UNIVERSIDADE FEDERAL DE JUIZ DE FORA
FACULDADE DE ENGENHARIA
ENGENHARIA ELETRICA - ROBOTICA E AUTOMACAO INDUSTRIAL

Matheus Taninho Reinh

Desenvolvimento de um Painel de Controle Local com Comunicagao via

Protocolo Genisys

Juiz de Fora

2025

Matheus Taninho Reinh

Desenvolvimento de um Painel de Controle Local com Comunicacao via

Protocolo Genisys

Trabalho de conclusao de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-

sito para aprovacao na disciplina - Trabalho
de Final de Curso.

Orientador: Prof. Dr. Guilherme Marcio Soares

Juiz de Fora

2025

Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Taninho Reinh, Matheus.

Desenvolvimento de um Painel de Controle Local com Comunicacao via
Protocolo Genisys / Matheus Taninho Reinh. — 2025.

62 f. : il

Orientador: Guilherme Marcio Soares

Trabalho de Conclusdo de Curso de Graduagao — Universidade Federal
de Juiz de Fora, Faculdade de Engenharia. Engenharia Elétrica - Robdtica
e Automagdo Industrial, 2025.

1. IHM. 2. Genisys. 3. Python, Kivy 1. Soares, Guilherme M., orient.
I1. Titulo.

Matheus Taninho Reinh

Desenvolvimento de um Painel de Controle Local com Comunicagao via
Protocolo Genisys

Trabalho de conclusao de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-

sito para aprovacao na disciplina - Trabalho
de Final de Curso.

BANCA EXAMINADORA

Prof. Dr. Guilherme Marcio Soares - Orientador
Universidade Federal de Juiz de Fora

Prof. Dr. Exuperry Barros Costa
Universidade Federal de Juiz de Fora

Eng. Thiago Modesto Oliveira
Wabtec Corporation

AGRADECIMENTOS

Soli deo Gloria. Porque dEle, e por meio dEle, e para Ele sao todas as coisas.

Gostaria de expressar minha mais profunda gratidao a Deus. Sem Ele eu nada sou.
O Senhor de todo o universo, que por sua superabundante graca e infinito amor, tornou
o miseravel pecador que sou, em seu filho, e com sua misericérdia e bondade leva-me a

conquistas, as quais jamais sonhei alcancar.

Quero agradecer a minha familia. Meus irmaos, que sempre foram inspiracao e
bons exemplos para mim, e especialmente aos meus pais, que me moldaram e com muito

amor e carinho pavimentaram o caminho que trilhei até aqui.
A minha esposa, minha gratidao por seu amor, sua paciéncia e apoio, sempre me
motivando, sendo minha base para nao desistir no momentos de dificuldade e minha alegria

para seguir a jornada da vida a cada dia.

Aos meus professores, que ao longo do curso, cada um com a sua particularidade,

compartilharam seus conhecimentos, experiéncias e orientagoes, muito obrigado.

A eletricidade é a alma do universo moderno.

George Westinghouse

RESUMO

Este trabalho apresenta o desenvolvimento de uma Interface Humano-Maquina para
sistemas ferroviarios, substituindo uma solucao legado baseada em Adobe Flash. O objetivo
central foi criar um sistema moderno que se comunica com o controlador logico programavel,
ElectroLoglIXS, via protocolo Genisys, utilizado em sistemas de sinalizagao ferrovidria.
A metodologia incluiu a decodificacdo do protocolo Genisys, desenvolvimento de um
driver em Python para a comunicacgao serial, e a implementacao de uma IHM utilizando
o framework Kivy, permitindo visualizacdo em tempo real do estado de dispositivos de
campo (sinais, circuitos de via, maquinas de chave) e envio de comando de controle.
A solugao foi validada através do simulador Signal Application Testing System (SATS),
demonstrando precisao na interpretacao de mensagens de indicacao e eficicia no envio de
comandos. Resultados destacam a superagao das limitagoes do sistema legado, como a
falta de personalizacao, dificuldade de instalacdo e depéndencia de tecnologias obsoletas,
oferecendo uma alternativa escalavel, de codigo aberto e com total acesso ao backend.
Conclui-se que a integracao entre o driver Genisis e a IHM em Kivy representa um avango
significativo, com potencial para a aplicacdo em cendrios reais e futuras expansoes, como

suporte para TCP/IP e gestao de logs integrada.
Palavras-chave: THM, Genisys, Python, ElectroLogIXS, Kivy.

ABSTRACT

This work presents the development of a Human-Machine Interface (HMI) for
railway systems, replacing a legacy solution based on Adobe Flash. The main objective
was to create a modern system that communicates with the programmable logic controller,
ElectroLogIXS, via the Genisys protocol, used in railway signaling and control systems. The
methodology included decoding the Genisys protocol, developing a Python driver for serial
communication, and implementing an HMI using the Kivy framework, enabling real-time
visualization of field device status (signals, track circuits, switch machines) and transmission
of control commands. The solution was validated through the Signal Application Testing
System (SATS) simulator, demonstrating accuracy in interpreting status messages and
effectiveness in command transmission. Results highlight the overcoming of legacy system
limitations, such as lack of customization, installation challenges, and dependency on
obsolete technologies, offering a scalable, open-source alternative with full access to the
backend. It is concluded that the integration between the Genisys driver and the Kivy-
based HMI represents a significant advancement for railway automation, with potential
for real-world application and future expansions, such as TCP/IP support and integrated

log management.

Keywords: HIM, Genisys, Python, ElectroLogIXS, Kivy.

LISTA DE ILUSTRACOES

Figura 1 — Aba Location Designer do SATS 20
Figura 2 — Comms SATS 20
Figura 3 — Sistema Completo 21
Figura 4 — Fluxograma do cédigo 23
Figura 5 — Log do SATS 25
Figura 6 — Mudanga de Status 25
Figura 7 — Sexto Octeto do Mapa de Bits 26
Figura 8 — Estrutura do frame Genisys 27
Figura 9 — Mensagem Bruta no Monitor Serial 27
Figura 10 — Exemplode LEDo 0. 33
Figura 11 — Exemplode Sinal 34
Figura 12 — Exemplo de Circuito de Via Ocupado 37
Figura 13 — Exemplo de Circuito de Via Livre 39
Figura 14 — Exemplo de Maquina de Chave 39
Figura 15 — Exemplode Botao 42
Figura 16 — Estado Inicial do SATS 50
Figura 17 — Estado Inicial do PCL 51
Figura 18 — Segundo Estado do SATS 51
Figura 19 — Segundo Estado do PCL 52
Figura 20 — Controle recebido pelo SATS 53
Figura 21 — Primeira Interface PCL Legado 54
Figura 22 — Segunda Interface PCL Legado o4
Figura 23 — Terceira Interface PCL Legado 55
Figura 24 — Configuracdes de conexao PCL Legado 56
Figura 25 — Monitor PCL Legado 26
Figura 26 — Interface de Conexao PCL 57

Figura 27 — Interface de Conexao PCL 58

LISTA DE TABELAS

Tabela 1 — Tabela Comparativa entre Sistema Desenvolvido e Sistema Legado 48
Tabela 2 — Tabela Comparativa de Desempenho e Usabilidade 59

ANTT
ATCS
CCO
CLP
CRC
ELIX
IA
ICSNPP
THM
MCH
PCL
PTC
SATS
TCP/IP
UDP/IP

LISTA DE ABREVIATURAS E SIGLAS

Agencia Nacional de Transportes Terrestres
Advanced Train Control System

Centro de Controle Operacional

Controlador Légico Programduvel

Cyclic Redundancy Check

ElectroLogl XS

Inteligéncia Artificial

Industrial Control Systems Network Protocol Parsers
Interface Humano-Maquina

Maquina de Chave FElétrica

Painel de Controle Local

Positive Train COntrol

Signal Application Testing System

Transmission Control Protocol/Internet Protocol

User Dataprogram Protocol/Internet Protocol

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2
2.2.1
2.2.2
2.2.3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.3
3.3.1
3.3.2
3.3.3
3.3.3.1
3.3.4
3.3.5
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.5.1
3.5.2
3.6

SUMARIO

Introducao e e e e e e e e 12
Contextualizacdo 12
Problemas e Dores do Sistema Legado 13
Motivacao 13
Objetivos Gerais 14
Objetivos Especificos 14
Organizacao do Trabalho 14
Revisao Bibliografica e Arcabougo Teérico 15
Revisao Bibliografica 15
Arcabougo Tedrico 16
Python 17
Framework Kivy 17
Simulador de CLP - SATS 19
Desenvolvimento00 0000 21
Fluxograma do Coédigo 22
Inicializacdo e Conexao 23
Processamento de Dados e Atualizacao de Estado 24
Interface de Supervisao e Interagdo 24
Desenvolvimento do Driver Genisys 24
Estrutura do Frame Genisys 26
Aplicagao do Driver Genisys no Coédigo 28
Inicializacao e Ciclo de Vida do Driver 28
Estabelecimento de Conexao 29
Thread de Comunicagao Serial 29
Politica de Polling 30
Processamento de Indicagdes 30
Sincronizacao com a Interface. 31
Desenvolvimento da Interface Humano-Maquina 31
LED’s 33
Sinais e 34
Circuitode Via 37
Maquina de Chave 39
Botoes 42
Conexao da IHM com o Driver 44
Envio de Mensagens de Controle 44
Interpretacao das Mensagens de Indicacao 47

Comparativo Entre a Interface Desenvolvida e o Sistema Legado 48

3.6.1
3.6.2
3.6.3
3.6.4

4.1
4.2
4.3

5.1
5.2
9.3

Desenvolvimento da Interface Grafica 49

Suporteo 49
Acesso ao Backend 49
Customizacdo 49
Resultados i e e e 50
Resultados da Decodificacao de Mensagens 50
Avaliacao da Interface Grafica 53
Desempenho e Usabilidade. 58
Conclusao e Propostas Para Trabalhos Futuros 60
Contribui¢oes do Trabalho 60
Propostas Para Trabalhos Futuros 60
Consideracoes Finais o 61

REFERENCIAS o e e e e e e e e e e e st 62

12

1 Introducgao

1.1 Contextualizacao

O transporte ferroviario é essencial para o avancgo e desenvolvimento de um pais
de proporc¢oes continentais. Em paises como Estados Unidos e China existe uma malha
ferroviaria que cruza toda sua a extensao territorial. O Brasil de maneira modesta em

comparagao aos paises citados anteriormente também possui investimentos no setor.

A ferrovia, antes movida por energia termoelétrica com locomotivas que dependiam
da queima do carvao, possui hoje locomotivas elétricas, uma demonstracao dos constantes
avangos tecnolbgicos presentes nos sistemas ferroviarios. Esses avancos sao essenciais para

que haja aumento de produtividade sem que a seguranca seja negligenciada.

Contemporaneamente, as empresas que possuem a concessao das malhas ferroviarias
do Brasil negociam com a Agéncia Nacional de Transportes Terrestres (ANTT) alguns
marcos de avancos que devem ser realizados pelas empresas no tempo em que a ferrovia
estiver sob sua responsabilidade. Dessa maneira as concessionarias podem usufruir da
infraestrutura presente, mas devem investir constantemente em melhorias, evitando assim

que aconteca um sucateamento da malha do pais.

Diante desse cenario, sistemas com automagao e controle se tornam muito presentes
no setor, pois garantem produtividade com seguranca, consequentemente aumentam o
lucro para as empresas, evitando impactos negativos com acidentes. Dentre esses se destaca
o PTC (do inglés, Positive Train Control), que segundo [1], é feita para evitar colisdes
entre trens, descarrilamentos causados por velocidade excessiva nao autorizada e avancos
de trens para regioes que estao em manutencao. Uma aplicacdo de PTC possui no seu

sistema mais basico ao menos os seguintes elementos:

« Sistema de Controle de Locomotivas: Equipamentos instalados nas locomotivas que
recebem e transmitem dados em tempo real, possibilitando o controle automatico do

trem em emergeéncias.

o Sistema de Sinalizagao e Comunicagao: Infraestrutura ao longo da via férrea que

comunica informagoes criticas para a locomotiva ou Centro de Controle Operacional

e Centro de Controle de Operacoes: Uma central que gerencia a monitora o trafego

ferroviario.

o Softwares de Gestao e Analise: Programas que processam informacoes de sensores e
do sistema de comunicacao e tomam decisdes automéaticas, visando a prevencao de

acidentes.

13

Portanto, essas tecnologias ndo apenas transformam a maneira de gerenciar frotas
veiculares, mas também abrem portas para uma era de transporte mais inteligente, respon-
siva e sustentavel. A evolugao continua dessas solu¢oes promete uma revolugao no setor
ferroviario e logistico, trazendo consigo oportunidades para aumentar a competitividade e

impulsionar o crescimento econémico.

