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RESUMO

O presente estudo possui como centralidade uma pesquisa que inclui uma analise
tedrica, didatica e pratica entre a integracao de Inteligéncia Artificial (Al) e Sistemas
Embarcados, com foco na aplicagao do framework TensorFlow Lite (LiteRT) no microcon-
trolador ESP32. A motivacao surgiu devido a crescente demanda por solugoes inteligentes
e eficientes em um mundo cada vez mais tecnologico, onde a necessidade de atingir me-
lhores resultados em dispositivos com recursos limitados se torna maior e mais relevante,
especialmente em Internet das Coisas (IoT) e automagao. O principal objetivo é fornecer
um material didatico de facil compreensao, que possa contribuir com estudantes, pesqui-
sadores, profissionais da area e entusiastas do assunto, abordando conceitos primordiais
e apresentando um exemplo pratico da previsao de uma onda senoidal utilizando redes
neurais artificiais. A metodologia constitui-se na adaptacao de um projeto ja desenvolvido,
contendo a cria¢do, treinamento e otimizacao de um modelo de Aprendizado de Maquina
(ML) no TensorFlow, seguido da conversao desse modelo para o formato TensorFlow Lite e
a implementacao no microcontrolador ESP32. Os resultados foram promissores, indicando
uma alta precisao do modelo desenvolvido e demonstrando a eficacia da solugdo proposta.
Conclui-se que o TensorFlow Lite no ESP32, além de permitir a execugao de modelos de
Aprendizado de Maquina mais complexos, 0 mesmo apresenta uma excelente eficicia e

mostra-se promissor para tais desenvolvimentos de solugoes em dispositivos embarcados.

Palavras-chave: Inteligéncia Artificial (Al); Sistemas Embarcados; Aprendizado de
Magquina (ML); ESP32; TensorFlow Lite (LiteRT).



ABSTRACT

The present study focuses on research that includes a theoretical, didactic, and
practical analysis of the integration between Artificial Intelligence (Al) and Embedded
Systems, with an emphasis on applying the TensorFlow Lite (LiteRT) framework to the
ESP32 microcontroller. The motivation arose from the growing demand for intelligent and
efficient solutions in an increasingly technological world, where the need to achieve better
results in devices with limited resources becomes more significant and relevant, especially
in Internet of Things (IoT) and automation applications. The main objective is to provide
an easy-to-understand didactic material that can contribute to students, researchers,
professionals in the field, and enthusiasts of the subject, addressing fundamental concepts
and presenting a practical example of sine wave prediction using artificial neural networks.
The methodology consists of adapting an already developed project, including the creation,
training, and optimization of a Machine Learning (ML) model in TensorFlow, followed
by the conversion of this model to the TensorFlow Lite format and its implementation
on the ESP32 microcontroller. The results were promising, indicating high accuracy of
the developed model and demonstrating the effectiveness of the proposed solution. It is
concluded that TensorFlow Lite on ESP32 not only allows the execution of more complex
Machine Learning models but also demonstrates excellent efficiency and proves to be a

promising approach for developing solutions in embedded devices.

Keywords: Artificial Intelligence (Al); Embedded Systems; Machine Learning (ML);
ESP32; TensorFlow Lite (LiteRT).
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1 INTRODUCAO

1.1 Contextualizacao

Diante de tamanho avango tecnolégico global, no que diz respeito a Inteligéncia
Artificial (do inglés, Artificial Intelligence (Al)) tem-se uma revolugdo em termos de
inteligéncia e eficiéncia, permitindo que maquinas atuem de forma autonoma, com qualidade
e produtividade. Dentre as areas de influéncia da Al ressalta-se a de sistemas embarcados,
com a juncao de hardware, software e interfaceamento de dispositivos integrados na
execucao de determinadas tarefas. Este sistema se encontra cada vez mais presente no dia
a dia das pessoas, fornecendo servigos essenciais e permitindo que agora dispositivos com
menores demandas de consumo de energia e com recursos limitados executem tarefas que

anteriormente eram realizadas apenas por maquinas com maior poder computacional.

No passado, modelos de Al, especialmente Aprendizado de Maquina (do inglés,
Machine Learning (ML)), eram utilizados apenas em ambientes computacionais altamente
robustos, como por exemplo: data centers e supercomputadores. Contudo, com o crescente
poder de processamento, sendo cada vez maior com o passar do tempo, o mundo em que
vivemos a cada dia se torna mais micro conectado, com isso, tém-se o avanco de hardwares
menores, otimizacao de algoritmos e consequentemente criacdo de novos frameworks, que é
o caso do TensorFlow Lite (TF Lite) e Aprendizado de Maquina Mintsculo (do inglés, Tiny
Machine Learning (TinyML)), que fazem a interconexao entre Al e sistemas embarcados.
Com o crescimento acelerado da quantidade de dados coletados por dispositivos méveis e
de Internet das Coisas (do inglés, Internet of Things (1oT)), faz com que haja um destaque
em computacao de borda, pois essa necessita distribuicao em que parte da computacao
ocorra perto de onde os dados sao criados, tendo um processamento local e diminuindo os

servidores remotos, mostrando ser fundamental ML em sistemas embarcados (WARDEN,

P.; SITUNAYAKE, D., 2020).

As aplicagoes de Al vem otimizando varios servigos e abrangendo diversas areas,
como é o caso da automagao residencial, que utiliza dispositivos Internet das Coisas (do
inglés, Internet of Things (IoT)) para controlarem e automatizarem varios dispositivos da
casa, como iluminagao, janelas, cAmeras e muito mais (SILVA et al., 2022); satde, com
monitoramento de satide, como pulseiras inteligentes e relégios, permitindo aos pacientes
acompanharem diversos parametros da satude, como frequéncia cardiaca e pressao arterial,
tudo de maneira continua e autéonoma (OLIVEIRA & SANTOS, 2021); agricultura, como
a transformagao de aparelhos tradicionais em “pulverizadores inteligentes”, essa foi uma
proposta criada por uma empresa brasileira chamada SAVEFARM., a qual ao deixar
esses aparelhos inteligentes faz com que os mesmos sejam capazes de otimizar a aplicagao
de agroquimicos (SAVEFARM., 2023). Além disso, a industria automotiva se beneficia

também dessas tecnologias, um exemplo ¢é a direcao autonoma, que usa ML para processar



12

dados de sensores e cameras, os quais identificam possiveis riscos na pista que o veiculo

esta percorrendo e evita que ocorra um acidente, dessa maneira aumenta a seguranga do(s)

passageiro(s) (GOMES & PEREIRA, 2020).

