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“Se eu vi mais longe, foi porque estava sobre os ombros de gigantes.”
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RESUMO

O trabalho desenvolvido propõe uma abordagem para a integração de técnicas de visão

computacional com métodos de robótica clássica, visando a melhoria da qualidade de

vida de pessoas com deficiência e idosos, proporcionando autonomia na tarefa de vestir.

Utilizando um manipulador robótico Kinova Gen3 com sete graus de liberdade, o estudo

aplica algoritmos de segmentação por cor, detecção de bordas e Transformada de Hough

para identificar a posição do braço do paciente, aproximar o robô e gerar trajetórias seguras

para a manipulação de vestimentas. Em ambiente simulado, com o auxílio do CoppeliaSim

e de um sensor RGB-D, foram avaliadas diferentes configurações de posicionamento do

braço, demonstrando a viabilidade do sistema em oferecer assistência personalizada e segura

para pessoas com mobilidade reduzida. A integração dos métodos de visão computacional

com o planejamento de trajetórias contribui significativamente para aumentar a autonomia

dos usuários, apresentando uma alternativa promissora para a implementação em robótica

assistiva.

Palavras-chave: Visão Computacional, Assistência ao Vestir, Robótica Assistiva, Manipu-

ladores Robóticos



ABSTRACT

This work proposes an approach that integrates computer vision techniques with classical

robotics methods, aiming to improve the quality of life for people with disabilities and the

elderly by providing autonomy in dressing tasks. Using a Kinova Gen3 robotic manipulator

with seven degrees of freedom, the study implements color segmentation, edge detection,

and Hough transform algorithms to identify the patient’s arm position, guide the robot

approach, and generate safe trajectories for garment manipulation. In a simulated environ-

ment using CoppeliaSim and an RGB-D sensor, different arm positioning configurations

were evaluated, demonstrating the system feasibility in offering personalized and secure

assistance for individuals with reduced mobility. The integration of computer vision

methods with trajectory planning significantly contributes to increasing user autonomy,

presenting a promising alternative for assistive robotics implementation.

Keywords: Computer Vision, Dressing Assistance, Assistive Robotics, Robotic Manipula-

tors.
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1 INTRODUÇÃO

De acordo com a Pesquisa Nacional de Saúde (PNS) realizada em 2019 (IBGE,

2021), o Brasil possui aproximadamente 7,8 milhões de pessoas com deficiência física nos

membros inferiores, representando 3,8% da população com 2 anos ou mais de idade. Além

disso, a incidência aumenta significativamente com a idade, atingindo 14,4% entre os idosos

com 60 anos ou mais. Tarefas cotidianas como se vestir, manusear objetos e se locomover

podem se tornar desafiadoras, impactando a independência e a qualidade de vida desses

indivíduos. Diante desse cenário, a tecnologia assistiva se torna essencial para promover a

inclusão e melhorar a qualidade de vida dessas pessoas, possibilitando maior mobilidade.

Entre as diversas abordagens da tecnologia assistiva, a robótica assistiva tem

se destacado como um campo promissor, como discutido em (INTELLIGENCE, 2023),

voltado para o desenvolvimento de dispositivos que auxiliam indivíduos com deficiência

física. Utilizando os princípios da robótica, essa área busca criar sistemas inteligentes

capazes de interagir de forma segura e eficiente com os usuários, promovendo maior

autonomia e qualidade de vida.

Vestir-se é uma das atividades diárias mais comuns em que pessoas com deficiência

necessitam de assistência. Além disso, cuidadores relatam que auxiliar no vestuário dos

pacientes é a tarefa de maior carga e a menos automatizada, conforme indicado em

(DUDGEON et al., 2008) e (MITZNER et al., 2014). Nesse contexto, a introdução da

robótica nessa tarefa pode melhorar significativamente a qualidade de vida de muitas

pessoas, embora ainda represente um grande desafio para os robôs devido à complexidade

da manipulação de roupas, materiais deformáveis e à necessidade de interação segura com

os usuários.

Este trabalho foi inspirado pelo desafio proposto na competição internacional

PhyRC Challenge voltada para a manipulação em tarefas de vestimenta assistida por robôs,

promovida pela Universidade de Cornell (EMPRISELAB, 2024). Como ilustrado na Figura

1, o desafio, que utilizou o simulador RCareWorld (YE et al., 2022) como ferramenta de

avaliação na primeira fase, incentivou o desenvolvimento de soluções inovadoras para a

manipulação de roupas, enfrentando desafios como a manipulação de materiais deformáveis

e a garantia de uma interação segura com os usuários. Essa iniciativa ressalta a importância

do investimento em pesquisas que ampliem a autonomia e melhorem a qualidade de vida

das pessoas com deficiência, servindo de estímulo para o presente estudo.

Visão computacional é um campo da inteligência artificial que tem como objetivo

capacitar máquinas a interpretar e compreender o conteúdo de imagens e vídeos do

mundo real, utilizando algoritmos que empregam técnicas de processamento digital de

imagens, extração de características e aprendizado de máquina para permitir a identificação,

segmentação e classificação de objetos em diferentes cenários, conforme discutido em
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Figura 1 – Proposta da competição com estado inicial da simulação.

Fonte: (EMPRISELAB, 2024)

(SZELISKI, 2022). Essa abordagem tem se mostrado ainda mais relevante quando integrada

à robótica assistiva, onde a aplicação da visão computacional se torna fundamental para

aprimorar a interação dos robôs com os pacientes em tarefas complexas, como a manipulação

de roupas, contribuindo para uma assistência mais segura e eficiente.

Com o objetivo de auxiliar pessoas com deficiência, idosos e indivíduos com

mobilidade reduzida em tarefas cotidianas, como o ato de se vestir, este trabalho visa

utilizar algoritmos de visão computacional para gerar trajetórias seguras e precisas a serem

seguidas pelo manipulador robótico, com base nos princípios da robótica clássica. Para

isso, será realizada uma análise da configuração do braço do paciente, que estará estendido

para receber a manga da vestimenta, permitindo o planejamento de um trajeto otimizado

e seguro durante a manipulação.

Este trabalho está estruturado em cinco capítulos. O Capítulo 1 corresponde

à introdução, na qual são apresentadas as justificativas para o estudo e os objetivos

estabelecidos a partir do tema proposto. No Capítulo 2, é realizada a fundamentação

teórica, abordando os principais conceitos e referências que sustentam a pesquisa. O

Capítulo 3 descreve a metodologia do trabalho, detalhando as simulações realizadas. No

Capítulo 4, são apresentados e analisados os resultados obtidos a partir dessas simulações.

Por fim, no Capítulo 5, são expostas as conclusões do estudo, destacando as principais

contribuições do trabalho e sugerindo possíveis melhorias para pesquisas futuras.
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2 FUNDAMENTAÇÃO TEÓRICA

Esse Capítulo tem como objetivo fazer uma breve revisão bibliográfica dos temas

abrangidos por este trabalho. Dessa forma, são apresentados trabalhos anteriores envol-

vendo os seguintes temas: Robótica Assistiva, Robótica na Assistência ao Vestir e Visão

Computacional.

2.1 Robótica Assistiva

De acordo com dados da Organização Mundial da Saúde (OMS), estima-se que 1,3

bilhão de pessoas no mundo vivam com uma deficiência significativa (WHO, 2023). Embora

a maioria delas deseje manter sua independência, as dificuldades enfrentadas nas tarefas

cotidianas podem comprometer essa autonomia. A robótica de manipuladores e móvel,

por meio de sua capacidade de sensoriamento, navegação e manipulação de objetos, pode

viabilizar tarefas cotidianas como se alimentar, caminhar e se vestir conforme mostrado

na Figura 2.

Figura 2 – Atividades comuns para o uso de robôs assistivos.

Fonte: Adaptada de (NANAVATI; RANGANENI; CAKMAK, 2023)

Para viabilizar a assistência nessas tarefas, os robôs precisam interagir de maneira

robusta e segura com o ambiente, integrando sensores táteis, de movimento e câmeras

para aplicação de Visão Computacional.

Nesse cenário de utilização da robótica assistiva, é possível dividi-la em duas

categorias diferentes: os robôs de base fixa e os robôs de base móvel. Dessa forma, cada tipo

de robô oferece assistência em tarefas específicas, como ilustrado na Figura 2, ampliando

as possibilidades e permitindo até mesmo configurações híbridas, como a combinação de

robôs móveis com manipuladores integrados. Dentro da área de manipuladores robóticos,

(ALLIN et al., 2010) destaca três categorias principais: os manipuladores conectados

a cadeiras de rodas, os braços montados em mesas, e os manipuladores que se movem

autonomamente pela sala em suas próprias bases móveis.
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Na década de 1990, uma pesquisa significativa em robótica assistiva resultou no

desenvolvimento do ProVAR (LOOS et al., 1999), um manipulador robótico montado

sobre uma mesa. Projetado para auxiliar pessoas tetraplégicas, o ProVAR aumentava

a autonomia dos usuários ao permitir que, por meio de uma interface humano-máquina

(IHM), eles enviassem comandos para buscar e entregar objetos. Seu controle podia ser

efetuado tanto por comandos de voz quanto pelos movimentos da cabeça, demonstrando a

versatilidade das tecnologias assistivas da época.

Durante essa década, também foram realizados avanços significativos em outras

configurações, como a implementação de manipuladores robóticos montados em cadeiras

de rodas (WMRA - Wheelchair Mounted Robotic Arm), como o MANUS discutido em

(VERBURG et al., 1996). Esses sistemas oferecem a vantagem de acompanhar o usuário

em uma variedade de ambientes — desde residências e supermercados até escritórios. Ao

longo do tempo, essa configuração tem sido continuamente aprimorada, com constantes

melhorias em design e usabilidade (KIM et al., 2014), além de sua comercialização, o que

tem desempenhado um papel fundamental em atividades cotidianas e proporcionado maior

autonomia às pessoas com deficiência (PcD).

De acordo com (CHUNG; WANG; COOPER, 2013), o design centrado no usuário

envolve definir e avaliar os requisitos de projeto com a participação dos usuários finais,

visando replicar a funcionalidade do braço humano. Para isso, a maioria dos manipuladores

robóticos assistivos conta com sete graus de liberdade (DoF), correspondentes a sete juntas

rotacionais, incluindo a garra. Cada uma dessas juntas permite a rotação de um segmento

do braço, possibilitando movimentos em diversas direções e reproduzindo a mobilidade

dos membros superiores. Essa ênfase nos graus de liberdade é fundamental para garantir

flexibilidade e precisão nos movimentos, além de melhorar a usabilidade, facilitando que

os usuários realizem tarefas de forma eficiente e em um tempo adequado.

Hoje, graças ao uso de sensores modernos e inteligência artificial, a manipulação

robótica evoluiu muito. Esses avanços permitem que os robôs capturem imagens com

mais qualidade e processem as informações rapidamente, ajudando-os a entender melhor o

ambiente e a agir com maior precisão. Embora ainda existam desafios para que os robôs

atinjam a destreza dos humanos, as novas tecnologias apontam para um futuro promissor

na robótica assistiva.

