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RESUMO

Este trabalho apresenta o desenvolvimento de uma Interface Humano-Máquina para
sistemas ferroviários, substituindo uma solução legado baseada em Adobe Flash. O objetivo
central foi criar um sistema moderno que se comunica com o controlador lógico programável,
ElectroLogIXS, via protocolo Genisys, utilizado em sistemas de sinalização ferroviária.
A metodologia incluiu a decodificação do protocolo Genisys, desenvolvimento de um
driver em Python para a comunicação serial, e a implementação de uma IHM utilizando
o framework Kivy, permitindo visualização em tempo real do estado de dispositivos de
campo (sinais, circuitos de via, máquinas de chave) e envio de comando de controle.
A solução foi validada através do simulador Signal Application Testing System (SATS),
demonstrando precisão na interpretação de mensagens de indicação e eficácia no envio de
comandos. Resultados destacam a superação das limitações do sistema legado, como a
falta de personalização, dificuldade de instalação e depêndencia de tecnologias obsoletas,
oferecendo uma alternativa escalável, de código aberto e com total acesso ao backend.
Conclui-se que a integração entre o driver Genisis e a IHM em Kivy representa um avanço
significativo, com potencial para a aplicação em cenários reais e futuras expansões, como
suporte para TCP/IP e gestão de logs integrada.

Palavras-chave: IHM, Genisys, Python, ElectroLogIXS, Kivy.



ABSTRACT

This work presents the development of a Human-Machine Interface (HMI) for
railway systems, replacing a legacy solution based on Adobe Flash. The main objective
was to create a modern system that communicates with the programmable logic controller,
ElectroLogIXS, via the Genisys protocol, used in railway signaling and control systems. The
methodology included decoding the Genisys protocol, developing a Python driver for serial
communication, and implementing an HMI using the Kivy framework, enabling real-time
visualization of field device status (signals, track circuits, switch machines) and transmission
of control commands. The solution was validated through the Signal Application Testing
System (SATS) simulator, demonstrating accuracy in interpreting status messages and
effectiveness in command transmission. Results highlight the overcoming of legacy system
limitations, such as lack of customization, installation challenges, and dependency on
obsolete technologies, offering a scalable, open-source alternative with full access to the
backend. It is concluded that the integration between the Genisys driver and the Kivy-
based HMI represents a significant advancement for railway automation, with potential
for real-world application and future expansions, such as TCP/IP support and integrated
log management.

Keywords: HIM, Genisys, Python, ElectroLogIXS, Kivy.
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1 Introdução

1.1 Contextualização

O transporte ferroviário é essencial para o avanço e desenvolvimento de um país
de proporções continentais. Em países como Estados Unidos e China existe uma malha
ferroviária que cruza toda sua a extensão territorial. O Brasil de maneira modesta em
comparação aos países citados anteriormente também possui investimentos no setor.

A ferrovia, antes movida por energia termoelétrica com locomotivas que dependiam
da queima do carvão, possui hoje locomotivas elétricas, uma demonstração dos constantes
avanços tecnológicos presentes nos sistemas ferroviários. Esses avanços são essenciais para
que haja aumento de produtividade sem que a segurança seja negligenciada.

Contemporaneamente, as empresas que possuem a concessão das malhas ferroviárias
do Brasil negociam com a Agência Nacional de Transportes Terrestres (ANTT) alguns
marcos de avanços que devem ser realizados pelas empresas no tempo em que a ferrovia
estiver sob sua responsabilidade. Dessa maneira as concessionárias podem usufruir da
infraestrutura presente, mas devem investir constantemente em melhorias, evitando assim
que aconteça um sucateamento da malha do país.

Diante desse cenário, sistemas com automação e controle se tornam muito presentes
no setor, pois garantem produtividade com segurança, consequentemente aumentam o
lucro para as empresas, evitando impactos negativos com acidentes. Dentre esses se destaca
o PTC (do inglês, Positive Train Control), que segundo [1], é feita para evitar colisões
entre trens, descarrilamentos causados por velocidade excessiva não autorizada e avanços
de trens para regiões que estão em manutenção. Uma aplicação de PTC possui no seu
sistema mais básico ao menos os seguintes elementos:

• Sistema de Controle de Locomotivas: Equipamentos instalados nas locomotivas que
recebem e transmitem dados em tempo real, possibilitando o controle automático do
trem em emergências.

• Sistema de Sinalização e Comunicação: Infraestrutura ao longo da via férrea que
comunica informações críticas para a locomotiva ou Centro de Controle Operacional

• Centro de Controle de Operações: Uma central que gerencia a monitora o tráfego
ferroviário.

• Softwares de Gestão e Análise: Programas que processam informações de sensores e
do sistema de comunicação e tomam decisões automáticas, visando a prevenção de
acidentes.
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Portanto, essas tecnologias não apenas transformam a maneira de gerenciar frotas
veiculares, mas também abrem portas para uma era de transporte mais inteligente, respon-
siva e sustentável. A evolução contínua dessas soluções promete uma revolução no setor
ferroviário e logístico, trazendo consigo oportunidades para aumentar a competitividade e
impulsionar o crescimento econômico.

1.2 Problemas e Dores do Sistema Legado

Entre os sistemas e equipamentos de campo que tornam possível a implementação
de soluções robustas para a ferrovia está o Painel de Controle Local (PCL), individual
e personalizado para cada configuração de pátio ferroviário. O painel apresenta o status
atual da via e dos sensores monitorados pelo ElectroLogIXS (ELIX) e permite que, em
determinadas condições, comandos sejam enviados ao equipamento.

O Sistema legado é desenvolvido através do Adobe Flash e possui duas aplicações
que atuam em conjunto. A primeira é utilizada para criar a interface gráfica, associando
elementos gráficos a determinados endereços do mapa de bits do software instalado no
ELIX, resultando em um arquivo com extensão .swf que por sua vez é utilizado na segunda
aplicação, que finalmente realiza a comunicação com o CLP via protocolo Genisys.

A arquitetura de desenvolvimento atual do PCL, baseada em Flash, não permite
acesso ao backend da aplicação que estabelece comunicação via protocolo Genisys, per-
mitindo pouca ou nenhuma personalização para atender casos que fujam do que já foi
desenvolvido anteriormente. Além disso, a instalação do programa é muito custosa, por
necessitar de diversos arquivos e subaplicações em pastas específicas do computador para
rodar o programa principal. Esses problemas se agravaram com a descontinuação da
ferramenta no ano de 2020, dificultando a criação de novas Interfaces Humano-Máquina
personalizadas para cada configuração de pátio ferroviário.

1.3 Motivação

Ao ter o primeiro contato com o sistema utilizado para criar os Painéis de Controle
Local atuais, muitas dificuldades se apresentaram desde a instalação da aplicação de
desenvolvimento de interfaces até ao programa que de fato realiza a comunicação com o
CLP.

O PCL é utilizado em momentos críticos, que geralmente precisam de agilidade e
garantia de sucesso, por ser um software de utilização em campo, em situações que podem
impactar a operação em caso de falhas.

Diante desse cenário, surgiu o desafio de desenvolver um sistema que substituísse o
atual, utilizando uma nova linguagem de programação, e trazendo mais confiabilidade e
garantia para quem precisar utilizar o programa.
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Vale ressaltar que como a solução atual não permite acesso ao backend, o desenvol-
vimento de um driver de comunicação via protocolo Genisys que é o protocolo utilizado
para troca de mensagens entre o sistema legado e o CLP em questão, se torna essencial
para o sucesso do trabalho.

1.4 Objetivos Gerais

O objetivo geral deste trabalho é desenvolver um driver de comunicação para o
protocolo Genisys e uma Interface Humano-Máquina (IHM) para a exibição das indicações
do sistema de sinalização ferroviária e envio de comandos de controle para o mesmo, a fim
de substituir o sistema existente.

1.5 Objetivos Específicos

Para atingir o objetivo geral deste projeto, foi necessário:

• Analisar e decodificar mensagens do protocolo Genisys;

• Desenvolver um driver de comunicação para o protocolo;

• Criar uma IHM utilizando o framework Kivy;

• Comparar a solução desenvolvida com o sistema legado;

1.6 Organização do Trabalho

Este documento está estruturado em cinco capítulos fundamentais para apresentação
coerente do desenvolvimento e validação da solução proposta. No Capítulo 2, são discutidos
os conceitos teóricos relacionados ao protocolo Genisys, tecnologias de IHMs e sistemas
ferroviários, além de uma análise crítica de trabalhos correlatos que fundamentaram as
escolhas técnicas deste projeto. O Capítulo 3 detalha a implementação prática, abordando
a decodificação do protocolo Genisys, arquitetura do driver de comunicação, e o processo
de construção da interface gráfica com o framework Kivy.

No Capítulo 4, são apresentados os testes de validação funcional com o simulador
Signal Application Testing System (SATS), análise comparativa com o sistema legado,
e avaliação de desempenho da solução desenvolvida. Por fim, o Capítulo 5 sintetiza as
contribuições do trabalho, discute limitações identificadas, e propõe direções para evolução
da plataforma.
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2 Revisão Bibliográfica e Arcabouço Teórico

2.1 Revisão Bibliográfica

Esta seção apresenta uma breve revisão de alguns trabalhos e documentos que foram
utilizados como referência para o desenvolvimento deste projeto. Esses resumos visam
oferecer uma visão geral dos principais pontos abordados em cada trabalho, destacando
suas contribuições relevantes para o tema em estudo.

Em [2], Bruce Keeler apresenta um dissector1, para o protocolo Genisys, desen-
volvido para a ferramenta Wireshark. O protocolo Genisys, utilizado no controle de
sistemas de sinalização e intertravamentos ferroviários, é descrito em detalhes, incluindo
sua estrutura de mensagens, mecanismos de escape de dados e cálculo de CRC-16. O
autor destaca que o Genisys foi originalmente projetado para comunicação serial, mas é
frequentemente transportado sobre TCP/IP em implementações modernas. O dissector
desenvolvido por Keeler permite a análise de pacotes Genisys, identificando mensagens
como dados de indicação, controle, e reconhecimento, além de validar a integridade dos
dados através do CRC. Esse trabalho é fundamental para a compreensão do protocolo
Genisys, fornecendo uma base técnica para o desenvolvimento de drivers de comunicação
e sistemas de supervisão baseados nesse protocolo, como proposto neste trabalho.