Conforme apontado por Vijay Madisetti e Arshdeep Bahga em MADISETTI, V.;
BAHGA, A. Embedded Systems: Fundamentals and Applications, 2017, “os sistemas em-
barcados inteligentes representam uma convergéncia de tecnologia que exige um equilibrio
delicado entre funcionalidade avangada e as restrigoes inerentes ao hardware”, isso nos

mostra que mesmo com grandes avancos ainda existem barreiras a serem quebradas,
desafios que a cada dia vem sendo superados. (MADISSETI & BAHGA, 2017)

Um framework /biblioteca criado de suma importancia para desenvolvimento dessa
tecnologia é o TensorFlow Lite, o qual faz essa uniao de ML com dispositivos de pequeno
porte, ou seja, aplicagdo de ML em microcontroladores e outros dispositivos usando alguns
kilobytes de memoria. Assim como TensorFlow Lite, o TinyML tem a mesma funcao, que

é executar modelos de ML em microcontroladores.

Por mais que o TensorFlow Lite e o TinyML parecam ser a mesma coisa, na
realidade sao duas abordagens distintas. O TinyML tem um foco maior na execucao de
modelos de ML em dispositivos mintsculos, menores que os executados pelo TensorFlow
Lite. O TinyML representa o campo de técnicas de otimizacao, compactacao de modelos e
algoritmos para permitir Al em hardwares muito restritos (TINYML FOUNDATION.,
2023). O TensorFlow Lite pode-se dizer que é uma biblioteca mais geral e aplicavel a gama
de dispositivos com recursos limitados muito maior, enquanto o TinyML é voltado para

dispositivos onde consumo e tamanho sao criticos, como sensores inteligentes e wearables

(WARDEN, P.; SITUNAYAKE, D., 2020).

1.2 Motivacao

A Al ganha cada vez mais holofotes na sociedade, impactando cada vez mais a
economia e os avancgos tecnoldgicos nas mais variadas areas. A juncao de Al juntamente
com sistemas embarcados nao é diferente, ela ird permitir novas solugoes, sendo mais
baratas e de consumo energético baixo, o que no caso de Al baseada em nuvem nao é
possivel. Diante disso, novas perspectivas tecnolégicas sao alcancaveis. O presente estudo
tem como motivacao a inovagao e revolucao que a juncao das tecnologias poderao causar

no futuro, proporcionando novos empregos, pesquisas e desenvolvimentos.

A justificativa para a escolha do TensorFlow Lite se deve a sua capacidade de
conversao de modelos pré-treinados do Tensor Flow em formatos especiais otimizados para
velocidade e armazenamento. Modelos com o Lite sdo muito leves de maneira a obter uma
baixa laténcia em dispositivos de ponta e dispositivos incorporados, como por exemplo

ambiente Mobile e microcontroladores, respectivamente.
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1.3 Objetivos

O presente trabalho objetiva proporcionar uma abordagem mais tedrica e didatica,
fornecendo um arcabougo relevante para estudantes, profissionais da area e entusiastas no
assunto de Al em sistemas embarcados. tendo um foco maior em ML, utilizando a aborda-
gem TensorFlow Lite, mas citando outra relevante nesse contexto, TinyML. O exemplo
pratico de implementacao que serda abordado mais adiante usa um microcontrolador, o

ESP32, destacando sua importancia nessa tecnologia.

1.4 Divisdo do Trabalho

Este trabalho foi dividido em cinco capitulos, os quais se interagem entre si, o intuito
deles é fornecer uma estrutura clara, coesa e que deixe o fluxo de ideias da proposta do
trabalho de facil compreensao, tornando o aprendizado mais acessivel e valioso, oferecendo
abordagens tedricas e praticas sobre o uso de Al em sistemas embarcados, como o uso do
framework TensorFlow Lite. Diante dessa ideia, serd apresentado a estrutura de forma

minuciosa.

O primeiro capitulo, Introducao, foi dividido em quatro subcapitulos. O primeiro é
a Contextualizacdo, que apresenta uma introdugao ao tema do trabalho, oferecendo uma
visdo geral da Al em sistemas embarcados, com foco em ML, destacando seus avancos,

relevancia atual e futura, além dos desafios.

Na parte que diz respeito a Motivacao, hé a justificativa da escolha do tema,

importancia das tecnologias e o impacto delas na atualidade.

Nos Objetivos, sao apresentados o intuito geral do trabalho, especificando o publico
alvo e as tecnoligias utilizadas, exemplificadas por meio de um problema pratico, com a

finalidade de fornecer um material didatico académico.

O capitulo 2 aborda uma revisao sobre o TensorFlow Lite visa fornecer uma
fundamentacao teodrica sobre essa framework, abordando a estrutura do software e também

a histoéria e funcionamento interno da biblioteca.

O capitulo 3 apresenta um tutorial de utilizacao do ESP32. Ha um passo a passo
para a implementacado de ML nesse microcontrolador, descrevendo de forma eficaz e
detalhada de como se utiliza o TensorFlow Lite no ESP32. Antes desse passo a passo, ha

uma breve teoria sobre o ESP32 para posteriormente, entrar nas abordagens supracitadas.

O capitulo 4 traz um exemplo de utilizacdo, sera apresentado uma aplicacao
pratica, tendo o desenvolvimento e implementacdo de um modelo de ML utilizando
o microcontrolador ESP32, onde tera todo o problema de forma detalhada, objetivos,
mostrando cada etapa da construcao do projeto e seus resultados. O intuito desse capitulo

¢é ilustrar os conceitos discutidos no trabalho.
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Por fim, o capitulo V traz a conclusao do trabalho, que é a parte final, onde é
discutido sobre tudo que foi abordado anteriormente, refletindo os resultados das teorias
e as contribuigdes. Sao mostradas as limitagoes da Al no microcontrolador ESP32 com
o uso do TensorFlow Lite e sugestoes para diminuir essas limitagoes, contribuindo para

trabalhos futuros.



15
2 REVISAO SOBRE O TENSORFLOW LITE

Este capitulo abordara uma revisao sobre o TensorFlow Lite, desde o seu surgimento
até suas vantagens, detalhando os conceitos e estruturas desse software, apresentando seus

principais aspectos e funcgoes.