1.2 Problemas e Dores do Sistema Legado

Entre os sistemas e equipamentos de campo que tornam possivel a implementagao
de solugoes robustas para a ferrovia estd o Painel de Controle Local (PCL), individual
e personalizado para cada configuracao de patio ferroviario. O painel apresenta o status
atual da via e dos sensores monitorados pelo ElectroLogIXS (ELIX) e permite que, em

determinadas condi¢oes, comandos sejam enviados ao equipamento.

O Sistema legado é desenvolvido através do Adobe Flash e possui duas aplicagbes
que atuam em conjunto. A primeira é utilizada para criar a interface grafica, associando
elementos graficos a determinados enderecos do mapa de bits do software instalado no
ELIX, resultando em um arquivo com extensao .swf que por sua vez € utilizado na segunda

aplicacao, que finalmente realiza a comunicacao com o CLP via protocolo Genisys.

A arquitetura de desenvolvimento atual do PCL, baseada em Flash, ndo permite
acesso ao backend da aplicagao que estabelece comunicacao via protocolo Genisys, per-
mitindo pouca ou nenhuma personalizacao para atender casos que fujam do que ja foi
desenvolvido anteriormente. Além disso, a instalagdo do programa é muito custosa, por
necessitar de diversos arquivos e subaplicagoes em pastas especificas do computador para
rodar o programa principal. Esses problemas se agravaram com a descontinuagao da
ferramenta no ano de 2020, dificultando a criagdo de novas Interfaces Humano-Maquina

personalizadas para cada configuracao de patio ferroviario.

1.3 Motivagao

Ao ter o primeiro contato com o sistema utilizado para criar os Painéis de Controle
Local atuais, muitas dificuldades se apresentaram desde a instalagao da aplicacao de

desenvolvimento de interfaces até ao programa que de fato realiza a comunica¢ao com o

CLP.

O PCL ¢ utilizado em momentos criticos, que geralmente precisam de agilidade e
garantia de sucesso, por ser um software de utilizacgdo em campo, em situagoes que podem

impactar a operacao em caso de falhas.

Diante desse cenério, surgiu o desafio de desenvolver um sistema que substituisse o
atual, utilizando uma nova linguagem de programagao, e trazendo mais confiabilidade e

garantia para quem precisar utilizar o programa.

14

Vale ressaltar que como a solugao atual nao permite acesso ao backend, o desenvol-
vimento de um driver de comunicagao via protocolo Genisys que é o protocolo utilizado
para troca de mensagens entre o sistema legado e o CLP em questao, se torna essencial

para o sucesso do trabalho.

1.4 Objetivos Gerais

O objetivo geral deste trabalho é desenvolver um driver de comunicagao para o
protocolo Genisys e uma Interface Humano-Maquina (IHM) para a exibi¢do das indicagoes
do sistema de sinalizacao ferroviaria e envio de comandos de controle para o mesmo, a fim

de substituir o sistema existente.

1.5 Objetivos Especificos

Para atingir o objetivo geral deste projeto, foi necessario:

Analisar e decodificar mensagens do protocolo Genisys;

Desenvolver um driver de comunicacao para o protocolo;
o Criar uma IHM utilizando o framework Kivy;

o Comparar a solugao desenvolvida com o sistema legado;

1.6 Organizacao do Trabalho

Este documento esta estruturado em cinco capitulos fundamentais para apresentacao
coerente do desenvolvimento e validagao da solucao proposta. No Capitulo 2, sdo discutidos
os conceitos teodricos relacionados ao protocolo Genisys, tecnologias de IHMs e sistemas
ferroviarios, além de uma analise critica de trabalhos correlatos que fundamentaram as
escolhas técnicas deste projeto. O Capitulo 3 detalha a implementacao pratica, abordando
a decodificagdo do protocolo Genisys, arquitetura do driver de comunicacao, e 0 processo

de construcao da interface grafica com o framework Kivy.

No Capitulo 4, sdo apresentados os testes de validacao funcional com o simulador
Signal Application Testing System (SATS), andlise comparativa com o sistema legado,
e avaliacao de desempenho da solu¢ao desenvolvida. Por fim, o Capitulo 5 sintetiza as
contribui¢oes do trabalho, discute limitagoes identificadas, e propoe dire¢des para evolugao

da plataforma.

15
2 Revisao Bibliografica e Arcabougo Tedrico

2.1 Revisao Bibliografica

Esta secao apresenta uma breve revisao de alguns trabalhos e documentos que foram
utilizados como referéncia para o desenvolvimento deste projeto. Esses resumos visam
oferecer uma visao geral dos principais pontos abordados em cada trabalho, destacando

suas contribuigoes relevantes para o tema em estudo.

Em [2], Bruce Keeler apresenta um dissector!, para o protocolo Genisys, desen-
volvido para a ferramenta Wireshark. O protocolo Genisys, utilizado no controle de
sistemas de sinalizacao e intertravamentos ferroviarios, é descrito em detalhes, incluindo
sua estrutura de mensagens, mecanismos de escape de dados e cdlculo de CRC-16. O
autor destaca que o Genisys foi originalmente projetado para comunicagao serial, mas é
frequentemente transportado sobre TCP/IP em implementagdes modernas. O dissector
desenvolvido por Keeler permite a andlise de pacotes Genisys, identificando mensagens
como dados de indicagao, controle, e reconhecimento, além de validar a integridade dos
dados através do CRC. Esse trabalho é fundamental para a compreensao do protocolo
Genisys, fornecendo uma base técnica para o desenvolvimento de drivers de comunicacao

e sistemas de supervisao baseados nesse protocolo, como proposto neste trabalho.

Em [3], o projeto Industrial Control Systems Network Protocol Parsers (ICSNPP)
apresenta um plugin para o Zeek, desenvolvido em Spicy, capaz de analisar e registrar
mensagens do protocolo Genisys transportadas sobre TCP/IP. O plugin ICSNPP-Genisys
foi desenvolvido com base na engenharia reversa de um packet capture de trafego Genisys e
em referéncias a um dissector nao oficial proposto para o Wireshark. Ele gera um arquivo
de log (genisys.log) que captura detalhes como tipo de mensagem, dire¢do (requisi¢ao/res-
posta), CRC transmitido e calculado, e pares de enderego-dado do payload. Esse trabalho é
relevante para este projeto, pois fornece uma implementacao moderna e validada do parser
Genisys, auxiliando na compreensao e no desenvolvimento de solucoes de comunicagao

baseadas nesse protocolo.

Em [4], o manual técnico da empresa Union Switch & Signal (US&S) detalha
especificacoes do protocolo Genisys Serial, utilizado para controle e supervisao de sistemas
ferroviarios. O protocolo, de natureza binaria e orientado a bytes, opera em modo
mestre-escravo com mensagens estruturadas em cabegalho, endereco de conteido, dados
opcionais, checksum CRC-16 e terminador. A comunicacao é baseada em caracteres de
controle reservados, como o F6 para terminador, e mecanismos de escape para preservar
a integridade de bytes criticos no payload. O documento descreve formatos especificos

para mensagens mestre-escravo, incluindo um header para cada tipo de mensagem. Além

L Dissector é um moddulo usado pelo Wireshark para analisar protocolos campo por campo,

permitindo filtros em critérios especificos para analise do protocolo.

16

disso, aborda a operacao dos drivers do protocolo, com légicas de retransmissao, timeouts
e tratamento de falhas, bem como a configuracao de bytes de controle. Esse trabalho é
essencial para o projeto atual, pois fornece a base normativa para a implementagao de
drivers de comunicag¢ao compativeis com o Genisys, validando estruturas de mensagens,
calculos de CRC-16 e fluxos de interagao mestre-escravo, criticos para o desenvolvimento

de sistemas de supervisao confidveis em ambientes ferroviarios.

Em [5], Sergey N. Verzynov e colaboradores propéem uma arquitetura cross-
platform para o componente de software de um localizador de cabos, utilizando a biblioteca
Kivy para desenvolver uma interface grafica unificada em dispositivos moveis e computa-
dores de mesa, os autores criaram uma arquitetura que separa o cdédigo dependente da
plataforma, como drivers de hardware e configuracoes especificas do sistema operacional,
do codigo universal, 16gica de processamento e visualizacao de dados. Ferramentas como
Buildozer e CMake foram empregadas para empacotar o aplicativo em Android, enquanto
o Docker garantiu a reprodutibilidade do ambiente de desenvolvimento. O componente foi
testado com sucesso em dispositivos Android, integrando sensores como GPS e bissola, e
permitindo a visualizagdo de rotas de cabos em mapas digitais. O trabalho demonstra
a viabilidade de implementacao do software para iOS e Windows 10 com adaptacoes

minimas, mantendo a mesma base de c6digo inicial em Python.

A revisao bibliografica demonstra a viabilidade técnica tanto do desenvolvimento
de um driver para o protocolo Genisys quanto da construgao de uma IHM utilizando o
framework Kivy. Os trabalhos de [2], [3] e [4] fornecem bases para a implementagao do
driver, detalhando a estrutura de mensagens, mecanismos de escape, calculo de CRC-16
e fluxos mestre/escravo. A especificagao técnica da US&S [4] e a existéncia de parsers
validados, como o plugin ICSNPP-Genisys, comprovam que o protocolo é replicavel em

sistemas modernos, mesmo em cendrios baseados em TCP/IP.

Quanto & THM, o estudo de [5] evidencia a capacidade do Kivy em suportar o
desenvolvimento de interfaces cross-platform robustas, com integracao de funcionalidades
complexas e adaptagdes minimas entre sistemas operacionais. A experiéncia bem-sucedida
na integracao de hardware e exibicao de dados em tempo real confirma que o framework
é uma solucao eficaz para a IHM, garantindo portabilidade e atualizagoes dinamicas de

estados.

2.2 Arcabouco Teorico

Esta se¢ao aborda as principais tecnologias utilizadas no desenvolvimento da solugao

proposta.

17

2.2.1 Python

Python é uma linguagem de programacao de alto nivel que tem ganhado destaque
em diversas areas da tecnologia devido a sua simplicidade e versatilidade. No contexto do
desenvolvimento de drivers de comunicacao, Python oferece uma série de vantagens que
facilitam a implementacao e manutencao desses componentes essenciais. A sintaxe clara
e concisa da linguagem permite uma escrita de codigos mais legiveis e menos propensos
a erros, o que é crucial para a confiabilidade dos drivers de comunicacao. Além disso, a
vasta colecao de bibliotecas e frameworks disponiveis, como pySerial e socket, proporciona

ferramentas poderosas para a criacao de solugoes eficientes e robustas.

No desenvolvimento de Interfaces Humano-Maquina (IHM), a linguagem também
se destaca por sua capacidade de acelerar o processo de criagao de interfaces graficas de
usuario. Frameworks como Tkinter, PyQt e Kivy facilitam a construcao de IHMs. A
flexibilidade da linguagem facilita a integracao das IHMs com outros sistemas e dispositivos,
tornando-as mais versateis e funcionais. Além disso, a capacidade de Python de suportar
multithreading garante que as interfaces permanecam responsivas, mesmo quando executam

tarefas complexas em segundo plano.

No desenvolvimento de drivers de comunicacao e IHMs, uma linguagem multipla-
taforma, como o Python, permite que os desenvolvedores criem solugées que podem ser
executadas em diferentes sistemas operacionais sem a necessidade de grandes modificagoes.
Isso aumenta a flexibilidade dos projetos, e também reduz o tempo e os custos associados
a adaptacao do software para diferentes ambientes. A comunidade ativa de desenvolve-
dores Python contribui para um suporte continuo, atualizacoes frequentes e uma vasta

quantidade de recursos e documentacao.

O Python se apresenta como uma boa escolha para o desenvolvimento de drivers
de comunicacao aliado a Interfaces Humano-Maquina. A simplicidade e legibilidade da
linguagem, combinadas com a ampla disponibilidade de bibliotecas e frameworks, facilitam
a criacao de solugbes eficientes e robustas. A portabilidade e a capacidade de integracao

com outros sistemas aumentam ainda mais a aplicabilidade do Python nesses contextos.

2.2.2 Framework Kivy

Kivy é um framework de cédigo aberto para o desenvolvimento de aplicagoes
multimidia e interfaces graficas em Python. Ele é especialmente projetado para criar
aplicativos que funcionam em vérias plataformas, incluindo Windows, macOS, Linux,
iOS e Android. Uma das principais caracteristicas do Kivy é sua capacidade de suportar
multitouch, o que o torna ideal para o desenvolvimento de aplicativos modernos e interativos.
Além disso, Kivy utiliza um mecanismo de renderizacdo baseado em OpenGL ES 2,
garantindo que as interfaces graficas sejam rapidas e responsivas, mesmo em dispositivos

com recursos limitados.

18

A natureza multiplataforma do framework permite que os desenvolvedores escrevam
c6digo uma vez e o executem em diferentes sistemas operacionais, economizando tempo e
esforco. O Kivy oferece uma vasta colecao de widgets prontos para uso, que podem ser
facilmente personalizados para atender as necessidades especificas do projeto. Isso acelera

o processo de desenvolvimento e reduz a complexidade da criacao de interfaces graficas.