Em [3], o projeto Industrial Control Systems Network Protocol Parsers (ICSNPP)
apresenta um plugin para o Zeek, desenvolvido em Spicy, capaz de analisar e registrar
mensagens do protocolo Genisys transportadas sobre TCP/IP. O plugin ICSNPP-Genisys
foi desenvolvido com base na engenharia reversa de um packet capture de tráfego Genisys e
em referências a um dissector não oficial proposto para o Wireshark. Ele gera um arquivo
de log (genisys.log) que captura detalhes como tipo de mensagem, direção (requisição/res-
posta), CRC transmitido e calculado, e pares de endereço-dado do payload. Esse trabalho é
relevante para este projeto, pois fornece uma implementação moderna e validada do parser
Genisys, auxiliando na compreensão e no desenvolvimento de soluções de comunicação
baseadas nesse protocolo.

Em [4], o manual técnico da empresa Union Switch & Signal (US&S) detalha
especificações do protocolo Genisys Serial, utilizado para controle e supervisão de sistemas
ferroviários. O protocolo, de natureza binária e orientado a bytes, opera em modo
mestre-escravo com mensagens estruturadas em cabeçalho, endereço de conteúdo, dados
opcionais, checksum CRC-16 e terminador. A comunicação é baseada em caracteres de
controle reservados, como o F6 para terminador, e mecanismos de escape para preservar
a integridade de bytes críticos no payload. O documento descreve formatos específicos
para mensagens mestre-escravo, incluindo um header para cada tipo de mensagem. Além
1 Dissector é um módulo usado pelo Wireshark para analisar protocolos campo por campo,

permitindo filtros em critérios específicos para análise do protocolo.
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disso, aborda a operação dos drivers do protocolo, com lógicas de retransmissão, timeouts
e tratamento de falhas, bem como a configuração de bytes de controle. Esse trabalho é
essencial para o projeto atual, pois fornece a base normativa para a implementação de
drivers de comunicação compatíveis com o Genisys, validando estruturas de mensagens,
cálculos de CRC-16 e fluxos de interação mestre-escravo, críticos para o desenvolvimento
de sistemas de supervisão confiáveis em ambientes ferroviários.

Em [5], Sergey N. Verzynov e colaboradores propõem uma arquitetura cross-
platform para o componente de software de um localizador de cabos, utilizando a biblioteca
Kivy para desenvolver uma interface gráfica unificada em dispositivos móveis e computa-
dores de mesa, os autores criaram uma arquitetura que separa o código dependente da
plataforma, como drivers de hardware e configurações específicas do sistema operacional,
do código universal, lógica de processamento e visualização de dados. Ferramentas como
Buildozer e CMake foram empregadas para empacotar o aplicativo em Android, enquanto
o Docker garantiu a reprodutibilidade do ambiente de desenvolvimento. O componente foi
testado com sucesso em dispositivos Android, integrando sensores como GPS e bússola, e
permitindo a visualização de rotas de cabos em mapas digitais. O trabalho demonstra
a viabilidade de implementação do software para iOS e Windows 10 com adaptações
mínimas, mantendo a mesma base de código inicial em Python.

A revisão bibliográfica demonstra a viabilidade técnica tanto do desenvolvimento
de um driver para o protocolo Genisys quanto da construção de uma IHM utilizando o
framework Kivy. Os trabalhos de [2], [3] e [4] fornecem bases para a implementação do
driver, detalhando a estrutura de mensagens, mecanismos de escape, cálculo de CRC-16
e fluxos mestre/escravo. A especificação técnica da US&S [4] e a existência de parsers
validados, como o plugin ICSNPP-Genisys, comprovam que o protocolo é replicável em
sistemas modernos, mesmo em cenários baseados em TCP/IP.

Quanto à IHM, o estudo de [5] evidencia a capacidade do Kivy em suportar o
desenvolvimento de interfaces cross-platform robustas, com integração de funcionalidades
complexas e adaptações mínimas entre sistemas operacionais. A experiência bem-sucedida
na integração de hardware e exibição de dados em tempo real confirma que o framework
é uma solução eficaz para a IHM, garantindo portabilidade e atualizações dinâmicas de
estados.

2.2 Arcabouço Teórico

Esta seção aborda as principais tecnologias utilizadas no desenvolvimento da solução
proposta.
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2.2.1 Python

Python é uma linguagem de programação de alto nível que tem ganhado destaque
em diversas áreas da tecnologia devido à sua simplicidade e versatilidade. No contexto do
desenvolvimento de drivers de comunicação, Python oferece uma série de vantagens que
facilitam a implementação e manutenção desses componentes essenciais. A sintaxe clara
e concisa da linguagem permite uma escrita de códigos mais legíveis e menos propensos
a erros, o que é crucial para a confiabilidade dos drivers de comunicação. Além disso, a
vasta coleção de bibliotecas e frameworks disponíveis, como pySerial e socket, proporciona
ferramentas poderosas para a criação de soluções eficientes e robustas.

No desenvolvimento de Interfaces Humano-Máquina (IHM), a linguagem também
se destaca por sua capacidade de acelerar o processo de criação de interfaces gráficas de
usuário. Frameworks como Tkinter, PyQt e Kivy facilitam a construção de IHMs. A
flexibilidade da linguagem facilita a integração das IHMs com outros sistemas e dispositivos,
tornando-as mais versáteis e funcionais. Além disso, a capacidade de Python de suportar
multithreading garante que as interfaces permaneçam responsivas, mesmo quando executam
tarefas complexas em segundo plano.

No desenvolvimento de drivers de comunicação e IHMs, uma linguagem multipla-
taforma, como o Python, permite que os desenvolvedores criem soluções que podem ser
executadas em diferentes sistemas operacionais sem a necessidade de grandes modificações.
Isso aumenta a flexibilidade dos projetos, e também reduz o tempo e os custos associados
à adaptação do software para diferentes ambientes. A comunidade ativa de desenvolve-
dores Python contribui para um suporte contínuo, atualizações frequentes e uma vasta
quantidade de recursos e documentação.

O Python se apresenta como uma boa escolha para o desenvolvimento de drivers
de comunicação aliado a Interfaces Humano-Máquina. A simplicidade e legibilidade da
linguagem, combinadas com a ampla disponibilidade de bibliotecas e frameworks, facilitam
a criação de soluções eficientes e robustas. A portabilidade e a capacidade de integração
com outros sistemas aumentam ainda mais a aplicabilidade do Python nesses contextos.

2.2.2 Framework Kivy

Kivy é um framework de código aberto para o desenvolvimento de aplicações
multimídia e interfaces gráficas em Python. Ele é especialmente projetado para criar
aplicativos que funcionam em várias plataformas, incluindo Windows, macOS, Linux,
iOS e Android. Uma das principais características do Kivy é sua capacidade de suportar
multitouch, o que o torna ideal para o desenvolvimento de aplicativos modernos e interativos.
Além disso, Kivy utiliza um mecanismo de renderização baseado em OpenGL ES 2,
garantindo que as interfaces gráficas sejam rápidas e responsivas, mesmo em dispositivos
com recursos limitados.
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A natureza multiplataforma do framework permite que os desenvolvedores escrevam
código uma vez e o executem em diferentes sistemas operacionais, economizando tempo e
esforço. O Kivy oferece uma vasta coleção de widgets prontos para uso, que podem ser
facilmente personalizados para atender às necessidades específicas do projeto. Isso acelera
o processo de desenvolvimento e reduz a complexidade da criação de interfaces gráficas.

O framework estrutura sua interface gráfica por meio de um sistema hierárquico
de widgets, que permite a composição modular de elementos visuais predefinidos, como
botões e layouts ou elementos personalizados. A linguagem declarativa KV introduz uma
camada de abstração para definição de interfaces, separando lógica de programação em
Python da estrutura da interface. Através de sintaxe específica, estabelecem-se relações
hierárquicas entre widgets, estilos visuais e regras de posicionamento.

Entre os diversos widgets oferecidos pelo Kivy, estão pontuados alguns que serão
utilizados neste trabalho:

• FloatLayout: Permite posicionar elementos de interface livremente na tela, utilizando
coordenadas relativas ou absolutas. Isso é ideal para designs personalizados e
sobreposições precisas. O FloatLayout é especialmente útil quando se deseja criar
interfaces flexíveis que se adaptem a diferentes tamanhos de tela e resoluções. Ele
permite que os desenvolvedores controlem a posição exata dos widgets, o que é
essencial para aplicações que exigem um layout altamente customizado;

• BoxLayout: Organiza os componentes em sequência vertical ou horizontal, distri-
buindo o espaço automaticamente entre eles. Isso simplifica a criação de estruturas
alinhadas e adaptáveis a diferentes tamanhos de tela. O BoxLayout é frequen-
temente utilizado para criar layouts que precisam ser redimensionados de forma
proporcional. Ele é ideal para criar interfaces que se ajustam automaticamente ao
redimensionamento da janela, mantendo a proporção dos widgets internos;

• Image: Essencial para carregar e exibir imagens com suporte a formatos variados,
como PNG, JPEG, e GIF. O widget Image pode ser utilizado para mostrar logotipos,
ícones, ou qualquer outro tipo de imagem gráfica. As imagens carregadas podem
ser configuradas para diferentes tamanho e posições, podendo ser integrada a outros
widgets de layout;

• Label: Oferece flexibilidade na exibição de textos, com opções de formatação e estilo.
O Label é utilizado para mostrar informações textuais ao usuário, como títulos,
descrições, ou mensagens de status. Ele suporta a personalização de fontes, cores, e
alinhamento, permitindo que os desenvolvedores criem interfaces textuais atraentes.
O Label também pode ser utilizado em conjunto com outros widgets para criar
interfaces informativas e visualmente agradáveis;
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• Button: Fundamental para interatividade, permitindo a associação de ações a eventos
como cliques ou toques. O Button pode ser configurado para executar funções
específicas quando acionado, tornando-se um elemento crucial para a navegação e
interação do usuário. Ele pode ser estilizado com diferentes cores, tamanhos, e ícones
para se adequar ao design da aplicação. Além disso, o Button pode ser utilizado em
conjunto com o BoxLayout para criar painéis de controle interativos.

Esses widgets, combinados com a capacidade de personalização via propriedades de
estilo e comportamentos, aceleram o desenvolvimento de interfaces complexas e garantem
uma experiência consistente em diferentes dispositivos, reforçando a eficiência do Kivy em
projetos de IHM.

A escolha do Kivy como framework para o desenvolvimento de uma Interface
Humano-Máquina (IHM) é motivada por sua flexibilidade e eficiência. A capacidade
de Kivy de criar interfaces intuitivas e interativas, torna-o ideal para aplicações que
exigem uma experiência de usuário rica e consistente. Além disso, a compatibilidade
multiplataforma de Kivy garante que a IHM desenvolvida possa ser utilizada em diversos
dispositivos, ampliando seu alcance e aplicabilidade. Por fim, a possibilidade de fechar a
solução e comercializá-la sem custos adicionais de licença, diferente do que ocorre com o
PyQT e o TKinter, se tornou um fator determinante na escolha do framework.

