Google Colab

– Figura 7 - Sinal de onda senoidal ruidoso

Fonte: Elaborado pelo autor através do Google Colab

O conjunto de dados para treinar e testar serão gerados através de x e y, onde

x representa os dados de entrada do modelo, enquanto y contém os rótulos ou valores

esperados, que o modelo irá aprender a prever com base em x. Para evitar que o modelo

decore padrões duvidosos e consequentemente cometa erros, vamos embaralhar de forma

aleatória, tornando o modelo mais eficiente e com treinamento mais estável. Para isso será

importada uma nova biblioteca para executar essa função de embaralhamento. (SINGH,

A. 2022)

– Figura 8 - Embaralhamento

Fonte: Elaborado pelo autor através do Google Colab

Fundamentalmente o processo de aprendizagem de modelos de ML são divididos

em três etapas: treinamento, validação e teste.

• Treinamento: treina o modelo
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• Validação: faz a comparação entre diferentes modelos

• Teste: faz testes para comprovar se o modelo funciona

Nesse modelo foi feita essa divisão, na qual o Numpy é responsável pelo processo,

além disso, com o matplotilib plotamos a curva com essas divisões. (SINGH, A. 2022)

– Figura 9 - Código da divisão dos dados e plotagem

Fonte: Elaborado pelo autor através do Google Colab

– Figura 10 - Divisão dos Dados em Treinamento, Validação e Teste

Fonte: Elaborado pelo autor através do Google Colab

Com o plot do gráfico podemos concluir que tivemos uma boa divisão de dados, no

qual o modelo aprenderá de forma eficiente como prever uma senoide ruidosa. Tendo em

vista as amostras sobrepostas e bem distribuídas, dá para presumir que esse modelo será

consistente em seus dados para aprender e avaliá-los.

No próximo passo, será criado o modelo de rede neural, conforme ilustrado na

Figura 11. Esse modelo terá duas camadas densas plenamente conectadas. Será utilizado
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a função RELU para ativar e projetar as redes neurais, e será utilizado o Adam para

otimizar o modelo. (SINGH, A. 2022). Código utilizado:

– Figura 11 - Código Rede Neural

Fonte: Elaborado pelo autor através do Google Colab

Foi utilizado um tamanho de lote 100 e 500 iterações. Para exibir o resumo de uma

maneira mais fácil de ser visualizada e entendida foi usado o model.summary o qual nos

apresenta os seguintes dados: (SINGH, A. 2022).

– Figura 12 - Resultado Rede Neural

Fonte: Elaborado pelo autor através do Google Colab

Com os resultados expressos da Figura 12, é indicado que o presente modelo de

rede neural treinado têm três camadas densas interconectadas (dense, dense_1 e dense_2).

A primeira e segunda camada possuem 16 neurônios cada, e a camada de saída possui

apenas um. O número de amostras necessárias para prever uma nova amostra vai depender

do tamanho da janela de entrada, nesse modelo foi definido um vetor de dimensão fixa

com N pontos anteriores.

Foram plotados valores específicos dos parâmetros, no qual se evidencia que o

modelo treinou todos os seus parâmetros, sem a ocorrência de elementos que não foram

treinados pela rede neural. Com um total de 965 parâmetros, dos quais 644 foram

otimizados, dessa forma apresentando a eficácia desse processo.

Podemos agora calcular R2 (r2), que é o coeficiente de determinação, além disso, o

cálculo do Erro Quadrático Médio (do inglês, Root Mean Squared Error (RSME)) e o Erro
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Absoluto Médio (do inglês, Mean Absolute Error (MAE)), o qual irão verificar a precisão

do modelo. (SINGH, A. 2022).

Matematicamente as métricas são definidas da seguinte maneira:

• para o R2:

R2 = 1 −

∑

n

i=1
(yi − ŷi)

2

∑

n

i=1
(yi − ȳ)2

(4.1)

onde yi são os valores observados, ŷi são os valores previstos, ȳ é a média dos valores

observados e n o número total de amostras.

• para o RMSE:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (4.2)

onde yi são os valores observados, ŷi são os valores previstos e n o número total de

amostras.

• para o MAE:

MAE =
1

n

n
∑

i=1

|yi − ŷi| (4.3)

onde yi são os valores observados, ŷi são os valores previstos e n o número total de

amostras.

