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RESUMO

A previsao de geracao fotovoltaica é essencial para otimizar a operagao de sistemas
elétricos e garantir a gestao eficiente de energia. Nos tltimos anos, métodos baseados em
aprendizado de maquina e redes neurais tém sido amplamente utilizados para melhorar
a precisao de tais previsoes, o que é fundamental para sistemas com fontes renovaveis,
como as microrredes. Este trabalho oferece uma revisao da literatura sobre as técnicas
aplicadas a previsao da geracao fotovoltaica, com énfase em abordagens que utilizam redes
Long Short-Term Memory (LSTM). Além disso, sdo abordados os principais desafios e
tendéncias atuais da area, com o objetivo de fornecer uma base tedrica solida para futuras

pesquisas e aplicagoes.

Palavras-chave: Aprendizado de Maquina; Inteligéncia Artificial; LSTM; Previsao.



ABSTRACT

The forecasting of photovoltaic generation is essential for optimizing the operation
of electrical systems and ensuring efficient energy management. In recent years, machine
learning and neural network-based methods have been widely used to improve the accuracy
of such predictions, which is crucial for systems with renewable sources, such as micro-
grids. This paper provides a literature review on the techniques applied to photovoltaic
generation forecasting, with an emphasis on approaches using Long Short-Term Memory
(LSTM) networks. Additionally, the main challenges and current trends in the field are dis-

cussed, aiming to provide a solid theoretical foundation for future research and applications.

Keywords: Artificial Intelligence; Forecasting; LSTM; Machine Learning.
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1 INTRODUCAO

Desde as tultimas décadas, a utilizacdo da energia fotovoltaica tem crescido significa-
tivamente no mundo todo. Varios paises passaram a investir e estudar esse tipo de geragao
com maior atenc¢ao, isso devido a necessidade de transi¢ao para fontes renovaveis. No Brasil,
esse cenario é particularmente favoravel, ja que o pais apresenta altos indices de incidéncia
solar, proporcionando grande potencial para a geracdo dessa energia. Como resultado,
a participagao da geragao fotovoltaica na matriz energética do pais vem aumentando
continuamente, com previsoes indicando um crescimento ainda maior nos proximos anos.
A Figura 1 mostra a matriz energética brasileira do Sistema Interligado Nacional, e a

previsao do Operador Nacional do Sistema Elétrico para os proximos anos.

Figura 1 - Matriz elétrica brasileira 2023-
2027

Matriz elétrica brasileira 2023-2027
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MNuclear
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Fonte: Operador Nacional do Sistema
Elétrico. Disponivel em:
https://www.ons.org.br/AcervoDigital
DocumentosEPublicacoes/2023-Relatorio
-Anual-acessivel_21032024.pdf

Nota: Relatério Anual Acessivel/2023.
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A expansao da energia solar nao é limitada somente a usinas de grande porte, mas
também se destaca em sistemas distribuidos, como microrredes e redes isoladas. Nestes
contextos, a gestao eficiente de sistemas de gerenciamento de energia e do fluxo de poténcia
torna-se indispensavel para garantir estabilidade e confiabilidade na operag¢ao. Um dos
principais desafios enfrentados nesses sistemas ¢é a alta variabilidade da geragao fotovoltaica,
sendo ela, diretamente influenciada por fatores meteorolégicos. Para mitigar tal impacto,
técnicas de previsao sao amplamente empregadas, ja que processos de otimizacao deste tipo
de sistema sempre devem se orientar a partir de pontos futuros, permitindo a integracao
da energia solar com outras fontes de geracao e armazenamento de energia, além de reduzir

custos operacionais.

Dentre os diversos métodos de previsao, modelos baseados em aprendizado de
maquina e aprendizado profundo se destacam pela capacidade de capturar padroes com-
plexos em séries temporais. Long Short-Term Memory (LSTMs), que surgiram a partir
de Redes Neurais Recorrentes (RNNs - Recurrent Neural Networks), vem demonstrando
grande potencial na previsao da geragao fotovoltaica, permitindo analises mais precisas e
robustas. Porém, antes de implementar essas abordagens, é essencial avaliar suas vantagens

e limitacgoes e identificar as estratégias mais eficazes.

