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RESUMO

O trabalho desenvolvido propoe uma abordagem para a integragdo de técnicas de visao
computacional com métodos de robdtica classica, visando a melhoria da qualidade de
vida de pessoas com deficiéncia e idosos, proporcionando autonomia na tarefa de vestir.
Utilizando um manipulador robdtico Kinova Gen3 com sete graus de liberdade, o estudo
aplica algoritmos de segmentacao por cor, deteccao de bordas e Transformada de Hough
para identificar a posicao do brago do paciente, aproximar o robo e gerar trajetorias seguras
para a manipulacao de vestimentas. Em ambiente simulado, com o auxilio do CoppeliaSim
e de um sensor RGB-D, foram avaliadas diferentes configuragdes de posicionamento do
braco, demonstrando a viabilidade do sistema em oferecer assisténcia personalizada e segura
para pessoas com mobilidade reduzida. A integracao dos métodos de visao computacional
com o planejamento de trajetérias contribui significativamente para aumentar a autonomia
dos usuarios, apresentando uma alternativa promissora para a implementagdo em robdtica

assistiva.

Palavras-chave: Visao Computacional, Assisténcia ao Vestir, Robdtica Assistiva, Manipu-

ladores Robdticos



ABSTRACT

This work proposes an approach that integrates computer vision techniques with classical
robotics methods, aiming to improve the quality of life for people with disabilities and the
elderly by providing autonomy in dressing tasks. Using a Kinova Gen3 robotic manipulator
with seven degrees of freedom, the study implements color segmentation, edge detection,
and Hough transform algorithms to identify the patient’s arm position, guide the robot
approach, and generate safe trajectories for garment manipulation. In a simulated environ-
ment using CoppeliaSim and an RGB-D sensor, different arm positioning configurations
were evaluated, demonstrating the system feasibility in offering personalized and secure
assistance for individuals with reduced mobility. The integration of computer vision
methods with trajectory planning significantly contributes to increasing user autonomy,

presenting a promising alternative for assistive robotics implementation.

Keywords: Computer Vision, Dressing Assistance, Assistive Robotics, Robotic Manipula-

tors.
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17
1 INTRODUCAO

De acordo com a Pesquisa Nacional de Saude (PNS) realizada em 2019 (IBGE,
2021), o Brasil possui aproximadamente 7,8 milhoes de pessoas com deficiéncia fisica nos
membros inferiores, representando 3,8% da populagao com 2 anos ou mais de idade. Além
disso, a incidéncia aumenta significativamente com a idade, atingindo 14,4% entre os idosos
com 60 anos ou mais. Tarefas cotidianas como se vestir, manusear objetos e se locomover
podem se tornar desafiadoras, impactando a independéncia e a qualidade de vida desses
individuos. Diante desse cenario, a tecnologia assistiva se torna essencial para promover a

inclusao e melhorar a qualidade de vida dessas pessoas, possibilitando maior mobilidade.

Entre as diversas abordagens da tecnologia assistiva, a robdtica assistiva tem
se destacado como um campo promissor, como discutido em (INTELLIGENCE, 2023),
voltado para o desenvolvimento de dispositivos que auxiliam individuos com deficiéncia
fisica. Utilizando os principios da roboética, essa drea busca criar sistemas inteligentes
capazes de interagir de forma segura e eficiente com os usudrios, promovendo maior

autonomia e qualidade de vida.

Vestir-se é uma das atividades diarias mais comuns em que pessoas com deficiéncia
necessitam de assisténcia. Além disso, cuidadores relatam que auxiliar no vestuario dos
pacientes é a tarefa de maior carga e a menos automatizada, conforme indicado em
(DUDGEON et al., 2008) ¢ (MITZNER et al., 2014). Nesse contexto, a introducao da
robética nessa tarefa pode melhorar significativamente a qualidade de vida de muitas
pessoas, embora ainda represente um grande desafio para os robos devido a complexidade
da manipulacao de roupas, materiais deforméaveis e a necessidade de interacao segura com

0S usuarios.

Este trabalho foi inspirado pelo desafio proposto na competicdao internacional
PhyRC Challenge voltada para a manipulacao em tarefas de vestimenta assistida por robds,
promovida pela Universidade de Cornell (EMPRISELAB, 2024). Como ilustrado na Figura
1, o desafio, que utilizou o simulador RCare World (YE et al., 2022) como ferramenta de
avaliagdo na primeira fase, incentivou o desenvolvimento de solugoes inovadoras para a
manipulagao de roupas, enfrentando desafios como a manipulacao de materiais deformaveis
e a garantia de uma interagao segura com os usuarios. Essa iniciativa ressalta a importancia
do investimento em pesquisas que ampliem a autonomia e melhorem a qualidade de vida

das pessoas com deficiéncia, servindo de estimulo para o presente estudo.

Visao computacional é um campo da inteligéncia artificial que tem como objetivo
capacitar maquinas a interpretar e compreender o contetido de imagens e videos do
mundo real, utilizando algoritmos que empregam técnicas de processamento digital de
imagens, extracao de caracteristicas e aprendizado de maquina para permitir a identificacao,

segmentacao e classificacdo de objetos em diferentes cenarios, conforme discutido em
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Figura 1 — Proposta da competi¢ao com estado inicial da simulacao.

Fonte: (EMPRISELAB, 2024)

(SZELISKI, 2022). Essa abordagem tem se mostrado ainda mais relevante quando integrada
a robotica assistiva, onde a aplicagdo da visao computacional se torna fundamental para
aprimorar a interacao dos robos com os pacientes em tarefas complexas, como a manipulagao

de roupas, contribuindo para uma assisténcia mais segura e eficiente.

Com o objetivo de auxiliar pessoas com deficiéncia, idosos e individuos com
mobilidade reduzida em tarefas cotidianas, como o ato de se vestir, este trabalho visa
utilizar algoritmos de visao computacional para gerar trajetérias seguras e precisas a serem
seguidas pelo manipulador robético, com base nos principios da robética classica. Para
isso, sera realizada uma anélise da configuracao do braco do paciente, que estara estendido
para receber a manga da vestimenta, permitindo o planejamento de um trajeto otimizado

e seguro durante a manipulacao.

Este trabalho esta estruturado em cinco capitulos. O Capitulo 1 corresponde
a introducdo, na qual sao apresentadas as justificativas para o estudo e os objetivos
estabelecidos a partir do tema proposto. No Capitulo 2, é realizada a fundamentacao
tedrica, abordando os principais conceitos e referéncias que sustentam a pesquisa. O
Capitulo 3 descreve a metodologia do trabalho, detalhando as simulagoes realizadas. No
Capitulo 4, sao apresentados e analisados os resultados obtidos a partir dessas simulagoes.
Por fim, no Capitulo 5, sao expostas as conclusdes do estudo, destacando as principais

contribuigoes do trabalho e sugerindo possiveis melhorias para pesquisas futuras.
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2 FUNDAMENTACAO TEORICA

Esse Capitulo tem como objetivo fazer uma breve revisao bibliografica dos temas
abrangidos por este trabalho. Dessa forma, sao apresentados trabalhos anteriores envol-
vendo os seguintes temas: Robdética Assistiva, Robotica na Assisténcia ao Vestir e Visao

Computacional.

2.1 Robodtica Assistiva

De acordo com dados da Organiza¢ao Mundial da Satide (OMS), estima-se que 1,3
bilh&o de pessoas no mundo vivam com uma deficiéncia significativa (WHO, 2023). Embora
a maioria delas deseje manter sua independéncia, as dificuldades enfrentadas nas tarefas
cotidianas podem comprometer essa autonomia. A robética de manipuladores e movel,
por meio de sua capacidade de sensoriamento, navegacao e manipulacao de objetos, pode
viabilizar tarefas cotidianas como se alimentar, caminhar e se vestir conforme mostrado

na Figura 2.

Comer

Navegagéo

L JL JL J

Higiene Pessoal Vestir

Domesticas

Robd Mdbvel Robo6 Mével Manipulador Manipulador Robético

Figura 2 — Atividades comuns para o uso de robds assistivos.

Fonte: Adaptada de (NANAVATI; RANGANENI; CAKMAK, 2023)

Para viabilizar a assisténcia nessas tarefas, os robos precisam interagir de maneira
robusta e segura com o ambiente, integrando sensores tateis, de movimento e cameras

para aplicacao de Visao Computacional.

Nesse cenario de utilizacao da robdtica assistiva, ¢ possivel dividi-la em duas
categorias diferentes: os robos de base fixa e os robos de base moével. Dessa forma, cada tipo
de robo oferece assisténcia em tarefas especificas, como ilustrado na Figura 2, ampliando
as possibilidades e permitindo até mesmo configuracoes hibridas, como a combinacao de
robos moéveis com manipuladores integrados. Dentro da area de manipuladores robéticos,
(ALLIN et al., 2010) destaca trés categorias principais: os manipuladores conectados
a cadeiras de rodas, os bragos montados em mesas, e os manipuladores que se movem

autonomamente pela sala em suas proprias bases moveis.
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Na década de 1990, uma pesquisa significativa em robdtica assistiva resultou no
desenvolvimento do ProVAR (LOOS et al., 1999), um manipulador robético montado
sobre uma mesa. Projetado para auxiliar pessoas tetraplégicas, o ProVAR aumentava
a autonomia dos usudrios ao permitir que, por meio de uma interface humano-maquina
(IHM), eles enviassem comandos para buscar e entregar objetos. Seu controle podia ser
efetuado tanto por comandos de voz quanto pelos movimentos da cabega, demonstrando a

versatilidade das tecnologias assistivas da época.

Durante essa década, também foram realizados avancos significativos em outras
configuragoes, como a implementagao de manipuladores robo6ticos montados em cadeiras
de rodas (WMRA - Wheelchair Mounted Robotic Arm), como o MANUS discutido em
(VERBURG et al., 1996). Esses sistemas oferecem a vantagem de acompanhar o usudrio
em uma variedade de ambientes — desde residéncias e supermercados até escritérios. Ao
longo do tempo, essa configuracao tem sido continuamente aprimorada, com constantes
melhorias em design e usabilidade (KIM et al., 2014), além de sua comercializacao, o que
tem desempenhado um papel fundamental em atividades cotidianas e proporcionado maior

autonomia as pessoas com deficiéncia (PcD).

De acordo com (CHUNG; WANG; COOPER, 2013), o design centrado no usudrio
envolve definir e avaliar os requisitos de projeto com a participacao dos usuarios finais,
visando replicar a funcionalidade do brago humano. Para isso, a maioria dos manipuladores
robdticos assistivos conta com sete graus de liberdade (DoF), correspondentes a sete juntas
rotacionais, incluindo a garra. Cada uma dessas juntas permite a rotacao de um segmento
do bracgo, possibilitando movimentos em diversas dire¢oes e reproduzindo a mobilidade
dos membros superiores. Essa énfase nos graus de liberdade é fundamental para garantir
flexibilidade e precisao nos movimentos, além de melhorar a usabilidade, facilitando que

os usuarios realizem tarefas de forma eficiente e em um tempo adequado.

Hoje, gragas ao uso de sensores modernos e inteligéncia artificial, a manipulacao
robética evoluiu muito. Esses avancos permitem que os robds capturem imagens com
mais qualidade e processem as informacoes rapidamente, ajudando-os a entender melhor o
ambiente e a agir com maior precisao. Embora ainda existam desafios para que os robos
atinjam a destreza dos humanos, as novas tecnologias apontam para um futuro promissor

na robdtica assistiva.

O presente trabalho tem por objetivo empregar um manipulador robético Kinova
Gen3 (KINOVA, 2024), dotado de sete graus de liberdade, para replicar os movimentos
de um braco humano na tarefa de vestir um paciente posicionado a sua frente, por meio
do uso de técnicas de visao computacional. O manipulador serd instalado sobre uma
superficie de modo a garantir que o paciente se encontre dentro de seu espago de trabalho

(workspace).
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2.2 Robodtica na Assisténcia ao Vestir

Quando se analisa a capacidade de rob6s manipuladores para auxiliar no ato de
vestir um paciente, é fundamental compreender os desafios e requisitos do projeto. A
seguranga é um aspecto critico dessa tarefa. Em (BELLAMY et al., 2021), é realizada
uma Analise de Perigos (Hazard Analysis) em uma aplica¢ao de assisténcia ao vestudrio,

destacando riscos de médio e alto impacto, tais como:

« Colisao, atrito ou tragao entre o usudrio e o robd devido a perda de equilibrio ou ao

emaranhamento com a vestimenta.