R2 tem por objetivo avaliar se o modelo se ajusta corretamente ao dados, indicando

a qualidade do modelo. RMSE tem por objetivo fornecer uma medida de precisão do

modelo, mostrando o quanto as previsões estão diferentes dos valores reais. MAE tem

como intuito avaliar a precisão do modelo, mostrando o erro médio das previsões.

A figura 13 apresenta o código e os resultados dos cálculos de R2, RMSE e MAE, os

quais são utilizados para avaliar o modelo treinado, permitindo uma análise mais precisa,

pois possibilitam a quantificação do erro de previsão em relação ao valores reais.

Diante dos resultados, nitidamente podemos perceber que a pontuação de r2 é

próxima de um, 97,82%. Esse valor para r2 e os valores baixos de RMSE e MAE, indica que

o modelo está fazendo boas previsões, onde os 97,82% de r2 é a capacidade de explicação

da variância dos dados, fornencendo uma linha de menor ajuste (SINGH, A. 2022).

A Figura 14 mostra as formas de onda reais e previstas para fazer uma análise da

aproximação entre elas. Como r2 está bem próximo de um, isso sugere que ambas devem

seguir uma a outra com pouca variação (SINGH, A. 2022).
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– Figura 13 - Cálculo das métricas

Fonte: Elaborado pelo autor através do Google Colab

Após a etapa de treinamento do modelo de rede neural no Google Colab utilizando

o TensorFlow, o modelo foi convertido para TensorFlow Lite e, em seguida, implementado

no ESP32 para a realização da inferência. A Figura 14 apresenta o desempenho do

modelo, comparando os valores atuais (reais) com os valores previstos pelo modelo após

ser executado no ESP32.

– Figura 14 - Desempenho do Modelo: Valores Atuais vs Previstos

Fonte: Elaborado pelo autor através do Google Colab

Como pode ser visto no plot do gráfico, os valores previstos acompanham os valores
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atuais, o que significa que o modelo seguiu satisfatóriamente a forma de onda senoidal.

Nas regiões de curvatura o modelo dos valores atuais teve uma pequena dificuldade para

prever os resultados, isso se dá devido ao ruído, mas nada que afete o modelo, porém tem

como melhorá-lo, assim como o mesmo possui leve dispersão dos pontos azuis mais na

região das curvaturas.

É importante salientar que o modelo foi realizado de maneira offline, utilizando

a linguagem de programação Python, tudo dentro do ambiente do Google Colab. Em

contrapartida, a inferência foi executada rigorosamente no ESP32, visando a execução em

tempo real. O ESP32 foi programado para coletar os dados de entrada, em seguida processá-

los e, finalmente executar o modelo TensorFlow Lite para a realização das previsões. Sendo

assim, essa abordagem e processo permitem que modelos mais complexos possam ser

treinados em ambientes com maior capacidade computacional e, em seguida, possam ser

convertidos para serem implantados em dispositivos embarcados que possuem recursos

mais limitados, que é o caso do ESP32 que foi utilizado.

O software utilizado para visualização desse modelo será o Netron. O Netron é um

programa capaz de fazer a visualização de sistemas neurais, o qual pode ser baixado ou

utilizado de forma online pelo próprio navegador (EDIVALDO, B. 2024).

Antes de utilizar o Netron para visualizar nosso modelo é preciso converter o modelo

de TensorFlow para TensorFlow Lite (LiteRT), o qual irá criar um arquivo model.tflite no

diretório do trabalho.

– Figura 15 - Conversão do modelo para TensorFlow Lite (LiteRT)

Fonte: Elaborado pelo autor através do Google Colab

Após esse procedimento, podemos acessar o site do Netron e carregar o arquivo

convertido, o que gerou a imagem mostrada na Figura 16.
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– Figura 16 - Modelo Rede Neural no Netron

Fonte: Elaborado pelo autor através do Netron

Podemos observar o diagrama de fluxo da rede neural convertida. No qual cada

parte dessa rede tem suas propriedades e funções que serão melhores detalhadas nesse

instante:

• keras_tensor é a entrada, no qual essa entrada é um vetor unidimensional e sua

dimensão não é definida, o símbolo de interrogação nos indica essa indefinição, ou

seja, seu tamanho é dinâmico e pode variar de acordo com a inferência. Isso se aplica

as outras camadas que tem o símbolo de interrogação, isso se dá pelo fato de na hora

da conversão o modelo não ter sido especificado a sua dimensão, deixando assim o

mesmo com maior flexibilidade e eficiência.