O presente trabalho tem por objetivo empregar um manipulador robótico Kinova

Gen3 (KINOVA, 2024), dotado de sete graus de liberdade, para replicar os movimentos

de um braço humano na tarefa de vestir um paciente posicionado à sua frente, por meio

do uso de técnicas de visão computacional. O manipulador será instalado sobre uma

superfície de modo a garantir que o paciente se encontre dentro de seu espaço de trabalho

(workspace).
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2.2 Robótica na Assistência ao Vestir

Quando se analisa a capacidade de robôs manipuladores para auxiliar no ato de

vestir um paciente, é fundamental compreender os desafios e requisitos do projeto. A

segurança é um aspecto crítico dessa tarefa. Em (BELLAMY et al., 2021), é realizada

uma Análise de Perigos (Hazard Analysis) em uma aplicação de assistência ao vestuário,

destacando riscos de médio e alto impacto, tais como:

• Colisão, atrito ou tração entre o usuário e o robô devido à perda de equilíbrio ou ao

emaranhamento com a vestimenta.

• Obstrução ou bloqueio da trajetória do robô pelo usuário ou por terceiros, afetando

o desempenho do robô e/ou resultando em colisões.

• Natureza dinâmica das ações do usuário, incluindo movimentos súbitos, distrações,

mudanças de intenção, confusão e falhas de comunicação.

Um design seguro exige a compreensão dos riscos envolvidos e das interações entre

robô, usuário e vestimenta. A integração entre segurança e planejamento de trajetória é

essencial, pois a detecção desses riscos permite que os algoritmos ajustem dinamicamente

os movimentos, evitando colisões e minimizando impactos. Assim, técnicas avançadas de

monitoramento e planejamento trabalham em conjunto para tornar a assistência ao vestir

mais segura e eficiente.

Além dos desafios de segurança mencionados, diversas abordagens na literatura

têm buscado aprimorar a robótica na assistência ao vestir por meio da integração de

técnicas de cinemática e visão. Pesquisadores que investigaram essa temática concentraram

seus esforços na modelagem do usuário e na definição de trajetórias seguras para os

manipuladores. Por exemplo, (GAO; CHANG; DEMIRIS, 2015) desenvolveram uma

metodologia focada na identificação visual da pose do usuário e na modelagem do espaço

de movimento das articulações superiores, permitindo determinar os pontos ideais para

posicionar as aberturas de um casaco sem mangas, contribuindo para a personalização.

Em outra vertente, (TAMEI et al., 2011) propuseram um método baseado em

aprendizado por reforço, no qual o robô aprende trajetórias para vestir um manequim

com uma camiseta, enfatizando as relações entre o manequim e a peça de roupa, tendo os

experimentos iniciado com os braços do manequim já inseridos nas mangas. Vale ressaltar

que, por se tratar de um método de aprendizado por reforço, são necessárias diversas

tentativas e erros, o que pode expor o usuário a riscos e por isso foi utilizado um manequim.

De forma complementar, (KLEE et al., 2015) apresentaram uma abordagem na

qual um manipulador robótico realiza a tarefa de assistência ao vestir por meio da definição

de uma sequência de poses-alvo relativas ao usuário. Nesta proposta, a utilização de um
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robô manipulador Baxter (RETHINK, 2022) para posicionar um chapéu em participantes

demonstrou que, ao identificar quando uma meta se torna inviável, o sistema pode solicitar

o reposicionamento do usuário, modelando suas restrições para determinar a melhor

configuração. Essas contribuições evidenciam que, para um design seguro e eficaz, é

imprescindível considerar tanto os aspectos cinemáticos quanto as particularidades do

movimento e das limitações dos usuários na formulação de estratégias assistivas.

Além dessas abordagens, (KAPUSTA et al., 2016) destaca o uso de técnicas de

percepção háptica orientada por dados para aumentar a segurança e eficácia. Esse método

possibilita a detecção em tempo real das interações sutis entre o paciente e a vestimenta,

permitindo que o robô identifique variações nas forças aplicadas e ajuste dinamicamente

sua atuação para prevenir riscos, como colisões e enganches inesperados. Com isso, ao

incorporar algoritmos de aprendizado, como modelos de Markov ocultos, esses sistemas

podem antecipar os desdobramentos do movimento, reconhecendo, por exemplo, se a

manga será posicionada corretamente ou se há potencial para um engasgo entre a roupa e

o usuário.

Essas abordagens evidenciam a importância de integrar múltiplas fontes sensoriais

para aprimorar a eficácia e segurança na assistência ao vestir. A combinação de dados

visuais e hápticos permite que o sistema compreenda de forma mais completa as intera-

ções entre o robô, o paciente e a vestimenta, ajustando sua atuação de acordo com as

particularidades de cada situação.

Adicionalmente, estudos recentes na área de robótica na assistência ao vestir

geralmente descrevem o problema como uma tarefa de planejamento de trajetória. No

entanto, oclusões severas podem ocorrer em tempo real quando o manipulador, a roupa e

a pessoa estão em contato próximo, conforme discutido em (ZHANG; CULLY; DEMIRIS,

2017). O trabalho de (LI et al., 2021) exemplifica uma abordagem que trata o problema

como um planejamento de trajetórias, visando aprimorar a eficiência do robô. Em vez de

adotar uma estratégia excessivamente conservadora, o método proposto integra a predição

do movimento humano para permitir um planejamento mais eficiente. Nesse contexto, a

segurança é definida como a capacidade de evitar colisões (collision avoidance) ou, caso

uma colisão seja inevitável, garantir um impacto seguro (safe impact).

Outras abordagens envolvem métodos iterativos e online de otimização de trajetó-

rias, através de dados de visão e força. Em (GAO; CHANG; DEMIRIS, 2016), os autores

propõem um método iterativo de otimização de trajetórias para assistência personalizada

no vestir. Inicialmente, uma câmera de profundidade é empregada para modelar o espaço

de movimento dos membros superiores do usuário e definir uma trajetória inicial para a

ação de vestir. Durante a execução, sensores de força detectam resistências externas que

indicam desconforto ou um caminho inadequado. Com base nessas medições, o algoritmo

utiliza uma variante do otimizador ADAM para atualizar iterativamente os pontos da



23

trajetória, ajustando-os de forma a reduzir a resistência percebida. Esse processo continua

até que a resistência seja minimizada, sinalizando que o caminho foi otimizado para o

conforto e a segurança do usuário.

Além dos desafios já mencionados, a determinação dos grasping points – pontos

ideais de preensão na vestimenta – constitui um problema crítico na tarefa, conforme

discutido em (ZHANG; DEMIRIS, 2020). Esse desafio advém principalmente da natureza

altamente deformável e variável dos tecidos, que podem assumir diferentes configurações e

apresentar características visuais distintas, como variações em textura e cor. A identificação

precisa desses pontos é essencial para garantir uma manipulação segura e eficaz, pois uma

preensão inadequada pode resultar em erros de manipulação, colisões ou até mesmo riscos

à segurança do paciente. Dessa forma, a definição e extração automática dos grasping

points exigem a integração de técnicas avançadas de percepção, modelagem geométrica

e algoritmos de aprendizado, permitindo ao sistema adaptar-se a diferentes condições e

tipos de vestimentas.

O artigo (ZHANG; DEMIRIS, 2020) propõe uma abordagem inovadora para

o problema dos grasping points em cenários de robótica na assistência ao vestir. A

metodologia se baseia em uma rede neural convolucional (CNN) supervisionada que

mapeia imagens de profundidade para a estimação das coordenadas de um ponto de

preensão pré-definido na vestimenta. Para minimizar a necessidade de grandes quantidades

de dados reais, a estratégia combina dados sintéticos, gerados via simulação, com um

conjunto limitado de dados reais, promovendo uma transferência eficaz do conhecimento

adquirido em simulação para o mundo real. Além disso, o sistema inclui um módulo de

cálculo da orientação de preensão a partir da nuvem de pontos da vestimenta, permitindo

que o robô planeje uma trajetória de aproximação que evita colisões e garanta uma

preensão correta. Essa abordagem integrada demonstra melhorias significativas na precisão

da predição dos pontos de preensão e, consequentemente, na eficácia global do sistema de

assistência ao vestir.

Neste trabalho, a configuração inicial do robô é simplificada para as sequências

de vestir, por meio da fixação da vestimenta no efetuador final (end-effector), conforme

realizado em (ERICKSON et al., 2018). Essa estratégia reduz a complexidade dos

procedimentos iniciais ao eliminar a necessidade de um posicionamento preciso da roupa,

permitindo que o foco seja direcionado ao desenvolvimento dos algoritmos de visão e

planejamento de trajetórias.

A partir das abordagens discutidas, o presente trabalho busca reduzir a complexi-

dade do processo de vestir sem comprometer a segurança do paciente. Para isso, propõe-se

detectar a posição inicial do usuário por meio de uma câmera acoplada ao manipulador,

dividindo a operação em duas fases: da região do punho ao cotovelo e do cotovelo ao

ombro. Inicialmente, a câmera equipada com sensor de profundidade é empregada para
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aproximar a vestimenta do braço, mantendo uma distância segura que previne colisões.

Nesse contexto, os algoritmos de visão computacional aliados aos dados do sensor

desempenham um papel fundamental, permitindo a identificação precisa dos pontos de

referência e o planejamento de trajetórias adequadas para a manipulação autônoma e

segura da roupa. Essa estratégia visa mitigar os riscos de colisão e erros de manipulação

identificados na literatura, garantindo um controle mais preciso da vestimenta ao longo do

processo sem aumentar significativamente a complexidade do sistema.

2.3 Visão Computacional

A visão computacional é um campo da inteligência artificial que busca descrever e

interpretar o mundo visual por meio de imagens digitais, permitindo que máquinas extraiam

informações relevantes sobre os objetos presentes em uma cena. Isso envolve a inferência

e reconstrução de propriedades dos objetos, como forma, cor, textura e profundidade.

Como o próprio nome sugere, o objetivo é reproduzir computacionalmente capacidades

da visão humana, incluindo reconhecimento de padrões, detecção de objetos, percepção

de movimento e estimativa de profundidade. Embora essas tarefas sejam intuitivas para

os seres humanos, replicá-las em computadores é um grande desafio, exigindo algoritmos

avançados, modelos matemáticos sofisticados e técnicas de aprendizado de máquina para

interpretar corretamente o ambiente visual.

A história da visão computacional teve seu início na década de 1970, quando as

primeiras pesquisas na área começaram a ganhar destaque. Um marco importante foi o

trabalho de Marvin Minsky, no MIT, que desafiou seu estudante Gerald Jay Sussman a

conectar uma câmera a um computador e fazer com que a máquina descrevesse o que via.

Além disso, um dos desafios centrais da época era recuperar a estrutura tridimensional

a partir de imagens, possibilitando uma compreensão mais profunda das cenas captu-

radas. Esses esforços iniciais estabeleceram as bases para o desenvolvimento da visão

computacional moderna (SZELISKI, 2022).

Na década de 1980, a visão computacional avançou com algoritmos mais sofisticados,

introduzindo pirâmides de imagens, detecção de contornos e fluxo óptico para análise de

movimento (MAN; VISION, 1982; HORN; SCHUNCK, 1981). Nos anos 1990, essas técnicas

evoluíram, permitindo reconstrução multiview, reconhecimento de faces, segmentação de

imagens e maior integração com a computação gráfica para modelagem e renderização

realistas (FORSYTH; PONCE, 2003; SZELISKI, 2022).

Na década de 2000, a visão computacional evoluiu com abordagens de aprendizado

que possibilitaram a extração e descritores de características (features), aprimorando a

detecção e classificação de objetos (VIOLA; JONES, 2001; LOWE, 2004). Já na década de

2010, a área passou por uma transformação com a adoção do deep learning, impulsionada
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por grandes datasets de alta qualidade, uso intensivo de GPUs e a introdução de sensores

especializados, como o Microsoft Kinect, que ampliaram as aplicações e a eficiência dos

sistemas de análise visual (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; LECUN;

BENGIO; HINTON, 2015; SHOTTON et al., 2011).