« Obstrugao ou bloqueio da trajetoria do robo6 pelo usuério ou por terceiros, afetando

o desempenho do rob6 e/ou resultando em colisoes.

o Natureza dinamica das agoes do usuario, incluindo movimentos subitos, distragoes,

mudancas de intencao, confusdo e falhas de comunicacao.

Um design seguro exige a compreensao dos riscos envolvidos e das interacoes entre
rob0, usuario e vestimenta. A integracdo entre seguranca e planejamento de trajetoria é
essencial, pois a deteccao desses riscos permite que os algoritmos ajustem dinamicamente
os movimentos, evitando colisdes e minimizando impactos. Assim, técnicas avancadas de
monitoramento e planejamento trabalham em conjunto para tornar a assisténcia ao vestir

mais segura e eficiente.

Além dos desafios de seguranca mencionados, diversas abordagens na literatura
tém buscado aprimorar a robdtica na assisténcia ao vestir por meio da integracao de
técnicas de cinematica e visao. Pesquisadores que investigaram essa tematica concentraram
seus esforgos na modelagem do usuario e na definicdo de trajetérias seguras para os
manipuladores. Por exemplo, (GAO; CHANG; DEMIRIS, 2015) desenvolveram uma
metodologia focada na identificagdo visual da pose do usuario e na modelagem do espago
de movimento das articulacoes superiores, permitindo determinar os pontos ideais para

posicionar as aberturas de um casaco sem mangas, contribuindo para a personalizacao.

Em outra vertente, (TAMEI et al., 2011) propuseram um método baseado em
aprendizado por reforco, no qual o rob6 aprende trajetorias para vestir um manequim
com uma camiseta, enfatizando as relagoes entre o manequim e a pega de roupa, tendo os
experimentos iniciado com os bragos do manequim ja inseridos nas mangas. Vale ressaltar
que, por se tratar de um método de aprendizado por reforco, sio necessarias diversas

tentativas e erros, o que pode expor o usuario a riscos e por isso foi utilizado um manequim.

De forma complementar, (KLEE et al., 2015) apresentaram uma abordagem na
qual um manipulador robédtico realiza a tarefa de assisténcia ao vestir por meio da defini¢ao

de uma sequéncia de poses-alvo relativas ao usuario. Nesta proposta, a utilizacao de um
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rob6é manipulador Baxter (RETHINK, 2022) para posicionar um chapéu em participantes
demonstrou que, ao identificar quando uma meta se torna inviavel, o sistema pode solicitar
o reposicionamento do usuario, modelando suas restricoes para determinar a melhor
configuragao. Essas contribuig¢oes evidenciam que, para um design seguro e eficaz, é
imprescindivel considerar tanto os aspectos cinematicos quanto as particularidades do

movimento e das limitagoes dos usuarios na formulacao de estratégias assistivas.

Além dessas abordagens, (KAPUSTA et al., 2016) destaca o uso de técnicas de
percepcao haptica orientada por dados para aumentar a seguranca e eficacia. Esse método
possibilita a deteccao em tempo real das interacoes sutis entre o paciente e a vestimenta,
permitindo que o robo identifique variagoes nas forgas aplicadas e ajuste dinamicamente
sua atuagao para prevenir riscos, como colisdes e enganches inesperados. Com isso, ao
incorporar algoritmos de aprendizado, como modelos de Markov ocultos, esses sistemas
podem antecipar os desdobramentos do movimento, reconhecendo, por exemplo, se a
manga sera posicionada corretamente ou se ha potencial para um engasgo entre a roupa e

0 usuario.

Essas abordagens evidenciam a importancia de integrar multiplas fontes sensoriais
para aprimorar a eficacia e seguranca na assisténcia ao vestir. A combinacao de dados
visuais e hapticos permite que o sistema compreenda de forma mais completa as intera-
¢oes entre o robd, o paciente e a vestimenta, ajustando sua atuacao de acordo com as

particularidades de cada situacao.

Adicionalmente, estudos recentes na area de robdtica na assisténcia ao vestir
geralmente descrevem o problema como uma tarefa de planejamento de trajetéria. No
entanto, oclusoes severas podem ocorrer em tempo real quando o manipulador, a roupa e
a pessoa estdo em contato proximo, conforme discutido em (ZHANG; CULLY; DEMIRIS,
2017). O trabalho de (LI et al., 2021) exemplifica uma abordagem que trata o problema
como um planejamento de trajetorias, visando aprimorar a eficiéncia do rob6. Em vez de
adotar uma estratégia excessivamente conservadora, o método proposto integra a predicao
do movimento humano para permitir um planejamento mais eficiente. Nesse contexto, a
seguranga é definida como a capacidade de evitar colisoes (collision avoidance) ou, caso

uma colisao seja inevitavel, garantir um impacto seguro (safe impact).

Outras abordagens envolvem métodos iterativos e online de otimizacao de trajeto-
rias, através de dados de visao e forca. Em (GAO; CHANG; DEMIRIS, 2016), os autores
propoem um método iterativo de otimizagao de trajetorias para assisténcia personalizada
no vestir. Inicialmente, uma camera de profundidade é empregada para modelar o espaco
de movimento dos membros superiores do usuario e definir uma trajetéria inicial para a
agao de vestir. Durante a execucao, sensores de forca detectam resisténcias externas que
indicam desconforto ou um caminho inadequado. Com base nessas medicoes, o algoritmo

utiliza uma variante do otimizador ADAM para atualizar iterativamente os pontos da
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trajetoria, ajustando-os de forma a reduzir a resisténcia percebida. Esse processo continua
até que a resisténcia seja minimizada, sinalizando que o caminho foi otimizado para o

conforto e a seguranga do usudrio.

Além dos desafios ja mencionados, a determinacao dos grasping points — pontos
ideais de preensao na vestimenta — constitui um problema critico na tarefa, conforme
discutido em (ZHANG; DEMIRIS, 2020). Esse desafio advém principalmente da natureza
altamente deformavel e variavel dos tecidos, que podem assumir diferentes configuragoes e
apresentar caracteristicas visuais distintas, como variagoes em textura e cor. A identificacao
precisa desses pontos é essencial para garantir uma manipulacao segura e eficaz, pois uma
preensao inadequada pode resultar em erros de manipulagao, colisoes ou até mesmo riscos
a seguranca do paciente. Dessa forma, a definicao e extragao automatica dos grasping
points exigem a integracao de técnicas avancadas de percepcao, modelagem geométrica
e algoritmos de aprendizado, permitindo ao sistema adaptar-se a diferentes condi¢oes e

tipos de vestimentas.

O artigo (ZHANG; DEMIRIS, 2020) propoe uma abordagem inovadora para
o problema dos grasping points em cenarios de robotica na assisténcia ao vestir. A
metodologia se baseia em uma rede neural convolucional (CNN) supervisionada que
mapeia imagens de profundidade para a estimacao das coordenadas de um ponto de
preensao pré-definido na vestimenta. Para minimizar a necessidade de grandes quantidades
de dados reais, a estratégia combina dados sintéticos, gerados via simulagao, com um
conjunto limitado de dados reais, promovendo uma transferéncia eficaz do conhecimento
adquirido em simulacao para o mundo real. Além disso, o sistema inclui um médulo de
calculo da orientacao de preensao a partir da nuvem de pontos da vestimenta, permitindo
que o rob6 planeje uma trajetéria de aproximacao que evita colisdes e garanta uma
preensao correta. Essa abordagem integrada demonstra melhorias significativas na precisao
da predi¢ao dos pontos de preensao e, consequentemente, na eficacia global do sistema de

assisténcia ao vestir.

Neste trabalho, a configuracao inicial do rob6 é simplificada para as sequéncias
de vestir, por meio da fixagdo da vestimenta no efetuador final (end-effector), conforme
realizado em (ERICKSON et al., 2018). Essa estratégia reduz a complexidade dos
procedimentos iniciais ao eliminar a necessidade de um posicionamento preciso da roupa,
permitindo que o foco seja direcionado ao desenvolvimento dos algoritmos de visao e

planejamento de trajetérias.

A partir das abordagens discutidas, o presente trabalho busca reduzir a complexi-
dade do processo de vestir sem comprometer a seguranca do paciente. Para isso, propoe-se
detectar a posi¢ao inicial do usuario por meio de uma camera acoplada ao manipulador,
dividindo a operacao em duas fases: da regiao do punho ao cotovelo e do cotovelo ao

ombro. Inicialmente, a camera equipada com sensor de profundidade é empregada para
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aproximar a vestimenta do braco, mantendo uma distancia segura que previne colisoes.

Nesse contexto, os algoritmos de visao computacional aliados aos dados do sensor
desempenham um papel fundamental, permitindo a identificacao precisa dos pontos de
referéncia e o planejamento de trajetorias adequadas para a manipulagao autéonoma e
segura da roupa. Essa estratégia visa mitigar os riscos de colisao e erros de manipulacao
identificados na literatura, garantindo um controle mais preciso da vestimenta ao longo do

processo sem aumentar significativamente a complexidade do sistema.

2.3 Visao Computacional

A visdo computacional é um campo da inteligéncia artificial que busca descrever e
interpretar o mundo visual por meio de imagens digitais, permitindo que maquinas extraiam
informagoes relevantes sobre os objetos presentes em uma cena. Isso envolve a inferéncia
e reconstrucao de propriedades dos objetos, como forma, cor, textura e profundidade.
Como o proprio nome sugere, o objetivo é reproduzir computacionalmente capacidades
da visao humana, incluindo reconhecimento de padroes, deteccao de objetos, percepcao
de movimento e estimativa de profundidade. Embora essas tarefas sejam intuitivas para
os seres humanos, replicd-las em computadores é um grande desafio, exigindo algoritmos
avanc¢ados, modelos matematicos sofisticados e técnicas de aprendizado de maquina para

interpretar corretamente o ambiente visual.

A histéria da visao computacional teve seu inicio na década de 1970, quando as
primeiras pesquisas na area comecaram a ganhar destaque. Um marco importante foi o
trabalho de Marvin Minsky, no MIT, que desafiou seu estudante Gerald Jay Sussman a
conectar uma camera a um computador e fazer com que a maquina descrevesse o que via.
Além disso, um dos desafios centrais da época era recuperar a estrutura tridimensional
a partir de imagens, possibilitando uma compreensao mais profunda das cenas captu-
radas. Esses esforcos iniciais estabeleceram as bases para o desenvolvimento da visao
computacional moderna (SZELISKI, 2022).

Na década de 1980, a visdo computacional avancou com algoritmos mais sofisticados,
introduzindo piramides de imagens, deteccao de contornos e fluxo éptico para analise de
movimento (MAN; VISION, 1982; HORN; SCHUNCK, 1981). Nos anos 1990, essas técnicas
evoluiram, permitindo reconstrucao multiview, reconhecimento de faces, segmentacao de
imagens e maior integracao com a computagao grafica para modelagem e renderizacao

realistas (FORSYTH; PONCE, 2003; SZELISKI, 2022).

Na década de 2000, a visao computacional evoluiu com abordagens de aprendizado
que possibilitaram a extracao e descritores de caracteristicas (features), aprimorando a
deteccao e classificagao de objetos (VIOLA; JONES, 2001; LOWE, 2004). Ja na década de

2010, a area passou por uma transformacao com a adogao do deep learning, impulsionada
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por grandes datasets de alta qualidade, uso intensivo de GPUs e a introducao de sensores
especializados, como o Microsoft Kinect, que ampliaram as aplicagoes e a eficiéncia dos
sistemas de anédlise visual (KRIZHEVSKY; SUTSKEVER,; HINTON, 2012; LECUN;
BENGIO; HINTON, 2015; SHOTTON et al., 2011).

A seguir, serao abordadas as principais técnicas de visao computacional e processa-

mento digital de imagens essenciais para a realizacdo da tarefa.