2.2.3 Simulador de CLP - SATS

O Signal Application Testing System (SATS) é um simulador avançado desenvolvido
pela Princeton Consultants para o teste e a simulação de sistemas de sinalização ferroviária.
Esse software é amplamente utilizado por engenheiros, para melhorar a precisão dos testes
e automatizar substancialmente os processos de avaliação de sistemas ferroviários. O
SATS é projetado para lidar com a complexidade crescente dos sistemas baseados em
microprocessadores, que tornaram os métodos tradicionais de teste manual insuficientes.

As motivações para o uso do software são diversas e incluem a necessidade de
aumentar a precisão dos testes e reduzir o tempo de campo. O SATS permite que os
engenheiros realizem testes completos de diferentes configurações de campo, proporcionando
uma visão detalhada do sistema de sinalização como mostra a Figura 1.
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Figura 1 – Aba Location Designer do SATS
Fonte: Autor

A flexibilidade do programa em suportar múltiplos equipamentos e protocolos
de comunicação, como ATCS e Genisys, torna-o uma ferramenta versátil para diversas
aplicações ferroviárias. Assim, permite a comunicação entre Painéis de Controle Local
e o software aplicativo do ELIX simulado na aplicação, como exemplifica a Figura 2
o que facilita o desenvolvimento da aplicação deste trabalho, sendo possível realizá-lo
completamente em ambiente virtual.

Figura 2 – Comms SATS
Fonte: Autor

Além disso, o suporte rápido e especializado oferecido pela equipe da Princeton
Consultants garante que os usuários possam resolver dúvidas e problemas de forma eficiente.
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3 Desenvolvimento

Este capítulo apresenta o desenvolvimento do projeto, que envolve a criação do
driver para o protocolo Genisys e da Interface Humano-Máquina, que juntos formam o
Painel de Controle Local. A Figura 3 é um diagrama que representa, de maneira geral, o
sistema em que a aplicação estará inserida e irá interagir.

Figura 3 – Sistema Completo
Fonte: Autor

• 1. ElectroLogIXS: O ElectroLogIXS é um sistema avançado de controle e sinalização
ferroviária desenvolvido pela General Electric. Ele é projetado para gerenciar e
monitorar operações ferroviárias, garantindo segurança e eficiência. O sistema
suporta uma ampla gama de aplicações, incluindo controle de passagens em nível,
detecção de movimento, monitoramento de entradas vitais e controle de saída de relés
vitais. Além disso, o ElectroLogIXS incorpora comunicação serial vital, que permite
a integração com outros sistemas de de controle, inclusive o Painel de Controle Local
desenvolvido neste trabalho;

• 2. Máquina de Chave: A máquina de chave é um dispositivo eletromecânico utilizado
para mover e fixar os trilhos em uma posição específica, permitindo que os trens
mudem de uma linha para outra. Essas máquinas são essenciais para a operação
segura e eficiente das ferrovias, pois garantem que os trilhos estejam corretamente
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alinhados antes da passagem de um trem. As máquinas de chave podem ser operadas
manualmente ou automaticamente, e são frequentemente integradas a sistemas de
controle centralizados para monitoramento e operação remota;

• 3. Circuito de Via: O circuito de via é um sistema elétrico utilizado para detectar a
presença de trens em um determinado trecho da via férrea. Ele funciona criando
uma diferença de potencial entre os trilhos, que é interrompida quando as rodas
metálicas do trem entram em contato com os trilhos, criando um curto-circuito.
Esse curto-circuito é detectado por um relé, que informa ao sistema de controle
que o trecho está ocupado. Os circuitos de via são fundamentais para a sinalização
ferroviária, pois ajudam a evitar colisões e garantem que os trens mantenham uma
distância segura uns dos outros;

• 4. Sinais: Os sinais ferroviários são dispositivos visuais utilizados para comunicar
informações críticas aos maquinistas, como permissões de avanço, limites de veloci-
dade e avisos de perigo. Existem vários tipos de sinais, incluindo sinais luminosos,
sinais de velocidade, sinais de manobra e sinais de advertência. Cada sinal tem
um significado específico e é projetado para garantir a segurança e a eficiência das
operações ferroviárias. Os sinais são posicionados ao longo da via férrea e nas
proximidades das estações para orientar os maquinistas em suas rotas;

• 5. Centro de Controle Operacional: O Centro de Controle Operacional (CCO) é a
central responsável pelo monitoramento e gerenciamento das operações ferroviárias
em tempo real. Ele é equipado com sistemas de videomonitoramento, comunicação
e análise de dados, permitindo que os operadores monitorem o tráfego ferroviário,
respondam a incidentes e tomem decisões informadas para garantir a segurança e a
eficiência das operações. Através do CCO é possível alinhar rotas, mover máquinas
de chave, interditar e desinterditar circuitos, sendo assim, ele é essencial para a coor-
denação de atividades, redução de riscos e otimização de recursos, desempenhando
um papel vital na gestão das operações ferroviárias.

Todos os componentes listados acima estarão simulados na aplicação SATS, que
consegue se comunicar via protocolo Genisys. Através do programa Virtual Serial Ports, é
possível estabelecer uma comunicação serial entre duas portas do computador, as quais
serão acessadas, uma pelo simulador e outra pela aplicação desenvolvida.

3.1 Fluxograma do Código

Esta seção irá abordar o Programa desenvolvido, explicitando as duas frentes
de desenvolvimento da aplicação, tanto a criação do driver para comunicação Genisys
quanto da Interface Humano-Máquina. O código foi modulado em sete arquivos, sendo
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cinco em Python e dois em linguagem Kivy. Os módulos são, main.py, genisys_driver.py,
functions.py, supervisory.py, connection.py, supervisory.kv e connection.kv. A Figura 4
mostra o fluxograma principal do código que será tratado no decorrer do capítulo.

Figura 4 – Fluxograma do código
Fonte: Autor

3.1.1 Inicialização e Conexão

O sistema inicia com a execução do aplicativo GenisysApp, que carrega a tela de
conexão, ConnectionScreen. Nesta etapa, o usuário seleciona a porta serial e o baudrate, e
ao confirmar, o driver, GenisysDriver, é instanciado para estabelecer a comunicação. Se a
conexão é bem-sucedida, o sistema redireciona para a tela de supervisão SupervisoryScreen,
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onde o driver inicia duas threads: uma para leitura contínua de dados da serial e outra
para envio periódico de comandos de Poll e Recall, mantendo a comunicação ativa.

3.1.2 Processamento de Dados e Atualização de Estado

A thread de leitura serial captura mensagens completas, sempre terminadas por
0xF6, e as encaminha para processamento. Mensagens do tipo Indicação, 0xF2, são
tratadas para extrair o estado das variáveis: o conteúdo é, convertido em uma string global
de zeros e uns e armazenado com sincronização via lock para evitar conflitos entre threads.
Paralelamente, a thread de Polling envia solicitações periódicas para atualizar o estado do
sistema. Após cada atualização de indicação, um Acknowledge and Poll, é enviado para
confirmar o recebimento da mensagem.

3.1.3 Interface de Supervisão e Interação

Na tela de supervisão, um temporizador do Kivy (Clock.schedule_interval) atualiza
a interface a cada segundo. Cada componente (LEDs, MCHs, botões) é mapeado para
um bit específico do status (variável global), usando a função cal_indication_index
para corrigir índices. Botões de controle, ao serem pressionados, acionam o método
send_control_message, que envia comandos serializados via driver. O sistema garante
confiabilidade com técnicas como CRC, escaping de bytes e sincronização de threads,
assegurando que a interface reflita fielmente o estado físico dos dispositivos em tempo real.

3.2 Desenvolvimento do Driver Genisys

O protocolo Genisys, desenvolvido pela Union Switch & Signal, é amplamente
utilizado para comunicação entre dispositivos de campo (como controladores lógicos progra-
máveis) e sistemas de supervisão em infraestruturas ferroviárias. Projetado originalmente
para comunicação serial, possui adaptação para TCP/IP, mantendo características robustas
como escaping de dados e verificação de integridade via CRC-16.

Para a realização do processo de sniffing foi necessário escolher algum projeto
específico, para facilitar a compreensão das mensagens trocadas entre o ELIX e o Painel de
Controle Local. A locação escolhida foi a de uma Pera de Carregamento1 de trens presente
em Barão de Cocais, que em sua configuração possui todos os elementos necessários
para desenvolver um driver que seja replicável para qualquer cenário. Sendo assim, com
o software aplicativo do ELIX, referente a Pera de Carregamento, foi possível definir
um mapa de bits, um Painel de Controle Local no sistema Legado, e um arquivo SATS
configurado para os testes.
1 Local de carregamento de vagões ferroviários.



25

O simulador SATS é carregado com o mesmo software aplicativo que é instalado
no CLP de campo, além de ser necessário desenhar toda a configuração que será simulada
para os testes do projeto. Tendo toda a simulação estabelecida, a comunicação entre o
SATS e o PCL gera alguns arquivos de log para a análise das mensagens trocadas. O
arquivo consiste na mensagem enviada, seguido do mapa de bits indicando qual variável
está no estado on e qual está no estado off, como ilustra a Figura 5 abaixo.

Figura 5 – Log do SATS
Fonte: Autor

Inicialmente, essas informações foram utilizadas para entender como se dava o
endereçamento das indicações dentro do pacote de mensagens enviados do CLP para o
PCL. Seguindo o processo de alterar o status de alguma variável conhecida do mapa de
bits e observar qual a alteração no pacote de mensagem, como se observa na Figura 6.

Figura 6 – Mudança de Status
Fonte: Autor

O status a ser observado estava relacionado ao estabelecimento do modo de con-
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trole local, portanto foi possível observar que a mensagem sofreu alteração somente em
alguns octetos, sendo este o octeto que segue após o valor 0x06 em ambas as mensagens.
Observando o mapa de bits e dividindo-o em octetos. As indicações de modo de controle
local e modo de controle central, são as de endereço 49 e 50, respectivamente, como mostra
a Figura 7, portanto estão endereçadas exatamente dentro do sexto octeto.

Figura 7 – Sexto Octeto do Mapa de Bits
Fonte: Autor

Seguindo essa fórmula para inúmeros casos de indicações conhecidas do mapa
de bits, tornou-se possível interpretar o conteúdo das mensagens de indicação recebidas,
passando a ser possível criar um supervisório que monitora as indicações enviadas pelo CLP.
Entretanto, como o objetivo principal do trabalho é criar uma Interface Humano-Máquina
que consiga tanto receber informações das indicações quanto enviar mensagens de controle,
mostrou-se necessário aprofundar o estudo e a compreensão do pacote de bytes do protocolo.
Portanto, a identificação das demais partes da mensagem, como o header, o terminador e
o processo de CRC se tornaram essenciais para que criar mensagens aceitas pelo CLP.