Este trabalho tem como objetivo realizar uma revisao da literatura sobre a aplicacao
de redes neurais LSTM na previsao da geracao fotovoltaica. Serdo abordados temas desde
a analise de dados e pré-processamento até o funcionamento do modelo. Dessa forma,
busca-se fornecer um embasamento tedrico sélido para futuras pesquisas e aplicagoes na

area.

A revisao da literatura foi conduzida, principalmente, a partir de artigos cientificos
publicados em bases de dados reconhecidas, como ResearchGate, ScienceDirect e Google
Scholar, além de artigos provenientes de repositorios académicos de instituicoes federais de
pesquisa, como a Universidade Federal do Ceara, por exemplo. Foram utilizadas palavras-
chave como "photovoltaic power", "time series forecasting', "machine learning", "deep
learning'e "LSTM for solar power forecasting'. Para garantir a relevancia dos trabalhos
analisados, em relagdo a redes neurais profundas, foram incluidos quinze artigos publicados
nos ultimos seis anos, e em relagdo a aprendizado de maquina foram utilizados mais
cinco artigos de até treze anos de publicacdo. Artigos muito antigos ou que abordavam
aprendizado de maquina fora do contexto de previsdo foram excluidos. A anéalise foi
realizada comparando diferentes contextos utilizados na previsao da geracao fotovoltaica

com o uso de redes neurais, com foco nos métodos baseados em redes LSTM.

A estrutura do trabalho é organizados nos capitulos seguintes, discutindo os
conceitos fundamentais, para entender o contexto de previsoes de geragao fotovoltaica;
previsao com redes neurais, para analisar o escopo de estudo; resultados, buscando analises

e comparacoes de métodos de previsao; e conclusao, discutindo tendéncias e desafios.
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2 CONCEITOS FUNDAMENTAIS

Para entender o cenario abordado no artigo, é necessario compreender conceitos
basicos do estudo, como o que é energia solar fotovoltaica; como os sistemas que utilizam
dessa tecnologia sao enxergados; como a previsao da geragao impacta eles; o que seria
uma série temporal e o que é aprendizado de maquina. Abordados os contextos, é possivel

entender como redes neurais sao aplicadas no problema.

2.1 ENERGIA SOLAR FOTOVOLTAICA E SUA PREVISAO

A energia solar é uma das principais fontes renovaveis hoje, consequéncia da
tecnologia desenvolvida em volta dos fotovoltaicos, da abundéncia e do potencial que essa
fonte tem para aplicacoes em diferentes escalas. O processo de conversao da luz solar em
eletricidade ocorre devido ao efeito fotovoltaico, fendmeno onde materiais semicondutores,
como o silicio por exemplo, geram uma corrente elétrica em resposta a exposicao a radiacao
solar (1). Esse é o principio de funcionamento das células fotovoltaicas, que por sua vez,

sao base para os modulos solares utilizados em sistemas de geracao de energia.

2.1.1 Funcionamento dos sistemas fotovoltaicos

Os sistemas fotovoltaicos podem ser classificados em sistemas conectados a rede
(grid-tied) e sistemas isolados (off-grid). Nos sistemas grid-tied, a energia gerada pelos
painéis pode ser injetada na rede elétrica, podendo ser utilizada localmente ou enviada
para a concessionaria, permitindo créditos energéticos ao proprietario. Ja os sistemas
off-grid operam de forma independente, geralmente associados a geradores e baterias
para o armazenamento da energia gerada, garantindo fornecimento continuo mesmo nos

periodos onde nao héa incidéncia solar.

A estrutura bésica de um sistema fotovoltaico normalmente inclui os seguintes

componentes:

a) Moédulos fotovoltaicos: compostos por células fotovoltaicas, realizam a conversao

da luz em eletricidade (2).

b) Inversores: convertem a corrente continua (CC) gerada pelos painéis em corrente

alternada (CA), compativel com a rede elétrica e dispositivos usuais.

c¢) Sistemas de armazenamento: utilizam baterias para armazenar a energia exce-

dente, permitindo uso posterior em momentos de baixa geracao.

d) Medidores e sistemas de monitoramento: acompanham o desempenho do sistema,

otimizando sua operacao e manutencao.

e) Sistemas de Gerenciamento: sistemas fotovoltaicos, principalmente aqueles com

Sistemas de Armazenamento de Energia em Baterias (BESS - Battery Energy
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Storage System), possuem abordagens para realizar o controle da rede, sendo
essas o Sistema de Controle de Poténcia (PCS - Power Control System), Sistema
de Gerenciamento de Baterias (BMS - Battery Management System) e Sistema
de Gerenciamento de Energia (EMS - Energy Management System) (3).