• FullConnected primeira camada: o qual tem os Pesos (16 x 1) que significa a conexão

de 1 neurônio de entrada a 16 neurônios, Bias (16) indica que cada neurônio dos 16
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possui um viés epecífico. O RELU é ativação no qual introduz a não linearidade do

sistema, a Saída (? x 16) indica que a mesma produz 16 valores para cada entrada.

• FullConnected segunda camada: os Pesos (16 x 16) tem a função de conectar os 16

neurônios da primeira camada a outros 16, seu Bias e RELU tem o mesmo sentido e

significado da primeira camada e sua Saída (? x 16) mantém 16 neurônios.

• FullConnected terceira camada: seu Peso (1 x 16) faz uma redução de neurônios,

passando de 16 para somente 1 na saída, Bias (1) indica um viés para saída e sua

Saída faz o retorno de um valor por amostra

• output_0 é a saída final do sistema
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5 CONCLUSÃO

Este trabalho buscou elucidar os conceitos e técnicas da integração entre AI e

Sistemas Embarcados, o qual foi embasado no framework TensorFlow Lite (LiteRT) em

um dispositivo com recurso limitado, no caso o microcontrolador ESP32. Com foco teórico

e um exemplo prático, foi possível demonstrar um pouco da tecnologia, sua relevância,

vantagens e desvantagens.

Apesar da Inteligência Artificial ser uma ferramenta extremamente poderosa no que

diz respeito a otimização de processos e automatização de tarefas, para grandes dados ela

ainda apresenta certos desafios no campo de Sistemas Embarcados, devido à baixa memória

desses dispositivos, assim como a energia e capacidade de processamento. Devido a esses

desafios surgiu o TensorFlow Lite (LiteRT) para atender essa demanda de dispositivos de

recursos limitados, como o ESP32.

O presente estudo nos mostrou que o TensorFlow Lite (LiteRT) é extremamente

fundamental para implementar Aprendizado de Máquina no microcontrolador ESP32,

fornecendo técnicas para otimização dos dados, diminuição do tamanho do modelo e menor

consumo de energia, deixando o modelo eficiente.

O exemplo prático elucidou todos os conceitos e técnicas fornecidos nos escopos

anteriores, mostrando uma alta eficácia do modelo, que propunha prever uma onda senoidal

utilizando uma rede neural. O coeficiente de determinação atingiu satisfatórios 97,82%,

demonstrando sua excelente capacidade de previsão em relação aos dados reais.

Por mais que o estudo e seus resultados tenham sido satisfatórios, vale ressaltar

que o campo de Inteligência Artificial em Sistemas Embarcados ainda não é muito maduro,

apresentando alguns desafios a serem superados, como a necessidade de ajustes manuais

em plataformas específicas.

Com um mundo cada vez mais conectado e a busca incessante por tecnologias de

ponta, a intenção deste estudo foi contribuir para a disseminação do conhecimento sobre a

integração entre Aprendizado de Máquina e Sistemas Embarcados, fornecendo uma base

teórica, aplicações, exemplo prático e uma perspectiva futura para essa tecnologia, na qual

a tendência é crescer de forma exponencial, visto as necessidades da sociedade.

Para futuras pesquisas, são sugeridos os seguintes temas de investigação:

• Implementação do modelo proposto em um outros microcontroladores, como, por

exemplo, o Raspberry Pi, realizando o mesmo estudo e comparando os desempenhos

entre os microcontroladores.

• Aprimoraramento do modelo de ML, utilizando outras redes neurais, explorando téc-

nicas de aprendizado profundo mais complexas e empregando técnicas de quantização
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mais avançadas.

• Aplicação do modelo desenvolvido em um sistema real, fazendo a integraçãodo do

ESP32 com sensores físicos, como sensores de temperatura, com o intuito de validar

a aplicação em situações reais e práticas.

• Investigação de outras técnicas de redes neurais para reduzir ainda mais o uso da

memória e o consumo de energia, ou seja, visando uma maior otimização dos recursos

• Desenvolvimento do modelo em áreas mais usuais e práticas, como automação

industrial e monitoramento da saúde, tornando a tomada de decisões locais.
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