Para a interpretação do processo de CRC de o trabalho desenvolvido em [2], serviu
como base para compreensão do protocolo. Cruzando as informações desse artigo com
os logs obtidos pelo SATS e o monitor Serial da aplicação legado, foi possível entender a
criação do CRC e também o significado dos demais octetos das mensagens do protocolo e
definir a estrutura do frame Genisys.

3.2.1 Estrutura do Frame Genisys

Nesta seção a estrutura do frame Genisys será detalhada e explicada octeto por
octeto. As mensagens do protocolo seguem um formato específico, observado na Figura 8:
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Figura 8 – Estrutura do frame Genisys
Fonte: Autor

A Figura 9 apresenta uma mensagem recebida no monitor serial. Por se tratar de
uma mensagem de indicação, possui o frame completo, com header, payload com tamanho
correspondendo ao número de octetos de indicação do software, que são 8 para esse caso,
o CRC e o terminador da mensagem.

Figura 9 – Mensagem Bruta no Monitor Serial
Fonte: Autor

• Identificador de Mensagem: Um octeto no intervalo de 0xF1 a 0xFE, que inicia a
comunicação e identifica o tipo de mensagem.

• Endereço do Escravo: Um único byte que identifica o dispositivo destinatário.

• Payload: Composto por dados de comprimento variável, organizados em pares de
bytes de 8 bit seguindo o padrão endereço/dado.

• CRC-16: Dois bytes para garantir o conteúdo do pacote que aparecem em algumas
mensagens.

• Terminador: Octeto fixo 0xF6, indicando o fim da mensagem.

O protocolo conta com o processo de escaping de octetos com valor superior a 0xF0
(excluindo o cabeçalho e o terminador). O processo substitui o octeto original por dois
octetos: 0xF0 seguido do nibble inferior do valor original. Por exemplo:

0xF4 → 0xF0 0x04

Em mensagens que incluem CRC, este é calculado utilizando o polinômio

x16 + x15 + x2 + 1
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transmitido em ordem little-endian. O cálculo abrange todos os octetos da men-
sagem, incluindo o cabeçalho, mas excluindo o terminador. Para otimizar o processo,
utiliza-se uma tabela de lookup pré-computada, que permite calcular o CRC em tempo
constante por byte. A tabela contém 256 entradas, uma para cada possível valor de 8 bits,
na qual cada entrada é o CRC resultante do polinômio aplicado ao byte correspondente. É
importante destacar que o CRC é calculado antes da aplicação do mecanismo de escape e
os bytes do CRC também devem ser escapados, se necessário.

O payload, quando presente, consiste em uma sequência de pares endereço/dado,
onde cada par contém um byte de endereço seguido de um byte de dado. Ambos os
componentes devem obedecer às regras de escape.

3.3 Aplicação do Driver Genisys no Código

O desenvolvimento do sistema de supervisão e controle baseado no protocolo
Genisys envolveu a implementação de um driver especializado, responsável por gerenciar
a comunicação serial com os dispositivos de campo. Este driver foi projetado seguindo
princípios de modularidade e eficiência, garantindo uma integração fluida com a interface
gráfica desenvolvida em Kivy.

3.3.1 Inicialização e Ciclo de Vida do Driver

A inicialização do driver Genisys foi estruturada de forma a otimizar o uso de
recursos e garantir a robustez do sistema. A instanciação do objeto driver ocorre de
maneira condicional, somente após a confirmação da conexão serial. Essa abordagem,
conhecida como inicialização tardia, previne o acesso a métodos não inicializados e permite
uma configuração dinâmica dos parâmetros de comunicação.

A estrutura principal da aplicação, definida na classe GenisysApp, demonstrada
no Algoritmo 3.1, utiliza o gerenciador de telas ScreenManager para alternar entre a
tela de conexão, ConnectionScreen, e a tela de supervisão SupervisoryScreen. O driver é
inicializado como None e só é instanciado quando o usuário confirma os parâmetros de
conexão.

1 class GenisysApp (App):
2 def build(self):
3 self. driver = None # I n i c i a l i z a o tardia
4 sm = ScreenManager ()
5 sm. add_widget ( ConnectionScreen (name=’connection ’))
6 sm. add_widget ( SupervisoryScreen (name=’supervisory ’))
7 return sm

Algoritmo 3.1 – Estrutura principal da aplicação
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3.3.2 Estabelecimento de Conexão

A instanciação do driver ocorre na tela de conexão, onde o usuário define a porta
serial e o baudrate. No Algoritmo 3.2, observa-se o método connect, que é responsável por
criar o objeto driver e iniciar a comunicação serial. Durante esse processo, são realizadas
validações dos parâmetros de conexão, garantindo que a comunicação seja estabelecida de
forma segura e confiável.

1 def connect (self , port: str , baudrate : str):
2 try:
3 app = App. get_running_app ()
4 app. driver = GenisysDriver ( # C r i a o condicional
5 port=port ,
6 baudrate =int( baudrate ),
7 max_control_value =128
8 )
9 app. driver . connect () # Handshake serial

10 self. manager . current = ’supervisory ’
11 supervisory = self. manager . get_screen (’supervisory ’)
12 supervisory . initialize (app. driver ) # I n j e o de d e p e n d n c i a

Algoritmo 3.2 – Criação do driver na conexão

Após a conexão ser estabelecida, o sistema transiciona para a tela de supervisão,
onde o driver é passado como dependência para a inicialização dos componentes gráficos.
Esse mecanismo de injeção de dependência garante que a interface gráfica tenha acesso
direto ao driver, permitindo a atualização dinâmica dos estados dos dispositivos.

3.3.3 Thread de Comunicação Serial

Para garantir a eficiência e a responsividade do sistema, o driver Genisys emprega
duas threads principais: uma para leitura contínua de dados da porta serial e outra para o
envio periódico de mensagens de polling. A thread de leitura é responsável por capturar
as mensagens enviadas pelos dispositivos e processá-las, enquanto a thread de polling
mantém a comunicação ativa, enviando mensagens de verificação e solicitação de estado.
O Algoritmo 3.3 apresenta a inicialização das threads.

1 def connect (self) -> None:
2 self. _running = True
3 # Thread de leitura c o n t n u a
4 self. _read_thread = threading . Thread ( target =self. _read_serial ,

daemon =True)
5 # Thread de polling p e r i d i c o
6 self. _poll_thread = threading . Thread ( target =self.

_send_polling_messages , daemon =True)
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7 self. _read_thread .start ()
8 self. _poll_thread .start ()

Algoritmo 3.3 – Gerenciamento de threads de comunicação

A utilização de threads permite que o sistema opere de forma assíncrona, garantindo
que a interface gráfica permaneça responsiva mesmo durante operações de comunicação
intensivas.

3.3.3.1 Política de Polling

A estratégia de polling adotada pelo driver combina mensagens regulares de
verificação, poll com solicitações periódicas de estado completo recall. O intervalo entre
as mensagens de polling é definido por uma sequência cíclica (POLL_INTERVALS), como
observa-se no Algoritmo 3.4, baseada na sequência observada em logs no monitor serial do
sistema legado.

1 POLL_INTERVALS = [4, 4, 3] # S e q u n c i a c c l i c a de intervalos
2

3 def _send_polling_messages (self) -> None:
4 while self. _running and self. connected :
5 with self._lock: # S i n c r o n i z a o de thread
6 self. _safe_write (self. POLL_MESSAGE )
7 self. _poll_count += 1
8

9 if self. _poll_count >= self. POLL_INTERVALS [self.
_current_interval_index ]:

10 self. _safe_write (self. RECALL_MESSAGE ) # Request full
state

11 self. _poll_count = 0
12 self. _current_interval_index = (self.

_current_interval_index + 1) % 3
13 time.sleep (1) # Controle temporal

Algoritmo 3.4 – Lógica de polling adaptativo

Essa abordagem garante que o sistema mantenha uma comunicação ativa com os
dispositivos, verificando periodicamente seu estado e solicitando atualizações completas
quando necessário.

3.3.4 Processamento de Indicações

As mensagens de indicação são o mecanismo pelo qual os dispositivos informam
seu estado atual ao sistema. Quando uma mensagem de indicação é recebida, o driver
realiza uma série de operações para processar e atualizar o estado global do sistema, como
observa-se no Algoritmo 3.5.
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1 def _handle_indication (self , message : bytes) -> None:
2 unescaped = reverse_escaping ( message ) # Remove bytes de escape
3 binary_content = self. _parse_indication_content ( unescaped )
4

5 with self._lock: # Critical section
6 self. status = binary_content # Estado global atualizado
7

8 self. _safe_write (self. ACK_POLL_MESSAGE ) # C o n f i r m a o
9 logger .info(" Estado atualizado : %s", binary_content )

Algoritmo 3.5 – Tratamento de mensagens de indicação

O processamento de uma mensagem de indicação envolve a remoção dos bytes
de escape, método reverse_escaping, a conversão do conteúdo da mensagem para uma
representação binária e a atualização segura do estado global do sistema. Após o processa-
mento, o driver envia uma mensagem de confirmação para garantir que a comunicação
permaneça ativa.

3.3.5 Sincronização com a Interface

O Algoritmo 3.6 apresenta a inicialização da interface gráfica do sistema, que é
atualizada periodicamente com base no estado atual dos dispositivos. Essa atualização é
gerenciada por um callback temporal, que é acionado a cada segundo.

1 class SupervisoryScreen ( Screen ):
2 def initialize (self , driver ):
3 self. driver = driver
4 Clock. schedule_interval (self. update_all_images , 1) # 1Hz
5

6 def update_all_images (self , dt):
7 status = self. driver . get_status () # O b t m snapshot seguro
8 self. update_all_led_images ( status )
9 self. update_all_mch_images ( status )

10 self. update_all_track_images ( status )

Algoritmo 3.6 – Atualização periódica da interface

A atualização da interface é realizada de forma seletiva, onde apenas os componentes
cujo estado foi alterado são redesenhados. Essa otimização reduz o consumo de recursos e
melhora a responsividade do sistema.

3.4 Desenvolvimento da Interface Humano-Máquina

A Interface Humano-Máquina foi criada através do framework Kivy. Além da
familiaridade do autor com o framework, a possibilidade de criar interfaces com linguagem
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escrita, ao invés do modelo de objetos utilizado pelo Adobe Flash, o que facilita o uso de
IA para geração de código, e também a possibilidade de fechar a solução e comercializá-la
futuramente sem custo adicional, motivaram a escolha do framework.