A eficiéncia de um sistema fotovoltaico depende de fatores como irradiancia solar,
temperatura ambiente, velocidade do vento ao longo do dia, angulo de inclinacao dos
painéis e possiveis sombreamentos. Assim, prever com precisao a geragao ao longo do

tempo ¢ fundamental para otimizar a operagao destes sistemas.

2.1.2 Importancia da previsao de geracao fotovoltaica

A geracao fotovoltaica é, por natureza, intermitente, ja que depende de condigoes
atmosféricas variaveis, como, além das ja apontadas, precipitacao, cobertura de nuvens, e
outros fatores meteorolégicos (4). Essa alta variabilidade impacta diretamente a estabili-
dade dos sistemas elétricos, especialmente em microrredes e redes elétricas inteligentes
(smart grids), onde a juncao de fontes renovéveis exige estratégias eficientes de controle e

gerenciamento de energia.

A previsao precisa da geracao fotovoltaica possibilita uma melhor gestao da operacao
da rede elétrica, otimizacao de armazenamento de energia, redugao de custos operacionais e
maior confiabilidade. J& que nos permite maior eficiéncia na alocacao de recursos, podendo
garantir equilibrio entre compra e venda de energia, ou auxiliar no controle de carga e
descarga de baterias, por exemplo, além de minimizar os impactos da intermiténcia na

estabilidade da rede elétrica.

Além dos modelos estatisticos classicos, modelos baseados em inteligéncia artificial,
especialmente aprendizado profundo, tém sido cada vez mais aplicados para melhorar a
previsao da geracao fotovoltaica, permitindo maior precisao na estimativa da producao
energética. Essas técnicas sao fundamentais para garantir um melhor uso dessa energia e

permitir a expansao sustentavel das fontes renovaveis no cenario energético mundial.

2.1.3 Séries Temporais e Previsoes

A previsdo de geragao solar é um desafio complexo, isso devido a alta variabilidade
que esta exposta. Em tal situacao, as séries temporais desempenham o papel fundamental
de fornecer contexto, ja que representam visualiza¢Oes historicas de padroes. Técnicas
que utilizam inteligéncia artificial buscam aprimorar o entendimento desses padroes e
projetar estimativas para o futuro, realizando a predi¢ao da geracao fotovoltaica, tornando

0s sistemas mais robustos.

Uma série temporal é uma sequéncia de informagoes na mesma escala ao longo
do tempo, onde a varidvel alvo da previsao, de forma generalizada, é influenciada por

sazonalidades, tendéncias e ruidos. A série é considerada como tendo uma tendéncia
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quando ha uma mudanca que evolui lentamente ao longo do tempo. Ela possui uma
componente sazonal quando tem movimentos ciclicos padronizados. E o ruido, seria o que

resta dela, caso as outras componentes citadas sejam removidas (5).

Quando a série temporal nao apresenta alteragoes nas suas propriedades estatisticas
ao longo do tempo, como média, variancia e autocovariancia ela é considerada estacionaria.
Em casos contrarios, e mais comuns, ela é nao-estacionaria. Normalmente, quando héa

sazonalidade e tendéncia, como no caso da geracao solar, ela apresenta nao-estacionaridade.

Na geracao fotovoltaica, a série temporal representa a poténcia gerada ao longo
do tempo, sendo impactada pelos fatores ja mencionados, que em certos casos, podem
ser usados como variaveis de entrada do algoritmo de previsao. A andlise destas séries
permite entender e capturar os padrdes recorrentes na geracao de energia, o que facilita a

construcao de modelos preditivos mais precisos.

Para obter previsoes precisas, diversos métodos de modelagem de séries temporais
podem ser aplicados, sendo as redes neurais profundas, ou seja, redes neurais que utilizam

do conceito de aprendizado profundo, uma das abordagens mais promissoras.