A seguir, serão abordadas as principais técnicas de visão computacional e processa-

mento digital de imagens essenciais para a realização da tarefa.

2.3.1 Digitalização de Imagens e Filtragem

No contexto da visão computacional, uma das principais etapas para a formação de

imagens é a digitalização e o processamento das imagens obtidas, conforme discutido em

(GONZALEZ; WOODS, 2018). Nessa etapa, uma imagem é convertida para um formato

digital que possa ser interpretado por um computador. Ao final desse processo, a imagem

digital pode ser vista como uma grande matriz de pixels de tamanho MxN, conforme a

Equação 2.1, na qual cada pixel contém um valor correspondente a uma cor específica. No

caso de imagens no formato RGB, essa matriz pode ser desmembrada em três matrizes

individuais (ou representada como uma matriz tridimensional), uma para cada canal de

cor: vermelho, verde e azul. Essa representação digital é fundamental para as técnicas

de análise e processamento de imagens que possibilitam a extração de informações e a

compreensão do cenário observado.

f(x, y) =

















f(0, 0) f(0, 1) . . . f(0, N − 1)

f(1, 0) f(1, 1) . . . f(1, N − 1)
...

...
...

f(M − 1, 0) f(M − 1, 1) . . . f(M − 1, N − 1)

















(2.1)

Com a imagem digitalizada, o próximo passo é a aplicação de técnicas de filtragem

espacial, que operam diretamente sobre a matriz de pixels utilizando o conceito de

vizinhança. Considerando a estrutura matricial de uma imagem, a vizinhança de um pixel

corresponde aos pixels em posições próximas, tanto em termos de linhas quanto de colunas.

Por exemplo, em uma 4-vizinhança, dado o pixel (x, y), seus vizinhos são:

(x − 1, y), (x, y − 1), (x, y + 1), (x + 1, y) (2.2)

Já em uma 8-vizinhança, além desses, incluem-se os pixels diagonais:

(x − 1, y − 1), (x, y − 1), (x + 1, y − 1), (x − 1, y + 1), (x, y + 1), (x + 1, y + 1) (2.3)

Essa relação de vizinhança forma a base para a filtragem no domínio do espaço.

Para definir qual conjunto de pixels (vizinhança) será considerado na operação de

filtragem, utiliza-se um kernel (também conhecido como máscara, template ou janela),
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que é representado por uma matriz de coeficientes. Geralmente, são utilizadas matrizes

quadradas de dimensão ímpar (por exemplo, 3 × 3, 5 × 5, 7 × 7, etc.), onde cada elemento

possui um valor que determina o peso do pixel correspondente na imagem.

O mecanismo de filtragem linear é implementado por meio da operação de con-

volução, que combina os valores dos pixels da imagem com os coeficientes do kernel.

Considerando um kernel 3 × 3, a resposta do filtro na posição (x, y), denotada por g(x, y),

é dada pela Equação 2.4.

g(x, y) =
1
∑

i=−1

1
∑

j=−1

f(x + i, y + j) h(i, j) (2.4)

Na aplicação de filtros, é comum adicionar pixels na borda da imagem para que o

kernel possa ser aplicado a todos os pontos sem reduzir a dimensão da imagem resultante.

Esse processo, chamado de padding, geralmente utiliza preenchimento constante (com zeros

sendo a forma mais comum), mas também pode empregar técnicas como o espelhamento,

a replicação dos pixels da borda ou até mesmo o preenchimento circular. Essas abordagens

garantem que a aplicação do filtro seja realizada de forma consistente, preservando as

dimensões originais da imagem e evitando a perda de informação nas regiões periféricas.

No processamento de imagens, a análise pode ser feita no domínio do espaço, onde a

imagem é uma matriz de pixels, ou no domínio da frequência, onde é descrita como a soma

de senoides de diferentes frequências e intensidades. A Transformada de Fourier permite

essa conversão, sendo essencial para técnicas de filtragem. Termos como passa-baixa e

passa-alta estão relacionados à manipulação de baixas e altas frequências na imagem.

No contexto da utilização de filtros, os filtros de suavização desempenham um

papel crucial no processamento de imagens, atuando diretamente no domínio espacial para

atenuar transições bruscas de intensidade. Esses filtros são amplamente utilizados para a

remoção de ruídos, eliminando variações indesejadas que podem prejudicar a análise da

imagem, e para suprimir detalhes que não sejam relevantes para a aplicação em questão.

O efeito resultante é um borramento (blur) que facilita a extração de características mais

importantes e robustas para tarefas subsequentes.

O filtro Gaussiano é um exemplo clássico de filtro de suavização, onde os coeficientes

do kernel são definidos por uma função Gaussiana, expressa por:

h(s, t) = G(s, t) = Ke−
s

2
+t

2

2σ2 (2.5)

Nesse contexto, σ representa o desvio padrão da distribuição Gaussiana e determina

a extensão do desfoque aplicado, enquanto K é uma constante de normalização. Os

valores dos coeficientes são maiores para os elementos próximos à origem, o que assegura

que os pixels centrais tenham maior influência no processo de suavização, e diminuem
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gradativamente à medida que se afastam do centro. Essa característica resulta em um

efeito de borramento (blur) que suaviza transições bruscas de intensidade, contribuindo

para a remoção de ruídos e a preservação das características essenciais da imagem.

Conforme abordado em (GONZALEZ; WOODS, 2018), os filtros passa-altas atuam

no processo de aguçamento (sharpening), cujo objetivo é realçar detalhes e enfatizar as

transições de intensidade presentes em bordas, linhas e curvas. Essa técnica fundamenta-se

na aplicação de filtros derivativos, como os de Sobel, Prewitt e Laplaciano, que medem as

variações de intensidade entre pixels vizinhos, resultando em imagens com maior definição

e contornos mais evidentes.

2.3.2 Segmentação por cor

Outra técnica importante para o desenvolvimento deste trabalho é a segmentação

por cor, pois permite a identificação e o isolamento de regiões de interesse com base nas

características cromáticas das imagens. Essa capacidade de distinguir regiões homogêneas

não só facilita a extração de características relevantes, mas também aprimora a precisão

dos algoritmos de reconhecimento e classificação.

Inicialmente, para o estudo da segmentação por cor, é fundamental compreender os

diferentes espaços de cores e suas características. As cores que são percebidas pelas pessoas

resultam da interação entre fontes de luz e os diversos materiais existentes no mundo físico,

o que determina as tonalidades observadas em cada situação. Nesse contexto, destacam-se

dois sistemas de cores principais: os sistemas aditivos e os sistemas subtrativos.

O sistema aditivo RGB baseia-se na combinação de três cores primárias – vermelho,

verde e azul – que, ao serem misturadas em diferentes intensidades, originam todas as

demais cores. Cada uma dessas cores é denominada canal, de modo que a presença

simultânea de todos os canais em sua intensidade máxima resulta no branco, enquanto

sua ausência total gera o preto. Inspirado no funcionamento do sistema visual humano, o

modelo RGB reflete a sensibilidade dos cones oculares, que são responsáveis por captar

comprimentos de onda curto (azul), médio (verde) e longo (vermelho), em contraste com os

bastonetes, que operam em condições de baixa luminosidade e não distinguem cores. Em

termos práticos, cada pixel de uma imagem pode ser representado por uma combinação

linear das cores primárias, expressa matematicamente pela Equação 2.6.

C = r · R + g · G + b · B (2.6)

Onde r, g e b são os coeficientes de mistura de cada canal. Essa representação é

frequentemente expressa na forma de uma tripla de valores, comumente utilizando 8 bits

por canal, variando de 0 a 255, ou por meio do sistema hexadecimal, onde os valores vão

de 00 a FF (GONZALEZ; WOODS, 2018).
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No modelo subtrativo CMYK, utilizado em sistemas de impressão, as cores não são

produzidas através da emissão de luz, mas sim pela absorção das frequências da luz branca.

Nesse processo, o que não é absorvido é refletido, determinando a cor percebida pelo olho

humano, de forma que o branco corresponde à ausência de pigmento e o preto resulta da

sobreposição de todos eles. Para representar as cores de maneira eficaz, são escolhidas cores

primárias, sendo o sistema mais comum baseado no ciano (C), magenta (M) e amarelo

(Y). A escolha do ciano, magenta e amarelo deve-se ao fato de que a combinação, tomada

duas a duas, reproduz as cores do sistema RGB, evidenciando a complementaridade entre

os modelos aditivo e subtrativo.

Quando um objeto colorido é observado, sua percepção baseia-se em três atributos

fundamentais: matiz (hue), saturação e valor. O matiz refere-se à tonalidade pura da cor,

como vermelho, azul ou amarelo. A saturação representa o grau de pureza da cor, ou seja,

o quanto ela está diluída pela presença de luz branca. Já o valor corresponde à intensidade

luminosa, permitindo a distinção de variações de brilho na imagem. O espaço de cores

HSV organiza essas características de maneira a separar a informação cromática (matiz e

saturação) da intensidade luminosa, proporcionando uma descrição mais alinhada com

a percepção visual humana. Essa abordagem torna-se uma ferramenta essencial para o

desenvolvimento de algoritmos de processamento de imagens que necessitam identificar e

segmentar cores de forma natural e eficiente.

De acordo com (SMITH, 1978), a conversão do espaço de cor RGB para o espaço

HSV pode ser realizada utilizando o modelo hexagonal (hexcone), que separa as informações

cromáticas (matiz e saturação) da intensidade luminosa (valor). Supondo que os valores

de R, G e B estejam normalizados no intervalo [0, 1], definem-se:

V = max(R, G, B), X = min(R, G, B), (2.7)

∆ = V − X. (2.8)

O componente valor (V ) representa a luminosidade da cor. A saturação (S), que

indica o grau de pureza da cor, é calculada por:

S =











0, se V = 0,
∆

V
, caso contrário.

(2.9)

Quando S = 0, a cor é acromática (variações de cinza) e o matiz (H) pode ser atribuído

arbitrariamente (por convenção, H = 0). Para cores saturadas (S ̸= 0), procede-se ao

cálculo do matiz (H) conforme o modelo hexcone, seguindo os passos abaixo:

1. Cálculo dos parâmetros auxiliares:

r =
V − R

∆
, g =

V − G

∆
, b =

V − B

∆
. (2.10)
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2. Determinação do matiz conforme o canal dominante:

Utilizando uma abordagem baseada em parâmetros auxiliares, a matiz é definida

da seguinte forma:

Se R = V : H =











5 + b, se G = X,

1 − g, caso contrário;

Se G = V : H =











1 + r, se B = X,

3 − b, caso contrário;

Se B = V : H =











3 + g, se R = X,

5 − r, caso contrário.

3. Normalização do matiz: O valor de H é então normalizado para o intervalo

[0, 1] dividindo-o por 6:

H =
H

6
. (2.11)

Por convenção, H = 0 corresponde à cor vermelha.

Este método evita o uso de funções trigonométricas, proporcionando uma conversão

eficiente, especialmente em aplicações computacionais de processamento de imagens e

gráficos.

Neste trabalho, a conversão das imagens para o espaço HSV é fundamental, pois

permite isolar a componente de matiz, utilizada como critério de limiar para identificar o

braço do usuário na simulação com a câmera devidamente posicionada. Essa abordagem

torna a segmentação por cor mais robusta, já que o espaço HSV minimiza os efeitos de

variações de iluminação, facilitando a extração precisa da região de interesse. Consequen-

temente, essa segmentação contribui para a determinação e geração de uma trajetória

acurada a ser seguida pelo manipulador robótico.