O framework estrutura sua interface grafica por meio de um sistema hierarquico
de widgets, que permite a composicao modular de elementos visuais predefinidos, como
botdes e layouts ou elementos personalizados. A linguagem declarativa KV introduz uma
camada de abstragdo para definicdo de interfaces, separando légica de programagao em
Python da estrutura da interface. Através de sintaxe especifica, estabelecem-se relagoes

hierarquicas entre widgets, estilos visuais e regras de posicionamento.

Entre os diversos widgets oferecidos pelo Kivy, estao pontuados alguns que serao

utilizados neste trabalho:

o FloatLayout: Permite posicionar elementos de interface livremente na tela, utilizando
coordenadas relativas ou absolutas. Isso é ideal para designs personalizados e
sobreposicoes precisas. O FloatLayout é especialmente util quando se deseja criar
interfaces flexiveis que se adaptem a diferentes tamanhos de tela e resolugoes. Ele
permite que os desenvolvedores controlem a posicao exata dos widgets, o que é

essencial para aplicagoes que exigem um layout altamente customizado;

o BozLayout: Organiza os componentes em sequéncia vertical ou horizontal, distri-
buindo o espago automaticamente entre eles. Isso simplifica a criacao de estruturas
alinhadas e adaptaveis a diferentes tamanhos de tela. O BoxLayout é frequen-
temente utilizado para criar layouts que precisam ser redimensionados de forma
proporcional. Ele é ideal para criar interfaces que se ajustam automaticamente ao

redimensionamento da janela, mantendo a propor¢ao dos widgets internos;

o Image: Essencial para carregar e exibir imagens com suporte a formatos variados,
como PNG, JPEG, e GIF. O widget Image pode ser utilizado para mostrar logotipos,
icones, ou qualquer outro tipo de imagem grafica. As imagens carregadas podem
ser configuradas para diferentes tamanho e posi¢oes, podendo ser integrada a outros

widgets de layout,;

o Label: Oferece flexibilidade na exibi¢do de textos, com op¢oes de formatacao e estilo.
O Label é utilizado para mostrar informagoes textuais ao usuario, como titulos,
descrigoes, ou mensagens de status. Ele suporta a personalizacao de fontes, cores, e
alinhamento, permitindo que os desenvolvedores criem interfaces textuais atraentes.
O Label também pode ser utilizado em conjunto com outros widgets para criar

interfaces informativas e visualmente agradaveis;

19

e Button: Fundamental para interatividade, permitindo a associagao de acoes a eventos
como cliques ou toques. O Button pode ser configurado para executar funcoes
especificas quando acionado, tornando-se um elemento crucial para a navegacao e
interacao do usuario. Ele pode ser estilizado com diferentes cores, tamanhos, e icones
para se adequar ao design da aplicacao. Além disso, o Button pode ser utilizado em

conjunto com o BoxLayout para criar painéis de controle interativos.

Esses widgets, combinados com a capacidade de personalizagao via propriedades de
estilo e comportamentos, aceleram o desenvolvimento de interfaces complexas e garantem
uma experiéncia consistente em diferentes dispositivos, reforgando a eficiéncia do Kivy em
projetos de THM.

A escolha do Kivy como framework para o desenvolvimento de uma Interface
Humano-Maquina (IHM) é motivada por sua flexibilidade e eficiéncia. A capacidade
de Kivy de criar interfaces intuitivas e interativas, torna-o ideal para aplicagoes que
exigem uma experiéncia de usudrio rica e consistente. Além disso, a compatibilidade
multiplataforma de Kivy garante que a IHM desenvolvida possa ser utilizada em diversos
dispositivos, ampliando seu alcance e aplicabilidade. Por fim, a possibilidade de fechar a
solugao e comercializa-la sem custos adicionais de licenca, diferente do que ocorre com o

PyQT e o TKinter, se tornou um fator determinante na escolha do framework.

2.2.3 Simulador de CLP - SATS

O Signal Application Testing System (SATS) é um simulador avancado desenvolvido
pela Princeton Consultants para o teste e a simulacao de sistemas de sinalizacao ferroviaria.
Esse software é amplamente utilizado por engenheiros, para melhorar a precisao dos testes
e automatizar substancialmente os processos de avaliacao de sistemas ferroviarios. O
SATS é projetado para lidar com a complexidade crescente dos sistemas baseados em

microprocessadores, que tornaram os métodos tradicionais de teste manual insuficientes.

As motivagoes para o uso do software sao diversas e incluem a necessidade de
aumentar a precisao dos testes e reduzir o tempo de campo. O SATS permite que os
engenheiros realizem testes completos de diferentes configuracoes de campo, proporcionando

uma visao detalhada do sistema de sinalizacao como mostra a Figura 1.

20

; SATS v2.12.11 - New Project - C:\Users\matheus.reinh\Wabtec\TCC\TCC atualizado\TCC v0.01\P205B sats\SATS P205A v4.7 - P205B v7 - H205 v11 - H206 v1.1 - P206 v0.1 - C28 - P205 v10.sats
File Edit View Project Simulation Location Watchlists Tests Comms Help

: > (‘l % 1ix D@ AU ; Office Comms ¥

) X -
M Project Tree e Location Designer xm P2058 X @ Checksums and CRCs X ‘ P205B Genisys X

M New Project .

» BAH205 L R ¥
» BAP205A

» FAP2058

» FAc28

» BAP206

» BAH206

» BAr205

INSTANT C2

Figura 1 — Aba Location Designer do SATS
Fonte: Autor

A flexibilidade do programa em suportar multiplos equipamentos e protocolos
de comunicacao, como ATCS e Genisys, torna-o uma ferramenta versatil para diversas
aplicacoes ferroviarias. Assim, permite a comunicacao entre Painéis de Controle Local
e o software aplicativo do ELIX simulado na aplicacao, como exemplifica a Figura 2
o que facilita o desenvolvimento da aplicacdo deste trabalho, sendo possivel realiza-lo

completamente em ambiente virtual.

§ SATSv2.12.11 - New Project - CA\Users\matheus.reinh\Wabtec\ TCC\TCC atualizado\TCC v0.0T\P205B sats\SATS P20SA v4.7 - P205B 7 - H205 v11 - H206 V1.1 - P206 v0.1 - C28 - P205 v10.sats
File Edit View Pm]an Si Location Watchlists Tests Comms Help

20 0 (4| % _D 9, AU é Office Comms ¥

% "
M Project Tree @ Location Designer X [] P2058 X @ Checksums and CRCs X & P205B Genisys X

M New Project

» FAH205 Settings v Use Serial Port Office Control Panels

» BAP205A)

» BAP2058 Serial Port COM3 Office

» Fac2s : 7 .

» FAr206 Baud Rate ‘96[]0 Genisys Address 1 Delivery Timer Enabled: I:
» B H206

» BAP205 Number of Indications 72 Delivery Timer Complete: ‘

Starting Mode Byte |5

Connect ‘

Figura 2 — Comms SATS
Fonte: Autor

Além disso, o suporte rapido e especializado oferecido pela equipe da Princeton

Consultants garante que os usuarios possam resolver duvidas e problemas de forma eficiente.

21

3 Desenvolvimento
Este capitulo apresenta o desenvolvimento do projeto, que envolve a criacao do
driver para o protocolo Genisys e da Interface Humano-Maquina, que juntos formam o

Painel de Controle Local. A Figura 3 é um diagrama que representa, de maneira geral, o

sistema em que a aplicagao estara inserida e ird interagir.

SATS

h

2. Maquina de
Chave

h 4

3. Circuito de » 1. ElectroLogIXs PCL
via

4. Sinais

5. Centro de
Controle
Operacional

Figura 3 — Sistema Completo
Fonte: Autor

e 1. ElectroLogIXS: O ElectroLogIXS é um sistema avangado de controle e sinalizacao
ferroviaria desenvolvido pela General Electric. Ele é projetado para gerenciar e
monitorar operagdes ferroviarias, garantindo seguranca e eficiéncia. O sistema
suporta uma ampla gama de aplicagoes, incluindo controle de passagens em nivel,
deteccao de movimento, monitoramento de entradas vitais e controle de saida de relés
vitais. Além disso, o ElectroLogIXS incorpora comunicacao serial vital, que permite
a integracao com outros sistemas de de controle, inclusive o Painel de Controle Local

desenvolvido neste trabalho;

o 2. Maquina de Chave: A maquina de chave é um dispositivo eletromecéanico utilizado
para mover e fixar os trilhos em uma posicao especifica, permitindo que os trens
mudem de uma linha para outra. Essas maquinas sao essenciais para a operagao

segura e eficiente das ferrovias, pois garantem que os trilhos estejam corretamente

22

alinhados antes da passagem de um trem. As maquinas de chave podem ser operadas
manualmente ou automaticamente, e sao frequentemente integradas a sistemas de

controle centralizados para monitoramento e operacao remota;

o 3. Circuito de Via: O circuito de via é um sistema elétrico utilizado para detectar a
presenca de trens em um determinado trecho da via férrea. Ele funciona criando
uma diferenca de potencial entre os trilhos, que é interrompida quando as rodas
metalicas do trem entram em contato com os trilhos, criando um curto-circuito.
Esse curto-circuito é detectado por um relé, que informa ao sistema de controle
que o trecho estd ocupado. Os circuitos de via sao fundamentais para a sinalizagao
ferroviaria, pois ajudam a evitar colisdes e garantem que os trens mantenham uma

distancia segura uns dos outros;

e 4. Sinais: Os sinais ferroviarios sao dispositivos visuais utilizados para comunicar
informagoes criticas aos maquinistas, como permissoes de avanco, limites de veloci-
dade e avisos de perigo. Existem varios tipos de sinais, incluindo sinais luminosos,
sinais de velocidade, sinais de manobra e sinais de adverténcia. Cada sinal tem
um significado especifico e é projetado para garantir a seguranga e a eficiéncia das
operagoes ferroviarias. Os sinais sdo posicionados ao longo da via férrea e nas

proximidades das estacoes para orientar os maquinistas em suas rotas;

e 5. Centro de Controle Operacional: O Centro de Controle Operacional (CCO) é a
central responséavel pelo monitoramento e gerenciamento das operagoes ferroviarias
em tempo real. Ele é equipado com sistemas de videomonitoramento, comunicacao
e analise de dados, permitindo que os operadores monitorem o trafego ferroviario,
respondam a incidentes e tomem decisoes informadas para garantir a seguranca e a
eficiéncia das operagoes. Através do CCO é possivel alinhar rotas, mover maquinas
de chave, interditar e desinterditar circuitos, sendo assim, ele é essencial para a coor-
denacao de atividades, reducao de riscos e otimizagao de recursos, desempenhando

um papel vital na gestao das operacoes ferrovidrias.

Todos os componentes listados acima estarao simulados na aplicagao SATS, que
consegue se comunicar via protocolo Genisys. Através do programa Virtual Serial Ports, é
possivel estabelecer uma comunicacao serial entre duas portas do computador, as quais

serao acessadas, uma pelo simulador e outra pela aplicacao desenvolvida.

3.1 Fluxograma do Cdédigo

Esta secao ird abordar o Programa desenvolvido, explicitando as duas frentes
de desenvolvimento da aplicagdo, tanto a criagdo do driver para comunicagao Genisys

quanto da Interface Humano-Maquina. O codigo foi modulado em sete arquivos, sendo

23

cinco em Python e dois em linguagem Kivy. Os médulos sdao, main.py, genisys_driver.py,
functions.py, supervisory.py, connection.py, supervisory.kv e connection.kv. A Figura 4

mostra o fluxograma principal do codigo que sera tratado no decorrer do capitulo.

Inicio da aplicagdo
(main.

[Tela de Conexdo]

o

Thread de Falling
i_sending_polling_messages)

Thread de Leitura
{_read_serial)

(Conexdo Serial

[GenisysDriver

A

Conexdo hem-
sucedida?

Tela de Supervisdo Exibe mensagem de
(SuperisonScreen) eIro

Loop de Atualizacéo | |Envio de mensagens
(1% de controle

Figura 4 — Fluxograma do codigo

Fonte: Autor

3.1.1 Inicializacao e Conexao

O sistema inicia com a execugao do aplicativo GenisysApp, que carrega a tela de
conexao, ConnectionScreen. Nesta etapa, o usuario seleciona a porta serial e o baudrate, e
ao confirmar, o driver, GenisysDriver, é instanciado para estabelecer a comunicacao. Se a

conexao ¢ bem-sucedida, o sistema redireciona para a tela de supervisao SupervisoryScreen,

24

onde o driver inicia duas threads: uma para leitura continua de dados da serial e outra

para envio periddico de comandos de Poll e Recall, mantendo a comunicacao ativa.