2.3.1 Digitalizacao de Imagens e Filtragem

No contexto da visao computacional, uma das principais etapas para a formacgao de
imagens ¢ a digitalizagdo e o processamento das imagens obtidas, conforme discutido em
(GONZALEZ; WOODS, 2018). Nessa etapa, uma imagem é convertida para um formato
digital que possa ser interpretado por um computador. Ao final desse processo, a imagem
digital pode ser vista como uma grande matriz de pixels de tamanho MxN, conforme a
Equacao 2.1, na qual cada pixel contém um valor correspondente a uma cor especifica. No
caso de imagens no formato RGB, essa matriz pode ser desmembrada em trés matrizes
individuais (ou representada como uma matriz tridimensional), uma para cada canal de
cor: vermelho, verde e azul. Essa representacao digital é fundamental para as técnicas
de andlise e processamento de imagens que possibilitam a extracao de informacgoes e a

compreensao do cendrio observado.

£(0,0) f£(0,1) f(O,N —1)
f(x,y) _ f(l,O) f(lv 1) f(lv]\:[_ 1) (2'1)
FIM—1,00 f(M—1,1) ... f(M—1,N—1)

Com a imagem digitalizada, o préximo passo ¢é a aplicacao de técnicas de filtragem
espacial, que operam diretamente sobre a matriz de pixels utilizando o conceito de
vizinhanga. Considerando a estrutura matricial de uma imagem, a vizinhanca de um pixel
corresponde aos pixels em posigoes proximas, tanto em termos de linhas quanto de colunas.

Por exemplo, em uma 4-vizinhanga, dado o pixel (z,y), seus vizinhos sdo:

(z—1y) (z,y—1),(z,y+1),(x+1,y) (2.2)
J& em uma 8-vizinhanca, além desses, incluem-se os pixels diagonais:

(x—Ly—1),(x,y—1),(z+1L,y—1),(z—Ly+1),(z,y+1),(x+1,y+1) (2.3

Essa relacao de vizinhanga forma a base para a filtragem no dominio do espaco.

Para definir qual conjunto de pixels (vizinhanca) serd considerado na operagao de

filtragem, utiliza-se um kernel (também conhecido como mascara, template ou janela),
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que é representado por uma matriz de coeficientes. Geralmente, sao utilizadas matrizes
quadradas de dimensao impar (por exemplo, 3 x 3,5 X 5, 7 x 7, etc.), onde cada elemento

possui um valor que determina o peso do pixel correspondente na imagem.

O mecanismo de filtragem linear ¢ implementado por meio da operagao de con-
volugdo, que combina os valores dos pixels da imagem com os coeficientes do kernel.
Considerando um kernel 3 x 3, a resposta do filtro na posicao (z,y), denotada por g(z,y),

¢ dada pela Equacao 2.4.

11
glz,y) = > > fle+i,y+75)h(i,j) (2.4)
i=—1j=—1

Na aplicacao de filtros, é comum adicionar pixels na borda da imagem para que o

kernel possa ser aplicado a todos os pontos sem reduzir a dimensao da imagem resultante.
Esse processo, chamado de padding, geralmente utiliza preenchimento constante (com zeros
sendo a forma mais comum), mas também pode empregar técnicas como o espelhamento,
a replicacao dos pixels da borda ou até mesmo o preenchimento circular. Essas abordagens
garantem que a aplicacao do filtro seja realizada de forma consistente, preservando as

dimensodes originais da imagem e evitando a perda de informacao nas regioes periféricas.

No processamento de imagens, a analise pode ser feita no dominio do espaco, onde a
imagem é uma matriz de pixels, ou no dominio da frequéncia, onde é descrita como a soma
de senoides de diferentes frequéncias e intensidades. A Transformada de Fourier permite
essa conversao, sendo essencial para técnicas de filtragem. Termos como passa-baixa e

passa-alta estdao relacionados a manipulagao de baixas e altas frequéncias na imagem.

No contexto da utilizacao de filtros, os filtros de suavizacao desempenham um
papel crucial no processamento de imagens, atuando diretamente no dominio espacial para
atenuar transicoes bruscas de intensidade. Esses filtros sao amplamente utilizados para a
remocao de ruidos, eliminando variagoes indesejadas que podem prejudicar a analise da
imagem, e para suprimir detalhes que nao sejam relevantes para a aplicacdo em questao.
O efeito resultante é um borramento (blur) que facilita a extragao de caracteristicas mais

importantes e robustas para tarefas subsequentes.

O filtro Gaussiano é um exemplo classico de filtro de suavizagao, onde os coeficientes

do kernel sao definidos por uma funcao Gaussiana, expressa por:

_ 242
h(s,t) = G(s,t) = Ke 202 (2.5)
Nesse contexto, o representa o desvio padrao da distribuicao Gaussiana e determina
a extensao do desfoque aplicado, enquanto K é uma constante de normalizacao. Os
valores dos coeficientes sao maiores para os elementos préximos a origem, o que assegura

que os pixels centrais tenham maior influéncia no processo de suavizagao, e diminuem
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gradativamente a medida que se afastam do centro. Essa caracteristica resulta em um
efeito de borramento (blur) que suaviza transi¢oes bruscas de intensidade, contribuindo

para a remocao de ruidos e a preservacao das caracteristicas essenciais da imagem.

Conforme abordado em (GONZALEZ; WOODS, 2018), os filtros passa-altas atuam
no processo de agucamento (sharpening), cujo objetivo é realgar detalhes e enfatizar as
transicoes de intensidade presentes em bordas, linhas e curvas. Essa técnica fundamenta-se
na aplicagdo de filtros derivativos, como os de Sobel, Prewitt e Laplaciano, que medem as
variagoes de intensidade entre pixels vizinhos, resultando em imagens com maior defini¢ao

e contornos mais evidentes.

2.3.2 Segmentacao por cor

Outra técnica importante para o desenvolvimento deste trabalho é a segmentacao
por cor, pois permite a identificacao e o isolamento de regides de interesse com base nas
caracteristicas cromaticas das imagens. Essa capacidade de distinguir regidoes homogéneas
nao so facilita a extragao de caracteristicas relevantes, mas também aprimora a precisao

dos algoritmos de reconhecimento e classificagao.

Inicialmente, para o estudo da segmentagao por cor, ¢ fundamental compreender os
diferentes espacos de cores e suas caracteristicas. As cores que sao percebidas pelas pessoas
resultam da interacao entre fontes de luz e os diversos materiais existentes no mundo fisico,
o que determina as tonalidades observadas em cada situacao. Nesse contexto, destacam-se

dois sistemas de cores principais: os sistemas aditivos e os sistemas subtrativos.

O sistema aditivo RGB baseia-se na combinacao de trés cores primarias — vermelho,
verde e azul — que, ao serem misturadas em diferentes intensidades, originam todas as
demais cores. Cada uma dessas cores é denominada canal, de modo que a presenca
simultanea de todos os canais em sua intensidade maxima resulta no branco, enquanto
sua auséncia total gera o preto. Inspirado no funcionamento do sistema visual humano, o
modelo RGB reflete a sensibilidade dos cones oculares, que sdo responsaveis por captar
comprimentos de onda curto (azul), médio (verde) e longo (vermelho), em contraste com os
bastonetes, que operam em condi¢oes de baixa luminosidade e nao distinguem cores. Em
termos praticos, cada pixel de uma imagem pode ser representado por uma combinacao

linear das cores primarias, expressa matematicamente pela Equagao 2.6.

C=r R+g-G+b-B (2.6)

Onde r, g e b sdo os coeficientes de mistura de cada canal. Essa representacao é
frequentemente expressa na forma de uma tripla de valores, comumente utilizando 8 bits

por canal, variando de 0 a 255, ou por meio do sistema hexadecimal, onde os valores vao
de 00 a FF (GONZALEZ; WOODS, 2018).
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No modelo subtrativo CMYK, utilizado em sistemas de impressao, as cores nao sao
produzidas através da emissao de luz, mas sim pela absorc¢ao das frequéncias da luz branca.
Nesse processo, o que nao é absorvido é refletido, determinando a cor percebida pelo olho
humano, de forma que o branco corresponde a auséncia de pigmento e o preto resulta da
sobreposicao de todos eles. Para representar as cores de maneira eficaz, sao escolhidas cores
primadrias, sendo o sistema mais comum baseado no ciano (C), magenta (M) e amarelo
(Y). A escolha do ciano, magenta e amarelo deve-se ao fato de que a combinagdo, tomada
duas a duas, reproduz as cores do sistema RGB, evidenciando a complementaridade entre

os modelos aditivo e subtrativo.

Quando um objeto colorido é observado, sua percepcao baseia-se em trés atributos
fundamentais: matiz (hue), saturagao e valor. O matiz refere-se a tonalidade pura da cor,
como vermelho, azul ou amarelo. A saturacao representa o grau de pureza da cor, ou seja,
o quanto ela esta diluida pela presenca de luz branca. Ja o valor corresponde a intensidade
luminosa, permitindo a distingao de variagoes de brilho na imagem. O espaco de cores
HSV organiza essas caracteristicas de maneira a separar a informacao croméatica (matiz e
saturacao) da intensidade luminosa, proporcionando uma descrigdo mais alinhada com
a percepcao visual humana. Essa abordagem torna-se uma ferramenta essencial para o
desenvolvimento de algoritmos de processamento de imagens que necessitam identificar e

segmentar cores de forma natural e eficiente.

De acordo com (SMITH, 1978), a conversao do espaco de cor RGB para o espago
HSV pode ser realizada utilizando o modelo hexagonal (hexcone), que separa as informagoes
crométicas (matiz e saturagdo) da intensidade luminosa (valor). Supondo que os valores

de R, G e B estejam normalizados no intervalo [0, 1], definem-se:
V =max(R, G, B), X =min(R, G, B), (2.7)
A=V -X. (2.8)

O componente valor (V') representa a luminosidade da cor. A saturacao (.5), que

indica o grau de pureza da cor, é calculada por:

0, seV =0,
S=1A (2.9)
v caso contrario.

Quando S = 0, a cor é acromatica (variagoes de cinza) e o matiz (H) pode ser atribuido
arbitrariamente (por convengao, H = 0). Para cores saturadas (S # 0), procede-se ao

calculo do matiz (H) conforme o modelo hexcone, seguindo os passos abaixo:

1. Calculo dos parametros auxiliares:

V—-R V-G V-B
T—‘A s g = A ) b= A : (210)
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2. Determinacao do matiz conforme o canal dominante:

Utilizando uma abordagem baseada em parametros auxiliares, a matiz é definida

da seguinte forma:

5+0b seG=2X,

Se R=V: H=
1 —g, caso contrario;
14r, seB=2X,
SeG=V: H=
3 —b, caso contrario;
349, se R=2X,
SeB=V: H=1{"1

5—r, caso contrario.

3. Normalizagdo do matiz: O valor de H ¢é entao normalizado para o intervalo
0, 1] dividindo-o por 6:
H

H=%. (2.11)

Por convencao, H = 0 corresponde a cor vermelha.

Este método evita o uso de fungoes trigonométricas, proporcionando uma conversao
eficiente, especialmente em aplicagdbes computacionais de processamento de imagens e

graficos.

Neste trabalho, a conversao das imagens para o espaco HSV é fundamental, pois
permite isolar a componente de matiz, utilizada como critério de limiar para identificar o
brago do usuario na simulagao com a camera devidamente posicionada. Essa abordagem
torna a segmentagao por cor mais robusta, ja que o espaco HSV minimiza os efeitos de
variagoes de iluminagao, facilitando a extragdo precisa da regiao de interesse. Consequen-
temente, essa segmentacao contribui para a determinacao e geracao de uma trajetoria

acurada a ser seguida pelo manipulador robético.