Em aplicações práticas, a variação da iluminação desempenha um papel decisivo na

eficácia da segmentação por cor. Alterações na intensidade, no ângulo e na temperatura

da luz podem modificar significativamente a aparência das cores capturadas, influenciando

tanto os valores dos canais RGB quanto as representações em espaços como o HSV. Essa

variabilidade pode levar a desafios na identificação precisa de regiões de interesse, sobretudo

em ambientes com iluminação mista ou não controlada, onde sombras e reflexos alteram as

tonalidades reais dos objetos. Dessa forma, a adoção de estratégias de pré-processamento

para normalização da iluminação e o uso de algoritmos que incorporem características

invariantes à luz são fundamentais para garantir uma segmentação mais robusta e confiável

em condições reais (MAITLO et al., 2024).
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2.3.3 Detecção de bordas

Para ajudar na definição da trajetória que o robô deve seguir sobre o braço do

paciente, utilizar métodos de detecção de bordas é uma estratégia muito útil. Essas

técnicas facilitam a identificação dos contornos do braço, destacando as diferenças de

intensidade entre ele e o fundo, o que torna os limites mais claros. Ao combinar essa

abordagem com a segmentação por cor, conseguimos uma delimitação mais precisa da

região de interesse.

As bordas em uma imagem estão associadas a pontos onde ocorrem variações

abruptas na intensidade, ou seja, são regiões onde a primeira derivada da função de

intensidade atinge valores extremos. Em termos práticos, isso significa que as transições

bruscas de cor ou brilho, características de bordas, podem ser detectadas ao se analisar as

mudanças na intensidade dos pixels. Essa abordagem fundamenta-se na ideia de que as

derivadas capturam as variações locais da imagem, permitindo isolar pontos de interesse

que indicam a presença de contornos.

O gradiente da imagem é a ferramenta matemática utilizada para quantificar essas

variações. Definido pela Equação 2.12, o gradiente aponta na direção de subida mais

íngreme da função de intensidade.

J(x) = ∇I(x) =

(

∂I

∂x
,
∂I

∂y

)

= (Ix, Iy) (2.12)

A magnitude do gradiente, calculada na Equação 2.13, reflete a força da borda, ou

seja, quanto maior essa magnitude, mais forte é a transição entre regiões, evidenciando

um contorno bem definido.

∥∇I(x)∥ =
√

I2
x + I2

y (2.13)

Além disso, a direção do gradiente, determinada pelo ângulo α da Equação 2.14 é

perpendicular à borda, pois a maior variação de intensidade ocorre justamente na direção

normal à transição de cor.

α = tan−1

(

Iy

Ix

)

(2.14)

Dessa forma, o uso de derivadas e do gradiente fornece uma base sólida para a

detecção de bordas, permitindo identificar com precisão tanto a localização quanto a

orientação dos contornos em uma imagem.

A partir dos conceitos apresentados anteriormente, (CANNY, 1986) propôs um

método para detecção de bordas fundamentado em três objetivos principais: reduzir

ao mínimo a ocorrência de falsos positivos e falsos negativos, assegurar a localização

precisa dos contornos e garantir uma resposta única para cada borda. O Detector de
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Canny destaca-se por sua robustez e eficiência na identificação de contornos bem definidos,

tornando-o uma das técnicas mais eficazes para a detecção de bordas em imagens digitais.

Entre as diversas variantes do Detector de Canny existentes, uma das imple-

mentações mais populares adota os seguintes passos: filtrar a imagem com a derivada

da Gaussiana, calcular a magnitude e a orientação do gradiente, realizar a supressão

não-máxima e aplicar a limiarização com histerese.

No processo de supressão não-máxima, o objetivo é refinar as bordas mantendo

apenas os pontos de máximo local. Para isso, a direção do gradiente é discretizada em

8 direções, permitindo identificar qual delas melhor se aproxima da orientação real do

gradiente em cada pixel. Em seguida, compara-se a magnitude do gradiente do pixel

analisado com as dos pixels vizinhos ao longo dessa direção; se algum dos vizinhos apresentar

uma magnitude maior, o pixel em questão é descartado, garantindo que somente os pontos

que realmente representam o máximo de uma aresta sejam mantidos.

Na etapa de limiarização com histerese, emprega-se dois valores de limiar para

diferenciar os pontos da imagem com base na magnitude do gradiente. Os pixels cuja

magnitude ultrapassa o limiar superior são imediatamente considerados como arestas fortes,

assegurando a precisão na definição dos contornos. Por outro lado, os pixels que possuem

magnitudes entre o limiar inferior e o superior são classificados como arestas fracas e

só serão integrados à imagem final se estiverem conectados a alguma aresta forte. Essa

estratégia permite manter apenas os contornos significativos e eliminar falsos positivos, e

estudos realizados por (CANNY, 1986) demonstraram que a razão ideal entre os limiares

superior e inferior deve estar entre 3:1 e 2:1, contribuindo para a eficácia e robustez do

método.

2.3.4 Transformada de Hough

Na detecção de bordas em uma imagem, por exemplo, utilizando o detector de

Canny, é fundamental identificar os pixels que formam linhas retas. No presente trabalho,

ao detectar o contorno do braço, torna-se necessário corrigir eventuais lacunas na detecção

das bordas e utilizar essas linhas para auxiliar na geração da trajetória. Para esse fim,

emprega-se o método da Transformada de Hough (HOUGH, 1962).

Para compreender o conceito de espaço de parâmetros na Transformada de Hough,

considere um ponto (xi, yi) no plano cartesiano xy e a equação de uma reta em 2.15.

yi = axi + b (2.15)

Esse ponto pode pertencer a um conjunto infinito de retas, pois, ao variar os

valores de a e b, todas as equações que passam por (xi, yi) são satisfeitas. Reescrevendo

na Equação 2.16 observa-se que, para um ponto fixo (xi, yi), essa relação define uma única
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reta no plano dos parâmetros, cujos eixos correspondem aos coeficientes a e b. Esse plano,

denominado espaço de parâmetros, é essencial na Transformada de Hough, pois converte o

problema de detecção de retas em imagens na identificação de interseções de linhas nesse

espaço, facilitando a extração de características lineares.

b = −axi + yi (2.16)

Uma abordagem para detectar retas consiste em representar, no espaço de parâ-

metros, as retas correspondentes a todos os pontos (xk, yk). Dessa forma, as retas no

plano xy são definidas por pontos que representam a interseção de um grande número

de retas traçadas nesse espaço. Contudo, um problema significativo surge quando a reta

se aproxima da direção vertical, pois o coeficiente angular a tende a infinito, o que pode

comprometer a robustez do método. Uma forma de contornar esse problema é utilizar a

representação normal da reta, dada pela Equação 2.17.

x cos θ + y sin θ = ρ (2.17)

Na equação 2.17, o parâmetro ρ representa a distância entre a reta e a origem do

sistema de coordenadas, sendo sempre um valor positivo. Já o parâmetro θ corresponde ao

ângulo que a normal à reta faz com o eixo x, variando no intervalo [0, π]. Dessa forma, a

reta é identificada de maneira única no espaço de parâmetros (ρ, θ), independentemente da

sua inclinação no plano xy. Essa parametrização permite uma representação mais estável

das retas, especialmente para aquelas próximas da vertical, onde a inclinação tradicional a

poderia tender a valores infinitos, dificultando a análise. Além disso, a Transformada de

Hough utiliza essa parametrização para converter o problema da detecção de retas em um

problema de identificação de pontos de interseção no espaço de parâmetros, facilitando a

extração de características lineares em imagens digitais.

Na Figura 3, é possível verificar o ponto de interseção no plano ρ-θ que corresponde

à linha passando pelos pontos (xi, yi) e (xj, yj) no plano xy. Na mesma figura, é possível

visualizar as células acumuladoras utilizadas no método para armazenar a contagem de

votos de cada possível reta detectada. O espaço de parâmetros é discretizado em uma

grade de valores de ρ e θ, onde cada célula representa uma possível configuração desses

parâmetros. As células que acumulam mais votos indicam a presença de retas mais

prováveis na imagem original.

A transformada de Hough é um método genérico e, por si só, não consegue distinguir

o braço do paciente de outros contornos, como o da mesa abaixo do braço. Por isso, a

segmentação por cor proposta anteriormente é essencial para minimizar esses problemas.

Na aplicação, a partir dos resultados obtidos pela Transformada de Hough, o

objetivo é agrupar as retas detectadas de forma a identificar os contornos do braço. Com
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Figura 3 – Parametrização de uma reta no plano xy, representação no espaço de parâmetros ρ-θ
e a subdivisão em células acumuladoras.

Fonte: (GONZALEZ; WOODS, 2018)

essas informações, determina-se a linha média entre as duas retas, permitindo que o

manipulador siga uma trajetória centralizada ao longo do braço.
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3 METODOLOGIA

Este Capítulo apresenta os detalhes das estratégias de visão computacional em-

pregadas na geração de trajetórias para vestir o paciente. São descritos o ambiente de

simulação proposto para a tarefa e os detalhes da cinemática do robô manipulador Kinova

com 7 DoF (KINOVA, 2024).

O objetivo consiste em utilizar, a partir das imagens capturadas por um sensor

RGB-D – dispositivo que capta imagens coloridas (RGB) e informações de profundidade –,

métodos de processamento de imagem e visão computacional para determinar a inclinação

da linha que acompanha o braço, bem como traçar o percurso da manga da vestimenta.

3.1 Configuração da Simulação

Levando em conta o desafio proposto em (EMPRISELAB, 2024), foi configurado

o ambiente de simulação ilustrado na Figura 4, utilizando o simulador CoppeliaSim

(ROHMER; SINGH; FREESE, 2013). Nesse ambiente, são definidos como parâmetros os

ângulos das sete juntas do robô e os comandos de abertura e fechamento da garra. Além

disso, o simulador fornece diversos dados, como as posições das juntas, do end-effector,

imagens capturadas pelo sensor RGB-D e as posições do braço do paciente, os quais serão

utilizados posteriormente para a comparação dos resultados.

Figura 4 – Configuração inicial do ambiente de simulação.

Fonte: Autor
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O posicionamento inicial do manipulador e da câmera desempenha um papel

fundamental na obtenção de imagens de alta qualidade e na garantia de que o paciente

esteja adequadamente posicionado no espaço de trabalho do robô. A câmera RGB-D

foi estrategicamente instalada para maximizar a visibilidade do braço e da vestimenta,

facilitando o processamento das informações pelos algoritmos de visão computacional.

Por sua vez, o manipulador foi ajustado para proporcionar um acesso otimizado à área

de interação, reduzindo movimentos desnecessários e contribuindo para a segurança do

paciente.

É importante ressaltar que, embora o objetivo seja promover maior autonomia ao

paciente, ainda existem diversos desafios na tarefa de vestir. Neste trabalho, adota-se uma

abordagem simplificada para reduzir a complexidade da manipulação. Conforme discutido

na Seção 2.2, a estratégia proposta minimiza a variabilidade no posicionamento inicial

da vestimenta. Para mitigar as dificuldades inerentes à manipulação, a roupa é fixada

diretamente no efetuador final do robô, conforme sugerido por (ERICKSON et al., 2018),

permitindo que o algoritmo se concentre exclusivamente no planejamento da trajetória.

A vestimenta considerada neste estudo é um jaleco, uma peça de roupa aberta

que facilita a tarefa ao possibilitar a definição de uma trajetória sobre o braço. Essa

trajetória, uma vez traçada, poderá ser replicada para o outro braço. Na simulação,

optou-se por abstrair a representação da manga do jaleco posicionado no manipulador,

visto que, embora o simulador permita a simulação de objetos deformáveis, ele não fornece,

de maneira nativa, opções de vestimentas.