3.1.2 Processamento de Dados e Atualizagao de Estado

A thread de leitura serial captura mensagens completas, sempre terminadas por
0xF6, e as encaminha para processamento. Mensagens do tipo Indicacao, 0xF2, sao
tratadas para extrair o estado das variaveis: o conteuido €, convertido em uma string global
de zeros e uns e armazenado com sincronizacao via lock para evitar conflitos entre threads.
Paralelamente, a thread de Polling envia solicitagoes peridédicas para atualizar o estado do
sistema. Apdés cada atualizacao de indicagao, um Acknowledge and Poll, é enviado para

confirmar o recebimento da mensagem.

3.1.3 Interface de Supervisao e Interacao

Na tela de supervisao, um temporizador do Kivy (Clock.schedule_ interval) atualiza
a interface a cada segundo. Cada componente (LEDs, MCHs, botoes) é mapeado para
um bit especifico do status (varidvel global), usando a fungao cal indication index
para corrigir indices. Botoes de controle, ao serem pressionados, acionam o método
send__control _message, que envia comandos serializados via driver. O sistema garante
confiabilidade com técnicas como CRC, escaping de bytes e sincronizacao de threads,

assegurando que a interface reflita fielmente o estado fisico dos dispositivos em tempo real.

3.2 Desenvolvimento do Driver Genisys

O protocolo Genisys, desenvolvido pela Union Switch & Signal, é amplamente
utilizado para comunicagao entre dispositivos de campo (como controladores 16gicos progra-
maveis) e sistemas de supervisao em infraestruturas ferroviarias. Projetado originalmente
para comunicagao serial, possui adaptagao para TCP/IP, mantendo caracteristicas robustas

como escaping de dados e verificagdo de integridade via CRC-16.

Para a realizacao do processo de sniffing foi necessario escolher algum projeto
especifico, para facilitar a compreensao das mensagens trocadas entre o ELIX e o Painel de
Controle Local. A locacao escolhida foi a de uma Pera de Carregamento! de trens presente
em Barao de Cocais, que em sua configuragao possui todos os elementos necessarios
para desenvolver um driver que seja replicavel para qualquer cenario. Sendo assim, com
o software aplicativo do ELIX, referente a Pera de Carregamento, foi possivel definir
um mapa de bits, um Painel de Controle Local no sistema Legado, e um arquivo SATS

configurado para os testes.

L' Local de carregamento de vagoes ferroviarios.

25

O simulador SATS ¢ carregado com o mesmo software aplicativo que ¢é instalado
no CLP de campo, além de ser necessario desenhar toda a configuracao que sera simulada
para os testes do projeto. Tendo toda a simulacao estabelecida, a comunicacao entre o
SATS e o PCL gera alguns arquivos de log para a andlise das mensagens trocadas. O
arquivo consiste na mensagem enviada, seguido do mapa de bits indicando qual variavel

esta no estado on e qual esta no estado off, como ilustra a Figura 5 abaixo.

Time Stamp: 3/1/2025 9:38:12 AM

Raw Data: F2-01-00-01-01-00-02-21-03-00-04-10-05-D8-06-1D-07-C0-08-3A-E0-05-EB-00-F6
Station Address: 1

Sent Indications
ON LCPIDCHECK

(spare)
(spare)
(spare)
(spare)
(spare)
LPPAECDEK
LPEACDBK
LPPASCDEK
LPSACDBK
(spare)
(spare)
(spare)
(spare)

Figura 5 — Log do SATS
Fonte: Autor

Inicialmente, essas informacoes foram utilizadas para entender como se dava o
enderecamento das indicagoes dentro do pacote de mensagens enviados do CLP para o
PCL. Seguindo o processo de alterar o status de alguma varidavel conhecida do mapa de

bits e observar qual a alteracao no pacote de mensagem, como se observa na Figura 6.

Sent Indications

Raw Data: F2-01-00-01-01-00-02-21-03-00-04-10-05-D8-06-1E-07-C0-08-3A-E0-05-DE-00-Fé&
LPLOCALKE

oN LPCENTRALKE

Sent Indications
Raw Data: F2-01-00-01-01-00-02-21-03-00-04-10-05-D8-06-1D-07-C0-08-3A-E0-05-EB-00-Fé&
#10) LPLOCALKE

LPCENTRALKE

Figura 6 — Mudanca de Status
Fonte: Autor

O status a ser observado estava relacionado ao estabelecimento do modo de con-

26

trole local, portanto foi possivel observar que a mensagem sofreu alteragdo somente em
alguns octetos, sendo este o octeto que segue apos o valor 0x06 em ambas as mensagens.
Observando o mapa de bits e dividindo-o em octetos. As indica¢oes de modo de controle
local e modo de controle central, sao as de endereco 49 e 50, respectivamente, como mostra

a Figura 7, portanto estao enderecadas exatamente dentro do sexto octeto.

Indication43 LPLOCALKE
Indication 30 LPCENTRALKE
Indication 51 LPSYSHELTHKE
Indication 52 LP110WVPOKE
Indication 53 LP12VDCPOKE
Indication 34 LPS5DFRKE
Indication 35 LPS5DRKE
Indication 36 LPS5EMRKE

Figura 7 — Sexto Octeto do Mapa de Bits
Fonte: Autor

Seguindo essa férmula para intimeros casos de indicac¢oes conhecidas do mapa
de bits, tornou-se possivel interpretar o contetiido das mensagens de indicagao recebidas,
passando a ser possivel criar um supervisorio que monitora as indicag¢oes enviadas pelo CLP.
Entretanto, como o objetivo principal do trabalho é criar uma Interface Humano-Maquina
que consiga tanto receber informacoes das indica¢oes quanto enviar mensagens de controle,
mostrou-se necessario aprofundar o estudo e a compreensao do pacote de bytes do protocolo.
Portanto, a identificacdo das demais partes da mensagem, como o header, o terminador e

o processo de CRC se tornaram essenciais para que criar mensagens aceitas pelo CLP.

Para a interpretagao do processo de CRC de o trabalho desenvolvido em [2], serviu
como base para compreensao do protocolo. Cruzando as informagoes desse artigo com
os logs obtidos pelo SATS e o monitor Serial da aplicacao legado, foi possivel entender a
criagdo do CRC e também o significado dos demais octetos das mensagens do protocolo e

definir a estrutura do frame Genisys.

3.2.1 Estrutura do Frame Genisys

Nesta secao a estrutura do frame Genisys serd detalhada e explicada octeto por

octeto. As mensagens do protocolo seguem um formato especifico, observado na Figura 8:

27

Header Diata Bytes Security Checksum Terminatar
(2 bytes) (2xM Bytes) (2 Bytes) (1 Buyte)
Message tvpe Station Adress Adress Data CRC 0xF 6
1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes 1 Byte

Figura 8 — Estrutura do frame Genisys

Fonte: Autor

A Figura 9 apresenta uma mensagem recebida no monitor serial. Por se tratar de
uma mensagem de indicagdo, possui o frame completo, com header, payload com tamanho
correspondendo ao niimero de octetos de indicacao do software, que sao 8 para esse caso,

o CRC e o terminador da mensagem.

Dados recebidos] F26168616180882218382084180524868587008822E0052499F6

Figura 9 — Mensagem Bruta no Monitor Serial

Fonte: Autor

o Identificador de Mensagem: Um octeto no intervalo de 0xF1 a OxFE, que inicia a

comunicagao e identifica o tipo de mensagem.
e Endereco do Escravo: Um tnico byte que identifica o dispositivo destinatério.

o Payload: Composto por dados de comprimento variavel, organizados em pares de

bytes de 8 bit seguindo o padrao enderego/dado.

o CRC-16: Dois bytes para garantir o conteiido do pacote que aparecem em algumas

mensagens.

o Terminador: Octeto fixo 0xF6, indicando o fim da mensagem.

O protocolo conta com o processo de escaping de octetos com valor superior a 0xF0
(excluindo o cabegalho e o terminador). O processo substitui o octeto original por dois

octetos: 0xFO0 seguido do nibble inferior do valor original. Por exemplo:

0xF4 — 0xF0 0x04

Em mensagens que incluem CRC, este é calculado utilizando o polinémio

1'16+ZE15+{E2—|—1

N O Ot s W N

28

transmitido em ordem little-endian. O calculo abrange todos os octetos da men-
sagem, incluindo o cabecalho, mas excluindo o terminador. Para otimizar o processo,
utiliza-se uma tabela de lookup pré-computada, que permite calcular o CRC em tempo
constante por byte. A tabela contém 256 entradas, uma para cada possivel valor de 8 bits,
na qual cada entrada é o CRC resultante do polinémio aplicado ao byte correspondente. E
importante destacar que o CRC é calculado antes da aplicacao do mecanismo de escape e

os bytes do CRC também devem ser escapados, se necessario.

O payload, quando presente, consiste em uma sequéncia de pares enderego/dado,
onde cada par contém um byte de endereco seguido de um byte de dado. Ambos os

componentes devem obedecer as regras de escape.

3.3 Aplicagdo do Driver Genisys no Codigo

O desenvolvimento do sistema de supervisao e controle baseado no protocolo
Genisys envolveu a implementacao de um driver especializado, responsavel por gerenciar
a comunicacgao serial com os dispositivos de campo. Este driver foi projetado seguindo
principios de modularidade e eficiéncia, garantindo uma integracao fluida com a interface

grafica desenvolvida em Kivy.

3.3.1 Inicializacao e Ciclo de Vida do Driver

A inicializagdo do driver Genisys foi estruturada de forma a otimizar o uso de
recursos e garantir a robustez do sistema. A instanciacao do objeto driver ocorre de
maneira condicional, somente apds a confirmagao da conexao serial. Essa abordagem,
conhecida como inicializacao tardia, previne o acesso a métodos nao inicializados e permite

uma configuracao dinamica dos parametros de comunicacao.

A estrutura principal da aplicacdo, definida na classe GenisysApp, demonstrada
no Algoritmo 3.1, utiliza o gerenciador de telas ScreenManager para alternar entre a
tela de conexao, ConnectionScreen, e a tela de supervisao SupervisoryScreen. O driver é
inicializado como None e s6 ¢é instanciado quando o usuario confirma os parametros de

conexao.

class GenisysApp (App):
def build(self):
self .driver = None # Inicializa o tardia
sm = ScreenManager ()
sm.add_widget (ConnectionScreen(name=’connection’))
sm.add_widget (SupervisoryScreen (name=’supervisory’))

return sm

Algoritmo 3.1 — Estrutura principal da aplicacao

© 00 N O O ks W N

_ =
N = O

W N

29

3.3.2 Estabelecimento de Conexao

A instanciacao do driver ocorre na tela de conexao, onde o usuério define a porta
serial e o baudrate. No Algoritmo 3.2, observa-se o método connect, que é responsavel por
criar o objeto driver e iniciar a comunicacao serial. Durante esse processo, sao realizadas
validacoes dos parametros de conexao, garantindo que a comunicacao seja estabelecida de

forma segura e confidvel.

def connect(self, port: str, baudrate: str):
try:
app = App.get_running_app ()
app.driver = GenisysDriver(# Cria o condicional
port=port,
baudrate=int (baudrate) ,

max_control_value=128

)

app.driver.connect () # Handshake serial

self .manager.current = ’supervisory’

supervisory = self.manager.get_screen(’supervisory’)

supervisory.initialize (app.driver) # Inje o de depend ncia

Algoritmo 3.2 — Criac¢ao do driver na conexao

Apds a conexdo ser estabelecida, o sistema transiciona para a tela de supervisao,
onde o driver é passado como dependéncia para a inicializagdo dos componentes graficos.
Esse mecanismo de injecao de dependéncia garante que a interface grafica tenha acesso

direto ao driver, permitindo a atualizacao dindmica dos estados dos dispositivos.

3.3.3 Thread de Comunicacao Serial

Para garantir a eficiéncia e a responsividade do sistema, o driver Genisys emprega
duas threads principais: uma para leitura continua de dados da porta serial e outra para o
envio periddico de mensagens de polling. A thread de leitura é responsavel por capturar
as mensagens enviadas pelos dispositivos e processa-las, enquanto a thread de polling
mantém a comunicacao ativa, enviando mensagens de verificagao e solicitacao de estado.

O Algoritmo 3.3 apresenta a inicializacao das threads.

def connect(self) -> None:
self . _running = True
Thread de leitura cont nua
self._read_thread = threading.Thread(target=self._read_serial,
daemon=True)
Thread de polling peri dico
self._poll_thread = threading.Thread(target=self.

_send_polling_messages, daemon=True)

© 00 g O Ot s W N

10

11
12

13

30

self. _read_thread.start ()
self. _poll_thread.start ()

Algoritmo 3.3 — Gerenciamento de threads de comunicagao

A utilizacao de threads permite que o sistema opere de forma assincrona, garantindo
que a interface grafica permaneca responsiva mesmo durante operacgdes de comunicacao

intensivas.