Em aplicagoes préticas, a variacao da iluminacao desempenha um papel decisivo na
eficacia da segmentacgao por cor. Alteracoes na intensidade, no d&ngulo e na temperatura
da luz podem modificar significativamente a aparéncia das cores capturadas, influenciando
tanto os valores dos canais RGB quanto as representacoes em espacos como o HSV. Essa
variabilidade pode levar a desafios na identificagdo precisa de regioes de interesse, sobretudo
em ambientes com iluminagao mista ou nao controlada, onde sombras e reflexos alteram as
tonalidades reais dos objetos. Dessa forma, a adoc¢ao de estratégias de pré-processamento
para normalizacao da iluminacao e o uso de algoritmos que incorporem caracteristicas
invariantes a luz sao fundamentais para garantir uma segmentacao mais robusta e confiavel
em condigoes reais (MAITLO et al., 2024).
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2.3.3 Deteccao de bordas

Para ajudar na definicao da trajetoria que o robo deve seguir sobre o brago do
paciente, utilizar métodos de deteccao de bordas é uma estratégia muito util. Essas
técnicas facilitam a identificacdo dos contornos do braco, destacando as diferencas de
intensidade entre ele e o fundo, o que torna os limites mais claros. Ao combinar essa
abordagem com a segmentagao por cor, conseguimos uma delimitacao mais precisa da

regiao de interesse.

As bordas em uma imagem estao associadas a pontos onde ocorrem variacoes
abruptas na intensidade, ou seja, sdo regioes onde a primeira derivada da funcao de
intensidade atinge valores extremos. Em termos praticos, isso significa que as transi¢oes
bruscas de cor ou brilho, caracteristicas de bordas, podem ser detectadas ao se analisar as
mudancas na intensidade dos pixels. Essa abordagem fundamenta-se na ideia de que as
derivadas capturam as variacoes locais da imagem, permitindo isolar pontos de interesse

que indicam a presenca de contornos.

O gradiente da imagem ¢ a ferramenta matematica utilizada para quantificar essas
variacoes. Definido pela Equagdo 2.12, o gradiente aponta na direcao de subida mais

ingreme da funcao de intensidade.

J(z) = VI(z) = <ai M) = (I,,1,) (2.12)

A magnitude do gradiente, calculada na Equacao 2.13, reflete a forga da borda, ou

seja, quanto maior essa magnitude, mais forte é a transicao entre regides, evidenciando

IVI(z)|| = /I3 + 1] (2.13)

Além disso, a direcao do gradiente, determinada pelo angulo @ da Equacao 2.14 é

um contorno bem definido.

perpendicular a borda, pois a maior variacao de intensidade ocorre justamente na dire¢ao

normal a transicao de cor.

I
o =tan"! (]y) (2.14)

Dessa forma, o uso de derivadas e do gradiente fornece uma base sélida para a
deteccao de bordas, permitindo identificar com precisao tanto a localizacao quanto a

orientacao dos contornos em uma imagem.

A partir dos conceitos apresentados anteriormente, (CANNY, 1986) propds um
método para deteccdo de bordas fundamentado em trés objetivos principais: reduzir
ao minimo a ocorréncia de falsos positivos e falsos negativos, assegurar a localizacao

precisa dos contornos e garantir uma resposta tnica para cada borda. O Detector de
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Canny destaca-se por sua robustez e eficiéncia na identificacdo de contornos bem definidos,

tornando-o uma das técnicas mais eficazes para a deteccao de bordas em imagens digitais.

Entre as diversas variantes do Detector de Canny existentes, uma das imple-
mentagoes mais populares adota os seguintes passos: filtrar a imagem com a derivada
da Gaussiana, calcular a magnitude e a orientagdo do gradiente, realizar a supressao

nao-maxima e aplicar a limiarizacao com histerese.

No processo de supressao nao-maxima, o objetivo é refinar as bordas mantendo
apenas os pontos de maximo local. Para isso, a dire¢ao do gradiente é discretizada em
8 direg¢oes, permitindo identificar qual delas melhor se aproxima da orientagao real do
gradiente em cada pixel. Em seguida, compara-se a magnitude do gradiente do pixel
analisado com as dos pixels vizinhos ao longo dessa dire¢ao; se algum dos vizinhos apresentar
uma magnitude maior, o pixel em questao é descartado, garantindo que somente os pontos

que realmente representam o maximo de uma aresta sejam mantidos.

Na etapa de limiarizacao com histerese, emprega-se dois valores de limiar para
diferenciar os pontos da imagem com base na magnitude do gradiente. Os pixels cuja
magnitude ultrapassa o limiar superior sdo imediatamente considerados como arestas fortes,
assegurando a precisdo na definicao dos contornos. Por outro lado, os pixels que possuem
magnitudes entre o limiar inferior e o superior sao classificados como arestas fracas e
sO serao integrados a imagem final se estiverem conectados a alguma aresta forte. Essa
estratégia permite manter apenas os contornos significativos e eliminar falsos positivos, e
estudos realizados por (CANNY, 1986) demonstraram que a razao ideal entre os limiares
superior e inferior deve estar entre 3:1 e 2:1, contribuindo para a eficacia e robustez do

método.

2.3.4 Transformada de Hough

Na deteccao de bordas em uma imagem, por exemplo, utilizando o detector de
Canny, é fundamental identificar os pixels que formam linhas retas. No presente trabalho,
ao detectar o contorno do brago, torna-se necesséario corrigir eventuais lacunas na deteccao
das bordas e utilizar essas linhas para auxiliar na geracao da trajetéria. Para esse fim,
emprega-se 0 método da Transformada de Hough (HOUGH, 1962).

Para compreender o conceito de espago de parametros na Transformada de Hough,

considere um ponto (z;,y;) no plano cartesiano xy e a equagao de uma reta em 2.15.

Y =ax; +0b (2.15)

Esse ponto pode pertencer a um conjunto infinito de retas, pois, ao variar os
valores de a e b, todas as equagdes que passam por (x;,y;) sao satisfeitas. Reescrevendo

na Equacao 2.16 observa-se que, para um ponto fixo (z;,y;), essa relagdo define uma tnica
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reta no plano dos parametros, cujos eixos correspondem aos coeficientes a e b. Esse plano,
denominado espago de parametros, é essencial na Transformada de Hough, pois converte o
problema de deteccao de retas em imagens na identificacao de intersegoes de linhas nesse

espago, facilitando a extracao de caracteristicas lineares.

b= —ax; + vy (2.16)

Uma abordagem para detectar retas consiste em representar, no espaco de para-
metros, as retas correspondentes a todos os pontos (zx,yx). Dessa forma, as retas no
plano zy sao definidas por pontos que representam a interse¢ao de um grande niimero
de retas tragadas nesse espaco. Contudo, um problema significativo surge quando a reta
se aproxima da direcao vertical, pois o coeficiente angular a tende a infinito, o que pode
comprometer a robustez do método. Uma forma de contornar esse problema é utilizar a

representacao normal da reta, dada pela Equacao 2.17.

xcos +ysinh = p (2.17)

Na equagao 2.17, o parametro p representa a distancia entre a reta e a origem do
sistema de coordenadas, sendo sempre um valor positivo. Ja o parametro 6 corresponde ao
dngulo que a normal a reta faz com o eixo x, variando no intervalo [0, 7]. Dessa forma, a
reta é identificada de maneira tnica no espago de pardmetros (p, #), independentemente da
sua inclinacao no plano zy. Essa parametrizacao permite uma representacao mais estavel
das retas, especialmente para aquelas préoximas da vertical, onde a inclinagao tradicional a
poderia tender a valores infinitos, dificultando a andlise. Além disso, a Transformada de
Hough utiliza essa parametrizagao para converter o problema da deteccao de retas em um
problema de identificacdo de pontos de interse¢do no espaco de parametros, facilitando a

extracao de caracteristicas lineares em imagens digitais.

Na Figura 3, é possivel verificar o ponto de interse¢ao no plano p-6 que corresponde
a linha passando pelos pontos (x;,v;) e (x;,y;) no plano zy. Na mesma figura, é possivel
visualizar as células acumuladoras utilizadas no método para armazenar a contagem de
votos de cada possivel reta detectada. O espaco de parametros é discretizado em uma
grade de valores de p e 6, onde cada célula representa uma possivel configuracao desses
parametros. As células que acumulam mais votos indicam a presenca de retas mais

provaveis na imagem original.

A transformada de Hough é um método genérico e, por si s, ndo consegue distinguir
o brago do paciente de outros contornos, como o da mesa abaixo do braco. Por isso, a

segmentacao por cor proposta anteriormente é essencial para minimizar esses problemas.

Na aplicacao, a partir dos resultados obtidos pela Transformada de Hough, o

objetivo é agrupar as retas detectadas de forma a identificar os contornos do brago. Com
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Figura 3 — Parametrizacao de uma reta no plano xy, representacido no espago de pardmetros p-0
e a subdivisdo em células acumuladoras.

Fonte: (GONZALEZ; WOODS, 2018)

essas informacoes, determina-se a linha média entre as duas retas, permitindo que o

manipulador siga uma trajetoria centralizada ao longo do braco.
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3 METODOLOGIA

Este Capitulo apresenta os detalhes das estratégias de visdo computacional em-
pregadas na geracao de trajetorias para vestir o paciente. Sao descritos o ambiente de
simulacao proposto para a tarefa e os detalhes da cineméatica do robé manipulador Kinova
com 7 DoF (KINOVA, 2024).

O objetivo consiste em utilizar, a partir das imagens capturadas por um sensor
RGB-D - dispositivo que capta imagens coloridas (RGB) e informagoes de profundidade —,
métodos de processamento de imagem e visao computacional para determinar a inclinagao

da linha que acompanha o brago, bem como tragar o percurso da manga da vestimenta.

3.1 Configuracao da Simulagao

Levando em conta o desafio proposto em (EMPRISELAB, 2024), foi configurado
o ambiente de simulacao ilustrado na Figura 4, utilizando o simulador CoppeliaSim
(ROHMER; SINGH; FREESE, 2013). Nesse ambiente, sao definidos como parametros os
angulos das sete juntas do robo e os comandos de abertura e fechamento da garra. Além
disso, o simulador fornece diversos dados, como as posi¢oes das juntas, do end-effector,
imagens capturadas pelo sensor RGB-D e as posi¢oes do braco do paciente, os quais serdao

utilizados posteriormente para a comparacao dos resultados.

Jcamera_anm

Figura 4 — Configuracdo inicial do ambiente de simulagao.

Fonte: Autor



35

O posicionamento inicial do manipulador e da camera desempenha um papel
fundamental na obtencao de imagens de alta qualidade e na garantia de que o paciente
esteja adequadamente posicionado no espaco de trabalho do rob6. A camera RGB-D
foi estrategicamente instalada para maximizar a visibilidade do braco e da vestimenta,
facilitando o processamento das informacoes pelos algoritmos de visao computacional.
Por sua vez, o manipulador foi ajustado para proporcionar um acesso otimizado & area
de interacao, reduzindo movimentos desnecessarios e contribuindo para a seguranca do

paciente.

E importante ressaltar que, embora o objetivo seja promover maior autonomia ao
paciente, ainda existem diversos desafios na tarefa de vestir. Neste trabalho, adota-se uma
abordagem simplificada para reduzir a complexidade da manipulacao. Conforme discutido
na Secao 2.2, a estratégia proposta minimiza a variabilidade no posicionamento inicial
da vestimenta. Para mitigar as dificuldades inerentes a manipulagao, a roupa é fixada
diretamente no efetuador final do robd, conforme sugerido por (ERICKSON et al., 2018),

permitindo que o algoritmo se concentre exclusivamente no planejamento da trajetoria.

A vestimenta considerada neste estudo é um jaleco, uma peca de roupa aberta
que facilita a tarefa ao possibilitar a definicio de uma trajetéria sobre o brago. Essa
trajetéria, uma vez tracada, podera ser replicada para o outro braco. Na simulagao,
optou-se por abstrair a representacao da manga do jaleco posicionado no manipulador,
visto que, embora o simulador permita a simulacao de objetos deformaveis, ele nao fornece,

de maneira nativa, opcoes de vestimentas.

Visando generalizar as estratégias de visao computacional, foram consideradas
diversas configuracoes de posicionamento do brago e do antebraco do paciente. A Figura 5

apresenta as trés situacoes de validacao.

Figura 5 — Configuragdes de posicionamento do brago do paciente.

Fonte: Autor
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3.2 [Estratégias adotadas

Inicialmente, estabelece-se a conexao com o simulador CoppeliaSim por meio de
uma API remota. Dessa forma, sdo definidos os handlers para cada junta e para outros
objetos de interesse na cena, como a garra e o end-effector. Além disso, sdo configurados,
por padrao, os parametros iniciais da cinematica inversa — tais como a tolerancia e a
taxa de aprendizado — bem como os parametros do algoritmo, que incluem o limiar de
proximidade ao braco, a distancia da trajetéria do punho ao cotovelo e a distancia do

cotovelo ao ombro. Esses parametros padrao podem ser visualizados na Tabela 1.