Visando generalizar as estratégias de visão computacional, foram consideradas

diversas configurações de posicionamento do braço e do antebraço do paciente. A Figura 5

apresenta as três situações de validação.

Figura 5 – Configurações de posicionamento do braço do paciente.

Fonte: Autor
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3.2 Estratégias adotadas

Inicialmente, estabelece-se a conexão com o simulador CoppeliaSim por meio de

uma API remota. Dessa forma, são definidos os handlers para cada junta e para outros

objetos de interesse na cena, como a garra e o end-effector. Além disso, são configurados,

por padrão, os parâmetros iniciais da cinemática inversa – tais como a tolerância e a

taxa de aprendizado – bem como os parâmetros do algoritmo, que incluem o limiar de

proximidade ao braço, a distância da trajetória do punho ao cotovelo e a distância do

cotovelo ao ombro. Esses parâmetros padrão podem ser visualizados na Tabela 1.

Tabela 1 – Parâmetros definidos inicialmente no algoritmo

Parâmetro Definição Padrão
Tolerância 10−4

Taxa de Aprendizado 0,01
Limiar de proximidade 0,06 m

Distância do punho ao cotovelo 0,25 m
Distância do cotovelo ao ombro 0,16 m

Além disso, tais parâmetros foram ajustados com base em testes preliminares para

garantir a precisão e a segurança do sistema.

Em seguida, para cumprir a tarefa, o manipulador se aproxima do punho do

paciente utilizando o sensor de profundidade do sensor RGB-D, garantindo a segurança

durante todo o processo. No entanto, para uma tarefa como a de vestir, é necessário que o

manipulador se aproxime o suficiente para alinhar a manga com o braço, permitindo que ela

deslize corretamente. É importante ressaltar que, durante todo o processo, o manipulador

está equipado com sensores táteis (de força) na garra, que permitem a detecção de colisões

e interrompem imediatamente seu funcionamento caso ocorra algum contato inesperado.

Na Figura 6, é apresentado um fluxograma que representa o início da execução do

algoritmo e o processo de aproximação. O manipulador executa um processo iterativo até

que a garra esteja próxima ao punho do paciente, respeitando um limiar de segurança.

Para isso, além dos dados de profundidade, é utilizada a segmentação por cor, permitindo

a exclusão de objetos irrelevantes, como a própria garra do manipulador, que aparece

na imagem da câmera e está muito próxima do sensor, mas não deve ser considerada na

verificação de profundidade.

Após a aproximação com a coordenada z fixa, o algoritmo gera as trajetórias

com base na configuração do braço do paciente. Para isso, diferentes configurações

são consideradas na etapa de validação, conforme ilustrado na Figura 5. Inicialmente,

o manipulador deve calcular a trajetória do punho até o cotovelo, correspondente ao

movimento do antebraço. Nesse processo, os algoritmos de visão computacional devem

gerar uma linha reta como resultado das estratégias discutidas nas Subseções 3.2.1, 3.2.2 e
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Conexão com Simulador
CoppeliaSIm

Definição de parâmetros da
Cinemática inversa e limiares de

proximidade

Obtenção dos dados do sensor
RGB-D

Segmentação por Cor

Proximidade
medida maior 
que o limiar?

Aproximação do braço definindo
um ponto objetivo com valor
reduzido na coordenada Z

Sim

Não

Fim do processo de 
aproximação ao braço

Figura 6 – Fluxograma do algoritmo de aproximação ao braço do paciente.

Fonte: Autor

3.2.3, garantindo um coeficiente linear adequado à configuração atual do braço do paciente.

Na Figura 7, é apresentado um exemplo de resultado utilizado para a determinação

das trajetórias. Com base nos coeficientes da reta, é possível calcular os pontos x e y de

destino a partir do ângulo θ, conforme descrito nas Equações 3.1 e 3.2. Nessa abordagem, dx

representa o incremento da posição ao longo do eixo das abscissas, enquanto dy corresponde

ao incremento ao longo do eixo das ordenadas. O processo continua iterativamente até

atingir uma distância pré-definida, conforme estabelecido na Tabela 1.

xobjetivo = xatual + dx · cos(θ) (3.1)

yobjetivo = yatual + dy · sen(θ) (3.2)

Com os pontos de destino definidos, a cinemática inversa, conforme discutida na
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y = mx +n

θ = atan(m)

Figura 7 – Exemplo de reta obtida para cálculo dos pontos objetivo.

Fonte: Autor

Seção 3.3, é empregada para posicionar o robô até o cotovelo. Em seguida, a partir da

nova imagem capturada, os passos anteriores são repetidos, finalizando a tarefa de vestir.

3.2.1 Estratégia baseada em Segmentação por Cor

Uma das estratégias adotadas para gerar a reta sobre o braço é a segmentação por

cor. Nesse método, as imagens são capturadas pela câmera e, a partir daí, realiza-se a

conversão do espaço de cores de RGB para HSV, de modo que a característica da cor fique

concentrada em um único canal, o matiz, conforme discutido na Seção 2.3.2.

Como parâmetro para a segmentação, o algoritmo utiliza a cor do pixel central

da imagem para definir uma máscara capaz de diferenciar o braço dos demais objetos.

Considerando que o braço está inicialmente centralizado em relação ao manipulador e

à câmera, a máscara é gerada aplicando uma tolerância de 20% em relação à cor do

pixel central; pixels com valores até 20% acima ou abaixo são configurados como brancos,

enquanto os demais se tornam pretos. Dessa forma, a região de interesse é destacada

dos demais elementos presentes na imagem. Na Figura 8, observa-se um exemplo dessa

máscara, onde a área correspondente ao braço é evidenciada. Esse procedimento permite ao

algoritmo focar na extração de informações precisas dessa região, etapa fundamental para

identificar a trajetória central que orientará os movimentos subsequentes do manipulador.
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Figura 8 – Exemplo da imagem antes e após segmentação por cor.

Fonte: Autor

Após a segmentação, a máscara resultante é percorrida linha por linha. Em cada

linha, são identificados os pixels com intensidade diferente de 0 (ou seja, os pixels brancos),

e seus índices são armazenados em um vetor. Ao final de cada linha, calcula-se o ponto

médio entre esses pixels brancos. Dessa forma, ao concluir a varredura de todas as linhas,

é possível construir uma linha média composta por esses pontos médios, representando o

reta central da região segmentada.

Com base nas coordenadas x e y dos pontos médios extraídos da região do braço na

imagem, realiza-se um ajuste polinomial de primeiro grau para determinar a equação da reta

que melhor representa a trajetória central. A partir dessa equação, obtém-se o coeficiente

angular, que é utilizado para calcular o ângulo θ por meio da função arco-tangente. Esse

ângulo é fundamental para orientar a trajetória a ser seguida pelo manipulador.

3.2.2 Estratégia baseada na Transformada de Hough

A estratégia que utiliza a Transformada de Hough parte da máscara obtida pela

segmentação por cor, visando aprimorar os resultados obtidos apenas com esse método. A

ideia é superar as limitações de generalização do modelo, permitindo identificar uma reta

que se ajuste de forma mais precisa à região do braço.

Para aplicar a Transformada de Hough, é necessário realizar uma sequência de

operações de processamento de imagem. Primeiramente, a imagem RGB do braço é

extraída a partir da máscara de segmentação aplicada à imagem original, isolando a região

de interesse. Em seguida, a imagem é convertida para escala de cinza e submetida a um

filtro gaussiano, o qual suaviza os detalhes e reduz o ruído. Posteriormente, o detector



40

de bordas de Canny é aplicado, realçando as bordas mais significativas, e, por fim, a

Transformada de Hough é utilizada por meio da função hough do MATLAB, retornando a

matriz de transformação e os vetores dos parâmetros ρ e θ no espaço de Hough, conforme

discutido na Seção 2.3.4.

A partir dos resultados obtidos, é possível identificar os picos na matriz de trans-

formação utilizando a função houghpeaks, aplicando uma tolerância para definir quais

valores serão considerados como picos. Com base nas interseções no espaço de Hough, os

segmentos de reta são extraídos a partir dos picos detectados e dos vetores dos parâmetros

ρ e θ, utilizando a função houghlines.

Um passo fundamental consiste em agrupar as retas que apresentam parâmetros

muito próximos no espaço de Hough. Dessa forma, é possível determinar, por meio da

média dos parâmetros de cada grupo, os valores finais de ρ e θ, obtendo assim a reta que

melhor se ajusta ao contorno do braço. O passo a passo discutido pode ser visto na Figura

9.

Figura 9 – Imagens obtidas nos passos da estratégia usando Transformada de Hough.

Fonte: Autor

Com os parâmetros do espaço de Hough definidos, determinam-se os valores de x a

partir das coordenadas dos pontos mínimo e máximo dos segmentos de reta detectados,

enquanto os valores de y são calculados conforme a Equação 3.3, obtida a partir da Equação

2.17:

y =
ρ − x · cos(θ)

sin(θ)
(3.3)
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Com os vetores de pontos definidos, realiza-se um ajuste polinomial de primeiro

grau para determinar a equação da reta. A partir deste ajuste, obtém-se o coeficiente

angular por meio da função arco-tangente, sendo esse ângulo fundamental para orientar a

trajetória a ser seguida pelo manipulador.

3.2.3 Estratégia baseada em Detecção de Contornos

Considerando que a Transformada de Hough pode em alguns casos detectar retas

provenientes de objetos indesejados, como a mesa, propõe-se uma estratégia alternativa

para aprimorar os resultados. Nessa abordagem, a detecção de contornos utiliza imagens

binárias — como a obtida após a segmentação por cor — para delimitar o contorno do

braço e, a partir desses limites, definir o segmento de reta central.

Nessa estratégia, a imagem binária do braço, obtida a partir da máscara de

segmentação por cor, é submetida à função bwboundaries do MATLAB. Essa função é

empregada para identificar os contornos dos objetos presentes em uma imagem binária,

detectando as fronteiras de cada objeto isolado. O seu retorno consiste em uma célula

na qual cada elemento contém as coordenadas dos pontos que formam o contorno de um

objeto detectado.

Posteriormente, o algoritmo identifica o contorno que possui o maior número de

pontos dentre os contornos detectados e seleciona esse contorno para análise. Em seguida,

determinam-se os valores mínimo e máximo das coordenadas horizontais dos pontos desse

contorno, e calcula-se o ponto médio entre esses extremos. Com base nesse ponto médio, o

contorno é dividido em duas partes: os pontos localizados à esquerda e os localizados à

direita.

Na etapa seguinte, para calcular a linha central, o código percorre todos os valores

únicos das coordenadas verticais (y) do contorno. Para cada valor, são extraídos os pontos

correspondentes dos segmentos esquerdo e direito. Se, para um determinado y, existirem

pontos em ambos os segmentos, o algoritmo calcula a média dos valores horizontais (x)

desses pontos, definindo assim o ponto central para aquela linha específica. Ao repetir esse

procedimento para cada valor único de y, o algoritmo constrói uma sequência de pontos

médios que, quando conectados, formam a linha central do contorno. O passo a passo

para a determinação da linha central a partir da imagem original pode ser visualizado na

Figura 10.

Por fim, essa linha central é submetida a um ajuste polinomial de primeiro grau.

A partir do coeficiente angular resultante desse ajuste, calcula-se o ângulo de inclinação,

que é fundamental para orientar a trajetória a ser seguida pelo manipulador.
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Figura 10 – Imagens obtidas nos passos da estratégia usando Detecção de Contornos.