O painel desenvolvido apresenta duas telas. A primeira, tem o objetivo de configurar
alguns parâmetros como a porta COM que será utilizada e o baudrate. Além dessa
configuração ela conta com um botão para inicializar a conexão. Caso a conexão seja
estabelecida, a segunda tela é carregada, essa por sua vez, apresenta o supervisório da
locação definida para o trabalho.

A atualização da tela do supervisório, possui uma lógica simples, pois é baseada na
substituição de imagens de acordo com o status de suas respectivas variáveis. O Algortimo
3.7 apresenta o método que atualiza todas as imagens a cada um segundo, para manter o
supervisório sempre atualizado.

1 class SupervisoryScreen ( Screen ):
2 connected = BooleanProperty (False)
3 Window . fullscreen = ’auto ’
4

5 def initialize (self , driver ):
6 """ Inicializa a tela com a i n s t n c i a do driver """
7 self. driver = driver
8 self. connected = driver . connected
9 self. last_status = None

10 self. button_states = {}
11 # Inicia a a t u a l i z a o p e r i d i c a da imagem
12 Clock. schedule_interval (self. update_all_images , 1) # Atualiza a

cada 1 segundo
13

14 def update_all_images (self , dt):
15 """ Atualiza todas as imagens """
16 new_status = self. driver . get_status ()
17

18 if new_status is None:
19 return
20

21 if self. last_status is None or new_status != self. last_status :
22 self. last_status = new_status
23

24 self. update_all_led_images ( new_status ) # Atualiza todas as
imagens de LED

25 self. update_all_mch_images ( new_status ) # Atualiza todas as
imagens de MCH

26 self. update_all_track_images ( new_status ) # Atualiza todas as
imagens de Track

27 self. update_all_signal_images ( new_status ) # Atualiza todas as
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imagens de Signal
28 self. update_all_button_backgrounds ( new_status ) # Atualiza os

planos de fundo dos b o t e s

Algoritmo 3.7 – Inizialização do Supervisório

Para tratar cada tipo de imagem do supervisório, foram criados métodos em Python
e modelos de widgets em linguagem Kivy específicos de cada caso, os quais cada imagem é
associada ao um endereço do mapa de bits.

3.4.1 LED’s

Os LED’s são utilizados em diversos contextos, podendo ser alarmes em geral,
saúde de conexões ou qualquer indicação que dependa de apenas um bit para trazer uma
informação. A Figura 10 e o Algoritmo 3.8, ilustram um exemplo.

Figura 10 – Exemplo de LED
Fonte: Autor

1 BoxLayout :
2 orientation : ’vertical ’
3 size_hint : (0.1 , 0.1)
4 pos_hint : {’x’: 0.595 , ’y’: 0.02}
5 Image:
6 id: LED_falha_MCH
7 is_led : True
8 size_hint : (1, 0.8)
9 source : ’images /leds/ LEDapagado .png ’

10 index: 19
11 image_1 : ’images /leds/rLED.png ’
12 image_0 : ’images /leds/ LEDapagado .png ’
13 Label:
14 text: ’[b]FALHA [/b]’
15 markup : True
16 size_hint : (1, 0.2)
17 font_size : 14
18 color: (0, 0, 0, 1)

Algoritmo 3.8 – Definição de um LED em .kv
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Todos foram definidos com um identificador "is_led", para que o método de
atualização específico, apresentado no Algoritmo 3.9, consiga identificá-los quando percorre
todo o arquivo .kv no momento em que é executado. Através do widget BoxLayout sua
aplicação está sempre associada a um Label para descrever sua função. Possui apenas
imagens de apagado e aceso, variando em 3 cores: verde, vermelho e amarelo.

1 def update_all_led_images (self , status ):
2 """ Atualiza todas as imagens de LED """
3 for widget in self.walk ():
4 if isinstance (widget , Widget ) and hasattr (widget , ’is_led ’)

and widget . is_led :
5 index = cal_indication_index ( widget .index , 16)
6 if len( status ) > index:
7 if status [index] == ’1’:
8 widget . source = widget . image_1
9 else:

10 widget . source = widget . image_0

Algoritmo 3.9 – Método para atualização dos LED’s

3.4.2 Sinais

Os sinais, ilustrados na Figura 11 e no Algoritmo 3.10 seguem uma lógica parecida
com a dos LED’s, contudo em determinados contextos da sinalização ferroviária mais de
um aspecto do sinaleiro é ativado ao mesmo tempo, por exemplo, os chamados "vermelho
sobre amarelo", estado em que ambos os Led’s do sinal estão acesos. Diante dessa condição,
é necessário uma lógica que observe casos como esse.

Figura 11 – Exemplo de Sinal
Fonte: Autor

1 Image:
2 id: signal_S5D
3 is_signal : True
4 size_hint : (0.12 , 0.12)
5 pos_hint : {’x’: 0.393 , ’y’: 0.375}
6 source : ’images / signal / apagado .png ’
7 index_red : 55
8 index_flashred : 54
9 index_yellow : 0
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10 index_flashyellow : 0
11 index_green : 0
12 image_red : ’images / signal /red.png ’
13 image_flashred : ’images / signal /red.png ’
14 image_yellow : ’images / signal / yellow .png ’
15 image_flashyellow : ’images / signal / yellow .png ’
16 image_green : ’images / signal /green.png ’
17 image_redyellow : ’images / signal / redyellow .png ’
18 image_apagado : ’images / signal / apagado .png ’
19 canvas . before :
20 PushMatrix
21 Rotate :
22 angle: -90
23 origin : self. center
24 canvas .after:
25 PopMatrix

Algoritmo 3.10 – Definição de um sinal em .kv

Portanto, observa-se que cada aspecto do sinal possui a própria imagem associada,
e também um endereço associado no mapa de bits.

A seguir, o Algoritmos 3.11 e o Algoritmo 3.12 apresentam como acontece a
atualização das imagens dos sinais.

1 def update_all_signal_images (self , status ):
2 """ Atualiza todas as imagens de Signal """
3 for widget in self.walk ():
4 if isinstance (widget , Widget ) and hasattr (widget , ’is_signal

’) and widget . is_signal :
5 # logger .debug(f "\033[91 mAtualizando track: { widget

}\033[0 m")
6 image_source = self. update_signal (widget , status )
7 if image_source : # Verifica se image_source n o

None
8 widget . source = image_source
9 # widget . canvas . ask_update () # F o r a a

a t u a l i z a o do widget

Algoritmo 3.11 – Método para atualização dos Sinais

O primeiro método inicializa a atualização de todos widgets, que possuem o identifi-
cador "is _signal", que por sua vez irá iniciar o segundo método que trata individualmente
cada sinal.

1 def update_signal (self , widget , status ):
2 """ L g i c a e s p e c f i c a para signal """
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3 if widget . index_red != 0:
4 index_red = cal_indication_index ( widget .index_red , 16)
5 if len( status ) <= index_red :
6 logger .error(" \033[91 mStatus string length is

insufficient for the required indices \033[0 m")
7 return widget . source # Retorna a imagem atual se o

status n o for v l i d o
8 if status [ index_red ] == ’1’:
9 return widget . image_red

10

11 if widget . index_flashred != 0:
12 index_flashred = cal_indication_index ( widget . index_flashred ,

16)
13 if len( status ) <= index_flashred :
14 logger .error(" \033[91 mStatus string length is

insufficient for the required indices \033[0 m")
15 return widget . source # Retorna a imagem atual se o

status n o for v l i d o
16 if status [ index_flashred ] == ’1’:
17 return widget . image_flashred
18

19 if widget . index_yellow != 0:
20 index_yellow = cal_indication_index ( widget . index_yellow , 16)
21 if len( status ) <= index_yellow :
22 logger .error(" \033[91 mStatus string length is

insufficient for the required indices \033[0 m")
23 return widget . source # Retorna a imagem atual se o

status n o for v l i d o
24 if status [ index_yellow ] == ’1’:
25 return widget . image_yellow
26

27 if widget . index_flashyellow != 0:
28 index_flashyellow = cal_indication_index ( widget .

index_flashyellow , 16)
29 if len( status ) <= index_flashyellow :
30 logger .error(" \033[91 mStatus string length is

insufficient for the required indices \033[0 m")
31 return widget . source # Retorna a imagem atual se o

status n o for v l i d o
32 if status [ index_flashyellow ] == ’1’:
33 return widget . image_flashyellow
34

35 if widget . index_green != 0:
36 index_green = cal_indication_index ( widget . index_green , 16)
37 if len( status ) <= index_green :
38 logger .error(" \033[91 mStatus string length is

insufficient for the required indices \033[0 m")
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39 return widget . source # Retorna a imagem atual se o
status n o for v l i d o

40 if status [ index_green ] == ’1’:
41 return widget . image_green
42

43 else:
44 return widget . image_apagado

Algoritmo 3.12 – Método com a lógica de atualização dos Sinais

O segundo método verifica se cada endereço do mapa de bits foi setado para algum
valor diferente de 0. Essa condição foi aplicada para que em futuras edições da interface
para diferentes configurações de pátio, o código se mantenha escalável, não necessitando
de apagar indicadores de aspectos de sinal que não serão utilizados, podendo apenas
configura-los com o valor 0 no respectivo arquivo .kv. Atendendo a condição de possuir
endereço maior do que zero, o sinal será alterado caso o status correspondente esteja em
nível lógico 1.

3.4.3 Circuito de Via

Os blocos de circuito de via são os que representam a linha que o trem percorre
de fato. Basicamente devem monitorar se o circuito está ocupado ou livre. A ocupação é
sempre representada pelo bloco do circuito em vermelho, como na Figura 12. Ademais,
também são utilizados para visualização do conceito de rotas, que podem estar alinhadas
ou apenas requisitadas. Portanto todos os casos possuem sua própria imagem associada,
como apresenta o Algoritmo 3.13.

Figura 12 – Exemplo de Circuito de Via Ocupado
Fonte: Autor

1 Image:
2 id: track1
3 is_track : True
4 pos_hint : {’x’: -0.13, ’y’: -0.02}
5 source : ’images / tracks / trackpreta .png ’
6 occupation_index : 39
7 requested_route_index : 30
8 aligned_route_index : 26
9 image_occupied : ’images / tracks / trackvermelha .png ’

10 image_aligned : ’images / tracks / trackverde .png ’
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11 image_requested : ’images / tracks / trackamarela .png ’
12 image_track : ’images / tracks / trackpreta .png ’

Algoritmo 3.13 – Definição de um Circuito de Via em .kv

Como as imagens irão monitorar ocupação do circuito de via, requisição e alinha-
mento de rota, são necessários três diferentes endereços do mapa de bits, um para cada
variável a ser observada, além das imagens associadas a cada um desses.

A seguir, o Algoritmo 3.14, apresenta a lógica para atualização de imagens de
circuito de via.