3.3.3.1 Politica de Polling

A estratégia de polling adotada pelo driver combina mensagens regulares de
verificacao, poll com solicitagoes periddicas de estado completo recall. O intervalo entre
as mensagens de polling é definido por uma sequéncia ciclica (POLL_INTERVALS), como
observa-se no Algoritmo 3.4, baseada na sequéncia observada em [ogs no monitor serial do

sistema legado.

POLL_INTERVALS = [4, 4, 3] # Sequ ncia c¢ clica de intervalos

def _send_polling_messages(self) -> None:
while self._running and self.connected:
with self._lock: # Sincroniza o de thread
self._safe_write(self.POLL_MESSAGE)
self._poll_count += 1

if self._poll_count >= self.POLL_INTERVALS[self.
_current_interval_index]:
self._safe_write(self.RECALL_MESSAGE) # Request full
state
self._poll_count = O
self._current_interval_index = (self.
_current_interval_index + 1) % 3

time.sleep(1l) # Controle temporal

Algoritmo 3.4 — Logica de polling adaptativo

Essa abordagem garante que o sistema mantenha uma comunicagao ativa com os
dispositivos, verificando periodicamente seu estado e solicitando atualizagoes completas

quando necessario.

3.3.4 Processamento de Indicagoes

As mensagens de indicacdo sao o mecanismo pelo qual os dispositivos informam
seu estado atual ao sistema. Quando uma mensagem de indicacao é recebida, o driver
realiza uma série de operagoes para processar e atualizar o estado global do sistema, como

observa-se no Algoritmo 3.5.

—_

© 0 N O U A W N

© 00 N O Ot s W N

—_
[e=]

31

def _handle_indication(self, message: bytes) -> None:

unescaped = reverse_escaping(message) # Remove bytes de escape
binary_content = self._parse_indication_content (unescaped)
with self._lock: # Critical section

self.status = binary_content # Estado global atualizado

self._safe _write(self.ACK_POLL_MESSAGE) # Confirma o

logger.info ("Estado atualizado: %s", binary_content)

Algoritmo 3.5 — Tratamento de mensagens de indicacao

O processamento de uma mensagem de indicacao envolve a remocao dos bytes
de escape, método reverse escaping, a conversao do conteido da mensagem para uma
representacao binaria e a atualizacao segura do estado global do sistema. Apds o processa-
mento, o driver envia uma mensagem de confirmagao para garantir que a comunicacao

permaneca ativa.

3.3.5 Sincronizagdo com a Interface

[©N

O Algoritmo 3.6 apresenta a inicializacdo da interface grafica do sistema, que

[N

atualizada periodicamente com base no estado atual dos dispositivos. Essa atualizacao

gerenciada por um callback temporal, que é acionado a cada segundo.

class SupervisoryScreen(Screen):
def initialize(self, driver):
self.driver = driver

Clock.schedule_interval (self.update_all_images, 1) # 1Hz

def update_all_images (self, dt):
status = self.driver.get_status() # Obt m snapshot seguro
self .update_all_led_images (status)
self .update_all_mch_images (status)

self .update_all_track_images(status)

Algoritmo 3.6 — Atualizacao periddica da interface

A atualizagao da interface é realizada de forma seletiva, onde apenas os componentes
cujo estado foi alterado sdo redesenhados. Essa otimizacao reduz o consumo de recursos e

melhora a responsividade do sistema.

3.4 Desenvolvimento da Interface Humano-Méaquina

A Interface Humano-Maquina foi criada através do framework Kivy. Além da

familiaridade do autor com o framework, a possibilidade de criar interfaces com linguagem

© 00 N o O ks W N

_ =
N = O

13
14
15
16
17
18
19
20
21
22
23
24

25

26

27

32

escrita, ao invés do modelo de objetos utilizado pelo Adobe Flash, o que facilita o uso de
IA para geragao de codigo, e também a possibilidade de fechar a solucao e comercializa-la

futuramente sem custo adicional, motivaram a escolha do framework.

O painel desenvolvido apresenta duas telas. A primeira, tem o objetivo de configurar
alguns parametros como a porta COM que serd utilizada e o baudrate. Além dessa
configuragao ela conta com um botao para inicializar a conexdao. Caso a conexao seja
estabelecida, a segunda tela é carregada, essa por sua vez, apresenta o supervisorio da

locagao definida para o trabalho.

A atualizacao da tela do supervisorio, possui uma légica simples, pois é baseada na
substitui¢do de imagens de acordo com o status de suas respectivas variaveis. O Algortimo
3.7 apresenta o método que atualiza todas as imagens a cada um segundo, para manter o

supervisorio sempre atualizado.

class SupervisoryScreen(Screen):
connected = BooleanProperty(False)

Window.fullscreen = ’auto’

def initialize(self, driver):
"""Tnicializa a tela com a inst ncia do driver"""
self .driver = driver
self.connected = driver.connected
self.last_status = None
self .button_states = {}
Inicia a atualiza o peri dica da imagem
Clock.schedule_interval (self.update_all_images, 1) # Atualiza a

cada 1 segundo

def update_all_images(self, dt):
"""Atualiza todas as imagens"""

new_status = self.driver.get_status ()

if new_status is None:

return
if self.last_status is None or new_status != self.last_status:
self.last_status = new_status

self .update_all_led_images (new_status) # Atualiza todas as
imagens de LED

self .update_all_mch_images (new_status) # Atualiza todas as
imagens de MCH

self .update_all_track_images (new_status) # Atualiza todas as
imagens de Track

self .update_all_signal_images (new_status) # Atualiza todas as

28

© 00 N O Ot ks W N

e T e e e T T = S
0 N O Otk W Ny RO

33

imagens de Signal
self .update_all_button_backgrounds (new_status) # Atualiza os

planos de fundo dos bot es

Algoritmo 3.7 — Inizializagdo do Supervisério

Para tratar cada tipo de imagem do supervisorio, foram criados métodos em Python
e modelos de widgets em linguagem Kivy especificos de cada caso, os quais cada imagem é

associada ao um endereco do mapa de bits.

3.4.1 LED’s

Os LED’s sao utilizados em diversos contextos, podendo ser alarmes em geral,
saude de conexoes ou qualquer indicacao que dependa de apenas um bit para trazer uma

informacgao. A Figura 10 e o Algoritmo 3.8, ilustram um exemplo.

Figura 10 — Exemplo de LED
Fonte: Autor

BoxLayout:
orientation: ’vertical’
size_hint: (0.1, 0.1)
pos_hint: {’x’: 0.595, ’y’: 0.02}
Image:
id: LED falha MCH
is_led: True
size_hint: (1, 0.8)
source: ’images/leds/LEDapagado.png’
index: 19
image_1: ’images/leds/rLED.png’
image_0: ’images/leds/LEDapagado.png’
Label:
text: ’[b]FALHA[/b]’
markup: True
size_hint: (1, 0.2)
font_size: 14
color: (0, 0, O, 1)

Algoritmo 3.8 — Definigdo de um LED em .kv

—_

B W N

© 0 N o w

© 00 g O Ut s W N

34

Todos foram definidos com um identificador "is led", para que o método de

atualizacao especifico, apresentado no Algoritmo 3.9, consiga identifica-los quando percorre

todo o arquivo .kv no momento em que é executado. Através do widget BoxLayout sua

aplicacdo esta sempre associada a um Label para descrever sua fungao. Possui apenas

imagens de apagado e aceso, variando em 3 cores: verde, vermelho e amarelo.

def update_all_led_images(self, status):

"""Atualiza todas as imagens de LED"""
for widget in self.walk():
if isinstance(widget, Widget) and hasattr(widget, ’is_led’)
and widget.is_led:
index = cal_indication_index(widget.index, 16)

if len(status) > index:

if status[index] == ’1°’:
widget.source = widget.image_1
else:
widget .source = widget.image_O

3.4.2

Algoritmo 3.9 — Método para atualizacao dos LED’s

Sinais

Os sinais, ilustrados na Figura 11 e no Algoritmo 3.10 seguem uma logica parecida

com a dos LED’s, contudo em determinados contextos da sinalizacao ferroviaria mais de

um aspecto do sinaleiro é ativado ao mesmo tempo, por exemplo, os chamados "vermelho

sobre amarelo’, estado em que ambos os Led’s do sinal estdao acesos. Diante dessa condicao,

¢é necessario uma logica que observe casos como esse.

Figura 11 — Exemplo de Sinal
Fonte: Autor

Image:
id: signal_S5D
is_signal: True
size_hint: (0.12, 0.12)
pos_hint: {’x’: 0.393, ’y’: 0.375}
source: ’images/signal/apagado.png’
index_red: 55
index_flashred: 54

index_yellow: O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

s W o =

35

index_flashyellow: O
index_green: 0
image_red: ’images/signal/red.png’
image_flashred: ’images/signal/red.png’
image_yellow: ’images/signal/yellow.png’
image_flashyellow: ’images/signal/yellow.png’
image_green: ’images/signal/green.png’
image_redyellow: ’images/signal/redyellow.png’
image_apagado: ’images/signal/apagado.png’
canvas.before:
PushMatrix
Rotate:
angle: -90
origin: self.center
canvas.after:

PopMatrix

Algoritmo 3.10 — Defini¢cao de um sinal em .kv

Portanto, observa-se que cada aspecto do sinal possui a propria imagem associada,

e também um enderego associado no mapa de bits.

A seguir, o Algoritmos 3.11 e o Algoritmo 3.12 apresentam como acontece a

atualizacao das imagens dos sinais.

def update_all_signal_images (self, status):
"""Atualiza todas as imagens de Signal"""
for widget in self.walk():
if isinstance(widget, Widget) and hasattr(widget, ’is_signal
>) and widget.is_signal:
#logger .debug (£ "\033[91mAtualizando track: {widget

F\033[0m")
image_source = self.update_signal(widget, status)
if image_source: # Verifica se image_source n o
None
widget.source = image_source

#widget .canvas.ask_update() # For a a

atualiza o do widget

Algoritmo 3.11 — Método para atualizagdo dos Sinais

O primeiro método inicializa a atualizacao de todos widgets, que possuem o identifi-
cador "is _signal", que por sua vez ira iniciar o segundo método que trata individualmente

cada sinal.

def update_signal(self, widget, status):

"""I gica espec fica para signal"""

(o I

10
11
12

13
14

15

16
17
18
19
20
21
22

23

24
25
26
27
28

29
30

31

32
33
34
35
36
37
38

if widget.index_red != O0:
index_red = cal_indication_index(widget.index_red, 16)
if len(status) <= index_red:
logger .error ("\033[91mStatus string length is
insufficient for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o
status n o for v lido
if status[index_red] == ’17:

return widget.image_red

36

if widget.index_flashred != 0:
index_flashred = cal_indication_index(widget.index_flashred,
16)

if len(status) <= index_flashred:
logger .error ("\033[91mStatus string length is
insufficient for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o
status n o for v lido
if status[index_flashred] == ’17:

return widget.image_flashred

if widget.index_yellow != O0:
index_yellow = cal_indication_index (widget.index_yellow
if len(status) <= index_yellow:
logger.error ("\033[91mStatus string length is
insufficient for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o
status n o for v lido
if status[index_yellow] == ’1°:

return widget.image_yellow

if widget.index_flashyellow != O:
index_flashyellow = cal_indication_index(widget.
index_flashyellow, 16)
if len(status) <= index_flashyellow:
logger.error ("\033[91mStatus string length is
insufficient for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o
status n o for v lido
if status[index_flashyellow] == ’1°’:

return widget.image_flashyellow

if widget.index_green != O:
index_green = cal_indication_index(widget.index_green,
if len(status) <= index_green:
logger.error ("\033[91mStatus string length is

insufficient for the required indices\033[0m")

, 16)

16)

39

40
41
42
43
44

© 00 N o Ot s W N

-
o

37

return widget.source # Retorna a imagem atual se o
status n o for v lido
if status([index_green] == ’1°’:

return widget.image_green

else:

return widget.image_apagado

Algoritmo 3.12 — Método com a logica de atualizagao dos Sinais

O segundo método verifica se cada endereco do mapa de bits foi setado para algum
valor diferente de 0. Essa condicao foi aplicada para que em futuras edi¢ées da interface
para diferentes configuracoes de patio, o cédigo se mantenha escalavel, nao necessitando
de apagar indicadores de aspectos de sinal que nao serao utilizados, podendo apenas
configura-los com o valor 0 no respectivo arquivo .kv. Atendendo a condi¢do de possuir
endereco maior do que zero, o sinal serd alterado caso o status correspondente esteja em

nivel logico 1.

3.4.3 Circuito de Via

Os blocos de circuito de via sdo os que representam a linha que o trem percorre
de fato. Basicamente devem monitorar se o circuito estda ocupado ou livre. A ocupacao é
sempre representada pelo bloco do circuito em vermelho, como na Figura 12. Ademais,
também sao utilizados para visualizacao do conceito de rotas, que podem estar alinhadas
ou apenas requisitadas. Portanto todos os casos possuem sua propria imagem associada,

como apresenta o Algoritmo 3.13.