Antes de abordar diretamente o TensorFlow Lite, é imprescindivel falar sobre
o TensorFlow, o qual foi desenvolvido pelo Google e foi disponibilizado ao piiblico em
2015. O TensorFlow é uma biblioteca de ML utilizada globalmente em grande escala,
e uma caracteristica notavel é que sua plataforma é de cédigo aberto (do Inglés, open
source). Seus desenvolvedores aderiram um lema muito famoso que a grande maioria dos
apaixonados por tecnologia, em especial ML, o conhecem: “Uma estrutura de Aprendizado
de Maquina (ML) de cédigo aberto para todos”, tendo como principal linguagem de
interface o Python (WARDEN, P.; SITUNAYAKE, D., 2020).

Criada com o intuito de ser utilizada em desktops e servidores Linux, Windows e
macOS, o TensorFlow fornece muitas ferramentas e exemplos para que modelos de ML sejam
executados, otimizados, treinados e implantados em modelos na nuvem, além de varios
tutoriais disponiveis auxiliando quem deseja explora-lo. Suas agoes sao executadas em
processadores que sao as Unidades Centrais de Processamento (do inglés, Central Processing
Unit (CPU)), Unidades de Processamento Grafico (do inglés, Graphics Processing Unit
(GPU)) e também por Unidades de Processamento de Tensor (do inglés, Tensor Processing
Unit (TPU)). As TPUs sao circuitos integrados de aplicacao especifica projetados pelo
Google para redes neurais. Sao otimizados para treinar modelos de Aprendizado Profundo
(do inglés, Deep Learning) maiores e mais complexos. Entretanto, hé limitagoes quando
se trata de dispositivos moveis, como Android e iOS, os quais possuem menos Memoria
de Acesso Aleatério (do inglés, Random-Acess Memory (RAM)) e menor espago de
armazenamento (WARDEN, P.; SITUNAYAKE, D., 2020).

Diante dessa limitagdao que o TensorFlow nao era capaz de atender, foi desenvolvido
também pelo préprio Google, em 2017, o TensorFlow Lite, que atualmente sofreu uma
alteragdo em seu nome, passando a ser chamado de Tempo de Execugao Leve (do inglés,
Lite Runtime (LiteRT)) (GOOGLE., 2024). A partir desse momento, no decorrer de todo

o restante do trabalho, ele sera referenciado somente como LiteRT.

O LiteRT é uma biblioteca que tem como propdsito permitir a execugao de modelos
de redes neurais em dispositivos méveis, sendo eficiente e de facil implementagao. Os
desenvolvedores do LiteRT para atender essa demanda foram modificando os recursos, tipos
de dados e reduziram as operacoes do TensorFlow, para que fosse possivel tal execucao
nos dispositivos com rescursos bem menores. Reduziram tamanho e a complexidade da
estrutura, dispensando recursos que nao haveria necessidade ou seriam poucos utilizados

nessas plataformas, como por exemplo, o suporte ao treinamento de modelos. Também
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nao hé suporte a tipos de dados os quais ha no TensorFlow em LiteRT (WARDEN, P.;
SITUNAYAKE, D., 2020).

Com essas retiradas, o LiteRT tornou-se mais compacto, facilitando seu encaixe para
melhor adequagao em aplicativos com restrigoes de tamanho, tornando-se dessa maneira
ideal para esses casos. Além disso, ele tem bibliotecas otimizadas para determinadas CPUs
e também um suporte de aceleracdo por meio de APIs - Interface de Programacao de
Aplicagao (do Inglés, Application Programming Interface) de redes neurais do Android. As
APIs tornam mais faceis a integracao entre os modelos de ML em sistemas embarcados,
como por exemplo a conversao de modelo TensorFlow em LiteRT. Uma vantagem expressiva
é a melhora no desempenho da inferéncia, alcancada através de caminhos para utilizagao
de uma execugao otimizada para dados menores e assim uma redugao significativa em

tamanhos de modelos (WARDEN, P.; SITUNAYAKE, D., 2020).

A equipe do Google, responsavel pelo desenvolvimento do LiteRT viu o sucesso
que foi o framework para dispositivos méveis, porém nao atendia outros produtos dentro
do proprio Google assim como produtos exteriores no mercado global, os quais também
poderiam se beneficiar do ML para otimizar seus servigos. Vale ressaltar que o maior
empecilho ainda era o tamanho do arquivo binario, mesmo sendo relativamente pequeno
centenas de quilobytes (do inglés, kilobytes (KB)), o mesmo ainda precisava ser menor, ou
seja, mais compacto (WARDEN, P.; SITUNAYAKE, D., 2020).

Como consequéncia, em 2018, os desenvolvedores do Google comecaram a adaptar e
experimentar o LiteRT exclusivamente para sistemas embarcados. Nesse processo o objetivo
era reutilizar o maximo possivel das tecnologias ja bem estruturadas dos dispositivos méveis,
de maneira a atender os requisitos dos ambientes embarcados. Primeiramente, a equipe
teve em mente algo pratico, de uso real, que foi o reconhecimento de uma palavra falada
para ativar e acessar os servigos (WARDEN, P.; SITUNAYAKE, D., 2020).

Diante dessa ideia, de uma assistente virtual que faz reconhecimento de palavras,
surgiu a Siri, em 2011, que foi introduzida no iPhone 4S, uma aquisicao da Apple. Ela
foi pioneira nessa tecnologia para smartphones e expandiu ainda mais sua capacidade,
indo além do simples reconhecimento de palavras, podendo realizar intimeras tarefas,
como reproduzir musicas de varios aplicativos de midia, programar eventos de calendario,
lembretes e alarmes, traduzir idiomas, entre outras fungées (MCDONOUGH, 2025). Com
isso, outras empresas aderiram a essa ideia e, um pouco mais tarde, a Amazon desenvolveu
sua propria assistente, a Alexa, langada em 2014 junto com a Echo, que basicamente
possui as mesmas fungoes da Siri (KITAMURA, 2023).

Outras aplicacoes praticas que podem ser citadas em que o LiteRT esta sendo
aplicado sao: sistemas de seguranca e automacao industrial. Uma aplicacao importante
do uso dessa tecnologia é em dispositivos médicos portateis, como monitores de glicose e

oximetros, no qual o modelo de ML permite diagnosticar com rapidez e precisao sem a
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necessidade de conexao em nuvem (CHEN, J et al., 2020).

Um outro exemplo do uso do LiteRT é em veiculos autéonomos e sistemas de
assisténcia ao motorista. Nesse caso, a alta eficiéncia energética e a baixa laténcia sao
criticas, diante desse cendario, o LiteRT entra com a fun¢do de permitir a execucao de

modelos de visao computacional direto e exclusivo nos sistemas embarcados desses veiculos

(GRIGORESCU, S. et al., 2020).