Tabela 1 — Pardmetros definidos inicialmente no algoritmo

Parametro ‘ Definicao Padrao
Tolerancia 10~*
Taxa de Aprendizado 0,01
Limiar de proximidade 0,06 m
Distancia do punho ao cotovelo 0,25 m
Distancia do cotovelo ao ombro 0,16 m

Além disso, tais parametros foram ajustados com base em testes preliminares para

garantir a precisao e a seguranca do sistema.

Em seguida, para cumprir a tarefa, o manipulador se aproxima do punho do
paciente utilizando o sensor de profundidade do sensor RGB-D, garantindo a seguranca
durante todo o processo. No entanto, para uma tarefa como a de vestir, é necessario que o
manipulador se aproxime o suficiente para alinhar a manga com o brago, permitindo que ela
deslize corretamente. E importante ressaltar que, durante todo o processo, o manipulador
estd equipado com sensores téteis (de forga) na garra, que permitem a detecgao de colisoes

e interrompem imediatamente seu funcionamento caso ocorra algum contato inesperado.

Na Figura 6, é apresentado um fluxograma que representa o inicio da execugao do
algoritmo e o processo de aproximacao. O manipulador executa um processo iterativo até
que a garra esteja proxima ao punho do paciente, respeitando um limiar de seguranca.
Para isso, além dos dados de profundidade, é utilizada a segmentacao por cor, permitindo
a exclusao de objetos irrelevantes, como a prépria garra do manipulador, que aparece
na imagem da camera e estd muito proxima do sensor, mas nao deve ser considerada na

verificacao de profundidade.

Apébs a aproximacao com a coordenada z fixa, o algoritmo gera as trajetérias
com base na configuragao do brago do paciente. Para isso, diferentes configuragoes
sao consideradas na etapa de validagao, conforme ilustrado na Figura 5. Inicialmente,
o manipulador deve calcular a trajetéria do punho até o cotovelo, correspondente ao
movimento do antebraco. Nesse processo, os algoritmos de visao computacional devem

gerar uma linha reta como resultado das estratégias discutidas nas Subsecoes 3.2.1, 3.2.2 e
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Conexao com Simulador
CoppeliaSIm

|

Definigao de parametros da
Cinematica inversa e limiares de
proximidade

!

Obtengéo dos dados do sensor
RGB-D

|

Segmentagéao por Cor

Proximidade
medida maior
que o limiar?

Ssim |Aproximagao do brago definindo
um ponto objetivo com valor
reduzido na coordenada Z

Fim do processo de
aproximagéo ao brago

Figura 6 — Fluxograma do algoritmo de aproximagao ao braco do paciente.

Fonte: Autor

3.2.3, garantindo um coeficiente linear adequado a configuracao atual do brago do paciente.

Na Figura 7, é apresentado um exemplo de resultado utilizado para a determinacao
das trajetérias. Com base nos coeficientes da reta, é possivel calcular os pontos x e y de
destino a partir do angulo 6, conforme descrito nas Equacoes 3.1 e 3.2. Nessa abordagem, dx
representa o incremento da posicao ao longo do eixo das abscissas, enquanto dy corresponde
ao incremento ao longo do eixo das ordenadas. O processo continua iterativamente até

atingir uma distancia pré-definida, conforme estabelecido na Tabela 1.

Lobjetivo = Latual +dx - 003(9) (31)

Yobjetivo = Yatual + dy : Sé’n(@) (32)

Com os pontos de destino definidos, a cinematica inversa, conforme discutida na
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feamera_arm

0 = atan(m)

Figura 7 — Exemplo de reta obtida para cédlculo dos pontos objetivo.

Fonte: Autor

Secao 3.3, é empregada para posicionar o rob6 até o cotovelo. Em seguida, a partir da

nova imagem capturada, os passos anteriores sao repetidos, finalizando a tarefa de vestir.

3.2.1 Estratégia baseada em Segmentacao por Cor

Uma das estratégias adotadas para gerar a reta sobre o brago é a segmentacao por
cor. Nesse método, as imagens sao capturadas pela camera e, a partir dai, realiza-se a
conversao do espago de cores de RGB para HSV, de modo que a caracteristica da cor fique

concentrada em um tnico canal, o matiz, conforme discutido na Secao 2.3.2.

Como parametro para a segmentacao, o algoritmo utiliza a cor do pixel central
da imagem para definir uma mascara capaz de diferenciar o braco dos demais objetos.
Considerando que o brago esta inicialmente centralizado em relagao ao manipulador e
a camera, a mascara é gerada aplicando uma tolerancia de 20% em relagao a cor do
pixel central; pixels com valores até 20% acima ou abaixo sdo configurados como brancos,
enquanto os demais se tornam pretos. Dessa forma, a regido de interesse é destacada
dos demais elementos presentes na imagem. Na Figura 8, observa-se um exemplo dessa
mascara, onde a area correspondente ao brago é evidenciada. Esse procedimento permite ao
algoritmo focar na extracao de informacoes precisas dessa regiao, etapa fundamental para

identificar a trajetéria central que orientard os movimentos subsequentes do manipulador.
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Figura 8 — Exemplo da imagem antes e apds segmentagao por cor.

Fonte: Autor

Apoés a segmentacao, a mascara resultante é percorrida linha por linha. Em cada
linha, sdo identificados os pixels com intensidade diferente de 0 (ou seja, os pixels brancos),
e seus indices sao armazenados em um vetor. Ao final de cada linha, calcula-se o ponto
médio entre esses pixels brancos. Dessa forma, ao concluir a varredura de todas as linhas,
é possivel construir uma linha média composta por esses pontos médios, representando o

reta central da regiao segmentada.

Com base nas coordenadas x e y dos pontos médios extraidos da regiao do brago na
imagem, realiza-se um ajuste polinomial de primeiro grau para determinar a equacao da reta
que melhor representa a trajetéria central. A partir dessa equacao, obtém-se o coeficiente
angular, que é utilizado para calcular o angulo 6 por meio da funcao arco-tangente. Esse

angulo ¢ fundamental para orientar a trajetéria a ser seguida pelo manipulador.

3.2.2 Estratégia baseada na Transformada de Hough

A estratégia que utiliza a Transformada de Hough parte da méascara obtida pela
segmentacao por cor, visando aprimorar os resultados obtidos apenas com esse método. A
ideia é superar as limitagoes de generalizagdo do modelo, permitindo identificar uma reta

que se ajuste de forma mais precisa a regiao do brago.

Para aplicar a Transformada de Hough, é necessario realizar uma sequéncia de
operagoes de processamento de imagem. Primeiramente, a imagem RGB do brago é
extraida a partir da mascara de segmentacao aplicada a imagem original, isolando a regiao
de interesse. Em seguida, a imagem ¢é convertida para escala de cinza e submetida a um

filtro gaussiano, o qual suaviza os detalhes e reduz o ruido. Posteriormente, o detector
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de bordas de Canny é aplicado, realcando as bordas mais significativas, e, por fim, a
Transformada de Hough é utilizada por meio da fun¢ao hough do MATLAB, retornando a
matriz de transformacao e os vetores dos parametros p e 6 no espago de Hough, conforme

discutido na Se¢ao 2.3.4.

A partir dos resultados obtidos, é possivel identificar os picos na matriz de trans-
formacao utilizando a fun¢ao houghpeaks, aplicando uma tolerancia para definir quais
valores serdo considerados como picos. Com base nas interse¢oes no espaco de Hough, os
segmentos de reta sao extraidos a partir dos picos detectados e dos vetores dos parametros

p e 0, utilizando a fun¢ao houghlines.

Um passo fundamental consiste em agrupar as retas que apresentam parametros
muito proximos no espaco de Hough. Dessa forma, é possivel determinar, por meio da
média dos parametros de cada grupo, os valores finais de p e 6, obtendo assim a reta que

melhor se ajusta ao contorno do braco. O passo a passo discutido pode ser visto na Figura
9.

Figura 9 — Imagens obtidas nos passos da estratégia usando Transformada de Hough.

Fonte: Autor

Com os parametros do espago de Hough definidos, determinam-se os valores de z a
partir das coordenadas dos pontos minimo e maximo dos segmentos de reta detectados,

enquanto os valores de y sao calculados conforme a Equacao 3.3, obtida a partir da Equagao

2.17:
p—x-cos(f)

sin(0) (33)

y:



41

Com os vetores de pontos definidos, realiza-se um ajuste polinomial de primeiro
grau para determinar a equacao da reta. A partir deste ajuste, obtém-se o coeficiente
angular por meio da funcao arco-tangente, sendo esse angulo fundamental para orientar a

trajetoria a ser seguida pelo manipulador.

3.2.3 Estratégia baseada em Deteccao de Contornos

Considerando que a Transformada de Hough pode em alguns casos detectar retas
provenientes de objetos indesejados, como a mesa, propoe-se uma estratégia alternativa
para aprimorar os resultados. Nessa abordagem, a detec¢ao de contornos utiliza imagens
binarias — como a obtida apds a segmentagao por cor — para delimitar o contorno do

braco e, a partir desses limites, definir o segmento de reta central.

Nessa estratégia, a imagem binaria do braco, obtida a partir da maéscara de
segmentacao por cor, é submetida a fungao bwboundaries do MATLAB. Essa fungao é
empregada para identificar os contornos dos objetos presentes em uma imagem binaria,
detectando as fronteiras de cada objeto isolado. O seu retorno consiste em uma célula
na qual cada elemento contém as coordenadas dos pontos que formam o contorno de um

objeto detectado.

Posteriormente, o algoritmo identifica o contorno que possui o maior nimero de
pontos dentre os contornos detectados e seleciona esse contorno para andalise. Em seguida,
determinam-se os valores minimo e méaximo das coordenadas horizontais dos pontos desse
contorno, e calcula-se o ponto médio entre esses extremos. Com base nesse ponto médio, o
contorno ¢é dividido em duas partes: os pontos localizados a esquerda e os localizados a

direita.

Na etapa seguinte, para calcular a linha central, o codigo percorre todos os valores
unicos das coordenadas verticais (y) do contorno. Para cada valor, sdo extraidos os pontos
correspondentes dos segmentos esquerdo e direito. Se, para um determinado y, existirem
pontos em ambos os segmentos, o algoritmo calcula a média dos valores horizontais (x)
desses pontos, definindo assim o ponto central para aquela linha especifica. Ao repetir esse
procedimento para cada valor tinico de y, o algoritmo constréi uma sequéncia de pontos
médios que, quando conectados, formam a linha central do contorno. O passo a passo
para a determinacao da linha central a partir da imagem original pode ser visualizado na

Figura 10.

Por fim, essa linha central é submetida a um ajuste polinomial de primeiro grau.
A partir do coeficiente angular resultante desse ajuste, calcula-se o dngulo de inclinagéao,

que é fundamental para orientar a trajetéria a ser seguida pelo manipulador.
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Figura 10 — Imagens obtidas nos passos da estratégia usando Detecgao de Contornos.

Fonte: Autor

3.3 Cinematica do Manipulador

A partir da trajetéria definida pelas estratégias adotadas na Secao 3.2, é necessario
determinar os angulos das juntas para que o manipulador robotico complete o percurso,
alcangando os pontos desejados. Para tanto, é fundamental aplicar os conceitos da robotica

classica, como a cinematica direta e inversa, ao manipulador Kinova.

O manipulador Kinova 7 DoF apresenta uma estrutura composta por sete juntas
rotacionais, conforme visto na Figura 11, permitindo uma ampla gama de movimentos e
proporcionando elevada flexibilidade e precisao. A modelagem do manipulador envolve a
definicdo dos pardmetros geométricos essenciais, tais como os comprimentos dos elos, os

sentidos de rotacao das juntas e as diferengas angulares entre elas.

A modelagem matematica do manipulador robético é construida de modo a deter-
minar a posicao no espago cartesiano a partir dos angulos das juntas rotacionais. Por meio
de transformagbes homogéneas, sao estabelecidas as relagoes entre os referenciais (frames)
do rob0, permitindo a composicao sequencial de transformacoes que relacionam cada junta
e elo ao sistema de coordenadas global. A cinematica direta consiste em calcular a posi¢ao

e a orientacao do efetuador final (end-effector) a partir dos valores dos dngulos das juntas.