12T

Figura 12 — Exemplo de Circuito de Via Ocupado
Fonte: Autor

Image:
id: trackl
is_track: True
pos_hint: {’x’: -0.13, ’y’: -0.02}
source: ’images/tracks/trackpreta.png’
occupation_index: 39
requested_route_index: 30
aligned_route_index: 26
image_occupied: ’images/tracks/trackvermelha.png’

image_aligned: ’images/tracks/trackverde.png’

11
12

Bow o e

10
11
12
13

14

15

16
17

18

19

20
21
22
23
24
25

38

image_requested: ’images/tracks/trackamarela.png’

image_track: ’images/tracks/trackpreta.png’

Algoritmo 3.13 — Defini¢ao de um Circuito de Via em .kv

Como as imagens irdo monitorar ocupacao do circuito de via, requisicao e alinha-
mento de rota, sao necessarios trés diferentes enderecos do mapa de bits, um para cada

variavel a ser observada, além das imagens associadas a cada um desses.

A seguir, o Algoritmo 3.14, apresenta a légica para atualizacdo de imagens de

circuito de via.

def update_all_track_images(self, status):
"""Atualiza todas as imagens de MCH"""
for widget in self.walk():
if isinstance(widget, Widget) and hasattr(widget, ’is_track’
) and widget.is_track:
#logger.debug (£"\033[91mAtualizando track: {widget

}\o33[0m")
image_source = self.update_track(widget, status)
if image_source: # Verifica se image_source n o
None
widget.source = image_source

#widget .canvas.ask_update() # For a a

atualiza o do widget

def update_track(self, widget, status):

"""I[gica espec fica para track"""

occupation_index = cal_indication_index(widget.occupation_index,
16)
requested_route_index = cal_indication_index(widget.

requested_route_index, 16)
aligned_route_index = cal_indication_index(widget.

aligned_route_index, 16)

if len(status) <= max(occupation_index, requested_route_index,
aligned_route_index) :
logger.error ("\033[91mStatus string length is insufficient
for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o status

n o for v lido

if status[occupation_index] == ’17:
return widget.image_occupied
elif status[occupation_index] == ’0°’:

if status[aligned_route_index] == ’17:

return widget.image_aligned

26
27
28
29
30

39

elif status[requested_route_index] == ’1’:
return widget.image_requested

else:
return widget.image_track

return widget.source

Algoritmo 3.14 — Método para atualizacao do Circuito de Via

A ocupacao por ser uma informagao critica é a primeira condicao a ser observada,
e caso nenhum das demais condigoes sejam atendidas, ¢ retornada a imagem da via

desocupada e sem rota alinhada ou requisitada como na Figura 13.

Figura 13 — Exemplo de Circuito de Via Livre
Fonte: Autor

3.4.4 Maquina de Chave

A maquina de chave é um caso particular do bloco de circuito de via, pois essa
possui a mesma logica quanto a ocupacao e o alinhamento e requisi¢ao de rotas. Entretanto,
possui a peculiaridade de apresentar para qual sentido a ponta de agulha da maquina
de chave estd alinhada, podendo estar nas posi¢cbes normal, reverso ou sem indicagao. A
Figura 14 representa uma maquina de chave em normal e com rota alinhada. O Algoritmo

3.15 apresenta todas as defini¢oes associadas a uma maquina de chave.

Figura 14 — Exemplo de Maquina de Chave

Fonte: Autor

Image:

© 00 N O U AR W N

[T e e T o e e e
S © 0 N O ke W N = O

oW o e

40

id: mchi

is_mch: True

size_hint: (0.45, 0.49)

pos_hint: {’x’: 0.335, ’y’: 0.31}
source: ’images/mch/mchsemindicacao.png’
normal_index: 17

reverse_index: 18

occupation_index: 40
requested_route_index: 30

aligned_route_index: 26

image_normaloccupied: ’images/mch/mchnormalvermelho.png’
image_normalrequested: ’images/mch/mchnormalamarelo.png’
image_normalaligned: ’images/mch/mchnormalverde.png’
image_normaltimelocking: ’images/mch/mchnormalamarelo.png’
image_normalmch: ’images/mch/mchnormal.png’
image_reverseoccupied: ’images/mch/mchreversovermelha.png’
image_reverserequested: ’images/mch/mchreversoamarelo.png’
image_reversealigned: ’images/mch/mchreversoverde.png’
image_reversemch: ’images/mch/mchreverso.png’

Algoritmo 3.15 — Definicao da maquina de chave em .kv

Por ter muitas variagoes a serem apresentadas, as MCH’s sdo as que possuem maior
quantidade de enderecos do mapa de bits, consequentemente maior quantidade de imagens

associadas.

A seguir, o Algoritmo 3.16 e o Algoritmo 3.17 apresentam a logica para atualizacao

de imagens de maquina de chave.

def update_all_mch_images (self, status):
"""Atualiza todas as imagens de MCH"""
for widget in self.walk():
if isinstance(widget, Widget) and hasattr(widget, ’is_mch’)
and widget.is_mch:
#logger.debug (£ "\033[91mAtualizando MCH: {widget}\033[0m

||)

image_source = self.update_mch(widget, status)

if image_source: # Verifica se image_source n o
None
widget.source = image_source

#widget .canvas.ask_update() # For a a

atualiza o do widget

Algoritmo 3.16 — Método para atualizagdo da Méaquina de Chave

Assim como a logica dos blocos de circuito de via, um primeiro método inicializa

a atualizacao das imagens, verificando se possui o identificador "is __mch". Atendendo a

—_

ot ke W N

10
11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26

41

condicao, o método de atualizacdo de cada méaquina de chave é chamado.

def update_mch(self, widget, status):
"""I gica espec fica para MCH"""
normal_index = cal_indication_index(widget.normal_index, 16)
reverse_index = cal_indication_index(widget.reverse_index, 16)
occupation_index = cal_indication_index(widget.occupation_index,
16)
requested_route_index = cal_indication_index(widget.
requested_route_index, 16)
aligned_route_index = cal_indication_index (widget.

aligned_route_index, 16)

#logger .debug (£"\033[91mIndices MCH: normal={normal_index},
reverse={reverse_index}, occupation={occupation_index},
requested_route={requested_route_index}, aligned_route={

aligned_route_index}\033[0m")

Verifique se o status tem o comprimento necess rio
if len(status) <= max(normal_index, reverse_index,

occupation_index, requested_route_index, aligned_route_index)

logger.error ("\033[91mStatus string length is insufficient
for the required indices\033[0m")
return widget.source # Retorna a imagem atual se o status

n o for v lido

Implementar a 1 gica com base nos valores dos ndices
if status[normal_index] == ’1°:
if status[occupation_index] == ’17:
return widget.image_normaloccupied
elif status[occupation_index] == ’0°’:
if status[aligned_route_index] == ’1’:
return widget.image_normalaligned
elif status[requested_route_index] == ’1°’:
return widget.image_normalrequested
else:

return widget.image_normalmch

Algoritmo 3.17 — Método com a légica para atualizacao de cada Maquina de Chave

Antes de verificar as condigoes das variaveis, existe uma conferéncia se a string
status” possui tamanho suficiente para acessar o endereco requerido, caso contrario

retorna a imagem atual.

Atendendo aos requisitos de enderego valido, o método verifica em primeira instancia

se a maquina esta em normal ou em reverso, para que as demais condigdes sejam aplicadas

—_

N O Ot s W N

10
11

12

13

42

de acordo com esse status. Nao atendendo a nenhum dos dois, a imagem referente a falta
de indicagdo do status da maquina de chave é carregada. Caso a condi¢do de normal ou
reverso seja satisfeita, a logica passa a ser semelhante a de um bloco de circuito de via

comum, observando ocupacao, requisi¢ao e alinhamento de rota.

3.4.5 Botoes

Os botoes sao utilizados para o envio de mensagens de controle, mas possuem
também a propriedade de indicar o status de algum bit que lhe seja enderecado, atuando de
maneira similar ao LED quanto a indicacao. Eles estao associados a um widget FloatLayout,
para poder posicionar também um Label que informa sua atribuicdo. Na Figura 15 e no
Algoritmo 3.18, esta presente a representacao do botao que deve ser pressionado para
enviar o comando de requisicao de modo de controle local, e também a indicacao de modo
de controle local estabelecido por estar com o aspecto de aceso. Portanto, atuam tanto

como indicadores quanto controladores.

Figura 15 — Exemplo de Botao
Fonte: Autor

FloatLayout:
id: Local
size_hint: (None, None)
size: (120, 120)
pos_hint: {’x’: 0.40, ’y’: 0.7}
Button:

background_normal: ’images/buttons/g_off.png’ # Imagem

de fundo padr o

background_down:

’images/buttons/g_off_down.png’ #

Imagem de fundo quando o bot o
[0.01, 0.01, 0.05, 0.05]

conforme necess rio

padding:
is_button: True

size_hint: (None, None)

autom tico de tamanho

pressionado

Ajuste os valores

Desabilita o ajuste

size: (130, 130) # Define o tamanho do bot o (largura,
altura)
pos_hint: {’center_x’: 0.5, ’center_y’: 0.5} #

Centraliza o bot o

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

—_

= W N

o N O w

10
11

12
13
14

43

on_press: root.send_control_message (self.control_index)
image_on_bg_normal: ’images/buttons/g_on_b.png’
image_on_bg_down: ’images/buttons/g_off.png’
image_off_bg_normal: ’images/buttons/g_off.png’
image_off_bg_down: ’images/buttons/g_off_down.png’
control_index: 40
indication_index: 49

Label:
text: ’[b]LOCAL[/b]’
markup: True # Habilita o uso de tags de formata o
halign:’center’
size_hint: (None, None)
size: (120, 30)
pos_hint: {’center_x’: 0.5, ’center_y’: 0.2} #

Posiciona o label sobre o bot o

font_size: 14
height: 10 # Ajuste a altura conforme necess rio
color: (0, 0, O, 1)

Algoritmo 3.18 — Defini¢ao de Botao em .kv

A definicao do widget botao possui légica similar a de um LED quando trata

o status que monitora como ativado ou desativado, contudo possui mais imagens para

implementar a animagao de pressionar o botdao. A principal diferencga se encontra no fato

de possuir endereco de indicagdo e também enderego de controle. O enderego de controle

¢ utilizado no ato de pressionar o botao que chama o método send_control message.

A seguir, o Algoritmo 3.19 apresenta a logica para atualizacdo de imagens de

botoes.

def

update_all_button_backgrounds (self, new_status):
"""Atualiza os planos de fundo de todos os bot es""!'
for widget in self.walk():
if isinstance(widget, Widget) and hasattr (widget, ’is_button
’) and widget.is_button:
if widget.indication_index == O0:

continue

index = cal_indication_index(widget.indication_index,
16)
if len(new_status) > index:
current_state = new_status[index]
previous_state = self.button_states.get(widget, None
)
if current_state != previous_state:
if current_state == ’1°’:
widget .background_normal = widget.

image_on_bg_normal # bg normal aceso

15

16
17

18

—_

S Ut AR W N

10
11
12
13

widget .background_down = widget.
image_on_bg_down # bg down aceso
else:

widget . background_normal = widget.

image_off_bg_normal # bg normal apagado

widget .background_down = widget.

image_off_bg_down # bg down apagado

44

Algoritmo 3.19 — Método para atualizagao dos Botoes

3.5 Conexédo da IHM com o Driver

A conexao da Interface Humano-Maquina com o driver Genisys serda abordada

através do envio das mensagens de controle e a interpretacao das mensagens de indicacao.