2.2 FUNDAMENTOS DE APRENDIZADO DE MAQUINA

Aprendizado de maquina (Machine Learning) é uma area da inteligéncia artificial,
que busca modelos computacionais capazes de aprender padroes a partir de dados. Nao
necessariamente tendo que seguir regras pré-definidas, esses sistemas usam os dados
historicos para melhorar seu desempenho no decorrer do tempo, ficando cada vez mais

precisos em suas previsoes (6).

O funcionamento basico de um aprendizado de maquina é construido a partir de
trés pilares principais, primeiramente os Dados, que sao as informacoes usadas para treinar
e validar o modelo; o segundo pilar é o Modelo, que é a representacao computacional que
captura os padroes desses dados; por fim o Algoritmo, que é o método usado para treinar

o modelo (Regressao Linear, Arvores de Decisdo, Redes Neurais, entre outros).

Além disso, vale ressaltar que existem trés tipos de aprendizado de méquina.
Aprendizado Supervisionado, onde o modelo é treinado com dados rotulados, ou seja,
cada entrada tem uma saida definida; Aprendizado Nao-Supervisionado, onde o modelo é
treinado com dados nao rotulados, sendo assim, busca identificar padroes ou agrupamentos
nos dados; e por ultimo, Aprendizado por Reforco, onde o modelo aprende por tentativa e

erro, recebendo resposta com base em suas acoes.

Os modelos de aprendizado de maquina passam por um treinamento. Para redes
neurais, e para a previsao de geracao solar, é muito comum treinamentos supervisionados.
Usando essa técnica, para questoes de validagdo, o mais praticado é um processo onde

os dados sao divididos em bancos de treino, validagao e teste. Os dados de treino serao
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aqueles que o modelo conseguird observar e se adaptar, os de validagao serdo aqueles
usados para averiguar se o modelo consegue generalizar bem as informagoes, e os de teste
sao aqueles que o modelo nunca chegou a ver, e serao usado para averiguar seu desempenho
de fato. A quantidade de dados em cada grupo pode variar de acordo com a quantidade
de dados totais, e com o contexto do problema. Para saber o desempenho do modelo,
sao usadas métricas de erro. A Figura 2 indica como o banco de dados é dividido para

treinamento neste processo.

Figura 2 - Divisao de Dados

- ™y
Banco de Dados
\_ ~
- ™
5 de |Dados d
Dados de Treino IS;T&WI st
W -

Fonte: Autor.

2.2.1 Meétricas de Erro

Modelos de aprendizado de maquina, sdo avaliados a partir de alguma métrica
de erro, ou seja, uma fungao de perda (7). Para definir a fungao de perda, cada métrica
deve ser escolhida com cuidado para cada tipo de cenario, as mais comuns para casos de

regressao sao:

a) Erro Médio Absoluto (MAE - Mean Absolute Error)

b) Erro Quadréatico Médio (MSE - Mean Squared Error)

¢) Raiz do Erro Quadratico Médio (RMSE - Root Mean Squared Error)

)
)
)
d) Erro Percentual Absoluto Médio (MAPE - Mean Absolute Percentage Error)
Normalmente, func¢oes de perda retornam um valor que indica o quao bem um de-
terminado algoritmo de aprendizado de méaquina consegue resolver (otimizar e generalizar)
uma tarefa. Para uma situacao de regressao, de forma geral, um valor alto retornado pela
funcao de perda indica que o modelo esta mal otimizado. Por outro lado, um valor baixo

indicaria que o modelo estd bem otimizado e adequado para modelar o conjunto de dados

fornecido. As férmulas das métricas mais populares sao:

O MAE é dado por:

1 .
MAE ==Y |y — g (2.1)
=1
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A férmula do MSE é:

1& R
MSE = n Z(yz — ;) (2.2)
i=1
J4, o RMSE ¢ dado por:
1 n
RMSE = n Z(yz — ;) (2.3)
i=1
Por fim, o MAPE é:
_ Y — Ui
MAPE = =) |=—={ x 100 (2.4)
N5 Y

Em situacoes como previsoes de geracao solar, onde ocorre a intermiténcia, e a
ocorréncia de muitos nimeros de magnitude zero na fun¢ao, o MSE ou sua raiz (RMSE)
sao as métricas de erro mais recomendadas, pois como visto nas férmulas anteriores, o
MSE retorna o erro com base na média, ja o MAE, na mediana. Assim, o MAE pode

ignorar alguns valores de forma em que o treinamento é prejudicado.