Por convencao, utiliza-se o método sistematico de Denavit-Hartenberg, descrito em
(HARTENBERG; DENAVIT, 1964), para a modelagem cinemaética, o qual define quatro
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Figura 11 — Dimensoes e defini¢es de frames do rob6 Kinova com 7 graus de liberdade.

Fonte: (KINOVA, 2022)

pardmetros para cada junta: d (distdncia ao longo do eixo z), 6 (dngulo de rotagdo em
torno do eixo z), a (deslocamento ao longo do eixo z) e v (dngulo de rotagdo em torno do
eixo x). Com base no manual do rob6é (KINOVA, 2022), a Tabela 2 apresenta os valores
desses quatro parametros para a transicao entre os frames do robd, sendo 6! os angulos

variaveis das juntas.

Tabela 2 — Pardmetros de Denavit-Hartenberg do robé manipulador Kinova 7 DoF

Frame ‘ a;(rad) ‘ a;(m) ‘ d;(m) ‘ 0;(rad)
0 s 0,0 0,0 0
1 772 | 0,0 |-(0,1564+0,1284) | &
> 7/2 | 0,0 |-(0,0054+0,0064) | G5 + «
3 772 | 0,0 |-(0,210440,2104) | &; + «
1 7/2 | 0,0 |-(0,0064+0,0064) | 0+
5 7/2 | 0,0 |-(0,2084+0,1059) | 0% + 7
6 72 | 00 0,0 0+
7

T 0,0 | -(0,1059+0,0615) | 6% +

Para definir a cinematica inversa, isto é, determinar os angulos das juntas rotacionais

a partir da posicao e da orientacdo desejadas no espaco cartesiano, é necessario empregar
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métodos de otimizacao, como o gradiente descendente. Neste contexto, a func¢ao objetivo
¢é constituida pelo erro quadratico médio entre a posicao e a orientacao do efetuador
final e as posicoes e orientagoes desejadas. Por esse motivo, a Tabela 1 apresenta os
valores da taxa de aprendizado e da tolerancia adotados. A taxa de aprendizado mostra o
tamanho dos ajustes feitos a cada iteracao e determina a rapidez com que o algoritmo
se aproxima da solugao ideal. Como o método funciona de forma iterativa, é importante
definir uma tolerancia adequada para que o algoritmo saiba quando os angulos das juntas

estao suficientemente proximos dos valores que minimizam o erro.

Por fim, os angulos das juntas calculados pelo método do gradiente descendente sao
enviados para o simulador CoppeliaSim. Dessa forma, o manipulador segue a trajetoria
definida, ajustando os angulos de forma sequencial para que, a cada ponto, o robo se

posicione corretamente e complete o percurso com precisao.
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4 RESULTADOS

Neste Capitulo, sao apresentados os resultados obtidos no desenvolvimento do
trabalho. Sao detalhados os resultados referentes a aproximacao do braco e a geracao de
trajetorias, com base nas estratégias descritas na Secao 3.2. Sao expostos os resultados
das simulagoes, bem como a adequacao das trajetorias geradas em comparagao a trajetoria

ideal, além de um comparativo entre as estratégias adotadas para identificar a mais eficaz.

Para generalizar o método para diferentes configuragoes, foram testadas trés
situagoes em todos os resultados, conforme ilustrado na Figura 5: na primeira imagem, a
se¢ao do ombro ao cotovelo (brago) forma um dngulo de 20° para a esquerda em relagao &
posicao reta, enquanto a se¢ao do cotovelo ao punho (antebrago) permanece alinhada; na
segunda imagem, o brago esta a 20° para a direita e o antebraco a 20° para a esquerda; e,

na ultima, o brago permanece reto e o antebrago estd a 20° para a direita.

4.1 Resultados da aproximacao ao brago

Nesta etapa, o manipulador deve se aproximar adequadamente do brago, pois
essa proximidade é fundamental para a tarefa de vestir, sem comprometer os fatores de
seguranca. Conforme apresentado na Tabela 1, o algoritmo define um limiar de 6 cm entre
a garra, que segura a manga da roupa, e o brago, utilizando um raio de seguranca de 5
cm para a comparacio. £ importante ressaltar que esse limiar j& considera a distancia
medida pelo sensor RGB-D do end-effector, de modo que os 6 cm representam a distancia

efetiva entre a garra e o braco.

A configuragao inicial do braco do paciente é a apresentada na primeira imagem
da Figura 5, com o brago inclinado 20° & esquerda e o antebrago reto. A partir de uma
posicao em z elevada do manipulador robdtico sobre o braco, conforme ilustrado na Figura
12, pode-se observar as coordenadas do eixo z do end-effector ao longo de toda trajetéria

(linha azul) e uma reta, em vermelho, representando o raio de seguranca.

Na Figura 12 é possivel verificar também a proximidade para a tarefa de vestir de
forma visual pela imagem do simulador com a configuracdo do brago e antebrago utilizada
inicialmente. A Tabela 3 apresenta a distancia final do end-effector em relagao ao brago,
bem como a margem de seguranca (expressa em porcentagem) acima deste, considerando

que o braco do paciente esta posicionado no plano z = 0,92 m.

Em seguida, utilizando a configuragao exibida na segunda imagem da Figura 5, que
apresenta o brago inclinado em 20° para a direita e o antebrago em 20° para a esquerda, e
partindo de uma posi¢ao elevada, o objetivo é validar a estratégia de aproximagao para
diferentes configuragoes. Na Figura 13, as coordenadas do eixo z do end-effector sao

exibidas ao longo de toda a trajetéria (linha azul), juntamente com uma reta vermelha
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Figura 12 — Coordenadas do eixo z da garra ao longo de toda trajetoria e simulagdo na configu-
racao do brago inclinado 20° & esquerda e antebraco reto.

Fonte: Autor

que representa o raio de seguranca. A distancia final ao braco é apresentada em 3 e a

aproximagcao pode ser verificada de forma visual pela imagem do simulador na Figura 13.
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Figura 13 — Coordenadas do eixo z da garra ao longo de toda trajetéria e simulagdo na configu-
racao do brago inclinado 20° a direita e antebraco 20° a esquerda.

Fonte: Autor

Por fim, os dados referentes a posi¢ao no eixo z foram coletados na tltima con-
figuracao apresentada na Figura 5, na qual o brago se mantém reto e o antebrago esta
inclinado em 20° para a direita. Na Figura 14, a linha azul mostra as coordenadas do eixo
z durante toda a tarefa, enquanto a linha vermelha indica o raio de seguranca. Além disso,

o resultado na simulacao pode ser visto na segunda imagem da Figura 14 e a distancia
final na Tabela 3.

Os dados da Tabela 3 demonstram a consisténcia dos resultados, mesmo diante de
variagoes, pois todas as trés configuracoes testadas apresentaram uma distancia final média

de 5,94 cm entre a garra e o braco, com uma margem de seguranca média de 6,45%. Esses
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Figura 14 — Coordenadas do eixo z da garra ao longo de toda trajetoria e simulagdo na configu-
racao do brago reto e antebrago inclinado 20° a direita.

Fonte: Autor

Tabela 3 — Comparacdo da distancia final apds aproximacao da garra ao braco e margem de

seguranca.
Confietracio Distancia final da | Porcentagem acima
BHIAS garra ao brago (cm) do brago
— ==
Braco inclinado 20° a esquerda 50935 6.51 %
e antebrago reto
Brago inclinado 20° a direita
e antebrago 20° a esquerda 5,8527 6,36 %
Brago reto e antebraco
inclinado 20° a direita 5,973 6,48 %

resultados indicam que o algoritmo de aproximacao, baseado em dados do sensor RGB-D,
assegura a proximidade ideal para a tarefa de vestir sem comprometer os parametros de

seguranca.

4.2 Resultados da geracao de trajetorias

Para validar cada uma das estratégias quanto a adequagao ao brago, nesta etapa
sao apresentadas as imagens resultantes dos algoritmos de visao computacional. Essa
abordagem permite identificar possiveis causas de divergéncia entre a reta resultante e a

trajetoria ideal.

Além disso, para comparar as estratégias, é necessario avaliar a resposta no plano
xy tanto da trajetoria ideal quanto da planejada pelo algoritmo. Para isso, utilizam-se
trés pontos dummy no simulador, localizados no punho, cotovelo e ombro. Esses pontos
possibilitam que o algoritmo receba as coordenadas e trace uma reta entre eles para futura

comparag¢ao com a trajetoria planejada.

Por fim, é importante verificar a trajetoria efetiva executada pelo manipulador,
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obtida por meio da cinematica inversa, algoritmo de robdtica classica discutido na Sec¢ao
3.3.

4.2.1 Estratégia usando Segmentacao por Cor

As analises dos resultados de segmentagao serao feitas individualmente para cada
configuracao do brago do paciente. Ao final, na Tabela 4 sao apresentados os valores da
raiz do erro quadratico médio (RMSE, do inglés root mean squared error) e de outras
métricas utilizadas para comparar as trajetorias planejada e ideal em todas configuragoes.
Ademais, as métricas de erro entre a trajetoria planejada e a executada pela cinematica

inversa das 3 configuragoes estao dispostas na Tabela 5.

4.2.1.1 Braco inclinado 20° a esquerda e antebrago reto

Inicialmente, com o brago do paciente inclinado em 20° para a esquerda e o
antebrago reto, as duas imagens binarias resultantes da segmentacao sao apresentadas na

Figura 15.

Figura 15 — Imagens bindarias da segmentacdo por cor do brago inclinado 20° a esquerda e
antebrago reto: (a) antebrago; (b) brago.

Fonte: Autor

Na Figura 16 observa-se a trajetéria planejada (em vermelho) e a trajetéria ideal
(em azul), definida a partir dos pontos dummy no simulador, para a mesma configuracao.
Nota-se que, neste caso, a trajetoria planejada difere significativamente da ideal na regiao
correspondente ao brago, uma vez que o algoritmo também considera o corpo do paciente

durante a segmentacao.

A trajetoria efetiva do manipulador Kinova, obtida a partir da trajetéria planejada
(em vermelho) sob os pardmetros de tolerancia e taxa de aprendizado apresentados na
Tabela 1, é exibida em azul na Figura 17. Ademais, o rastro magenta no simulador

evidencia a trajetoria percorrida.



49

0.1

012+

—.-0.14 1

{m

> -0.16 -

a0

2018}

Pos

02r

-0.22

-0.7 -0.6 -0.5 04 -0.3
Posicao X (m)

Figura 16 — Trajetéria planejada em comparacdo com a trajetoria ideal com braco inclinado 20°
a esquerda e antebrago reto usando a segmentacio por cor.

Fonte: Autor
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Figura 17 — Usando a segmentagao por cor: (a) Trajetéria planejada em comparagdo com a

N

trajetéria executada com braco inclinado 20° a esquerda e antebrago reto; (b)
Trajetoria seguida na simulacao.

Fonte: Autor

4.2.1.2 Brago inclinado 20° a direita e antebrago 20° a esquerda

Com o brago inclinado em 20° para a direita e o antebraco em 20° para a esquerda,
as imagens binarias provenientes da segmentacao por cor estao ilustradas na Figura 18.

Em seguida, a Figura 19 apresenta, em vermelho, a trajetéria planejada, comparada a
trajetoria ideal, em azul.

Por fim, a Figura 20 apresenta a trajetéria efetivamente executada pelo manipulador
Kinova, obtida por meio da cinematica inversa com os parametros de tolerancia e taxa
de aprendizado estabelecidos na Tabela 1. Nesta representacao, a trajetoria executada é

exibida em azul, enquanto, na outra imagem, o rastro magenta indica o caminho seguido
no simulador.
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Figura 18 — Imagens binarias da segmentacao por cor do brago inclinado 20° & direita e antebraco
20° & esquerda: (a) antebrago; (b) braco.

Fonte: Autor

0.2+

-0.25

Posicao Y (m)

-0.3 ¢

035}

-0.6 -0.5 -0.4 -0.3
Posigao X (m)

Figura 19 — Trajetéria planejada em comparacgido com a trajetoria ideal com brago inclinado 20°
a direita e antebrago 20° & esquerda usando a segmentacao por cor.