3.5.1 Envio de Mensagens de Controle

O envio de uma mensagem de controle se inicia com a interagdo de clique de

algum botao na tela da IHM. No Algoritmo 3.20 observa-se que a acao de clique inicializa

o método send__control messages, e envia o control index associado ao botao como

parametro.

def send_control_message (self, control_index):

"""Envia uma mensagem de controle com o valor digitado"""

try:
control_value = int(control_index)
self.driver.set_control_value(control_value)
self.ids.status_label.text = f"Controle enviado: {

control_valuel}"

logger.info(f"Controle enviado: {control_valuel}")

except ValueError:

self.ids.status_label.text = "Valor de controle inv lido"

logger.error ("Valor de controle inv lido")
except Exception as e:
self.ids.status_label.text = f"Erro: {str(e)}"

logger.error (f"Erro ao enviar controle: {str(e)l}")

Algoritmo 3.20 — Método que inicia e mensagem de controle

Esse método, por sua vez, chama o método set control value, e passa como

parametro o valor do endereco como um inteiro, como observa-se no Algoritmo 3.21.

def set_control_value(self, value: int) -> None:
"""Envia comando de controle para o dispositivo"""

if not 1 <= value <= self.max_control_value:

o N O w

10
11

12

13
14
15

16
17

18
19
20

21
22

© 0 N O Ul e W N e

_ =
= o

45

raise ValueError (f"Valor deve estar entre 1 e {self.

max_control_valuel}")

self.control_value = value
logger.info (f"Enviando valor de controle: {valuel}")
address = value-1 #para corrigir a contagem que inicia de 0 e

n o de 1

Gera as mensagens de controle

raw_message_on, hex_message_on = gerar_mensagem_controle (16, [
address], False)
raw_message_off, hex_message_off = gerar_mensagem_controle (16, [

address], True)

Envia as mensagens de controle
if isinstance(raw_message_on, bytes) and isinstance(
raw_message_off, bytes):
self .ser.write(raw_message_on)
logging.info(f"Mensagem de controle enviada: {hex_message_on
bR
time.sleep (0.5)
self .ser.write(raw_message_off)
logging.info (f"Mensagem de controle enviada: {
hex_message_off}")
else:
logger.error ("Erro: gerar_mensagem_controle n o retornou

bytes")

Algoritmo 3.21 — Método que corrige o endereco e envia as mensagens

-

O método set_ control value é o que envia a mensagem através do pyserial. E
importante destacar que uma mensagem de controle enviada sempre é seguida de um outro
pacote de controle que retorna o valor enviado para o estado inicial, para que seja similar
a um pulso. Antes do envio, as mensagens sao criadas de acordo com o protocolo Genisys

no método gerar_ mensagem__controle, como observa-se no Algoritmo 3.22.

def gerar_mensagem_controle (num_words: int,
control_addresses: List[int],
reset: bool = False) -> Tuple[bytes, strl:

"""Gera mensagem de controle para o protocolo Genisys.

Args:
num_words: N mero de palavras de controle
control _addresses: Lista de endere os de controle

reset: Flag para resetar o quarto byte

Returns:

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

46

Tupla contendo (bytes da mensagem, string hexadecimal formatada)

Raises:
ValueError: Para endere os inv lidos
if not all(0 <= addr < num_words*8 for addr in control_addresses):
raise ValueError ("Endere os de controle inv lidos")
control_bits = [0] * num_words * 8
for addr in control_addresses:
control_bits[addr] = 1

message = bytearray ([0xFC, 0x01])
for i in range(num_words):
chunk = control_bits[i*8:(i+1) *8]
#print (£"\033[91m{chunk}\033[0m")
if 1 in chunk:
value = int(’’.join(map(str, reversed(chunk))), 2)

message.extend ([1i, valuel)

if reset and len(message) >= 4:

message [3] = 0x00

raw_message, hex_message = build_complete_message (message)
logger .debug (f"Mensagem de controle gerada: {hex_messagel}")

return raw_message, hex_message

Algoritmo 3.22 — Método que gera os bytes de data

Nesta etapa o payload é criado, sendo este o que pode levar o bit associado para

o valor légico 1 ou retornar o valor para 0 na segunda chamada da funcao. Entretanto,
a mensagem nao € toda criada nesse método, pois ainda é necessario aplicar o CRC, o
escaping e adicionar o terminador. A seguir, o Algoritmo 3.23 demonstra que todas as

trés etapas sao tratadas na fungao build__complete message.

© 00 g O Ot ks W N

—_
[e=]

def build_complete_message (packet: Union[str, bytes]) -> Tuplel[bytes,
str]:

"""Constr i mensagem completa com CRC e escaping.

Args:

packet: Pacote original em string hex ou bytes

Returns:

Tupla contendo (bytes da mensagem, string hexadecimal formatada)

if isinstance (packet, str):

11
12
13
14
15
16

17
18

© 00 N O Ut ks W N

e e e e = T SR SR
0w N O Ut ke WD = O

47

data = bytes.fromhex (packet)
else:

data = packet
crc = calculate_crcl6(data)

full_message = data + bytes([crc & OxFF, (crc >> 8) & OxFF,
TERMINATOR])

escaped_message = apply_escaping(full_message)
return escaped_message, ’ ’.join(f"{b:02X}" for b in escaped_message
)

Algoritmo 3.23 — Método que finaliza o pacote de mensagem

3.5.2 Interpretacao das Mensagens de Indicacao

A interpretacao das mensagens de indicagao se passa pelo processo de criacao
da string global "status", que é preenchida por binarios, indicando se cada varidvel esta
em nivel 16gico 1 ou 0. Apds o processamento inicial do driver, caso a mensagem tenha
o header 0xF2, ela é tratada como uma mensagem de indicacao, e passa pelo handler

definido para ela, que estd demonstrado no Algoritmo 3.24.

def _handle_indication(self, message: bytes) -> None:

"""Handler para mensagens de indica o (OxF2)"""

logger.info("Processando mensagem de indica o...")
try:
unescaped = reverse_escaping (message)
binary_content = self._parse_indication_content (unescaped)

logger.info(f"Indication Binery Content: {binary_contentl}")

Atualiza o status com o conte do bin rio
with self._lock:

self .status = binary_content

with self._lock:
self._safe_write(self.ACK_POLL_MESSAGE)

except Exception as e:
logger.error (f"Erro no processamento de indica o: {str(e)

3"

Algoritmo 3.24 — Handler para mensagens de Indicacao

No método definido para o handler a mensagem tem o escaping removido e em

seguida passa pelo processo de parsing para que a variavel status seja atualizada.

© 00 N O Ut R W N

10
11

48

Como apresentado nos métodos de atualizacao de imagens, a variavel status é
recorrentemente acessada para que a imagem seja atualizada de acordo com o endereco
de indicagao definido. Contudo, é necessaria uma corre¢ao para que o enderego correto

seja acessado. O Algoritmo 3.25 apresenta o método cal indication index que realiza a

COITecao.
def cal_indication_index(indication: int, num_indication_words: int) ->
int:
if 0 <= indication <= 8 * num_indication_words:
quociente = (indication - 1) // 8
resto = (indication - 1) ¥ 8
quociente += 1
auxl = quociente * 8
indication_index = auxl - (resto + 1)
else:
indication_index = -1 # Defina um valor padr o ou lance uma
exce o
print("Indica o definida fora do intervalo do mapa de bits")
return indication_index

Algoritmo 3.25 — Método para calculo do enderego de indicacao

O endereco configurado no mapa de bits, ndo é exatamente o mesmo endereco da
string binaria que possui a informacao, pois ela é criada concatenando os 8bits de cada
bytes, mas os bits sao alocados da direita para a esquerda dentro de cada octeto. Portanto,
¢é necessario fazer uma correcao do valor configurado como endereco para que a posi¢ao

correta seja acessada na string 'status'. A corregdo esta expressa no Algoritmo 3.25.

3.6 Comparativo Entre a Interface Desenvolvida e o Sistema Legado

A Tabela 1 apresenta alguns pontos que podem ser destacados na comparac¢ao
entre o sistema legado e o proposto por este trabalho e cada um deles sera tratado nas

secoes seguintes.

‘ ‘ Interface Desenvolvida Sistema Legado

‘ Desenvolvimento da Interface ‘ Auxilio de TA Facil compreensao

‘ Suporte de Linguagem ‘ Ativo Descontinuado

‘ Acesso ao Backend da Solucgao ‘ Possivel Apenas ao Frontend

‘ Customizagao ‘ Totalmente customizavel ‘ Customizacao limitada

Tabela 1 — Tabela Comparativa entre Sistema Desenvolvido e Sistema Legado

49

3.6.1 Desenvolvimento da Interface Grafica

O desenvolvimento da interface grafica no sistema legado é mais agil e facil de
aprender para quem nao teve nenhum contato com nenhuma das duas solugoes, pois esta
associado a orientacao a imagens, tornando o posicionamento das imagens na tela algo
intuitivo. Ja o sistema desenvolvido nesse trabalho possui um posicionamento baseado
em coordenadas, que para quem nao esta familiarizado, pode ser custoso, mas possui a
vantagem de ser mais customizavel, por ter acesso a todo o desenvolvimento da tela e
nao somente a alguns objetos pré-setados. Além disso, o programa de edi¢cao do Adobe
Flash nao possui mais suporte, e o Kivy Language possibilita o auxilio de IA durante o

desenvolvimento por ser totalmente em texto.

3.6.2 Suporte

A aplicacao legado é toda desenvolvida pelo Adobe Flash, que foi descontinuado
em 2020. Sendo assim, a aplicacdo que carrega as interfaces desenvolvidas e o executavel
Flash Portable que permite a edigao de interfaces j4 nao rodam em todas as maquinas
atuais, tornando-se um problema para o desenvolvimento de novas interfaces com diferentes

configuragoes de patio.

3.6.3 Acesso ao Backend

O sistema legado atual, permite a personalizacao do frontend, entretanto nao
permite acesso ao driver de comunicacao da aplicagao principal. Portanto o sistema
desenvolvido se torna superior ao permitir mudancas no backend da solucao, tornando

assim possivel maior manutencao da aplicacao ao longo dos anos.

3.6.4 Customizacao

Os pontos anteriores colaboram para a conclusao de que a customizagao da nova
aplicacao seja superior a aplicacao legado. Permitindo que sejam feitos programas robustos,

com interfaces modernas e customizadas para cada cliente diferente.

50

4 Resultados

Este capitulo apresenta a solugao final e realiza os testes necessarios para validar o
sistema desenvolvido. Através da comparacao dos status apresentados no supervisorio e
seu estado atual que pode ser obtido no SATS, é possivel validar que a mensagem enviada
pelo CLP esta sendo corretamente interpretada e transformada em algo visual para quem
operar o programa. Da mesma forma, é possivel testar o envio das mensagens de controle,
observando se no clique do botao da IHM o botao correspondente no SATS também é

ativado.

4.1 Resultados da Decodificagdo de Mensagens

A decodificagdo das mensagens é de suma importancia para que o supervisorio
apresente o verdadeiro status atual das varidveis monitoradas. Portanto, a principal
mensagem a ser decodificada é a de Indica¢ao (0xF2). Para fazer a validagdo do que tem
sido apresentado na interface do programa, ¢ necessario comparar lado a lado com o que o

SATS apresenta, tanto visualmente quanto o valor légico da variavel em questao.

O primeiro teste é observar se, quando estabelecida a conexao o estado inicial do

PCL condiz com o estado apresentado pelo simulador.

File Edit View Project Simulation Location i Tests Comms Help

s

van x
W ¢ O iscton Designer X[+ p20s8 X @ Checksums and CRCs X & P2058 Genisys X PCLLED

.~l(§>>{:}<Ou§n-§-tl,|';|‘ (—x'-{o@,b’glao =@

Displaying 12 of

Name

LP110VPOKE
LP12VDCPOKE
LPGNDFLTKE
LPDOORKE
LPS5DLOKE
LPSSERLOKE
LPSSENLOKE
LPLOCALKE

LOCSSREQLP

Figura 16 — Estado Inicial do SATS
Fonte: Autor

A Figura 16 apresenta graficamente maquina de chave em normal, sem nenhuma
ocupacao dos circuitos de via 12T e W5T, nenhuma interdi¢cao de chave ou de linha. A
tabela na extremidade direita da imagem apresenta o nivel logico de algumas variaveis
monitoradas pelo PCL, entre eles, os alarmes, a satde do sistema, o link com a locagao

adjacente e o modo de controle estabelecido. Sendo assim é possivel observar que nenhum

51

alarme esta ativado, a satde e o link estao estabelecidos e o modo de controle atual é

central. Dessa maneira, a Figura 17 nos mostra que a interface do programa desenvolvido

estd condizente com o que esta sendo simulado no SATS.

Figura 17 — Estado Inicial do PCL
Fonte: Autor

Para verificar se o PCL esta acompanhando o que é simulado no SATS, através da
interpretacao correta das mensagens, diversos estados de variaveis serao alterados, a fim

de abranger diferentes tipos de imagens criada no PCL.

File Edit View Project Si i Location Watchlists Tests Comms Help
P oul e 4 OIS Office Comms ¥

van X
M P octon Designer X [~] p2058 X @ Checksums and CRCs X § P2058 Genisys X PCLLED

@O FalY [eX|[+ Wb Al ®

Displaying 12 of

Name

LPSYSHELTHKE
LP12VDCPOKE

LPDOORKE
LPS5DLOKE
LPSSERLOKE
LPSSENLOKE

LPCENTRALKE
LOCSSREQLP

oo
Figura 18 — Segundo Estado do SATS

Fonte: Autor

Na Figura 18 observa-se uma interdicao de via representada pelo quadrado azul,

uma ocupacao do circuito 12T, e a alteracao do estado dos alarmes de falha 12VDC e

52

falha do GND. Além disso, o sinal S5D passou a apresentar aspecto vermelho, devido a

ocupacao do circuito 12T.

Na medida em que o simulador alterou alguns status de variaveis, o PCL acom-
panhou as mudancas, sendo possivel observar na Figura 19 que os LED’s de alarmes
acenderam, o LED de satude apagou, o botao de interdicao de linha PE também acendeu,

o circuito 12T passou a ser ocupado e o sinal S5D acendeu.