2.2.2 Otimizacao x Generalizacao

O modelo ideal é aquele cuja otimizacao consegue manter equilibrio com a genera-
lizacao de dados, ou seja, ¢ o modelo que consegue prever bem os valores de treino e ao

mesmo tempo realizar bem a mesma tarefa para valores de validagao e teste.

Um cendrio comum, para caso o modelo esteja muito otimizado para os valores de
treino, é o retorno de métricas de erro muito baixas para os dados de treino, porém métricas
muito altas para dados de validagao. Isso caracteriza o que é chamado de overfitting,
quando o modelo nao consegue aprender os padroes daquele fendmeno, mas sim decorar

os padroes especificos daqueles dados.

Outro cenario comum, é quando o modelo nao consegue reduzir a métrica de erro
para os dados de treino e teste. Quando isso acontece, usa-se o termo underfitting, quando

o modelo nao tem capacidade de aprender determinados padroes.

O ideal é um modelo entre os dois cenarios extremos, equilibrando a otimizacao e
generalizagao. Quando o modelo apresenta overfitting, normalmente aplica-se regulariza-
¢oes, e quando o modelo apresenta underfitting, o ideal é aumentar sua complexidade. A

Figura 3 indica um diagrama para visualizar esse processo.
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Figura 3 - Melhor Modelo
[ mm }: Generalizagdo { Sttt } Otimizagio _;-

Fonte: Autor.

Esses casos sao os mais comuns, porém ¢é conhecido que underfitting e overfitting
podem se apresentar de outras formas, isso normalmente depende dos tipos de dados

usados e do contexto (8).

2.3 PRINCIPAIS ABORDAGENS PARA PREVISAO

As técnicas de previsao de séries temporais tradicionais sao as chamadas abordagens
estatisticas, atualmente, busca-se aprimorar métodos baseados em aprendizado de maquina
e aprendizado profundo. Nesse contexto, as redes neurais profundas tém se destacado
devido a sua capacidade de capturar padroes mais complexos e relagoes nao lineares entre

variaveis. Algumas das abordagens mais relevantes sdo:

a) Modelos Estatisticos Tradicionais (9):

1. Médias moveis e suavizacao exponencial: técnicas simples que proje-

tam valores futuros com base na média ponderada dos valores passados.

2. AutoRegressive Integrated Moving Average (ARIMA): modelo
estatistico amplamente utilizado para séries temporais estacionarias, base-
ado na combinagao de autoregressao, diferenciagdo e médias moveis (O
modelo ARIMA também apresenta outras formas como o Autoregressive
Movwing Average (ARMA), sem capacidade de diferenciagao e o Seasonal
Autoregressive Integrated Moving Average (SARIMA), com a capacidade

extra de lidar com sazonalidades).
b) Modelos Baseados em aprendizado de méaquina (10):

1. Random Forest Regressor: Modelo projetado pensando em arvores de

decisoes, que utiliza um conjunto de arvores para realizar a previsao.

2. Support Vector Regression: Método baseado em Méaquinas de Vetores
de Suporte (SVM - Support Vector Machine), buscando encontrar uma

funcao de regressao para prever.

¢) Modelos Baseados em aprendizado profundo (11):
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1. Redes Neurais Recorrentes (RNNs): projetadas para lidar com dados

sequenciais, o que permite que o modelo aprenda dependéncias temporais.

2. Long Short-Term Memories (LSTMs): uma versao melhorada das
RNNs, capaz de capturar padroes de longo prazo em séries temporais,

sendo amplamente utilizada na previsao de geracao solar.

A escolha de qual abordagem usar depende da complexidade dos dados, da necessi-
dade de interpretacao dos resultados e dos requisitos computacionais do sistema utilizado.
Porém, dentre as redes neurais profundas, para determinadas situagoes, as arquiteturas
baseadas em LSTM, tém demonstrado um desempenho superior na previsao da geragao

fotovoltaica, fornecendo estimativas mais precisas e robustas.