Fonte: Autor
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Figura 20 — Usando a segmentagao por cor: (a) Trajetéria planejada em comparagdo com a
trajetéria executada com braco inclinado 20° a direita e antebraco 20° a esquerda;

(b) Trajetéria seguida na simulagao.

Fonte: Autor
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4.2.1.3 Brago reto e antebrago inclinado 20° a direita

Por ltimo, com o braco reto e o antebraco inclinado em 20° para a direita, as
imagens binarias da segmentagao por cor sao apresentadas na Figura 21. Em seguida, a

Figura 22 exibe, em vermelho, a trajetoria planejada em relagao trajetéria ideal em azul.

Figura 21 — Imagens bindrias da segmentacao por cor do braco reto e antebraco inclinado 20° a
direita: (a) antebrago; (b) brago.

Fonte: Autor
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Figura 22 — Trajetéria planejada em comparacio com a trajetéria ideal com brago reto e antebrago
inclinado 20° & direita usando a segmentacdo por cor.

Fonte: Autor

Por fim, a Figura 23 demonstra a trajetoria efetivamente executada pelo manipula-
dor Kinova, obtida por meio da cinematica inversa com os parametros de tolerancia e taxa
de aprendizado especificados na Tabela 1. Nesta representacdo, a trajetéria executada é
ilustrada em azul, enquanto, na outra imagem, o caminho percorrido no simulador pode

ser visto pelo rastro magenta.
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Figura 23 — Usando a segmentagao por cor: (a) Trajetéria planejada em comparagdo com a
trajetéria executada com brago reto e antebrago inclinado 20° & direita; (b) Trajetoria
seguida na simulacao.

Fonte: Autor

4.2.1.4 Comparativo entre configuracoes

Analisando a Tabela 4, que apresenta as métricas de erro empregadas na comparagao
entre as trajetérias ideais e planejadas para trés configuragoes distintas, é possivel identificar

algumas caracteristicas da estratégia proposta.

Na configura¢ao com o brago inclinado em 20° para a esquerda e o antebraco reto,
observa-se que, apesar do RMSE ser relativamente baixo, o desvio padrao se mostra elevado.
Esse comportamento ocorre porque a trajetéria do antebraco se ajusta adequadamente a
trajetoria ideal, enquanto a regiao correspondente ao brago apresenta um aumento do erro

decorrente da imagem obtida pela segmentacao por cor.

Tabela 4 — Erro entre trajetoria planejada e ideal em todas configuragoes utilizando segmentagao

por cor.
Configuragao RMSE Média do erro Desvio Padrao
do erro
Brago inclinado 20° a esquerda 0.1414 cm 0.91 cm 113 em
e antebrago reto
Braco inclinado 207 & direita |\ o500 1 g 4143 em 0,3180 cm
e antebraco 20° a esquerda
Brago reto e antebrago 0,0447 cm | 0,3291 cm 0,2991 cm
inclinado 20° a direita

Como resultado do algoritmo de cinematica inversa, a Tabela 5 apresenta os erros

entre a trajetéria que foi planejada e a trajetoria seguida pela manipulador robético.

Apés os resultados apresentados, optou-se por investigar estratégias alternativas,
com o objetivo de aproximar mais fielmente a reta ideal e corrigir possiveis erros, como os

decorrentes da segmentacao por cor evidenciados na Figura 16.
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Tabela 5 — Erro entre trajetéria planejada e executada pelo manipulador robdtico em todas
configuracdes utilizando segmentagao por cor.

Configuragao RMSE Média do Erro Desvio Padrao
do erro
Brago inclinado 20° a esquerda 0.1414 cm 195 em 0.26 cm
e antebrago reto
Braco 1nchnadoo2\0* a direita 0.1389 cm 13355 em 0,3855 em
e antebrago 202 a esquerda
Brago reto e antebrago 0,1396 cm | 1,3657 cm 0,2962 cm
inclinado 20° a direita

4.2.2 Estratégia usando Transformada de Hough

Assim como realizado na Subsecao 4.2.1, a andalise dos resultados obtidos com a
estratégia baseada na Transformada de Hough serd conduzida individualmente para cada

configuracao do brago do paciente.

4.2.2.1 Bracgo inclinado 20° & esquerda e antebrago reto

Em primeira analise, considerando o brago inclinado em 20° para a esquerda e o
antebraco reto, as duas imagens que evidenciam as retas obtidas por meio da Transformada

de Hough sao apresentadas na Figura 24.

Figura 24 — Retas obtidas pela Transformada de Hough do braco inclinado 20° & esquerda e
antebrago reto: (a) antebraco; (b) brago.

Fonte: Autor

Com base nas retas identificadas, foram definidas as retas finais pela média dos

parametros p e 6 das retas, conforme ilustrado na Figura 25.

Dessa forma, é possivel comparar a trajetoria planejada, em vermelho com a
trajetéria ideal na Figura 26, a fim de avaliar a efetividade da estratégia. As métricas de

erro entre a trajetoria ideal e a planejada estao dispostas na Tabela 6.
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Figura 25 — Retas finais obtidas pela Transformada de Hough do brago inclinado 20° & esquerda
e antebrago reto: (a) antebrago; (b) braco.

Fonte: Autor
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Figura 26 — Trajetoria planejada em comparacao com a trajetéria ideal com braco reto e antebrago
inclinado 20° & direita usando a Transformada de Hough.

Fonte: Autor

Assim, na Figura 27 é possivel comparar a trajetéria planejada (em vermelho) com
a efetivamente executada (em azul) pelo manipulador robético. As métricas de erro que

evidenciam essa comparagdo encontram-se na Tabela 7.

4.2.2.2 Brago inclinado 20° & direita e antebrago 20° a esquerda

Em uma segunda andlise, o paciente foi posicionado de modo que o brago se
encontra inclinado em 20° para a direita e o antebraco em 20° para a esquerda. As retas
identificadas por meio da Transformada de Hough estao ilustradas na Figura 28. A partir
dessas retas, as linhas finais do brago e do antebrago foram determinadas pela média,

conforme apresentado na Figura 29.
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Figura 27 — Usando a Transformada de Hough: (a) Trajetéria planejada em comparagdo com
a trajetoria executada com brago inclinado 20° & esquerda e antebrago reto; (b)

Trajetoria seguida na simulagao

Fonte: Autor

Figura 28 — Retas obtidas pela Transformada de Hough do braco inclinado 20° a direita e
antebraco 20° a esquerda: (a) antebraco; (b) brago.

Fonte: Autor

Figura 29 — Retas finais obtidas pela Transformada de Hough do braco inclinado 20° & direita e
antebrago 20° a esquerda: (a) antebrago; (b) brago.

Fonte: Autor
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A partir do coeficiente angular das retas, foi determinada a trajetoria planejada
(em vermelho), que é comparada com a trajetéria ideal (em azul) na Figura 30. Neste
caso, é possivel identificar um desvio angular em relagao a trajetoria ideal, decorrente das

caracteristicas das retas obtidas. O erro entre as trajetérias estd apresentado na Tabela 6.
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Figura 30 — Trajetéria planejada em comparacido com a trajetoria ideal com brago inclinado 20°
a direita e antebraco 20° a esquerda.

Fonte: Autor

Em seguida, na Figura 31 pode-se observar a sobreposicao da trajetoria planejada
(em vermelho) com a trajetéria efetivamente executada (em azul) pelo manipulador

robotico. As métricas de erro que evidenciam essa correspondéncia estao apresentados na

Tabela 7.
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Figura 31 — Usando a Transformada de Hough: (a) Trajetéria planejada em comparacdo com a
trajetéria executada com braco inclinado 20° a direita e antebrago 20° a esquerda;
(b) Trajetéria seguida na simulagéo.

Fonte: Autor
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4.2.2.3 Brago reto e antebraco inclinado 20° a direita

Em terceira andlise, o paciente foi posicionado de forma que o brago permanecesse
reto e o antebrago ficasse inclinado em 20° para a direita. Nesse caso, as retas identificadas
pela Transformada de Hough estao dispostas na Figura 32, enquanto as retas finais, obtidas

pela média, estao apresentadas na Figura 33.

Figura 32 — Retas obtidas pela Transformada de Hough do brago reto e antebrago inclinado 20°
a direita: (a) antebrago; (b) brago.

Fonte: Autor

Figura 33 — Retas finais obtidas pela Transformada de Hough do braco reto e antebrago inclinado
20° a direita: (a) antebrago; (b) brago.

Fonte: Autor

Portanto, com as retas finais é possivel obter a trajetéria planejada (em vermelho)
e comparé-la com a trajetéria ideal (em azul), conforme visto na Figura 34. O erro entre

essas trajetorias esta disposto na Tabela 6.

Por fim, concluindo a andlise para as diferentes configuragoes desta estratégia,
na Figura 35 é apresentada a trajetoria efetivamente executada pelo manipulador (em

azul) em comparagdo com a trajetéria planejada (em vermelho), bem como o rastro (em
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Figura 34 — Trajetéria planejada em comparagao com a trajetéria ideal com brago reto e antebrago
inclinado 20° a direita.

Fonte: Autor

magenta) deixado pelo manipulador no simulador. Os erros entre as trajetérias efetiva e

planejada estao dispostos na Tabela 7.
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Figura 35 — Usando a Transformada de Hough: (a) Trajetéria planejada em comparac¢do com a
trajetéria executada com brago reto e antebrago inclinado 202 & direita; (b) Trajetoria
seguida na simulacao.

Fonte: Autor

4.2.2.4 Comparativo entre configuragoes

Ao analisar a Tabela 6, que apresenta as métricas de erro utilizadas para comparar
as trajetérias ideal e planejada nas trés configuragoes distintas, observa-se uma melhoria
na aproximacao a trajetéria ideal com a aplicagdo desta estratégia. Entretanto, o maior
erro em relacao ao ideal foi registrado na configuragao em que o brago esta inclinado em
20° para a direita e o antebrago em 20° para a esquerda, como mencionado anteriormente.

Nesse caso, constatou-se um desvio angular maior.
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Tabela 6 — Erro entre trajetéria planejada e ideal em todas configuracdes utilizando a Transfor-
mada de Hough.

Configuragao RMSE | Média do erro Desvio Padrao
do erro
Brago inclinado 20° a esquerda 0.0424 cm 0.3711 cm 0.1966 cm
e antebrago reto
Brago inclinado 207 & direita | o707 1 g 6999 em 0,3321 cm
e antebrago 20° a esquerda
Braco refo ¢ antebrago 0,0387 cm | 0,3662 cm 0,1398 cm
inclinado 20° a direita

Como resultado da aplicacdo do algoritmo de cinematica inversa, a Tabela 7 exibe
os erros entre a trajetéria planejada e a trajetéria efetivamente seguida pelo manipulador

robdtico.

Tabela 7 — Erro entre trajetéria planejada e executada pelo manipulador robdético em todas
configuracoes utilizando a Transformada de Hough.

Configuragao RMSE Média do Erro Desvio Padrao
do erro
Bracgo inclinado 20° a esquerda 0.1360 cm 1.3049 em 0.3869 cm
e antebrago reto
Braco 1nchnadoo2\0* a direita 0.1308 cm 19856 em 0.2408 cm
e antebrago 20° a esquerda
Braco reto ¢ antebrago 0,1539 cm |  1,4849 cm 0,4139 cm
inclinado 20° a direita

Assim, com base nos resultados obtidos, foi implementada uma estratégia alternativa
para corrigir problemas associados ao uso da transformada de Hough, como desvios

angulares superiores aos ideais.

4.2.3 Estratégia usando Detecgdo de Contornos

Conforme a analise das subsecdes anteriores, a analise dos resultados obtidos
através da abordagem de deteccao de contornos sera realizada individualmente para cada

configuragao do brago do paciente.

4.2.3.1 Brago inclinado 20° a esquerda e antebraco reto

Inicialmente, para o caso em que o brago esta inclinado 20° para a esquerda e o
antebraco se encontra reto, a Figura 36 apresenta duas imagens evidenciando os contornos

extraidos pelo algoritmo.