1 def update_all_track_images (self , status ):
2 """ Atualiza todas as imagens de MCH """
3 for widget in self.walk ():
4 if isinstance (widget , Widget ) and hasattr (widget , ’is_track ’

) and widget . is_track :
5 # logger .debug(f "\033[91 mAtualizando track: { widget

}\033[0 m")
6 image_source = self. update_track (widget , status )
7 if image_source : # Verifica se image_source n o

None
8 widget . source = image_source
9 # widget . canvas . ask_update () # F o r a a

a t u a l i z a o do widget
10

11 def update_track (self , widget , status ):
12 """ L g i c a e s p e c f i c a para track """
13 occupation_index = cal_indication_index ( widget . occupation_index ,

16)
14 requested_route_index = cal_indication_index ( widget .

requested_route_index , 16)
15 aligned_route_index = cal_indication_index ( widget .

aligned_route_index , 16)
16

17 if len( status ) <= max( occupation_index , requested_route_index ,
aligned_route_index ):

18 logger .error(" \033[91 mStatus string length is insufficient
for the required indices \033[0 m")

19 return widget . source # Retorna a imagem atual se o status
n o for v l i d o

20

21 if status [ occupation_index ] == ’1’:
22 return widget . image_occupied
23 elif status [ occupation_index ] == ’0’:
24 if status [ aligned_route_index ] == ’1’:
25 return widget . image_aligned
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26 elif status [ requested_route_index ] == ’1’:
27 return widget . image_requested
28 else:
29 return widget . image_track
30 return widget . source

Algoritmo 3.14 – Método para atualização do Circuito de Via

A ocupação por ser uma informação crítica é a primeira condição a ser observada,
e caso nenhum das demais condições sejam atendidas, é retornada a imagem da via
desocupada e sem rota alinhada ou requisitada como na Figura 13.

Figura 13 – Exemplo de Circuito de Via Livre
Fonte: Autor

3.4.4 Máquina de Chave

A máquina de chave é um caso particular do bloco de circuito de via, pois essa
possui a mesma lógica quanto à ocupação e o alinhamento e requisição de rotas. Entretanto,
possui a peculiaridade de apresentar para qual sentido a ponta de agulha da máquina
de chave está alinhada, podendo estar nas posições normal, reverso ou sem indicação. A
Figura 14 representa uma máquina de chave em normal e com rota alinhada. O Algoritmo
3.15 apresenta todas as definições associadas a uma máquina de chave.

Figura 14 – Exemplo de Máquina de Chave
Fonte: Autor

1 Image:
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2 id: mch1
3 is_mch : True
4 size_hint : (0.45 , 0.49)
5 pos_hint : {’x’: 0.335 , ’y’: 0.31}
6 source : ’images /mch/ mchsemindicacao .png ’
7 normal_index : 17
8 reverse_index : 18
9 occupation_index : 40

10 requested_route_index : 30
11 aligned_route_index : 26
12 image_normaloccupied : ’images /mch/ mchnormalvermelho .png ’
13 image_normalrequested : ’images /mch/ mchnormalamarelo .png ’
14 image_normalaligned : ’images /mch/ mchnormalverde .png ’
15 image_normaltimelocking : ’images /mch/ mchnormalamarelo .png ’
16 image_normalmch : ’images /mch/ mchnormal .png ’
17 image_reverseoccupied : ’images /mch/ mchreversovermelha .png ’
18 image_reverserequested : ’images /mch/ mchreversoamarelo .png ’
19 image_reversealigned : ’images /mch/ mchreversoverde .png ’
20 image_reversemch : ’images /mch/ mchreverso .png ’

Algoritmo 3.15 – Definição da máquina de chave em .kv

Por ter muitas variações a serem apresentadas, as MCH’s são as que possuem maior
quantidade de endereços do mapa de bits, consequentemente maior quantidade de imagens
associadas.

A seguir, o Algoritmo 3.16 e o Algoritmo 3.17 apresentam a lógica para atualização
de imagens de máquina de chave.

1 def update_all_mch_images (self , status ):
2 """ Atualiza todas as imagens de MCH """
3 for widget in self.walk ():
4 if isinstance (widget , Widget ) and hasattr (widget , ’is_mch ’)

and widget . is_mch :
5 # logger .debug(f "\033[91 mAtualizando MCH: { widget }\033[0 m

")
6 image_source = self. update_mch (widget , status )
7 if image_source : # Verifica se image_source n o

None
8 widget . source = image_source
9 # widget . canvas . ask_update () # F o r a a

a t u a l i z a o do widget

Algoritmo 3.16 – Método para atualização da Máquina de Chave

Assim como a lógica dos blocos de circuito de via, um primeiro método inicializa
a atualização das imagens, verificando se possui o identificador "is _mch". Atendendo à
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condição, o método de atualização de cada máquina de chave é chamado.

1 def update_mch (self , widget , status ):
2 """ L g i c a e s p e c f i c a para MCH """
3 normal_index = cal_indication_index ( widget . normal_index , 16)
4 reverse_index = cal_indication_index ( widget . reverse_index , 16)
5 occupation_index = cal_indication_index ( widget . occupation_index ,

16)
6 requested_route_index = cal_indication_index ( widget .

requested_route_index , 16)
7 aligned_route_index = cal_indication_index ( widget .

aligned_route_index , 16)
8

9 # logger .debug(f "\033[91 mIndices MCH: normal ={ normal_index },
reverse ={ reverse_index }, occupation ={ occupation_index },
requested_route ={ requested_route_index }, aligned_route ={
aligned_route_index }\033[0 m")

10

11 # Verifique se o status tem o comprimento n e c e s s r i o
12 if len( status ) <= max( normal_index , reverse_index ,

occupation_index , requested_route_index , aligned_route_index )
:

13 logger .error(" \033[91 mStatus string length is insufficient
for the required indices \033[0 m")

14 return widget . source # Retorna a imagem atual se o status
n o for v l i d o

15

16 # Implementar a l g i c a com base nos valores dos ndices
17 if status [ normal_index ] == ’1’:
18 if status [ occupation_index ] == ’1’:
19 return widget . image_normaloccupied
20 elif status [ occupation_index ] == ’0’:
21 if status [ aligned_route_index ] == ’1’:
22 return widget . image_normalaligned
23 elif status [ requested_route_index ] == ’1’:
24 return widget . image_normalrequested
25 else:
26 return widget . image_normalmch

Algoritmo 3.17 – Método com a lógica para atualização de cada Máquina de Chave

Antes de verificar as condições das variáveis, existe uma conferência se a string
"status" possui tamanho suficiente para acessar o endereço requerido, caso contrário
retorna a imagem atual.

Atendendo aos requisitos de endereço válido, o método verifica em primeira instância
se a máquina está em normal ou em reverso, para que as demais condições sejam aplicadas
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de acordo com esse status. Não atendendo a nenhum dos dois, a imagem referente a falta
de indicação do status da máquina de chave é carregada. Caso a condição de normal ou
reverso seja satisfeita, a lógica passa a ser semelhante a de um bloco de circuito de via
comum, observando ocupação, requisição e alinhamento de rota.

3.4.5 Botões

Os botões são utilizados para o envio de mensagens de controle, mas possuem
também a propriedade de indicar o status de algum bit que lhe seja endereçado, atuando de
maneira similar ao LED quanto a indicação. Eles estão associados a um widget FloatLayout,
para poder posicionar também um Label que informa sua atribuição. Na Figura 15 e no
Algoritmo 3.18, está presente a representação do botão que deve ser pressionado para
enviar o comando de requisição de modo de controle local, e também a indicação de modo
de controle local estabelecido por estar com o aspecto de aceso. Portanto, atuam tanto
como indicadores quanto controladores.

Figura 15 – Exemplo de Botão
Fonte: Autor

1 FloatLayout :
2 id: Local
3 size_hint : (None , None)
4 size: (120 , 120)
5 pos_hint : {’x’: 0.40 , ’y’: 0.7}
6 Button :
7 background_normal : ’images / buttons /g_off.png ’ # Imagem

de fundo p a d r o
8 background_down : ’images / buttons / g_off_down .png ’ #

Imagem de fundo quando o b o t o pressionado
9 padding : [0.01 , 0.01 , 0.05 , 0.05] # Ajuste os valores

conforme n e c e s s r i o
10 is_button : True
11 size_hint : (None , None) # Desabilita o ajuste

a u t o m t i c o de tamanho
12 size: (130 , 130) # Define o tamanho do b o t o (largura ,

altura )
13 pos_hint : {’center_x ’: 0.5, ’center_y ’: 0.5} #

Centraliza o b o t o
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14 on_press : root. send_control_message (self. control_index )
15 image_on_bg_normal : ’images / buttons / g_on_b .png ’
16 image_on_bg_down : ’images / buttons /g_off.png ’
17 image_off_bg_normal : ’images / buttons /g_off.png ’
18 image_off_bg_down : ’images / buttons / g_off_down .png ’
19 control_index : 40
20 indication_index : 49
21 Label:
22 text: ’[b]LOCAL [/b]’
23 markup : True # Habilita o uso de tags de f o r m a t a o
24 halign :’center ’
25 size_hint : (None , None)
26 size: (120 , 30)
27 pos_hint : {’center_x ’: 0.5, ’center_y ’: 0.2} #

Posiciona o label sobre o b o t o
28 font_size : 14
29 height : 10 # Ajuste a altura conforme n e c e s s r i o
30 color: (0, 0, 0, 1)

Algoritmo 3.18 – Definição de Botão em .kv

A definição do widget botão possui lógica similar a de um LED quando trata
o status que monitora como ativado ou desativado, contudo possui mais imagens para
implementar a animação de pressionar o botão. A principal diferença se encontra no fato
de possuir endereço de indicação e também endereço de controle. O endereço de controle
é utilizado no ato de pressionar o botão que chama o método send_control_message.

A seguir, o Algoritmo 3.19 apresenta a lógica para atualização de imagens de
botões.

1 def update_all_button_backgrounds (self , new_status ):
2 """ Atualiza os planos de fundo de todos os b o t e s """
3 for widget in self.walk ():
4 if isinstance (widget , Widget ) and hasattr (widget , ’is_button

’) and widget . is_button :
5 if widget . indication_index == 0:
6 continue
7

8 index = cal_indication_index ( widget . indication_index ,
16)

9 if len( new_status ) > index:
10 current_state = new_status [index]
11 previous_state = self. button_states .get(widget , None

)
12 if current_state != previous_state :
13 if current_state == ’1’:
14 widget . background_normal = widget .

image_on_bg_normal # bg normal aceso
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15 widget . background_down = widget .
image_on_bg_down # bg down aceso

16 else:
17 widget . background_normal = widget .

image_off_bg_normal # bg normal apagado
18 widget . background_down = widget .

image_off_bg_down # bg down apagado

Algoritmo 3.19 – Método para atualização dos Botões

3.5 Conexão da IHM com o Driver

A conexão da Interface Humano-Máquina com o driver Genisys será abordada
através do envio das mensagens de controle e a interpretação das mensagens de indicação.