Essa tecnologia também é amplamente usada em [oT, onde ela processa informacoes
em tempo real, fazendo com que a resposta do sistema seja melhorada devido a diminuigao

da dependéncia com servidores que sao remotos (LANE, N. D., 2015).

O LiteRT para microcontroladores tem como uma de suas principais propostas
tornar o uso de ML de facil aplicagao e entendimento para os mais diversos dispositivos,
impactando diretamente no desenvolvimento de software embarcado. Além disso, um de
seus principais recursos e vantagens ¢ a capacidade de otimizacao, que torna os modelos de
ML mais eficientes e compactos. A otimizacdo preserva a precisao dos modelos, enquanto
diminui o tamanho dos recursos computacionais assim como o proprio modelo. Uma técnica
largamente utilizada com esse intuito é a quantizagdo, a qual faz os ajustes necessarios e
remove aquilo que é desnecessario no modelo (EITCA ACADEMY ., s.d.).

A quantizacao faz um ajuste essencial que faz com que o modelo fique menor e
que acelere a inferéncia, impactando minimamente a precisao, a qual faz uma reducao
nos numeros utilizados no modelo, passando os valores de 32 bits, que sao floats, para 8
bits, que sdo inteiros, ou seja, descartando as casas decimais (JACOB et al., 2018). Dessa
maneira ela também permite que hardwares que nao possuam unidades de ponto flutuante
possam utilizar o LiteRT, aumentando ainda mais sua compatibilidade com dispositivos

mais limitados.

Para dispositivos com baterias limitidas, o LiteRT dispde de uma técnica chamada
poda, a qual remove conexoes desnecessarias das redes neurais, sejam elas redundantes
e/ou pouco significativas para essas redes, tornando o modelo de tamanho menor e consumo
mais reduzido de energia (HAN et al., 2015).

Dentre os varios recursos do LiteRT, pode-se destacar os mais relevantes. Com
relacdo as restrigoes, pode-se citar a laténcia, privacidade, conectividade e consumo de
energia. Quanto aos suportes, eles podem ser divididos em dois: suporte as plataformas,
tendo compatibilidade com dispositivs Android e iOS, Linux incorporado e, o principal
nesse estudo, microcontroladores; o outro suporte sao as varias linguagens de programacgao

que o mesmo comporta, o tradicional C e C++ e o Python, que vem sendo amplamente
utilizado, além de outras linguagens (EITCA ACADEMY ., s.d.).

O LiteRT também tém opcoes de modelos com varios frameworks e um recurso

fundamental: a aceleragdo de hardware, que vem aumentando em grande escala o desem-
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penho. Todas essas vantagens vem ampliando a viabilidade da execucao de Al em varios

aplicativos e sistemas embarcados, permitindo solucoes unicas (EITCA ACADEMY ., s.d.).

Assim como toda tecnologia existente em que ha vantagens e desvantagens, para o
LiteRT nao ¢ diferente, ela enfrenta desafios e limitacoes significativos. Por mais que o
LiteRT tenha compatibilidade com diversos dispositivos ela ainda enfrenta problemas de
portabilidade entre diferentes arquiteturas de hardware, sendo assim, a otimizagao para
cada plataforma especifica pode exigir ajustes manuais, tornando o desenvolvimento dessa

aplicacao mais dificultosa e complexa (LIN et al., 2021).

Com relacao ao futuro do LiteRT ele estd intrinsecamente ligado a computagao de
borda. A computacao de borda é o processamento, analise e armazenamento de dados o
mais proximo possivel de onde eles foram gerados, com o objetivo de tornar as respostas
mais rapidas assim como a andlise, sendo praticamente tudo em tempo real. Seu uso pode
ser efetuado em diversas areas, como o varejo, que teria o objetivo de deixar o fornecimento
e o desenvolvimento de produtos mais eficiente, um exemplo é a utilizacao de sensores e

cameras para se obter os objetivos ditos anteriormente (INTEL, 2025).

Os dispositivos cada vez mais vém incorporando modelos de ML, isso faz com
que aumente a demanda por bibliotecas mais leves e eficientes, que é o caso do LiteRT,
tornando sua aplicagdo cada vez maior. Um destaque que tende a ser cada vez mais
promissor é a uniao entre LiteRT e frameworks de aprendizado federado, que é uma
configuracao de ML, o qual faz os modelos treinarem de forma colaborativa, mantendo a
conservagao dos dados (KAIROUZ et al., 2019).

Além disso, pode-se esperar melhorias no suporte de hardwares especializados,
como Arranjos de Portas Programaveis em Campo (do inglés, Field Programmable Gate
Array (FPGA)) e Unidades de Processamento Neural (do inglés, Neural Processing Unit
(NPU)). Esses hardwares sdo especializados em executar modelos de Al, o qual oferecem
maiores desempenhos, com a unidao com o LiteRT, faz com que potencialize ainda mais

esses hardwares e amplie suas capacidades (JOUPPI et al., 2017).
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3 TUTORIAL DE UTILIZACAO NO ESP32

Antes de abordar como se utiliza o ESP32 com ML, serd apresentada uma breve

introducao sobre sua histéria e conceitos.

O ESP32 é um microcontrolador criado e desenvolvido pela empresa chinesa
Espressif, o qual alia alta performance e um baixo consumo de energia. Destaca-se pelo
baixo custo de aquisi¢ao e por seus recursos de conectividade, tendo como principais o wifi

e o bluetooth, ambos integrados, o que a torna uma excelente escolha para projetos de
robotica, automagao e IoT (SMARTKITS, 2023).

A parte fisica do ESP32 é dotada de um processador dual-core de 32 bits e possui
520 kB de memoéria flash. Com relagao a pinagem, o mesmo possui 34 pinos GPIO, que
sdo pinos digitais e pinos analdgicos, dentre esses 34, 22 sao digitais e 12 sdo analdgicos,
permitindo a interacao do ESP32 com outros dispositivos eletronicos, sensores e também

atuadores (VICTOR VISION, 2023).

Os pinos digitais e analégicos tém suas funcionalidades no qual o digital sao pinos
configurdveis que podem atuar tanto na entrada quanto na saida, ja os pinos analdgicos
sao utilizados para leitura de sinais analogicos, como variagoes de temperatura e tensao
(VICTOR VISION, 2023).

Com relagao a programacao, o mircrocontrolador ESP32 é bem versatil, pois é
compativel com vérias linguagens de programacao, dentre as quais se destacam C, C++ e
Python. A escolha da linguagem vai depender de qual o principal objetivo do projeto: o
Python é amplamente utilizado para projetos de Al, IoT e projetos de prototipagem, ja
o C e C++ se configuram mais em projetos que exigem alto desempenho e controle de
hardware, sendo mais utilizados em projetos de sistemas embarcados (VICTOR VISION,
2023).