Figura 19 — Segundo Estado do PCL
Fonte: Autor

Concluindo a decodificacdo de mensagem, é importante validar que a nova solugao é
capaz de enviar mensagens de controle para o CLP. Seguindo o ultimo estado da simulagao
apresentado neste trabalho, o modo de controle local ja estd estabelecido, portanto é
possivel enviar mensagens de controle que alterem o status atual da simulagao. Para esse

teste busca-se movimentar a maquina de chave para reverso.

53

Figura 20 — Controle recebido pelo SATS
Fonte: Autor

Na Figura 20, é possivel observar que apés o clique no botao amarelo "R", de
comando de maquina de chave, a variavel de comando da MCH foi ativada e a contagem
de tempo para que ela feche o curso na posicao de reverso foi iniciada, podendo concluir
que a mensagem em Genisys esta sendo criada corretamente e seguindo o protocolo, ela

consegue enviar comando para o CLP.

4.2 Avaliacao da Interface Grafica

O sistema legado possui trés interfaces que sao utilizadas na aplicacdo. A primeira,
Figura 21, permite escolher qual o modelo de pétio serd carregado, as opgoes irdo variar de
acordo com os arquivos de extensao .swf e .xml carregados na pasta do programa. Esses

arquivos sao gerados previamente através do editor de interfaces do Adobe Flash Portable.

o4

@ el =
Figura 21 — Primeira Interface PCL Legado
Fonte: Autor

A segunda interface do sistema, Figura 22, legado deveria atuar como uma tela
de login. Entretanto, essa funcionalidade nao esta mais presente no programa, nao sendo

necessaria nenhuma senha para acessar a terceira interface.

Control Panel

No passward required... Click OK or New

Password:

]
) G

B L=l (I
Figura 22 — Segunda Interface PCL Legado
Fonte: Autor

95

A terceira e ultima interface é a que de fato o supervisério estd presente, sendo
possivel monitorar o estado dos ativos de campo e alarmes pré-definidos e também atuar

como um painel de controle local ao enviar comandos através dos botoes da interface.

COMUNICAGAD SAUDE ALARME

1 | T 1
(o] o o0 0 000
P205A LK T10VAC 12VDC GND PORTA S50 SSER SSEN

@ O unkHeaTH | (e (ot) (oact] H:]:::‘:dw

Figura 23 — Terceira Interface PCL Legado
Fonte: Autor

A Figura 23 mostra que na barra inferior dessa interface é possivel acessar as
configuragoes de comunicagao, onde é definido se a comunicagao sera por User Dataprogram
Protocol/Internet Protocol (UDP/IP) ou serial, a porta COM, o protocolo de comunicagao

e algumas outras configuragoes secundarias apresentadas na Figura 24.

COMUNICAGAD SAUDE ALARME
o '
P205A ILk 1O0VAC 12VDC GND PORTA 85D SSER SSEN
LAMP LAMP LAMP
INTERDICAO MODO DE ouT OUT ouT
DE LINHA CONTROLE
T PE PD L T OCAL CENTRAL!

Configuration

PCLCP.exe w3.6.8

Com1 | Conn2| Com 3| Cann 4| Conn5 | Conn g | Conn 7| cot 2]

Connection 1 setting:
Comm Port Protocol First Bit #

Last Bit #

| [Geris <] 1

IP Address Part Number

1 1017014 62 20016
COM2

end Contiols Immediately [Send Clear

[128

[Loopback Made Parel Seltings

@ w @ unkHesTH

Figura 24 — Configuragoes de conexao PCL Legado

Fonte: Autor

T R) T ST et

56

E possivel também acessar o monitor serial da aplicagdo, a Figura 25 evidencia a

troca de mensagens do painel com o CLP.

COMUNICAGAO

ALARME

110VAC 12VDC GND PORTA S5D SSER SSEN
LAMP LAMP LAMP

05 03 DO
03-02-25
03-02-25

LogFiter | Link Status

[
0o 02 22 03 00 04 10 05 20 06 8BS 07 04 08 00 EO

3
00 02 22 03 00 04 10 05 20 06 8BS 07 04 08 00 EO

]
00 02 22 03 00 04 10 05 20 06 85 07 04 08 00 EO

Play | Stop | Clear | Close |

@ W O unkhemmH

[ST ST ST ST
Figura 25 — Monitor PCL Legado
Fonte: Autor

o7

A nova interface grafica, como pode ser visto na Figura 26, apresenta algumas
diferencas estéticas em relacao ao sistema legado, apresentando um layout mais moderno,

e configuracoes de conexao na primeira tela.

Figura 26 — Interface de Conexao PCL

Fonte: Autor

A segunda interface gréfica, diferente do que ocorre no PCL legado, ja apresenta o
supervisorio, e s6 é carregada caso a conexao com o CLP seja estabelecida. A Figura 27

apresenta a interface do supervisorio desenvolvida neste trabalho.

o8

Figura 27 — Interface de Conexao PCL
Fonte: Autor

Ademais, algumas funcionalidades nao foram implementadas. A primeira é a
impossibilidade de acompanhar o monitor serial na propria aplicagao, sendo necessario
acessar o monitor através do VSCode. A segunda, se trata de uma nova abordagem para
o conceito do sistema. A aplicacao legado carrega varios layouts pré-definidos em uma
pasta do programa, ja a aplicacao deste trabalho propoe um arquivo executavel para cada

configuragao de patio.

4.3 Desempenho e Usabilidade.

A THM apresenta desempenho satisfatério quanto a responsividade dos botoes,
enviando as mensagens de controle de maneira instantanea. Porém, a responsividade visual
ainda ¢ inferior ao sistema legado. Quanto a atuacao como supervisorio, com indicagoes
em estado constante, a aplicacdo é consistente e nao apresenta nenhuma incongruéncia.
Contudo, no momento em que algum status é alterado, a atualizacao da interface apresenta
falsas indicagoes, demorando cerca de 2 segundos até normalizar e corrigir a interface, o
que é um ponto de atencao que deve ser tratado para garantir seguranca ao utilizar o

sistema.

99

A Tabela 2, apresenta um comparativo entre as funcionalidades presentes no

sistema desenvolvido e no sistema legado. Observa-se que o sistema legado possui mais

funcionalidades que a nova IHM, o que limita sua usabilidade do novo sistema para cenarios

além dos simulados neste trabalho.

Interface Desenvolvida Sistema Legado

‘ Supervisao de Status ‘ Sim ‘ Sim ‘
‘ Envio de Comandos ‘ Sim ‘ Sim ‘
‘ Comunicagao Serial ‘ Sim ‘ Sim ‘
| Comunicagdo TCP/IP | Nao | Sim |
‘ Monitor Serial ‘ Nao ‘ Sim ‘

Tabela 2 — Tabela Comparativa de Desempenho e Usabilidade

60

5 Conclusao e Propostas Para Trabalhos Futuros

Este capitulo apresenta as consideracoes finais do trabalho de substituicao de um

sistema baseado em tecnologias obsoletas.

5.1 Contribui¢oes do Trabalho

O desenvolvimento deste trabalho resultou em avancos na modernizagao de sistemas
supervisorios de controle ferroviario, validando a viabilidade de substituir tecnologias
legadas por solucoes abertas e adaptaveis. A integragao entre o driver Genisys e a
Interface Humano-Maquina em Kivy demonstrou ser uma alternativa eficiente, mesmo

com recursos limitados.

A principal contribuicao é destacada na implementacao do driver Genisys, que
permitiu decodificar e validar a estrutura de frames do protocolo, garantindo uma comuni-
cagao confiavel com o CLP por meio de mecanismos de CRC e escaping de dados. A THM
desenvolvida, por sua vez, atende aos requisitos para substituir o sistema legado baseado
em Adobe Flash, oferecendo uma aplicacao personalizavel e de facil instalagao por ser

desenvolvida inteiramente em Python, renovando o acesso e a vida 1til da solugao.

Testes realizados com o simulador SATS comprovaram a eficicia do sistema em
interpretar mensagens de indicagao e transforma-las em dados visuais, e enviar comandos
de controle. A solucao também introduziu maior transparéncia no desenvolvimento, por

permitir acesso ao backend, facilitando futuras customizagoes e melhorias.

5.2 Propostas Para Trabalhos Futuros

Esta secao apresenta melhorias que podem ser implementadas a atual solugao, a

fim de obter melhores resultados e expandir a aplicabilidade do sistema.

Considerando as atuais limitacoes de desempenho do produto, é necessario uma
revisao do codigo base para encontrar possiveis otimizacgoes da atualizacao da interface,
melhorando a resposta visual do programa e a confiabilidade do que é apresentado. Além
disso, integrar um moédulo de geracao de logs diretamente na interface, permitirda um

diagnostico de falhas e auditoria de comandos enviados.

As funcionalidades do sistema legado também podem ser implementadas caso seja
vantajoso para a escalabilidade do produto. O desenvolvimento da comunica¢ao TCP /TP
como uma alternativa a serial, serd necessario para aumentar a aplicabilidade em que a
porta serial do CLP nao esteja disponivel. Além disso, implementar uma ferramenta de car-
regamento dinamico de layouts de patio, permitindo que usuarios importem configuracoes

sem necessidade de interpretar o coédigo todo novamente.

61

Testes em ambientes reais, com equipamentos ferroviarios, tornam-se de suma
importancia para que a confiabilidade do produto seja atestada. Portanto, é a comunicacao
com o CLP(ElectroLogIXS) em laboratérios e em ambientes de campo, quando as condigoes

podem se tornar adversas, que validarao a robustez do sistema.

5.3 Consideracgoes Finais

Este trabalho estabeleceu as bases para a compreensao e utilizagao do driver
Genisys nao s6 para o painel de controle local em questao, mas também para outras

aplicagoes que possam utilizar o protocolo que esta presente no ambiente ferroviario.

As propostas futuras visam transformar o produto em uma solucao industrialmente
relevante, sendo capaz de substituir integralmente o sistema legado atual, eliminando a

dependéncia de tecnologias obsoletas.

62

REFERENCIAS

1 AREMA. American Railway Engineering and Maintenance-of-Way Association
Communications and Signal Manual of Recommended Practice. [S.1.], 2021.

2 KEELER, B. Genisys Protocol Dissector for Wireshark. 2009. <https://www.wireshark.
org>. Acesso em: 10 out. 2024.

3 ICSNPP. ICSNPP-Genisys: Zeek Plugin for Genisys Protocol. 2023. <https:
//github.com/cisagov /ICSNPP>. Acesso em: 13 out. 2024.

4 SIGNAL, U. S. . SM 6700A: GENISYS Serial Communication Protocol. [S.1.], 1996.
Technical Manual.

5 VERZYNOV, S. N.; BOCHKAREV, I. V.; KHRAMSHIN, V. R. Development of
line locator software component for mobile operating systems. In: 2020 International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). [S.1.:
s.n.], 2020. p. 1-5.

https://www.wireshark.org
https://www.wireshark.org
https://github.com/cisagov/ICSNPP
https://github.com/cisagov/ICSNPP

	Folha de rosto
	FOLHA DE APROVAÇÃO
	AGRADECIMENTOS
	Epígrafe
	RESUMO
	ABSTRACT
	LISTA DE ILUSTRAÇÕES
	LISTA DE TABELAS
	LISTA DE ABREVIATURAS E SIGLAS
	SUMÁRIO
	Introdução
	Contextualização
	Problemas e Dores do Sistema Legado
	Motivação
	Objetivos Gerais
	Objetivos Específicos
	Organização do Trabalho

	Revisão Bibliográfica e Arcabouço Teórico
	Revisão Bibliográfica
	Arcabouço Teórico
	Python
	Framework Kivy
	Simulador de CLP - SATS

	Desenvolvimento
	Fluxograma do Código
	Inicialização e Conexão
	Processamento de Dados e Atualização de Estado
	Interface de Supervisão e Interação

	Desenvolvimento do Driver Genisys
	Estrutura do Frame Genisys

	Aplicação do Driver Genisys no Código
	Inicialização e Ciclo de Vida do Driver
	Estabelecimento de Conexão
	Thread de Comunicação Serial
	Política de Polling

	Processamento de Indicações
	Sincronização com a Interface

	Desenvolvimento da Interface Humano-Máquina
	LED's
	Sinais
	Circuito de Via
	Máquina de Chave
	Botões

	Conexão da IHM com o Driver
	Envio de Mensagens de Controle
	Interpretação das Mensagens de Indicação

	Comparativo Entre a Interface Desenvolvida e o Sistema Legado
	Desenvolvimento da Interface Gráfica
	Suporte
	Acesso ao Backend
	Customização

	Resultados
	Resultados da Decodificação de Mensagens
	Avaliação da Interface Gráfica
	Desempenho e Usabilidade.

	Conclusão e Propostas Para Trabalhos Futuros
	Contribuições do Trabalho
	Propostas Para Trabalhos Futuros
	Considerações Finais

	REFERÊNCIAS