A partir dos contornos identificados, é possivel identificar as retas finais na Figura

37.
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Figura 36 — Contornos do lado esquerdo e direito detectados pelo algoritmo com brago inclinado
20° & esquerda e antebrago reto: (a) antebraco; (b) brago.

Fonte: Autor

Figura 37 — Retas finais obtidas pela deteccdo de contornos do brago inclinado 20° a direita e
antebraco 20° a esquerda: (a) antebrago; (b) brago.

Fonte: Autor

Dessa forma, foi possivel comparar a trajetéria planejada (em vermelho) com a
trajetéria ideal (em azul), como mostrado na Figura 38, permitindo avaliar o desempenho

da abordagem. Os erros entre essas trajetorias estao detalhados na Tabela 8.

A Figura 39 mostra a comparagao entre a trajetéria planejada (em vermelho) e a
executada (em azul) pelo manipulador robético, sendo que as respectivas métricas de erro

estao apresentadas na Tabela 9.

4.2.3.2 Brago inclinado 20° a direita e antebraco 20° a esquerda

Na segunda configuracao, o brago do paciente foi posicionado com uma inclinagao

de 20° a direita, enquanto o antebraco inclinou-se 20° a esquerda. A Figura 40 apresenta



61

-012¢

-0.14

R L res

oY (m

S -0.18

Posic

0.2+

-0.22 ¢

-0.24 ¢ | | | ,
-0.7 -0.6 -0.5 -0.4 -0.3
Posicéo X (m)

Figura 38 — Trajetéria planejada em comparacao com a trajetéria ideal com brago reto e antebrago
inclinado 20° a direita usando a detecgdo de contornos.

Fonte: Autor
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Figura 39 — Usando a deteccao de contornos: (a) Trajetéria planejada em comparacdo com
a trajetoria executada com brago inclinado 20° a esquerda e antebrago reto; (b)
Trajetoria seguida na simulagdo

Fonte: Autor

os contornos detectados pelo algoritmo, e a Figura 41 exibe as retas finais.

Utilizando os coeficientes angulares das linhas extraidas, foi gerada a trajetoria
planejada (em vermelho), posteriormente comparada a trajetéria ideal (em azul) na Figura

42. A Tabela 8 apresenta os erros identificados.

A Figura 43 ilustra a sobreposicao da trajetéria planejada (em vermelho) com a

executada (em azul) pelo manipulador, cujas métricas de erro estdo dispostas na Tabela 9.
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Figura 40 — Contornos do lado esquerdo e direito detectados pelo algoritmo com brago inclinado
20° a direita e antebrago 20° & esquerda: (a) antebrago; (b) braco.

Fonte: Autor

Figura 41 — Retas finais obtidas pela deteccdo de contornos do brago inclinado 20° a direita e
antebrago 20° & esquerda: (a) antebrago; (b) brago.

Fonte: Autor
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Figura 42 — Trajetéria planejada em comparacdo com a trajetoria ideal com braco inclinado 20°
a direita e antebrago 20° & esquerda usando a deteccdo de contornos.

Fonte: Autor
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Figura 43 — Usando a detecgao de contornos: (a) Trajetoria planejada em comparagao com a
trajetoria executada com brago inclinado 20° a direita e antebrago 20° a esquerda;
(b) Trajetéria seguida na simulagao

Fonte: Autor

4.2.3.3 Brago reto e antebraco inclinado 20° a direita

Na terceira configuragao, o braco do paciente permaneceu reto enquanto o antebraco
se inclinava 20° para a direita. A Figura 44 exibe os contornos detectados, e a Figura 45

mostra a reta final.

Figura 44 — Contornos do lado esquerdo e direito detectados pelo algoritmo com brago reto e
antebrago inclinado 20° & direita: (a) antebrago; (b) brago.

Fonte: Autor

A trajetéria planejada (em vermelho) foi entao determinada e comparada a trajetoria
ideal (em azul), conforme representado na Figura 46, com os erros respectivos descritos na
Tabela 8.

Para finalizar a anélise, a Figura 47 apresenta a trajetéria executada pelo manipu-
lador (em azul) sobreposta a planejada, junto com o rastro (em magenta) registrado na

simulacao. Os erros entre a trajetéria efetiva e a planejada estao listados na Tabela 9.
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Figura 45 — Retas finais obtidas pela detecgdo de contornos do brago reto e antebrago inclinado
20° a direita: (a) antebrago; (b) brago.

Fonte: Autor
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Figura 46 — Trajetéria planejada em comparacao com a trajetéria ideal com brago reto e antebrago
inclinado 20° & direita usando a deteccao de contornos.

Fonte: Autor
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Figura 47 — Usando a detecgao de contornos: (a) Trajetoria planejada em comparagao com a

trajetéria executada com brago reto e antebrago inclinado 20° & direita; (b) Trajetéria
seguida na simulacao

Fonte: Autor
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4.2.3.4 Comparativo entre configuracoes

A Tabela 8 apresenta as métricas de erro obtidas ao comparar a trajetoria ideal
com a planejada nas diferentes configuracoes, revelando uma aproximagao mais fiel a

trajetéria ideal com o uso desta estratégia.

Tabela 8 — Erro entre trajetoria planejada e ideal em todas configuracées utilizando a detecgao
de contornos.

Configuracao RMSE | Média do erro Desvio Padrao
do erro
Brago inclinado 20° a esquerda 0,0412 cm 0.3629 cm 0.1902 cm
e antebraco reto
Braco 1nchnad002\0* a direita 0,0412 cm 0.3359 cm 0.2322 cm
e antebrago 20° a esquerda
Brago reto e antebrago 0,0387 cm | 0,3660 cm 0,1472 cm
inclinado 20° a direita

Com a aplicagao do algoritmo de cinemaética inversa, a Tabela 9 fornece os erros
resultantes da comparagao entre a trajetéria planejada e a efetivamente seguida pelo

manipulador roboético.

Tabela 9 — Erro entre trajetéria planejada e executada pelo manipulador robdético em todas
configuracoes utilizando a deteccao de contornos.

Configuragao RMSE Média do Erro Desvio Padrao
do erro
Brago inclinado 20° a esquerda 0,0300 cm 0,3629 cm 0.1902 cm
e antebrago reto
Brago inclinado 20% & direita | ) (5,5 | 3908 e 0,1121 cm
e antebrago 20° a esquerda
Brago reto e antebrago 0,0510 cm | 0,4976 cm 0,1103 cm
inclinado 20° a direita

Com base nos dados apresentados nas tabelas, observa-se um erro reduzido e
uma boa aderéncia a trajetéria ideal ao aplicar essa estratégia. Assim, é interessante
realizar uma analise comparativa para identificar a abordagem mais eficaz na geragao das

trajetorias.

4.3 Analise Comparativa das Estratégias

Para avaliar o desempenho de cada estratégia em funcao das distintas configuragoes
do braco do paciente, foi elaborada a Tabela 10, na qual cada coluna apresenta o erro

quadratico médio entre a trajetéria planejada e a trajetéria ideal.

Dessa forma, considerando o erro quadratico médio apresentado na Tabela 10,

verifica-se que a estratégia baseada em deteccao de contornos é a mais assertiva e apresenta
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Tabela 10 — Comparagao entre o RMSE de cada estratégia adotada para vestir o paciente,
considerando diferentes configuracdes de braco.

Segmentacao | Transformada Deteccao

Configuragao por Cor de Hough de Contornos

Brago inclinado 20° a esquerda 0.1414 em 0.0424 cm 0.0412 cm
e antebrago reto

Braco inclinado 20% a direita | -0 | 00707 em | 0,0412 em
e antebrago 202 a esquerda

Brago reto e antebrago 0,0447 cm | 0,0387 cm | 0,0387 cm
inclinado 20° & direita

maior acuracia. Entretanto, ¢ importante destacar que as demais abordagens também de-
monstraram desempenho notavel, visto que, embora apresentem erros um pouco superiores,

na maioria das vezes elas se revelam como alternativas vidveis.
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5 CONCLUSOES

5.1 Conclusoes

Neste trabalho, o objetivo central foi desenvolver uma solucao assistiva baseada em
algoritmos de visao computacional para o planejamento de trajetérias seguras e precisas na
manipulacao de vestimentas, visando promover maior autonomia e qualidade de vida para
pessoas com deficiéncia, idosos e individuos com mobilidade reduzida. Para atingir esse
objetivo, adotou-se uma abordagem que combinou os fundamentos da robdtica classica
com técnicas avancadas de processamento digital de imagens, permitindo a analise da

configuracao do brago do paciente e o planejamento de trajetérias otimizadas.

Com base na fundamentacao tedrica e na analise da tarefa e do cenario, foram
adotadas trés estratégias baseadas em visao computacional, conforme visto no Capitulo 3:
segmentacao por cor, transformada de Hough e deteccao de contornos. Essas abordagens
tiveram como objetivo identificar e descrever as retas mais adequadas referentes ao brago e
ao antebraco, a fim de viabilizar a vestimenta da manga pelo rob6. Ademais, por meio das
imagens capturadas pela cdmera com sensor de profundidade (sensor RGB-D), instalada
no manipulador robético, foi possivel detectar as diferentes configuracées do braco e,

consequentemente, adaptar a trajetéria planejada a sua posicao real.

Um dos objetivos do algoritmo foi se aproximar do brago de forma segura, o que é
essencial na tarefa de vestir. Com o método proposto, foi possivel verificar os resultados
de distancia final da garra do manipulador robético em relagao ao brago na Secao 4.1.
Mesmo em diferentes configuragoes, o limiar de seguranca foi mantido, com as seguintes
distancias finais: 5,9935 cm para o braco inclinado 202 a esquerda com antebrago reto;
5,8527 ¢cm para o braco inclinado 20° a direita com antebraco 20° a esquerda; e 5,9739 cm

para o braco reto com antebrago inclinado 20° a direita.

Em relacao as estratégias para geracao de trajetérias, a Tabela 10 evidencia que os
baixos valores de RMSE validam a eficacia das trés abordagens para a tarefa de vestir o
paciente. Entretanto, em alguns casos, como na segmentacao por cor, foi observado um
desvio angular fora do esperado, conforme demonstrado pelos resultados da Subsegao 4.2.1

na primeira configuracao.

Considerando a Tabela 10, utilizando a melhoria percentual entre os RMSEs,
observa-se que, na primeira configuracao, a estratégia de detecgdo de contornos apresentou
uma acuracia 91,5% superior a segmentacao por cor e 5,56% maior do que a abordagem
baseada na Transformada de Hough. Na segunda configuracao, a deteccao de contornos
demonstrou uma melhoria de 37,04% em relacdo a segmentacao por cor e 66% em compa-
racao a Transformada de Hough. Por fim, na terceira configuragao, essa estratégia obteve

um ganho de 25% de acurdcia em relacido a segmentagao por cor, mantendo o mesmo
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desempenho da Transformada de Hough. Portanto, a abordagem baseada na detecgao de

contornos mostrou, de maneira geral, maior acuracia em relagao a trajetoria ideal.

5.2 Trabalhos Futuros

Como trabalho futuro, e considerando os bons resultados obtidos na simulagao,
propoe-se a implementacao da geracao de trajetorias em um robé manipulador Kinova 7
DoF em ambiente fisico, utilizando inicialmente um manequim para validar os resultados
e priorizar a seguranca do paciente. Nessa etapa, serda fundamental investigar como o
algoritmo se comporta com imagens reais e identificar as adaptagoes necessarias para uma
transferéncia efetiva da simula¢ao para o mundo real (sim-to-real), especialmente diante

de desafios como oclusao e variagoes na iluminacao.

Além disso, é importante testar o algoritmo com a manga da vestimenta para
avaliar seu comportamento, pois, conforme discutido no Capitulo 2, alguns problemas
podem surgir na aplicacao real. Ademais, seria relevante investigar os pontos de preensao
(grasping points) da vestimenta para aumentar a autonomia do sistema, eliminando a
necessidade de posiciona-la inicialmente na garra. Essa simplificacdo foi adotada no

presente trabalho devido as limitagoes da simulacao e ao objetivo especifico do algoritmo.

Outras pesquisas podem ser feitas a respeito da utilizacao de técnicas de deep
learning para tratar, em tempo real, as variagoes na posicao e conformacao do braco

durante o processo de vestimenta.
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