No que tange ao desenvolvimento com o ESP32, ha inimeras ferramentas que tém
compatibilidade com o microcontrolador e podem ser utilizadas sem grandes dificuldades. O
uso dessas ferramentas vai depender exclusivimente das necessidades do projeto, assim como
a familiaridade do desenvolvedor com os diversos tipos de ferramentas. Serd apresentado

neste momento alguma das ferramentas mais comumentemente utilizadas com o ESP32:

O ESP-IDF ¢ o framework desenvolvido pela prépria criadora do ESP32, sendo
assim o ambiente de desenvolvimento oficial do microcontrolador, o qual oferece um amplo
conjunto de ferramentas, bibliotecas e exemplos praticos, facilitando o entendimento
e proporcionando maior capacidade de desenvolvivemento e aplicacoes, sendo eficiente

e robusto. O grande destaque quanto as vantagens é o completo suporte ao ESP32
(EMBARCADOS, 2023).

Eclipse IDE é uma plataforma de desenvolvimento extensivel e integrada, sendo uma
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das plataformas mais populares nesse meio. Ela em conjunto com o plugin do ESP-IDF
torna o ambiente para com o ESP32 mais robusto. Por possuir uma vasta flexibilidade isso
a torna extremamente compativel e ideal com projetos mais complexos, proporcionando
excelentes gerenciamentos, avancadas ferramentas de depuracdo e uma integragao direta
com o ESP-IDF (STARTBIT, 2023).

MicroPython é uma implementagao reduzida e eficiente que tem algumas bibliotecas
padroes da linguagem de programacao Python tendo como func¢ao a otimizagdo para rodar
em microcontroladores e também em ambientes com recursos limitados. Seu ambiente é
interativo onde vocé pode utilizar os comandos do Python no préprio microcontrolador,
por ser muito compacto ele cabe e roda em no maximo 256k de espago para cddigo e 16k de
memoria RAM, também possui diversos suportes a médulos especificos para determinado
tipo de hardware, como GPIO e PWM. No ESP32 as principais utilidades do MicroPython
estao na prototipagem rapida e acesso ao hardware (MICROPYTHON, 2023).

PlatformIO é uma plataforma de desenvolvimento que suporta o microcontrola-
dor ESP32, assim como outros hardwares além desse. Além disso, possui suporte ao
MicroPython oferendo divesas funcionalidades que facilitam a implementacao e desenvolvi-

mento, as principais sdo gerenciamento de projetos, depuracao e instalagao de bibliotecas
(PLATFORMIO, 2023).

3.1 Passo a passo para implementacao

Como ja se sabe, o LiteRT possibilita os desenvolvedores a criarem modelos de
ML em dispositivos limitados, que é o caso do microcontrolador ESP32. Dessa forma,
isso se torna extremamente importante, visto o aumento acelerado da utilizacao de redes
neurais com relacao a Al, pois a mesma é capaz de reconhecer padroes complexos e realizar
previsoes com alta precisao (ELETROGATE., 2023).

Diante desse cenario, destaca-se a Inteligéncia Artificial das Coisas (AloT), que
é a uniao da Al com a IoT. Sabendo que a IoT consiste em dispositivos inteligentes
interconectados, equipados com sensores e atuadores, além da conectividade de rede, o
que possibilita a coleta e transmissao de dados, combina-se a Al com a IoT. Isso permite
que a Al analise os dados, processe-os em tempo real e tome decisoes de forma auténoma,
automatizando a tarefa desejada. Como resultado, o sistema se torna mais otimizado,
preciso e extremamente adaptavel (ELETROGATE, 2023).

Nesse contexto, as redes neurais artificais, foram baseadas/inspiradas na estrutura
neural do cérebro humano. Sua disposicao se da através dos neuronios, que sao interligados
entre si e tendo sua organizacao em camadas. Suas camadas sao divididas basicamente em
trés niveis, sendo a camada de entrada, as camadas intermediarias, podendo ser uma ou

mais, e por fim a camada de saida. Inicialmente a rede recebe um sinal, no qual a seguir
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serao aplicados pesos as entradas, tendo uma soma e uma funcgao de ativagao. O papel

dessa funcao ¢ introduzir a rede a nao-linearidade, fazendo com que a rede seja capaz de
aprender padroes ainda mais dificeis (ELETROGATE., 2023).

O que foi dito anteriormente recebe o nome de propagacao feedforward, ou retro-
propagacao. Onde o mesmo alimenta as entradas e saidas da rede. Para que ocorra o
treinamento dessa rede é essencial expor a mesma a um vasto conjunto de dados com
entradas e saidas conhecidas, diante dessa exposicao ela sera capaz de ajustar pesos e
vieses se baseando nos erros que foram obtidos na comparacao entre a saida prevista e a
saida real. Desse modo, a rede se torna capaz de aprender com seus erros e com o passar
do treinamento consegue aprimorar sua capacidade de precisao nos dados. No término
dessa etapa, a rede é capaz de avaliar dados desconhecidos (ELETROGATE., 2023).

A Figura 1 resume bem o passo a passo de como proceder para implementar um

modelo de ML no ESP32 serd mostrada e explicada a seguir:

-.-'r "'.,
| &
TensorFlow TensorFlow Lit

Treino \ Conversao ) Otimizac8o Deploy Inferéncias

— Figura 1 - Diagrama das etapas do modelo e seus respectivos frameworks

Fonte: blog.eletrogate.com, 2023

Primeiramente, é necessario treinar o modelo utilizando o TensorFlow, no qual ha

etapas bem definidas a serem seguidas:

1. coletar os dados para alimentar o modelo;

2. processamento inicial dos dados, no qual ha limpeza, pois podem haver valores
faltantes, erros e valores fora do padrao, depois tem que normalizar os dados e por

fim dividi-los em conjunto de treino e teste;

3. construir o modelo, ou seja, definir a rede neural;
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4. treinar o modelo com os dados que foram alimentados na entrada fazendo os ajustes

dos pesos e vies;

5. avaliar o modelo para verificar se estd desempenhando bem sua funcao.