Fonte: Autor

3.3 Cinemática do Manipulador

A partir da trajetória definida pelas estratégias adotadas na Seção 3.2, é necessário

determinar os ângulos das juntas para que o manipulador robótico complete o percurso,

alcançando os pontos desejados. Para tanto, é fundamental aplicar os conceitos da robótica

clássica, como a cinemática direta e inversa, ao manipulador Kinova.

O manipulador Kinova 7 DoF apresenta uma estrutura composta por sete juntas

rotacionais, conforme visto na Figura 11, permitindo uma ampla gama de movimentos e

proporcionando elevada flexibilidade e precisão. A modelagem do manipulador envolve a

definição dos parâmetros geométricos essenciais, tais como os comprimentos dos elos, os

sentidos de rotação das juntas e as diferenças angulares entre elas.

A modelagem matemática do manipulador robótico é construída de modo a deter-

minar a posição no espaço cartesiano a partir dos ângulos das juntas rotacionais. Por meio

de transformações homogêneas, são estabelecidas as relações entre os referenciais (frames)

do robô, permitindo a composição sequencial de transformações que relacionam cada junta

e elo ao sistema de coordenadas global. A cinemática direta consiste em calcular a posição

e a orientação do efetuador final (end-effector) a partir dos valores dos ângulos das juntas.

Por convenção, utiliza-se o método sistemático de Denavit-Hartenberg, descrito em

(HARTENBERG; DENAVIT, 1964), para a modelagem cinemática, o qual define quatro
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Figura 11 – Dimensões e definições de frames do robô Kinova com 7 graus de liberdade.

Fonte: (KINOVA, 2022)

parâmetros para cada junta: d (distância ao longo do eixo z), θ (ângulo de rotação em

torno do eixo z), a (deslocamento ao longo do eixo x) e α (ângulo de rotação em torno do

eixo x). Com base no manual do robô (KINOVA, 2022), a Tabela 2 apresenta os valores

desses quatro parâmetros para a transição entre os frames do robô, sendo θ∗

i os ângulos

variáveis das juntas.

Tabela 2 – Parâmetros de Denavit-Hartenberg do robô manipulador Kinova 7 DoF

Frame αi(rad) ai(m) di(m) θi(rad)

0 π 0,0 0,0 0
1 π/2 0,0 -(0,1564+0,1284) θ∗

1

2 π/2 0,0 -(0,0054+0,0064) θ∗

2
+ π

3 π/2 0,0 -(0,2104+0,2104) θ∗

3
+ π

4 π/2 0,0 -(0,0064+0,0064) θ∗

4
+ π

5 π/2 0,0 -(0,2084+0,1059) θ∗

5
+ π

6 π/2 0,0 0,0 θ∗

6
+ π

7 π 0,0 -(0,1059+0,0615) θ∗

7
+ π

Para definir a cinemática inversa, isto é, determinar os ângulos das juntas rotacionais

a partir da posição e da orientação desejadas no espaço cartesiano, é necessário empregar
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métodos de otimização, como o gradiente descendente. Neste contexto, a função objetivo

é constituída pelo erro quadrático médio entre a posição e a orientação do efetuador

final e as posições e orientações desejadas. Por esse motivo, a Tabela 1 apresenta os

valores da taxa de aprendizado e da tolerância adotados. A taxa de aprendizado mostra o

tamanho dos ajustes feitos a cada iteração e determina a rapidez com que o algoritmo

se aproxima da solução ideal. Como o método funciona de forma iterativa, é importante

definir uma tolerância adequada para que o algoritmo saiba quando os ângulos das juntas

estão suficientemente próximos dos valores que minimizam o erro.

Por fim, os ângulos das juntas calculados pelo método do gradiente descendente são

enviados para o simulador CoppeliaSim. Dessa forma, o manipulador segue a trajetória

definida, ajustando os ângulos de forma sequencial para que, a cada ponto, o robô se

posicione corretamente e complete o percurso com precisão.
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4 RESULTADOS

Neste Capítulo, são apresentados os resultados obtidos no desenvolvimento do

trabalho. São detalhados os resultados referentes à aproximação do braço e à geração de

trajetórias, com base nas estratégias descritas na Seção 3.2. São expostos os resultados

das simulações, bem como a adequação das trajetórias geradas em comparação à trajetória

ideal, além de um comparativo entre as estratégias adotadas para identificar a mais eficaz.

Para generalizar o método para diferentes configurações, foram testadas três

situações em todos os resultados, conforme ilustrado na Figura 5: na primeira imagem, a

seção do ombro ao cotovelo (braço) forma um ângulo de 20º para a esquerda em relação à

posição reta, enquanto a seção do cotovelo ao punho (antebraço) permanece alinhada; na

segunda imagem, o braço está a 20º para a direita e o antebraço a 20º para a esquerda; e,

na última, o braço permanece reto e o antebraço está a 20º para a direita.

4.1 Resultados da aproximação ao braço

Nesta etapa, o manipulador deve se aproximar adequadamente do braço, pois

essa proximidade é fundamental para a tarefa de vestir, sem comprometer os fatores de

segurança. Conforme apresentado na Tabela 1, o algoritmo define um limiar de 6 cm entre

a garra, que segura a manga da roupa, e o braço, utilizando um raio de segurança de 5

cm para a comparação. É importante ressaltar que esse limiar já considera a distância

medida pelo sensor RGB-D do end-effector, de modo que os 6 cm representam a distância

efetiva entre a garra e o braço.

A configuração inicial do braço do paciente é a apresentada na primeira imagem

da Figura 5, com o braço inclinado 20º à esquerda e o antebraço reto. A partir de uma

posição em z elevada do manipulador robótico sobre o braço, conforme ilustrado na Figura

12, pode-se observar as coordenadas do eixo z do end-effector ao longo de toda trajetória

(linha azul) e uma reta, em vermelho, representando o raio de segurança.

Na Figura 12 é possível verificar também a proximidade para a tarefa de vestir de

forma visual pela imagem do simulador com a configuração do braço e antebraço utilizada

inicialmente. A Tabela 3 apresenta a distância final do end-effector em relação ao braço,

bem como a margem de segurança (expressa em porcentagem) acima deste, considerando

que o braço do paciente está posicionado no plano z = 0,92 m.

Em seguida, utilizando a configuração exibida na segunda imagem da Figura 5, que

apresenta o braço inclinado em 20º para a direita e o antebraço em 20º para a esquerda, e

partindo de uma posição elevada, o objetivo é validar a estratégia de aproximação para

diferentes configurações. Na Figura 13, as coordenadas do eixo z do end-effector são

exibidas ao longo de toda a trajetória (linha azul), juntamente com uma reta vermelha
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Figura 12 – Coordenadas do eixo z da garra ao longo de toda trajetória e simulação na configu-
ração do braço inclinado 20º à esquerda e antebraço reto.

Fonte: Autor

que representa o raio de segurança. A distância final ao braço é apresentada em 3 e a

aproximação pode ser verificada de forma visual pela imagem do simulador na Figura 13.

Figura 13 – Coordenadas do eixo z da garra ao longo de toda trajetória e simulação na configu-
ração do braço inclinado 20º à direita e antebraço 20º à esquerda.

Fonte: Autor

Por fim, os dados referentes à posição no eixo z foram coletados na última con-

figuração apresentada na Figura 5, na qual o braço se mantém reto e o antebraço está

inclinado em 20º para a direita. Na Figura 14, a linha azul mostra as coordenadas do eixo

z durante toda a tarefa, enquanto a linha vermelha indica o raio de segurança. Além disso,

o resultado na simulação pode ser visto na segunda imagem da Figura 14 e a distância

final na Tabela 3.

Os dados da Tabela 3 demonstram a consistência dos resultados, mesmo diante de

variações, pois todas as três configurações testadas apresentaram uma distância final média

de 5,94 cm entre a garra e o braço, com uma margem de segurança média de 6,45%. Esses



47

Figura 14 – Coordenadas do eixo z da garra ao longo de toda trajetória e simulação na configu-
ração do braço reto e antebraço inclinado 20º à direita.

Fonte: Autor

Tabela 3 – Comparação da distância final após aproximação da garra ao braço e margem de
segurança.

Configuração
Distância final da

garra ao braço (cm)
Porcentagem acima

do braço
Braço inclinado 20º à esquerda

e antebraço reto
5,9935 6,51 %

Braço inclinado 20º à direita
e antebraço 20º à esquerda

5,8527 6,36 %

Braço reto e antebraço
inclinado 20º à direita

5,9739 6,48 %

resultados indicam que o algoritmo de aproximação, baseado em dados do sensor RGB-D,

assegura a proximidade ideal para a tarefa de vestir sem comprometer os parâmetros de

segurança.

4.2 Resultados da geração de trajetórias

Para validar cada uma das estratégias quanto à adequação ao braço, nesta etapa

são apresentadas as imagens resultantes dos algoritmos de visão computacional. Essa

abordagem permite identificar possíveis causas de divergência entre a reta resultante e a

trajetória ideal.

Além disso, para comparar as estratégias, é necessário avaliar a resposta no plano

xy tanto da trajetória ideal quanto da planejada pelo algoritmo. Para isso, utilizam-se

três pontos dummy no simulador, localizados no punho, cotovelo e ombro. Esses pontos

possibilitam que o algoritmo receba as coordenadas e trace uma reta entre eles para futura

comparação com a trajetória planejada.

Por fim, é importante verificar a trajetória efetiva executada pelo manipulador,
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obtida por meio da cinemática inversa, algoritmo de robótica clássica discutido na Seção

3.3.

4.2.1 Estratégia usando Segmentação por Cor

As análises dos resultados de segmentação serão feitas individualmente para cada

configuração do braço do paciente. Ao final, na Tabela 4 são apresentados os valores da

raiz do erro quadrático médio (RMSE, do inglês root mean squared error) e de outras

métricas utilizadas para comparar as trajetórias planejada e ideal em todas configurações.

Ademais, as métricas de erro entre a trajetória planejada e a executada pela cinemática

inversa das 3 configurações estão dispostas na Tabela 5.

4.2.1.1 Braço inclinado 20º à esquerda e antebraço reto

Inicialmente, com o braço do paciente inclinado em 20º para a esquerda e o

antebraço reto, as duas imagens binárias resultantes da segmentação são apresentadas na

Figura 15.

Figura 15 – Imagens binárias da segmentação por cor do braço inclinado 20º à esquerda e
antebraço reto: (a) antebraço; (b) braço.

Fonte: Autor

Na Figura 16 observa-se a trajetória planejada (em vermelho) e a trajetória ideal

(em azul), definida a partir dos pontos dummy no simulador, para a mesma configuração.

Nota-se que, neste caso, a trajetória planejada difere significativamente da ideal na região

correspondente ao braço, uma vez que o algoritmo também considera o corpo do paciente

durante a segmentação.

A trajetória efetiva do manipulador Kinova, obtida a partir da trajetória planejada

(em vermelho) sob os parâmetros de tolerância e taxa de aprendizado apresentados na

Tabela 1, é exibida em azul na Figura 17. Ademais, o rastro magenta no simulador

evidencia a trajetória percorrida.
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Figura 16 – Trajetória planejada em comparação com a trajetória ideal com braço inclinado 20º

à esquerda e antebraço reto usando a segmentação por cor.

Fonte: Autor

Figura 17 – Usando a segmentação por cor: (a) Trajetória planejada em comparação com a
trajetória executada com braço inclinado 20º à esquerda e antebraço reto; (b)
Trajetória seguida na simulação.