3.5.1 Envio de Mensagens de Controle

O envio de uma mensagem de controle se inicia com a interação de clique de
algum botão na tela da IHM. No Algoritmo 3.20 observa-se que a ação de clique inicializa
o método send_control_messages, e envia o control_index associado ao botão como
parâmetro.

1 def send_control_message (self , control_index ):
2 """ Envia uma mensagem de controle com o valor digitado """
3 try:
4 control_value = int( control_index )
5 self. driver . set_control_value ( control_value )
6 self.ids. status_label .text = f" Controle enviado : {

control_value }"
7 logger .info(f" Controle enviado : { control_value }")
8 except ValueError :
9 self.ids. status_label .text = "Valor de controle i n v l i d o "

10 logger .error("Valor de controle i n v l i d o ")
11 except Exception as e:
12 self.ids. status_label .text = f"Erro: {str(e)}"
13 logger .error(f"Erro ao enviar controle : {str(e)}")

Algoritmo 3.20 – Método que inicia e mensagem de controle

Esse método, por sua vez, chama o método set_control_value, e passa como
parâmetro o valor do endereço como um inteiro, como observa-se no Algoritmo 3.21.

1 def set_control_value (self , value: int) -> None:
2 """ Envia comando de controle para o dispositivo """
3 if not 1 <= value <= self. max_control_value :
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4 raise ValueError (f"Valor deve estar entre 1 e {self.
max_control_value }")

5

6 self. control_value = value
7 logger .info(f" Enviando valor de controle : {value}")
8 address = value -1 #para corrigir a contagem que inicia de 0 e

n o de 1
9

10 # Gera as mensagens de controle
11 raw_message_on , hex_message_on = gerar_mensagem_controle (16, [

address ], False)
12 raw_message_off , hex_message_off = gerar_mensagem_controle (16, [

address ], True)
13

14 # Envia as mensagens de controle
15 if isinstance ( raw_message_on , bytes) and isinstance (

raw_message_off , bytes):
16 self.ser.write( raw_message_on )
17 logging .info(f" Mensagem de controle enviada : { hex_message_on

}")
18 time. sleep (0.5)
19 self.ser.write( raw_message_off )
20 logging .info(f" Mensagem de controle enviada : {

hex_message_off }")
21 else:
22 logger .error("Erro: gerar_mensagem_controle n o retornou

bytes")

Algoritmo 3.21 – Método que corrige o endereço e envia as mensagens

O método set_control_value é o que envia a mensagem através do pyserial. É
importante destacar que uma mensagem de controle enviada sempre é seguida de um outro
pacote de controle que retorna o valor enviado para o estado inicial, para que seja similar
a um pulso. Antes do envio, as mensagens são criadas de acordo com o protocolo Genisys
no método gerar_mensagem_controle, como observa-se no Algoritmo 3.22.

1 def gerar_mensagem_controle ( num_words : int ,
2 control_addresses : List[int],
3 reset: bool = False) -> Tuple[bytes , str ]:
4 """ Gera mensagem de controle para o protocolo Genisys .
5

6 Args:
7 num_words : N m e r o de palavras de controle
8 control_addresses : Lista de e n d e r e o s de controle
9 reset: Flag para resetar o quarto byte

10

11 Returns :



46

12 Tupla contendo (bytes da mensagem , string hexadecimal formatada )
13

14 Raises :
15 ValueError : Para e n d e r e o s i n v l i d o s
16 """
17 if not all (0 <= addr < num_words *8 for addr in control_addresses ):
18 raise ValueError (" E n d e r e o s de controle i n v l i d o s ")
19 control_bits = [0] * num_words * 8
20 for addr in control_addresses :
21 control_bits [addr] = 1
22

23

24 message = bytearray ([0 xFC , 0x01 ])
25 for i in range( num_words ):
26 chunk = control_bits [i*8:(i+1) *8]
27 #print(f "\033[91 m{chunk }\033[0 m")
28 if 1 in chunk:
29 value = int(’’.join(map(str , reversed (chunk))), 2)
30 message . extend ([i, value ])
31

32 if reset and len( message ) >= 4:
33 message [3] = 0x00
34

35

36 raw_message , hex_message = build_complete_message ( message )
37 logger .debug(f" Mensagem de controle gerada : { hex_message }")
38 return raw_message , hex_message

Algoritmo 3.22 – Método que gera os bytes de data

Nesta etapa o payload é criado, sendo este o que pode levar o bit associado para
o valor lógico 1 ou retornar o valor para 0 na segunda chamada da função. Entretanto,
a mensagem não é toda criada nesse método, pois ainda é necessário aplicar o CRC, o
escaping e adicionar o terminador. A seguir, o Algoritmo 3.23 demonstra que todas as
três etapas são tratadas na função build_complete_message.

1 def build_complete_message ( packet : Union[str , bytes ]) -> Tuple[bytes ,
str ]:

2 """ C o n s t r i mensagem completa com CRC e escaping .
3

4 Args:
5 packet : Pacote original em string hex ou bytes
6

7 Returns :
8 Tupla contendo (bytes da mensagem , string hexadecimal formatada )
9 """

10 if isinstance (packet , str):
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11 data = bytes. fromhex ( packet )
12 else:
13 data = packet
14

15 crc = calculate_crc16 (data)
16 full_message = data + bytes ([ crc & 0xFF , (crc >> 8) & 0xFF ,

TERMINATOR ])
17 escaped_message = apply_escaping ( full_message )
18 return escaped_message , ’ ’.join(f"{b:02X}" for b in escaped_message

)

Algoritmo 3.23 – Método que finaliza o pacote de mensagem

3.5.2 Interpretação das Mensagens de Indicação

A interpretação das mensagens de indicação se passa pelo processo de criação
da string global "status", que é preenchida por binários, indicando se cada variável está
em nível lógico 1 ou 0. Após o processamento inicial do driver, caso a mensagem tenha
o header 0xF2, ela é tratada como uma mensagem de indicação, e passa pelo handler
definido para ela, que está demonstrado no Algoritmo 3.24.

1 def _handle_indication (self , message : bytes) -> None:
2 """ Handler para mensagens de i n d i c a o (0 xF2)"""
3 logger .info(" Processando mensagem de i n d i c a o ...")
4

5 try:
6 unescaped = reverse_escaping ( message )
7 binary_content = self. _parse_indication_content ( unescaped )
8 logger .info(f" Indication Binery Content : { binary_content }")
9

10 # Atualiza o status com o c o n t e d o b i n r i o
11 with self._lock:
12 self. status = binary_content
13

14 with self._lock:
15 self. _safe_write (self. ACK_POLL_MESSAGE )
16

17 except Exception as e:
18 logger .error(f"Erro no processamento de i n d i c a o : {str(e)

}")

Algoritmo 3.24 – Handler para mensagens de Indicação

No método definido para o handler a mensagem tem o escaping removido e em
seguida passa pelo processo de parsing para que a variável status seja atualizada.
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Como apresentado nos métodos de atualização de imagens, a variável status é
recorrentemente acessada para que a imagem seja atualizada de acordo com o endereço
de indicação definido. Contudo, é necessária uma correção para que o endereço correto
seja acessado. O Algoritmo 3.25 apresenta o método cal_indication_index que realiza a
correção.

1 def cal_indication_index ( indication : int , num_indication_words : int) ->
int:

2 if 0 <= indication <= 8 * num_indication_words :
3 quociente = ( indication - 1) // 8
4 resto = ( indication - 1) % 8
5 quociente += 1
6 aux1 = quociente * 8
7 indication_index = aux1 - (resto + 1)
8 else:
9 indication_index = -1 # Defina um valor p a d r o ou lance uma

e x c e o
10 print(" I n d i c a o definida fora do intervalo do mapa de bits")
11 return indication_index

Algoritmo 3.25 – Método para cálculo do endereço de indicação

O endereço configurado no mapa de bits, não é exatamente o mesmo endereço da
string binária que possui a informação, pois ela é criada concatenando os 8bits de cada
bytes, mas os bits são alocados da direita para a esquerda dentro de cada octeto. Portanto,
é necessário fazer uma correção do valor configurado como endereço para que a posição
correta seja acessada na string "status". A correção está expressa no Algoritmo 3.25.

3.6 Comparativo Entre a Interface Desenvolvida e o Sistema Legado

A Tabela 1 apresenta alguns pontos que podem ser destacados na comparação
entre o sistema legado e o proposto por este trabalho e cada um deles será tratado nas
seções seguintes.

Interface Desenvolvida Sistema Legado
Desenvolvimento da Interface Auxilio de IA Fácil compreensão
Suporte de Linguagem Ativo Descontinuado
Acesso ao Backend da Solução Possível Apenas ao Frontend
Customização Totalmente customizável Customização limitada

Tabela 1 – Tabela Comparativa entre Sistema Desenvolvido e Sistema Legado
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3.6.1 Desenvolvimento da Interface Gráfica

O desenvolvimento da interface gráfica no sistema legado é mais ágil e fácil de
aprender para quem não teve nenhum contato com nenhuma das duas soluções, pois está
associado à orientação a imagens, tornando o posicionamento das imagens na tela algo
intuitivo. Já o sistema desenvolvido nesse trabalho possui um posicionamento baseado
em coordenadas, que para quem não está familiarizado, pode ser custoso, mas possui a
vantagem de ser mais customizável, por ter acesso a todo o desenvolvimento da tela e
não somente a alguns objetos pré-setados. Além disso, o programa de edição do Adobe
Flash não possui mais suporte, e o Kivy Language possibilita o auxilio de IA durante o
desenvolvimento por ser totalmente em texto.

3.6.2 Suporte

A aplicação legado é toda desenvolvida pelo Adobe Flash, que foi descontinuado
em 2020. Sendo assim, a aplicação que carrega as interfaces desenvolvidas e o executável
Flash Portable que permite a edição de interfaces já não rodam em todas as máquinas
atuais, tornando-se um problema para o desenvolvimento de novas interfaces com diferentes
configurações de pátio.

3.6.3 Acesso ao Backend

O sistema legado atual, permite a personalização do frontend, entretanto não
permite acesso ao driver de comunicação da aplicação principal. Portanto o sistema
desenvolvido se torna superior ao permitir mudanças no backend da solução, tornando
assim possível maior manutenção da aplicação ao longo dos anos.