O segundo passo, como bem sugere a imagem, ¢é fazer a conversao do TensorFlow
para o TensorFlow Lite (LiteRT). E utilizado uma ferramenta em Python para fazer essa
conversao, chamada “TFLiteConverter”, que transforma o modelo de formato .pb ou
SavedModel do TensorFlow para o formato .tflite do TensorFlow Lite (LiteRT). Dessa
maneira, otimizando os dados para os dispositivos limitados, além da redugao do tamanho

do modelo, para o nosso caso o ESP32.

O terceiro passo é a otimizagdo do modelo, para alcancar modelos mais eficiente
e precisos. Como a capacidade de processamento do ESP32 é baixa, o modelo precisa
diminuir o consumo de memoria e tempo de inferéncia, para isso, faz-se necessario quantizar
o modelo, ou seja, converter os pesos de float32 para int8, dessa maneira se reduz o tamanho
do modelo e melhorando seu desempenho. Mas a depender do modelo pode-se usar outras

ferramentas para otimizar, como: poda ou distilacdo de conhecimento.

O quarto passo é o Deploy no ESP32, que ¢é carregar todos os passos anteriores no
microcontrolador, que vai depender da ferramenta utilizada para programar, podendo ser
um Arduino IDE, ESP-IDF e etc.

Para finalizar, o quinto e ultimo passo é a inferéncia, que é a alimentacdo do modelo
com dados novos. No ESP32 sua inferéncia é basicamente coletar os dados através de
sensores, processar os dados de maneira a ficar no formato que o modelo foi programado,
executar o modelo com o TensorFlow Lite para ter a previsao e para finalizar ele ira

interpretar os resultados obtido e tomara uma decisao de acordo com o que se deseja.
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4 EXEMPLO DE UTILIZACAO

Nesta secao serda implementado um projeto sobre toda a teoria vista nos capitulos
anteriores, a fim de comprovar através de um exemplo pratico a combinacao do ESP32 com
ML, no qual serd usado como base todo o projeto desenvolvido pelo professor Abhishek
Singh. A abordagem em questao tem como tema a previsao de saida de uma onda senoidal

e visualizagao da rede de aprendizado profundo.

A motivacao para esse projeto é devida a toda importancia das ondas senoidais,
que sao a forma de representacao ondulatéria natural de muitos fendmenos fisicos, além
de serem as mais presentes no mundo real e, consequentemente, uma das mais estudadas
e trabalhadas. Isso ocorre pelo fato de que muitos fenomenos podem ser representados
matematicamente por essa forma de onda. Sua ocorréncia é observada em sinais de corrente
alternada e em ondas de radio, que sao elementos comuns no cotidiano da humanidade.
No entanto, ha diversas outras ocorréncias dessas ondas além das mencionadas, como no
movimento pendular simples (SINGH, A. 2022).

O objetivo desse projeto ¢é prever a saida da onda senoidal, e para isso sera utilizado
um modelo de ML, o qual fard essa previsao. Posteriormente, para visualizacao serd
utilizado o aplicativo de navegador Netron. (SINGH, A. 2022)

Serd usado para implementacao desse projeto a linguagem de programacao Python
com o pacote Anaconda e o Google Colab para implementar a sintaxe da linguagem e
plotar os graficos pertinentes. (SINGH, A. 2022)

Pelo fato de estarmos usando o Google Colab faz-se necessario primeiramente fazer

as seguintes instalgoes:

— Figura 2 - InstalacOes necessarias

Fonte: Elaborado pelo autor através do Google Colab

Os comandos “pip install” fornecem a instalacao, atualizacao e o gerenciamento
de ferramentas que nao vem pré instaladas no Google Colab, e nesse caso foi instalado
o TensorFLow para usar ML e a Keras para redes neurais, “—upgrade” faz com que seja

instalada a versao mais atual de cada biblioteca.

Tendo feitas as devidas instalagdes, o préximo passo serd importar um conjunto de

bibliotecas para prosseguir com a proposta.
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- tensorflow as tf

as plt

from t 5 import layers

— Figura 3 - Bibliotecas importadas

Fonte: Elaborado pelo autor através do Google Colab

Neste momento, serd criado um conjunto de dados. Para esse exemplo em questao,
serao utilizadas 7000 amostras, nas quais a distribuicao serd da seguinte maneira: 20%
para validagao, 20% para testes e 60% para treinamento. Dessa forma, serd garantido
que o modelo seja capaz de aprender e ser avaliado da maneira necessaria para dados nao

vistos antes. A Figura 4 mostra o cédigo utilizado para executar o que foi descrito:

nsamples
val sam per =

— Figura 4 - Amostras, Validacao, Teste e Treinamento

Fonte: Elaborado pelo autor através do Google Colab

Apoés executar o passo anterior, para prosseguir com o modelo, faz-se necessario
gerar um sinal aleatério. E isso que a Figura 5, a seguir, estd mostrando: o cédigo

responsavel por gerar esse sinal aleatorio.

p.random.uniform({low=0, high=2 * math.pi,

values)

— Figura 5 - Cédigo para gerar um sinal aleatério

Fonte: Elaborado pelo autor através do Google Colab

Apés compilar, com a utilizaggo do Numpy (“np” no codigo), foi gerado um
sinal com as amostras, que nao é uma onda senoidal pura, possuindo uma parcela de
aleatoriedade. Esse sinal, que combina a forma de onda senoidal com ruido, é descrito na

Figura 6. Em seguida, sera criada a forma de onda senoidal com ruido, apresentado na
Figura 7. (SINGH, A. 2022)
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y values = np.sin{x values)

plt.plot(x values, y values,

— Figura 6 - Sinal aleatério das amostras

Fonte: Elaborado pelo autor através do Google Colab

1.0+

0.5+

0.0+

—0.5

—1.0 41

— Figura 7 - Sinal de onda senoidal ruidoso

Fonte: Elaborado pelo autor através do Google Colab

O conjunto de dados para treinar e testar serao gerados através de x e y, onde
x representa os dados de entrada do modelo, enquanto y contém os rétulos ou valores
esperados, que o modelo irda aprender a prever com base em x. Para evitar que o modelo
decore padroes duvidosos e consequentemente cometa erros, vamos embaralhar de forma
aleatoria, tornando o modelo mais eficiente e com treinamento mais estavel. Para isso sera

importada uma nova biblioteca para executar essa fungao de embaralhamento. (SINGH,
A. 2022)

x values, y values

— Figura 8 - Embaralhamento

Fonte: Elaborado pelo autor através do Google Colab

Fundamentalmente o processo de aprendizagem de modelos de ML sao divididos

em trés etapas: treinamento, validagao e teste.