Fonte: Autor

4.2.1.2 Braço inclinado 20º à direita e antebraço 20º à esquerda

Com o braço inclinado em 20º para a direita e o antebraço em 20º para a esquerda,

as imagens binárias provenientes da segmentação por cor estão ilustradas na Figura 18.

Em seguida, a Figura 19 apresenta, em vermelho, a trajetória planejada, comparada à

trajetória ideal, em azul.

Por fim, a Figura 20 apresenta a trajetória efetivamente executada pelo manipulador

Kinova, obtida por meio da cinemática inversa com os parâmetros de tolerância e taxa

de aprendizado estabelecidos na Tabela 1. Nesta representação, a trajetória executada é

exibida em azul, enquanto, na outra imagem, o rastro magenta indica o caminho seguido

no simulador.
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Figura 18 – Imagens binárias da segmentação por cor do braço inclinado 20º à direita e antebraço
20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor

Figura 19 – Trajetória planejada em comparação com a trajetória ideal com braço inclinado 20º

à direita e antebraço 20º à esquerda usando a segmentação por cor.

Fonte: Autor

Figura 20 – Usando a segmentação por cor: (a) Trajetória planejada em comparação com a
trajetória executada com braço inclinado 20º à direita e antebraço 20º à esquerda;
(b) Trajetória seguida na simulação.

Fonte: Autor
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4.2.1.3 Braço reto e antebraço inclinado 20º à direita

Por último, com o braço reto e o antebraço inclinado em 20º para a direita, as

imagens binárias da segmentação por cor são apresentadas na Figura 21. Em seguida, a

Figura 22 exibe, em vermelho, a trajetória planejada em relação trajetória ideal em azul.

Figura 21 – Imagens binárias da segmentação por cor do braço reto e antebraço inclinado 20º à
direita: (a) antebraço; (b) braço.

Fonte: Autor

Figura 22 – Trajetória planejada em comparação com a trajetória ideal com braço reto e antebraço
inclinado 20º à direita usando a segmentação por cor.

Fonte: Autor

Por fim, a Figura 23 demonstra a trajetória efetivamente executada pelo manipula-

dor Kinova, obtida por meio da cinemática inversa com os parâmetros de tolerância e taxa

de aprendizado especificados na Tabela 1. Nesta representação, a trajetória executada é

ilustrada em azul, enquanto, na outra imagem, o caminho percorrido no simulador pode

ser visto pelo rastro magenta.
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Figura 23 – Usando a segmentação por cor: (a) Trajetória planejada em comparação com a
trajetória executada com braço reto e antebraço inclinado 20º à direita; (b) Trajetória
seguida na simulação.

Fonte: Autor

4.2.1.4 Comparativo entre configurações

Analisando a Tabela 4, que apresenta as métricas de erro empregadas na comparação

entre as trajetórias ideais e planejadas para três configurações distintas, é possível identificar

algumas características da estratégia proposta.

Na configuração com o braço inclinado em 20º para a esquerda e o antebraço reto,

observa-se que, apesar do RMSE ser relativamente baixo, o desvio padrão se mostra elevado.

Esse comportamento ocorre porque a trajetória do antebraço se ajusta adequadamente à

trajetória ideal, enquanto a região correspondente ao braço apresenta um aumento do erro

decorrente da imagem obtida pela segmentação por cor.

Tabela 4 – Erro entre trajetória planejada e ideal em todas configurações utilizando segmentação
por cor.

Configuração RMSE Média do erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,1414 cm 0,91 cm 1,13 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,0520 cm 0,4143 cm 0,3180 cm

Braço reto e antebraço
inclinado 20º à direita

0,0447 cm 0,3291 cm 0,2991 cm

Como resultado do algoritmo de cinemática inversa, a Tabela 5 apresenta os erros

entre a trajetória que foi planejada e a trajetória seguida pela manipulador robótico.

Após os resultados apresentados, optou-se por investigar estratégias alternativas,

com o objetivo de aproximar mais fielmente a reta ideal e corrigir possíveis erros, como os

decorrentes da segmentação por cor evidenciados na Figura 16.
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Tabela 5 – Erro entre trajetória planejada e executada pelo manipulador robótico em todas
configurações utilizando segmentação por cor.

Configuração RMSE Média do Erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,1414 cm 1,25 cm 0,26 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,1389 cm 1,3355 cm 0,3855 cm

Braço reto e antebraço
inclinado 20º à direita

0,1396 cm 1,3657 cm 0,2962 cm

4.2.2 Estratégia usando Transformada de Hough

Assim como realizado na Subseção 4.2.1, a análise dos resultados obtidos com a

estratégia baseada na Transformada de Hough será conduzida individualmente para cada

configuração do braço do paciente.

4.2.2.1 Braço inclinado 20º à esquerda e antebraço reto

Em primeira análise, considerando o braço inclinado em 20º para a esquerda e o

antebraço reto, as duas imagens que evidenciam as retas obtidas por meio da Transformada

de Hough são apresentadas na Figura 24.

Figura 24 – Retas obtidas pela Transformada de Hough do braço inclinado 20º à esquerda e
antebraço reto: (a) antebraço; (b) braço.

Fonte: Autor

Com base nas retas identificadas, foram definidas as retas finais pela média dos

parâmetros ρ e θ das retas, conforme ilustrado na Figura 25.

Dessa forma, é possível comparar a trajetória planejada, em vermelho com a

trajetória ideal na Figura 26, a fim de avaliar a efetividade da estratégia. As métricas de

erro entre a trajetória ideal e a planejada estão dispostas na Tabela 6.
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Figura 25 – Retas finais obtidas pela Transformada de Hough do braço inclinado 20º à esquerda
e antebraço reto: (a) antebraço; (b) braço.

Fonte: Autor

Figura 26 – Trajetória planejada em comparação com a trajetória ideal com braço reto e antebraço
inclinado 20º à direita usando a Transformada de Hough.

Fonte: Autor

Assim, na Figura 27 é possível comparar a trajetória planejada (em vermelho) com

a efetivamente executada (em azul) pelo manipulador robótico. As métricas de erro que

evidenciam essa comparação encontram-se na Tabela 7.

4.2.2.2 Braço inclinado 20º à direita e antebraço 20º à esquerda

Em uma segunda análise, o paciente foi posicionado de modo que o braço se

encontra inclinado em 20º para a direita e o antebraço em 20º para a esquerda. As retas

identificadas por meio da Transformada de Hough estão ilustradas na Figura 28. A partir

dessas retas, as linhas finais do braço e do antebraço foram determinadas pela média,

conforme apresentado na Figura 29.
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Figura 27 – Usando a Transformada de Hough: (a) Trajetória planejada em comparação com
a trajetória executada com braço inclinado 20º à esquerda e antebraço reto; (b)
Trajetória seguida na simulação

Fonte: Autor

Figura 28 – Retas obtidas pela Transformada de Hough do braço inclinado 20º à direita e
antebraço 20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor

Figura 29 – Retas finais obtidas pela Transformada de Hough do braço inclinado 20º à direita e
antebraço 20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor
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A partir do coeficiente angular das retas, foi determinada a trajetória planejada

(em vermelho), que é comparada com a trajetória ideal (em azul) na Figura 30. Neste

caso, é possível identificar um desvio angular em relação à trajetória ideal, decorrente das

características das retas obtidas. O erro entre as trajetórias está apresentado na Tabela 6.

Figura 30 – Trajetória planejada em comparação com a trajetória ideal com braço inclinado 20º

à direita e antebraço 20º à esquerda.

Fonte: Autor

Em seguida, na Figura 31 pode-se observar a sobreposição da trajetória planejada

(em vermelho) com a trajetória efetivamente executada (em azul) pelo manipulador

robótico. As métricas de erro que evidenciam essa correspondência estão apresentados na

Tabela 7.

Figura 31 – Usando a Transformada de Hough: (a) Trajetória planejada em comparação com a
trajetória executada com braço inclinado 20º à direita e antebraço 20º à esquerda;
(b) Trajetória seguida na simulação.

Fonte: Autor
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4.2.2.3 Braço reto e antebraço inclinado 20º à direita

Em terceira análise, o paciente foi posicionado de forma que o braço permanecesse

reto e o antebraço ficasse inclinado em 20º para a direita. Nesse caso, as retas identificadas

pela Transformada de Hough estão dispostas na Figura 32, enquanto as retas finais, obtidas

pela média, estão apresentadas na Figura 33.

Figura 32 – Retas obtidas pela Transformada de Hough do braço reto e antebraço inclinado 20º

à direita: (a) antebraço; (b) braço.

Fonte: Autor

Figura 33 – Retas finais obtidas pela Transformada de Hough do braço reto e antebraço inclinado
20º à direita: (a) antebraço; (b) braço.

Fonte: Autor

Portanto, com as retas finais é possível obter a trajetória planejada (em vermelho)

e compará-la com a trajetória ideal (em azul), conforme visto na Figura 34. O erro entre

essas trajetórias está disposto na Tabela 6.

Por fim, concluindo a análise para as diferentes configurações desta estratégia,

na Figura 35 é apresentada a trajetória efetivamente executada pelo manipulador (em

azul) em comparação com a trajetória planejada (em vermelho), bem como o rastro (em
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Figura 34 – Trajetória planejada em comparação com a trajetória ideal com braço reto e antebraço
inclinado 20º à direita.

Fonte: Autor

magenta) deixado pelo manipulador no simulador. Os erros entre as trajetórias efetiva e

planejada estão dispostos na Tabela 7.

Figura 35 – Usando a Transformada de Hough: (a) Trajetória planejada em comparação com a
trajetória executada com braço reto e antebraço inclinado 20º à direita; (b) Trajetória
seguida na simulação.

Fonte: Autor

4.2.2.4 Comparativo entre configurações

Ao analisar a Tabela 6, que apresenta as métricas de erro utilizadas para comparar

as trajetórias ideal e planejada nas três configurações distintas, observa-se uma melhoria

na aproximação à trajetória ideal com a aplicação desta estratégia. Entretanto, o maior

erro em relação ao ideal foi registrado na configuração em que o braço está inclinado em

20º para a direita e o antebraço em 20º para a esquerda, como mencionado anteriormente.

Nesse caso, constatou-se um desvio angular maior.
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Tabela 6 – Erro entre trajetória planejada e ideal em todas configurações utilizando a Transfor-
mada de Hough.

Configuração RMSE Média do erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,0424 cm 0,3711 cm 0,1966 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,0707 cm 0,6299 cm 0,3321 cm

Braço reto e antebraço
inclinado 20º à direita

0,0387 cm 0,3662 cm 0,1398 cm

Como resultado da aplicação do algoritmo de cinemática inversa, a Tabela 7 exibe

os erros entre a trajetória planejada e a trajetória efetivamente seguida pelo manipulador

robótico.

Tabela 7 – Erro entre trajetória planejada e executada pelo manipulador robótico em todas
configurações utilizando a Transformada de Hough.

Configuração RMSE Média do Erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,1360 cm 1,3049 cm 0,3869 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,1308 cm 1,2856 cm 0,2408 cm

Braço reto e antebraço
inclinado 20º à direita

0,1539 cm 1,4849 cm 0,4139 cm

Assim, com base nos resultados obtidos, foi implementada uma estratégia alternativa

para corrigir problemas associados ao uso da transformada de Hough, como desvios

angulares superiores aos ideais.

4.2.3 Estratégia usando Detecção de Contornos

Conforme a análise das subseções anteriores, a análise dos resultados obtidos

através da abordagem de detecção de contornos será realizada individualmente para cada

configuração do braço do paciente.