O estudo e aprimoramento desses modelos sao essenciais para garantir melhores

previsoes, o que contribui para a estabilidade e eficiéncia dos sistemas de energia renovavel.
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3 REDES NEURAIS NA PREVISAO DE GERACAO SOLAR

A previsao da geracao fotovoltaica apresenta desafios devido a sua natureza esto-
castica e dependéncia de varidveis ambientais. Modelos menos complexos, como regressoes
estatisticas, diversas vezes nao conseguem capturar padroes mais dificeis e variagoes
nao-lineares nos dados. Neste contexto, redes neurais aparecem como uma abordagem
promissora, ja que permitem a extragao mais eficiente de padrdes e relagoes entre as

variaveis envolvidas na previsao.

Uma rede neural padrao, consiste em varias unidades de processamento conectadas
entre si, onde cada uma, quando recebe uma entrada, produz um valor de saida relacionado
a uma determinada funcao de ativagdo. Essas unidades conectadas sao chamadas de
neuronios, e podem ser organizadas em redes mais complexas, que sao frequentemente
utilizadas para aproximar fungoes (12). A Figura 4 mostra como é uma rede neural simples,

com as representacoes de neuronios, pesos, viéses e camadas.

Figura 4 - Representacao de Pesos, Veises e Fungdes de Ativagao

Viés

v

Peso Entrad /'
Entrada fsoEn o Z

Peso Saida

-K’fy »|  Saida
Camada de Entrada Camada Oculta Camada de Saida

Fonte: Autor.

Uma rede neural pode ser considerada simples (ou "vanilla"), caso contenha uma, ou
uma quantidade muito pequena de camadas computacionais na qual um ou mais neurénios
operam. Porém, é a sequéncia de varias camadas computacionais que fornece profundidade

a rede neural, formando o conceito de aprendizado profundo (deep learning).

O aprendizado profundo, em sua esséncia, é uma subclasse das redes neurais. As
ideias e conceitos fundamentais do aprendizado profundo nascem de pesquisas realizadas
no campo da neurociéncia. E importante entender também, que os conceitos associados
a redes neurais e aprendizado profundo nao visam imitar o funcionamento do cérebro,
apenas se inspiram em conceitos abstratos e complexos, relacionados a funcionalidade do

6rgao humano.
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3.1 FUNDAMENTOS DE REDES NEURAIS

Como apontado anteriormente, as redes neurais sdo compostas por diversas camadas

interconectadas, de forma geral essas camadas podem ser divididas em:

a) Camadas de Entrada: responséveis por receber os dados brutos;

b) Camadas Ocultas: realizam a extracao de caracteristicas e transformacao

dos dados por meio de neurdnios conectados e fungoes de ativagao;

¢) Camadas de Saida: produzem a previsao final, que pode ser um valor continuo

ou categorico.

A Figura 5 representa como é uma rede neural um pouco mais complexa, demons-
trando que os nimeros de neuronios por camadas pode se variado, assim como quantidade

de camadas ocultas.

Figura 5 - Representacao Simplificada de uma Rede Neural

Camada de Entrada Camada Oculta 1 Camada Oculta 2 Camada de Saida

Fonte: Autor.

As redes neurais sofrem um processo de otimizagao, assim como ja apontado, elas

passam por um treinamento de aprendizado, que contém os elementos abordados a seguir.

3.1.1 Retropropagacao

Essas redes funcionam com base em pesos e vieses, valores entre as camadas, que
sao otimizados e usados para generalizar os dados e criar predi¢oes. Nesses sistemas, usa-se
um conceito chamado de retropropagacao (backpropagation) para buscar a otimizacao, ele

consiste em:

a) Propagacao Direta (Forward Pass): os dados de entrada passam pela

rede, camada por camada, até gerar uma saida.
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b) Célculo do Erro: a saida da rede é comparada com o valor real e um erro é

calculado (por exemplo, com a fun¢ao de erro MSE ou MAE).