e Treinamento: treina o modelo
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o Validagao: faz a comparacao entre diferentes modelos

o Teste: faz testes para comprovar se o modelo funciona

Nesse modelo foi feita essa divisao, na qual o Numpy é responsavel pelo processo,

além disso, com o matplotilib plotamos a curva com essas divisdes. (SINGH, A. 2022)

1 sam per *
f split +
np.split(

plt.plot(
plt.pl

— Figura 9 - Codigo da divisao dos dados e plotagem

Fonte: Elaborado pelo autor através do Google Colab

‘. . +  Treino
+« \alidacdo
1.0 A + Teste

0.5 +

0.0 +

—0.5

—1.0 1

— Figura 10 - Divisao dos Dados em Treinamento, Validacao e Teste

Fonte: Elaborado pelo autor através do Google Colab

Com o plot do grafico podemos concluir que tivemos uma boa divisao de dados, no
qual o modelo aprendera de forma eficiente como prever uma senoide ruidosa. Tendo em
vista as amostras sobrepostas e bem distribuidas, da para presumir que esse modelo sera

consistente em seus dados para aprender e avalid-los.

No préximo passo, sera criado o modelo de rede neural, conforme ilustrado na

Figura 11. Esse modelo tera duas camadas densas plenamente conectadas. Sera utilizado
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a funcao RELU para ativar e projetar as redes neurais, e sera utilizado o Adam para
otimizar o modelo. (SINGH, A. 2022). Cédigo utilizado:

model .compile(optimizer="'ad . Lt mae', metri

history = model.fit(x train, y train, epochs batch size=108, validation data=(x val, y val))

— Figura 11 - Codigo Rede Neural

Fonte: Elaborado pelo autor através do Google Colab

Foi utilizado um tamanho de lote 100 e 500 iteragoes. Para exibir o resumo de uma
maneira mais facil de ser visualizada e entendida foi usado o model.summary o qual nos
apresenta os seguintes dados: (SINGH, A. 2022).

model . summary ()
Model: "sequential™
dense | ) (f ; | IIIIIIIIIIIIIII

|
[ Olone, 1 [
l (Nene IIIIIIIIIIIIIIII

Total params: (3.77 KB)
Trainable params: (1.2
Non-trainable params:
Optimizer params:

— Figura 12 - Resultado Rede Neural

Fonte: Elaborado pelo autor através do Google Colab

Com os resultados expressos da Figura 12, ¢ indicado que o presente modelo de
rede neural treinado tém trés camadas densas interconectadas (dense, dense_ 1 e dense_ 2).
A primeira e segunda camada possuem 16 neurdnios cada, e a camada de saida possui
apenas um. O nimero de amostras necessarias para prever uma nova amostra vai depender
do tamanho da janela de entrada, nesse modelo foi definido um vetor de dimensao fixa

com N pontos anteriores.

Foram plotados valores especificos dos parametros, no qual se evidencia que o
modelo treinou todos os seus parametros, sem a ocorréncia de elementos que nao foram
treinados pela rede neural. Com um total de 965 parametros, dos quais 644 foram

otimizados, dessa forma apresentando a eficicia desse processo.

Podemos agora calcular R? (12), que é o coeficiente de determinagdo, além disso, o

calculo do Erro Quadrético Médio (do inglés, Root Mean Squared Error (RSME)) e o Erro
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Absoluto Médio (do inglés, Mean Absolute Error (MAE)), o qual irdo verificar a precisao
do modelo. (SINGH, A. 2022).

Matematicamente as métricas sao definidas da seguinte maneira:
2.
e para o R~

"oy — Gi)?

R =1- -
im1 (g — v)?

(4.1)

onde y; sao os valores observados, 9; sao os valores previstos, y é a média dos valores

observados e n o niamero total de amostras.

e para o RMSE:

1 n
RMSE — J LS — a2 (12)
iz
onde g; sao os valores observados, 9; sao os valores previstos e n o nimero total de
amostras.
o para o MAE:

1& N
MAE = gz ly: — Gil (4.3)

i=1
onde g; sao os valores observados, 9; sao os valores previstos e n o nimero total de

amostras.

R? tem por objetivo avaliar se o modelo se ajusta corretamente ao dados, indicando
a qualidade do modelo. RMSFE tem por objetivo fornecer uma medida de precisao do
modelo, mostrando o quanto as previsoes estao diferentes dos valores reais. M AFE tem

como intuito avaliar a precisao do modelo, mostrando o erro médio das previsoes.

A figura 13 apresenta o c6digo e os resultados dos célculos de B2, RMSE e MAE, os
quais sao utilizados para avaliar o modelo treinado, permitindo uma anélise mais precisa,

pois possibilitam a quantificacdo do erro de previsao em relagao ao valores reais.

Diante dos resultados, nitidamente podemos perceber que a pontuacao de r2 é
proxima de um, 97,82%. Esse valor para r2 e os valores baixos de RMSE e MAE, indica que
o modelo estd fazendo boas previsoes, onde os 97,82% de r2 é a capacidade de explicacao

da variancia dos dados, fornencendo uma linha de menor ajuste (SINGH, A. 2022).

A Figura 14 mostra as formas de onda reais e previstas para fazer uma analise da
aproximacao entre elas. Como r2 esta bem préximo de um, isso sugere que ambas devem

seguir uma a outra com pouca variacao (SINGH, A. 2022).
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MSE: 0.010562300075766397

— Figura 13 - Célculo das métricas

Fonte: Elaborado pelo autor através do Google Colab

Apoés a etapa de treinamento do modelo de rede neural no Google Colab utilizando
o TensorFlow, o modelo foi convertido para TensorFlow Lite e, em seguida, implementado
no ESP32 para a realizacao da inferéncia. A Figura 14 apresenta o desempenho do
modelo, comparando os valores atuais (reais) com os valores previstos pelo modelo apds

ser executado no ESP32.
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— Figura 14 - Desempenho do Modelo: Valores Atuais vs Previstos

Fonte: Elaborado pelo autor através do Google Colab

Como pode ser visto no plot do gréfico, os valores previstos acompanham os valores
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atuais, o que significa que o modelo seguiu satisfatéoriamente a forma de onda senoidal.
Nas regides de curvatura o modelo dos valores atuais teve uma pequena dificuldade para
prever os resultados, isso se da devido ao ruido, mas nada que afete o modelo, porém tem
como melhora-lo, assim como o mesmo possui leve dispersao dos pontos azuis mais na

regiao das curvaturas.