4.2.3.1 Braço inclinado 20º à esquerda e antebraço reto

Inicialmente, para o caso em que o braço está inclinado 20º para a esquerda e o

antebraço se encontra reto, a Figura 36 apresenta duas imagens evidenciando os contornos

extraídos pelo algoritmo.

A partir dos contornos identificados, é possível identificar as retas finais na Figura

37.
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Figura 36 – Contornos do lado esquerdo e direito detectados pelo algoritmo com braço inclinado
20º à esquerda e antebraço reto: (a) antebraço; (b) braço.

Fonte: Autor

Figura 37 – Retas finais obtidas pela detecção de contornos do braço inclinado 20º à direita e
antebraço 20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor

Dessa forma, foi possível comparar a trajetória planejada (em vermelho) com a

trajetória ideal (em azul), como mostrado na Figura 38, permitindo avaliar o desempenho

da abordagem. Os erros entre essas trajetórias estão detalhados na Tabela 8.

A Figura 39 mostra a comparação entre a trajetória planejada (em vermelho) e a

executada (em azul) pelo manipulador robótico, sendo que as respectivas métricas de erro

estão apresentadas na Tabela 9.

4.2.3.2 Braço inclinado 20º à direita e antebraço 20º à esquerda

Na segunda configuração, o braço do paciente foi posicionado com uma inclinação

de 20º à direita, enquanto o antebraço inclinou-se 20º à esquerda. A Figura 40 apresenta
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Figura 38 – Trajetória planejada em comparação com a trajetória ideal com braço reto e antebraço
inclinado 20º à direita usando a detecção de contornos.

Fonte: Autor

Figura 39 – Usando a detecção de contornos: (a) Trajetória planejada em comparação com
a trajetória executada com braço inclinado 20º à esquerda e antebraço reto; (b)
Trajetória seguida na simulação

Fonte: Autor

os contornos detectados pelo algoritmo, e a Figura 41 exibe as retas finais.

Utilizando os coeficientes angulares das linhas extraídas, foi gerada a trajetória

planejada (em vermelho), posteriormente comparada à trajetória ideal (em azul) na Figura

42. A Tabela 8 apresenta os erros identificados.

A Figura 43 ilustra a sobreposição da trajetória planejada (em vermelho) com a

executada (em azul) pelo manipulador, cujas métricas de erro estão dispostas na Tabela 9.
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Figura 40 – Contornos do lado esquerdo e direito detectados pelo algoritmo com braço inclinado
20º à direita e antebraço 20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor

Figura 41 – Retas finais obtidas pela detecção de contornos do braço inclinado 20º à direita e
antebraço 20º à esquerda: (a) antebraço; (b) braço.

Fonte: Autor

Figura 42 – Trajetória planejada em comparação com a trajetória ideal com braço inclinado 20º

à direita e antebraço 20º à esquerda usando a detecção de contornos.

Fonte: Autor
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Figura 43 – Usando a detecção de contornos: (a) Trajetória planejada em comparação com a
trajetória executada com braço inclinado 20º à direita e antebraço 20º à esquerda;
(b) Trajetória seguida na simulação

Fonte: Autor

4.2.3.3 Braço reto e antebraço inclinado 20º à direita

Na terceira configuração, o braço do paciente permaneceu reto enquanto o antebraço

se inclinava 20º para a direita. A Figura 44 exibe os contornos detectados, e a Figura 45

mostra a reta final.

Figura 44 – Contornos do lado esquerdo e direito detectados pelo algoritmo com braço reto e
antebraço inclinado 20º à direita: (a) antebraço; (b) braço.

Fonte: Autor

A trajetória planejada (em vermelho) foi então determinada e comparada à trajetória

ideal (em azul), conforme representado na Figura 46, com os erros respectivos descritos na

Tabela 8.

Para finalizar a análise, a Figura 47 apresenta a trajetória executada pelo manipu-

lador (em azul) sobreposta à planejada, junto com o rastro (em magenta) registrado na

simulação. Os erros entre a trajetória efetiva e a planejada estão listados na Tabela 9.
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Figura 45 – Retas finais obtidas pela detecção de contornos do braço reto e antebraço inclinado
20º à direita: (a) antebraço; (b) braço.

Fonte: Autor

Figura 46 – Trajetória planejada em comparação com a trajetória ideal com braço reto e antebraço
inclinado 20º à direita usando a detecção de contornos.

Fonte: Autor

Figura 47 – Usando a detecção de contornos: (a) Trajetória planejada em comparação com a
trajetória executada com braço reto e antebraço inclinado 20º à direita; (b) Trajetória
seguida na simulação

Fonte: Autor
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4.2.3.4 Comparativo entre configurações

A Tabela 8 apresenta as métricas de erro obtidas ao comparar a trajetória ideal

com a planejada nas diferentes configurações, revelando uma aproximação mais fiel à

trajetória ideal com o uso desta estratégia.

Tabela 8 – Erro entre trajetória planejada e ideal em todas configurações utilizando a detecção
de contornos.

Configuração RMSE Média do erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,0412 cm 0,3629 cm 0,1902 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,0412 cm 0,3359 cm 0,2322 cm

Braço reto e antebraço
inclinado 20º à direita

0,0387 cm 0,3660 cm 0,1472 cm

Com a aplicação do algoritmo de cinemática inversa, a Tabela 9 fornece os erros

resultantes da comparação entre a trajetória planejada e a efetivamente seguida pelo

manipulador robótico.

Tabela 9 – Erro entre trajetória planejada e executada pelo manipulador robótico em todas
configurações utilizando a detecção de contornos.

Configuração RMSE Média do Erro
Desvio Padrão

do erro
Braço inclinado 20º à esquerda

e antebraço reto
0,0300 cm 0,3629 cm 0,1902 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,0346 cm 0,3208 cm 0,1121 cm

Braço reto e antebraço
inclinado 20º à direita

0,0510 cm 0,4976 cm 0,1103 cm

Com base nos dados apresentados nas tabelas, observa-se um erro reduzido e

uma boa aderência à trajetória ideal ao aplicar essa estratégia. Assim, é interessante

realizar uma análise comparativa para identificar a abordagem mais eficaz na geração das

trajetórias.

4.3 Análise Comparativa das Estratégias

Para avaliar o desempenho de cada estratégia em função das distintas configurações

do braço do paciente, foi elaborada a Tabela 10, na qual cada coluna apresenta o erro

quadrático médio entre a trajetória planejada e a trajetória ideal.

Dessa forma, considerando o erro quadrático médio apresentado na Tabela 10,

verifica-se que a estratégia baseada em detecção de contornos é a mais assertiva e apresenta
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Tabela 10 – Comparação entre o RMSE de cada estratégia adotada para vestir o paciente,
considerando diferentes configurações de braço.

Configuração
Segmentação

por Cor
Transformada

de Hough
Detecção

de Contornos
Braço inclinado 20º à esquerda

e antebraço reto
0,1414 cm 0,0424 cm 0,0412 cm

Braço inclinado 20º à direita
e antebraço 20º à esquerda

0,0520 cm 0,0707 cm 0,0412 cm

Braço reto e antebraço
inclinado 20º à direita

0,0447 cm 0,0387 cm 0,0387 cm

maior acurácia. Entretanto, é importante destacar que as demais abordagens também de-

monstraram desempenho notável, visto que, embora apresentem erros um pouco superiores,

na maioria das vezes elas se revelam como alternativas viáveis.
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5 CONCLUSÕES

5.1 Conclusões

Neste trabalho, o objetivo central foi desenvolver uma solução assistiva baseada em

algoritmos de visão computacional para o planejamento de trajetórias seguras e precisas na

manipulação de vestimentas, visando promover maior autonomia e qualidade de vida para

pessoas com deficiência, idosos e indivíduos com mobilidade reduzida. Para atingir esse

objetivo, adotou-se uma abordagem que combinou os fundamentos da robótica clássica

com técnicas avançadas de processamento digital de imagens, permitindo a análise da

configuração do braço do paciente e o planejamento de trajetórias otimizadas.

Com base na fundamentação teórica e na análise da tarefa e do cenário, foram

adotadas três estratégias baseadas em visão computacional, conforme visto no Capítulo 3:

segmentação por cor, transformada de Hough e detecção de contornos. Essas abordagens

tiveram como objetivo identificar e descrever as retas mais adequadas referentes ao braço e

ao antebraço, a fim de viabilizar a vestimenta da manga pelo robô. Ademais, por meio das

imagens capturadas pela câmera com sensor de profundidade (sensor RGB-D), instalada

no manipulador robótico, foi possível detectar as diferentes configurações do braço e,

consequentemente, adaptar a trajetória planejada à sua posição real.

Um dos objetivos do algoritmo foi se aproximar do braço de forma segura, o que é

essencial na tarefa de vestir. Com o método proposto, foi possível verificar os resultados

de distância final da garra do manipulador robótico em relação ao braço na Seção 4.1.

Mesmo em diferentes configurações, o limiar de segurança foi mantido, com as seguintes

distâncias finais: 5,9935 cm para o braço inclinado 20º à esquerda com antebraço reto;

5,8527 cm para o braço inclinado 20º à direita com antebraço 20º à esquerda; e 5,9739 cm

para o braço reto com antebraço inclinado 20º à direita.

Em relação às estratégias para geração de trajetórias, a Tabela 10 evidencia que os

baixos valores de RMSE validam a eficácia das três abordagens para a tarefa de vestir o

paciente. Entretanto, em alguns casos, como na segmentação por cor, foi observado um

desvio angular fora do esperado, conforme demonstrado pelos resultados da Subseção 4.2.1

na primeira configuração.

Considerando a Tabela 10, utilizando a melhoria percentual entre os RMSEs,

observa-se que, na primeira configuração, a estratégia de detecção de contornos apresentou

uma acurácia 91,5% superior à segmentação por cor e 5,56% maior do que a abordagem

baseada na Transformada de Hough. Na segunda configuração, a detecção de contornos

demonstrou uma melhoria de 37,04% em relação à segmentação por cor e 66% em compa-

ração à Transformada de Hough. Por fim, na terceira configuração, essa estratégia obteve

um ganho de 25% de acurácia em relação à segmentação por cor, mantendo o mesmo
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desempenho da Transformada de Hough. Portanto, a abordagem baseada na detecção de

contornos mostrou, de maneira geral, maior acurácia em relação à trajetória ideal.

5.2 Trabalhos Futuros

Como trabalho futuro, e considerando os bons resultados obtidos na simulação,

propõe-se a implementação da geração de trajetórias em um robô manipulador Kinova 7

DoF em ambiente físico, utilizando inicialmente um manequim para validar os resultados

e priorizar a segurança do paciente. Nessa etapa, será fundamental investigar como o

algoritmo se comporta com imagens reais e identificar as adaptações necessárias para uma

transferência efetiva da simulação para o mundo real (sim-to-real), especialmente diante

de desafios como oclusão e variações na iluminação.

Além disso, é importante testar o algoritmo com a manga da vestimenta para

avaliar seu comportamento, pois, conforme discutido no Capítulo 2, alguns problemas

podem surgir na aplicação real. Ademais, seria relevante investigar os pontos de preensão

(grasping points) da vestimenta para aumentar a autonomia do sistema, eliminando a

necessidade de posicioná-la inicialmente na garra. Essa simplificação foi adotada no

presente trabalho devido às limitações da simulação e ao objetivo específico do algoritmo.

Outras pesquisas podem ser feitas a respeito da utilização de técnicas de deep

learning para tratar, em tempo real, as variações na posição e conformação do braço

durante o processo de vestimenta.
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