¢) Calculo dos Gradientes: através da diferenciacao da funcao de erro, os

gradientes sao calculados para indicar como os pesos devem ser ajustados.

d) Atualizagdo dos Pesos: utilizando um otimizador (como o modelo de Esti-
mativa Adaptativa de Momento (Adam - Adaptive Moment Estimation), por
exemplo), os pesos sdao ajustados de acordo com a diregdo e magnitude do

gradiente.

e) Repetigao: o processo se repete por vérias épocas até que o erro seja minimi-

zado.

3.1.2 Gradiente Descendente

Os célculos dos gradientes sao uma parte vital da operacao, e a utilizagao desse
conceito foi o que possibilitou o ressurgimento das redes neurais no séculos passado. O
gradiente consiste no vetor resultante da derivada parcial das dimensoes da funcao de
erro da previsao, esse vetor sempre aponta para o sentido de crescimento da curva. J&
o gradiente descendente nada mais é do que o vetor no sentido inverso do gradiente,

apontando sempre para o minimo.

Com o objetivo final do treinamento sendo minimizar o erro e otimizar o modelo,
sao constantemente reajustados os pesos e os vieses da rede, a partir da regra da cadeia.

Para isso, usa-se o gradiente descendente.

3.1.3 Funcoes de Ativacao

As fungoes de ativacao sao um elemento fundamental nas redes neurais, elas sao
responsaveis por decidir se um neurénio serd ou nao ativado, baseado na relevancia da
informacao recebida por ele. Algumas das fungbes de ativagdo mais comuns sao rectified

linear unit (ReLU), tangente hiperbdlica (tanh) e sigmoide (13).

a) Rectified Linear Unit (ReLU): A funcdo ReLU apresenta simplicidade e efi-
ciencia computacional, evita desaparecimento do gradiente e acaba sendo muito
utilizada em redes neurais profundas. Porém, ela pode causar a inatividade dos
neurdnios caso a entrada seja negativa para todo o treinamento. A Figura 6

representa a funcao ReLLU no plano cartesiano, além disso sua féormula é:

f(x) = max(0, z) (3.1)
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Figura 6 - Representagao da Fun-
cao ReLU
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Fonte: Autor.

b) Tangente Hiperbdlica (tanh): A funcdo tanh tem capacidade de centralizar
a saida em torno de zero, podendo acelerar o treinamento. Porém, ainda pode
sofrer com o problema do desaparecimento do gradiente em redes neurais muito
profundas. A Figura 7 representa a fung¢ao tanh no plano cartesiano, assim sua
formula é:

o — o7

et +e %

f(z) = tanh(x) = (3.2)

Figura 7 - Representagao da Fun-

¢ao Tanh
fix)
-~
1 B tan
» X

10 0 10

Fonte: Autor.
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¢) Sigmoide: A funcao sigmoide é util para problemas de classificagdo binaria,
onde a saida pode ser interpretada como uma probabilidade, esta formula é
usada, assim como a tanh, na construcao da LSTM. Porém, também sofre com
o desaparecimento do gradiente, além disso, nao apresenta saidas centralizadas
em zero, o que pode tornar o treinamento mais lento. A Figura 8 representa a

funcao sigmoide no plano cartesiano, sendo sua formula representada como:

1

= — 3.3
14e® (3:3)

f(z) = o(x)

Figura 8 - Representagao da Fun-
¢ao Sigmoide

fix)
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Fonte: Autor.

3.2 FUNDAMENTOS DE APRENDIZADO PROFUNDO

O aprendizado profundo, como abordado anteriormente, é uma subarea do apren-
dizado de maquina que utiliza redes neurais com multiplas camadas para processar e
aprender padroes complexos dos dados. Diferente dos métodos tradicionais, as redes que
aplicam aprendizado profundo sdo capazes de aprender representacoes hierarquicas dos
dados, tornando-se mais eficientes para tarefas como classificacdo, reconhecimento de

padroes e previsao de séries temporais (14).

A evolugao do aprendizado profundo foi impulsionada por avancos computacionais,
maior disponibilidade de dados e melhorias nos algoritmos de treinamento. Inicialmente,
redes neurais profundas enfrentavam dificuldades devido ao problema do "desapareci-

mento/explosdao do gradiente", que dificultava a convergéncia dos modelos.