3.6.4 Customização

Os pontos anteriores colaboram para a conclusão de que a customização da nova
aplicação seja superior à aplicação legado. Permitindo que sejam feitos programas robustos,
com interfaces modernas e customizadas para cada cliente diferente.
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4 Resultados

Este capítulo apresenta a solução final e realiza os testes necessários para validar o
sistema desenvolvido. Através da comparação dos status apresentados no supervisório e
seu estado atual que pode ser obtido no SATS, é possível validar que a mensagem enviada
pelo CLP está sendo corretamente interpretada e transformada em algo visual para quem
operar o programa. Da mesma forma, é possível testar o envio das mensagens de controle,
observando se no clique do botão da IHM o botão correspondente no SATS também é
ativado.

4.1 Resultados da Decodificação de Mensagens

A decodificação das mensagens é de suma importância para que o supervisório
apresente o verdadeiro status atual das variáveis monitoradas. Portanto, a principal
mensagem a ser decodificada é a de Indicação (0xF2). Para fazer a validação do que tem
sido apresentado na interface do programa, é necessário comparar lado a lado com o que o
SATS apresenta, tanto visualmente quanto o valor lógico da variável em questão.

O primeiro teste é observar se, quando estabelecida a conexão o estado inicial do
PCL condiz com o estado apresentado pelo simulador.

Figura 16 – Estado Inicial do SATS
Fonte: Autor

A Figura 16 apresenta graficamente máquina de chave em normal, sem nenhuma
ocupação dos circuitos de via 12T e W5T, nenhuma interdição de chave ou de linha. A
tabela na extremidade direita da imagem apresenta o nível lógico de algumas variáveis
monitoradas pelo PCL, entre eles, os alarmes, a saúde do sistema, o link com a locação
adjacente e o modo de controle estabelecido. Sendo assim é possível observar que nenhum
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alarme está ativado, a saúde e o link estão estabelecidos e o modo de controle atual é
central. Dessa maneira, a Figura 17 nos mostra que a interface do programa desenvolvido
está condizente com o que está sendo simulado no SATS.

Figura 17 – Estado Inicial do PCL
Fonte: Autor

Para verificar se o PCL está acompanhando o que é simulado no SATS, através da
interpretação correta das mensagens, diversos estados de variáveis serão alterados, a fim
de abranger diferentes tipos de imagens criada no PCL.

Figura 18 – Segundo Estado do SATS
Fonte: Autor

Na Figura 18 observa-se uma interdição de via representada pelo quadrado azul,
uma ocupação do circuito 12T, e a alteração do estado dos alarmes de falha 12VDC e



52

falha do GND. Além disso, o sinal S5D passou a apresentar aspecto vermelho, devido a
ocupação do circuito 12T.

Na medida em que o simulador alterou alguns status de variáveis, o PCL acom-
panhou as mudanças, sendo possível observar na Figura 19 que os LED’s de alarmes
acenderam, o LED de saúde apagou, o botão de interdição de linha PE também acendeu,
o circuito 12T passou a ser ocupado e o sinal S5D acendeu.

Figura 19 – Segundo Estado do PCL
Fonte: Autor

Concluindo a decodificação de mensagem, é importante validar que a nova solução é
capaz de enviar mensagens de controle para o CLP. Seguindo o último estado da simulação
apresentado neste trabalho, o modo de controle local já está estabelecido, portanto é
possível enviar mensagens de controle que alterem o status atual da simulação. Para esse
teste busca-se movimentar a máquina de chave para reverso.
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Figura 20 – Controle recebido pelo SATS
Fonte: Autor

Na Figura 20, é possível observar que após o clique no botão amarelo "R", de
comando de máquina de chave, a variável de comando da MCH foi ativada e a contagem
de tempo para que ela feche o curso na posição de reverso foi iniciada, podendo concluir
que a mensagem em Genisys está sendo criada corretamente e seguindo o protocolo, ela
consegue enviar comando para o CLP.

4.2 Avaliação da Interface Gráfica

O sistema legado possui três interfaces que são utilizadas na aplicação. A primeira,
Figura 21, permite escolher qual o modelo de pátio será carregado, as opções irão variar de
acordo com os arquivos de extensão .swf e .xml carregados na pasta do programa. Esses
arquivos são gerados previamente através do editor de interfaces do Adobe Flash Portable.
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Figura 21 – Primeira Interface PCL Legado
Fonte: Autor

A segunda interface do sistema, Figura 22, legado deveria atuar como uma tela
de login. Entretanto, essa funcionalidade não está mais presente no programa, não sendo
necessária nenhuma senha para acessar a terceira interface.

Figura 22 – Segunda Interface PCL Legado
Fonte: Autor
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A terceira e última interface é a que de fato o supervisório está presente, sendo
possível monitorar o estado dos ativos de campo e alarmes pré-definidos e também atuar
como um painel de controle local ao enviar comandos através dos botões da interface.

Figura 23 – Terceira Interface PCL Legado
Fonte: Autor

A Figura 23 mostra que na barra inferior dessa interface é possível acessar as
configurações de comunicação, onde é definido se a comunicação será por User Dataprogram
Protocol/Internet Protocol (UDP/IP) ou serial, a porta COM, o protocolo de comunicação
e algumas outras configurações secundárias apresentadas na Figura 24.
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Figura 24 – Configurações de conexão PCL Legado
Fonte: Autor

É possível também acessar o monitor serial da aplicação, a Figura 25 evidencia a
troca de mensagens do painel com o CLP.

Figura 25 – Monitor PCL Legado
Fonte: Autor
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A nova interface gráfica, como pode ser visto na Figura 26, apresenta algumas
diferenças estéticas em relação ao sistema legado, apresentando um layout mais moderno,
e configurações de conexão na primeira tela.

Figura 26 – Interface de Conexão PCL
Fonte: Autor

A segunda interface gráfica, diferente do que ocorre no PCL legado, já apresenta o
supervisório, e só é carregada caso a conexão com o CLP seja estabelecida. A Figura 27
apresenta a interface do supervisório desenvolvida neste trabalho.
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Figura 27 – Interface de Conexão PCL
Fonte: Autor

Ademais, algumas funcionalidades não foram implementadas. A primeira é a
impossibilidade de acompanhar o monitor serial na própria aplicação, sendo necessário
acessar o monitor através do VSCode. A segunda, se trata de uma nova abordagem para
o conceito do sistema. A aplicação legado carrega vários layouts pré-definidos em uma
pasta do programa, já a aplicação deste trabalho propõe um arquivo executável para cada
configuração de pátio.

4.3 Desempenho e Usabilidade.

A IHM apresenta desempenho satisfatório quanto a responsividade dos botões,
enviando as mensagens de controle de maneira instantânea. Porém, a responsividade visual
ainda é inferior ao sistema legado. Quanto a atuação como supervisório, com indicações
em estado constante, a aplicação é consistente e não apresenta nenhuma incongruência.
Contudo, no momento em que algum status é alterado, a atualização da interface apresenta
falsas indicações, demorando cerca de 2 segundos até normalizar e corrigir a interface, o
que é um ponto de atenção que deve ser tratado para garantir segurança ao utilizar o
sistema.
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A Tabela 2, apresenta um comparativo entre as funcionalidades presentes no
sistema desenvolvido e no sistema legado. Observa-se que o sistema legado possui mais
funcionalidades que a nova IHM, o que limita sua usabilidade do novo sistema para cenários
além dos simulados neste trabalho.

Interface Desenvolvida Sistema Legado
Supervisão de Status Sim Sim
Envio de Comandos Sim Sim
Comunicação Serial Sim Sim
Comunicação TCP/IP Não Sim
Monitor Serial Não Sim

Tabela 2 – Tabela Comparativa de Desempenho e Usabilidade
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5 Conclusão e Propostas Para Trabalhos Futuros

Este capítulo apresenta as considerações finais do trabalho de substituição de um
sistema baseado em tecnologias obsoletas.

5.1 Contribuições do Trabalho

O desenvolvimento deste trabalho resultou em avanços na modernização de sistemas
supervisórios de controle ferroviário, validando a viabilidade de substituir tecnologias
legadas por soluções abertas e adaptáveis. A integração entre o driver Genisys e a
Interface Humano-Máquina em Kivy demonstrou ser uma alternativa eficiente, mesmo
com recursos limitados.

A principal contribuição é destacada na implementação do driver Genisys, que
permitiu decodificar e validar a estrutura de frames do protocolo, garantindo uma comuni-
cação confiável com o CLP por meio de mecanismos de CRC e escaping de dados. A IHM
desenvolvida, por sua vez, atende aos requisitos para substituir o sistema legado baseado
em Adobe Flash, oferecendo uma aplicação personalizável e de fácil instalação por ser
desenvolvida inteiramente em Python, renovando o acesso e a vida útil da solução.

Testes realizados com o simulador SATS comprovaram a eficácia do sistema em
interpretar mensagens de indicação e transformá-las em dados visuais, e enviar comandos
de controle. A solução também introduziu maior transparência no desenvolvimento, por
permitir acesso ao backend, facilitando futuras customizações e melhorias.

5.2 Propostas Para Trabalhos Futuros

Esta seção apresenta melhorias que podem ser implementadas à atual solução, a
fim de obter melhores resultados e expandir a aplicabilidade do sistema.

Considerando as atuais limitações de desempenho do produto, é necessário uma
revisão do código base para encontrar possíveis otimizações da atualização da interface,
melhorando a resposta visual do programa e a confiabilidade do que é apresentado. Além
disso, integrar um módulo de geração de logs diretamente na interface, permitirá um
diagnóstico de falhas e auditoria de comandos enviados.

As funcionalidades do sistema legado também podem ser implementadas caso seja
vantajoso para a escalabilidade do produto. O desenvolvimento da comunicação TCP/IP
como uma alternativa à serial, será necessário para aumentar a aplicabilidade em que a
porta serial do CLP não esteja disponível. Além disso, implementar uma ferramenta de car-
regamento dinâmico de layouts de pátio, permitindo que usuários importem configurações
sem necessidade de interpretar o código todo novamente.
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Testes em ambientes reais, com equipamentos ferroviários, tornam-se de suma
importância para que a confiabilidade do produto seja atestada. Portanto, é a comunicação
com o CLP(ElectroLogIXS) em laboratórios e em ambientes de campo, quando as condições
podem se tornar adversas, que validarão a robustez do sistema.

5.3 Considerações Finais

Este trabalho estabeleceu as bases para a compreensão e utilização do driver
Genisys não só para o painel de controle local em questão, mas também para outras
aplicações que possam utilizar o protocolo que está presente no ambiente ferroviário.

As propostas futuras visam transformar o produto em uma solução industrialmente
relevante, sendo capaz de substituir integralmente o sistema legado atual, eliminando a
dependência de tecnologias obsoletas.
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