E importante salientar que o modelo foi realizado de maneira offline, utilizando
a linguagem de programacao Python, tudo dentro do ambiente do Google Colab. Em
contrapartida, a inferéncia foi executada rigorosamente no ESP32; visando a execug¢ao em
tempo real. O ESP32 foi programado para coletar os dados de entrada, em seguida processa-
los e, finalmente executar o modelo TensorFlow Lite para a realizacao das previsoes. Sendo
assim, essa abordagem e processo permitem que modelos mais complexos possam ser
treinados em ambientes com maior capacidade computacional e, em seguida, possam ser
convertidos para serem implantados em dispositivos embarcados que possuem recursos

mais limitados, que é o caso do ESP32 que foi utilizado.

O software utilizado para visualizacao desse modelo serd o Netron. O Netron é um
programa capaz de fazer a visualizacao de sistemas neurais, o qual pode ser baixado ou
utilizado de forma online pelo préprio navegador (EDIVALDO, B. 2024).

Antes de utilizar o Netron para visualizar nosso modelo é preciso converter o modelo
de TensorFlow para TensorFlow Lite (LiteRT), o qual ird criar um arquivo model.tflite no

diretério do trabalho.

converter = tf.lit it er.from keras model (model)
tflite = con

h tf.io.gfile.GFile('r 1 ite', 'w as T: f.write(tflite model)

— Figura 15 - Conversao do modelo para TensorFlow Lite (LiteRT)
Fonte: Elaborado pelo autor através do Google Colab

Apbs esse procedimento, podemos acessar o site do Netron e carregar o arquivo

convertido, o que gerou a imagem mostrada na Figura 16.
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FullyConnected

ight

FullyConnected

output 0

— Figura 16 - Modelo Rede Neural no Netron

Fonte: Elaborado pelo autor através do Netron

Podemos observar o diagrama de fluxo da rede neural convertida. No qual cada
parte dessa rede tem suas propriedades e func¢oes que serdo melhores detalhadas nesse

instante:

e keras tensor é a entrada, no qual essa entrada é um vetor unidimensional e sua
dimensao nao é definida, o simbolo de interrogagao nos indica essa indefini¢ao, ou
seja, seu tamanho é dindmico e pode variar de acordo com a inferéncia. Isso se aplica
as outras camadas que tem o simbolo de interrogacao, isso se da pelo fato de na hora
da conversao o modelo nao ter sido especificado a sua dimensao, deixando assim o

mesmo com maior flexibilidade e eficiéncia.

o FullConnected primeira camada: o qual tem os Pesos (16 x 1) que significa a conexao

de 1 neur6nio de entrada a 16 neurdnios, Bias (16) indica que cada neurdnio dos 16
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possui um viés epecifico. O RELU ¢ ativacao no qual introduz a nao linearidade do

sistema, a Saida (? x 16) indica que a mesma produz 16 valores para cada entrada.

 FullConnected segunda camada: os Pesos (16 x 16) tem a funcdo de conectar os 16
neurdnios da primeira camada a outros 16, seu Bias e RELU tem o mesmo sentido e

significado da primeira camada e sua Saida (? x 16) mantém 16 neur6nios.

« FullConnected terceira camada: seu Peso (1 x 16) faz uma reducao de neurdnios,
passando de 16 para somente 1 na saida, Bias (1) indica um viés para saida e sua

Saida faz o retorno de um valor por amostra

o output_0 é a saida final do sistema
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5 CONCLUSAO

Este trabalho buscou elucidar os conceitos e técnicas da integragao entre Al e
Sistemas Embarcados, o qual foi embasado no framework TensorFlow Lite (LiteRT) em
um dispositivo com recurso limitado, no caso o microcontrolador ESP32. Com foco tedrico
e um exemplo pratico, foi possivel demonstrar um pouco da tecnologia, sua relevancia,

vantagens e desvantagens.

Apesar da Inteligéncia Artificial ser uma ferramenta extremamente poderosa no que
diz respeito a otimizacao de processos e automatizacao de tarefas, para grandes dados ela
ainda apresenta certos desafios no campo de Sistemas Embarcados, devido a baixa memoria
desses dispositivos, assim como a energia e capacidade de processamento. Devido a esses
desafios surgiu o TensorFlow Lite (LiteRT) para atender essa demanda de dispositivos de

recursos limitados, como o ESP32.

O presente estudo nos mostrou que o TensorFlow Lite (LiteRT) é extremamente
fundamental para implementar Aprendizado de Maquina no microcontrolador ESP32,
fornecendo técnicas para otimizacao dos dados, diminui¢ao do tamanho do modelo e menor

consumo de energia, deixando o modelo eficiente.

O exemplo pratico elucidou todos os conceitos e técnicas fornecidos nos escopos
anteriores, mostrando uma alta eficadcia do modelo, que propunha prever uma onda senoidal
utilizando uma rede neural. O coeficiente de determinacao atingiu satisfatérios 97,82%,

demonstrando sua excelente capacidade de previsao em relacdo aos dados reais.

Por mais que o estudo e seus resultados tenham sido satisfatorios, vale ressaltar
que o campo de Inteligéncia Artificial em Sistemas Embarcados ainda ndo é muito maduro,
apresentando alguns desafios a serem superados, como a necessidade de ajustes manuais

em plataformas especificas.

Com um mundo cada vez mais conectado e a busca incessante por tecnologias de
ponta, a intengao deste estudo foi contribuir para a disseminacao do conhecimento sobre a
integracao entre Aprendizado de Maquina e Sistemas Embarcados, fornecendo uma base
teodrica, aplicagoes, exemplo pratico e uma perspectiva futura para essa tecnologia, na qual

a tendéncia é crescer de forma exponencial, visto as necessidades da sociedade.

Para futuras pesquisas, sao sugeridos os seguintes temas de investigagao:

e Implementacao do modelo proposto em um outros microcontroladores, como, por
exemplo, o Raspberry Pi, realizando o mesmo estudo e comparando os desempenhos

entre os microcontroladores.

e Aprimoraramento do modelo de ML, utilizando outras redes neurais, explorando téc-

nicas de aprendizado profundo mais complexas e empregando técnicas de quantizacao
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mais avancadas.

o Aplicagdo do modelo desenvolvido em um sistema real, fazendo a integragaodo do
ESP32 com sensores fisicos, como sensores de temperatura, com o intuito de validar

a aplicagao em situagoes reais e praticas.

o Investigacao de outras técnicas de redes neurais para reduzir ainda mais o uso da

memoéria e o consumo de energia, ou seja, visando uma maior otimizacao dos recursos

e Desenvolvimento do modelo em areas mais usuais e praticas, como automagcao

industrial e monitoramento da satude, tornando a tomada de decisoes locais.
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