O desenvolvimento de técnicas como normalizagao por lotes, fungoes de ativacao
aprimoradas e otimizadores avangados possibilitou o treinamento de redes mais eficientes

e estaveis.
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3.3 MODELOS DE APRENDIZADO PROFUNDO PARA PREVISAO

Como citado anteriormente, alguns dos modelos mais abordados sao as RNNs e as
LSTMs, assim, ¢ feita uma anélise mais especifica sobre os modelos. Quais seus problemas,

suas diferencas e funcionamentos (15).

3.3.1 Redes Neurais Recorrentes (RINNs)

As redes neurais recorrentes (RNNs) foram feitas para modelar dados em sequéncia,
j& que conseguem manter uma memoria dos estados anteriores por meio de ligacoes recor-
rentes (realimentagdes). Diferente das redes neurais tradicionais, as RNNs compartilham
pesos ao longo do tempo, permitindo capturar essas dependéncias temporais (16). A Figura
9 mostra uma representacao de uma rede neural recorrente, e como sua realimentacao

pode ser apresentada.

Figura 9 - Representacao Simplificada de uma Rede Neural Recor-
rente
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Fonte: Autor.

3.3.1.1 Explosdao/Desaparecimento do Gradiente

Explosao de gradiente é o nome dado a um problema muito comum em redes
neurais recorrentes. Como essa arquitetura permite que amostras passadas influenciem as
saldas, ela depende da propagacao dos gradientes ao longo do tempo. No entanto, durante
o backpropagation, se os pesos da rede forem muito grandes ou houver muitas camadas,
os gradientes podem ser multiplicados repetidamente por valores elevados. Isso pode fazer
com que os gradientes cresgam exponencialmente, assumindo valores extremamente altos,

prejudicando o treinamento do modelo.

Por outro lado, caso os pesos sejam mantidos entre zero e um, ocorre um outro
problema, chamado de desaparecimento do gradiente, onde ele é reduzido exponencialmente
até se tornar insignificante. Isso impede que camadas anteriores da rede aprendam de

forma eficaz, dificultando a convergéncia do modelo (17).
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Diferentes abordagens podem ser usadas para mitigar esses problemas. Algumas to-
pologias como LSTMs foram criadas para evitar essas situacoes, ja que incluem mecanismos

internos que controlam melhor a propagacao da informagao ao longo do tempo.

3.3.2 Long Short-Term Mermory (LSTMs)

Para superar as limitagdes das RNNs convencionais, foram desenvolvidas arquitetu-
ras como Long Short-Term Memory (LSTM). Essas redes utilizam mecanismos de portas
(gates) que controlam as informagoes, permitindo que a rede aprenda relagoes de curto e

longo prazo de maneira eficiente (18). A Figura 10 mostra como é uma célula LSTM.

Figura 10 - Representacao Simplificada de uma LSTM
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Fonte: Autor.

A LSTM possui células de memoria que regulam a entrada, saida e esquecimento de
informacoes, sendo amplamente utilizada na previsao de séries temporais. Sua estrutura

pode ser separada em trés portoes principais (19):

a) Porta de Esquecimento (Forget Gate): Decide quais informagoes do estado
da célula anterior serao descartadas. Além disso, utiliza uma funcao sigmoide
para gerar um valor entre 0 e 1, onde 0 indica esquecimento completo e 1 indica
retengao total. A Figura 11 indica os componentes da célula LSTM que formam

a Porta de Esquecimento.
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Figura 11 - Forget Gate
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Fonte: Autor.

b) Porta de Entrada (Input Gate): Determina quais novas informagoes serao

adicionadas ao estado da célula. Sendo composta por duas partes, uma para

decisao de valores a serem atualizados, que utiliza uma funcao sigmoide, e outra

onde sao gerados novos valores candidatos para atualizacao, que utiliza uma

funcao de tangente hiperbdlica. A Figura 12 indica os componentes da célula

LSTM que formam a Porta de Entrada.

Figura 12 - Input Gate
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Fonte: Autor.

c) Porta de Saida (Output Gate): Determina qual serd a préxima saida

oculta. Primeiramente, uma func¢ao sigmoide decide quais partes da memoria

serao usadas. Posteriormente, o estado da célula é passado por uma funcgao

de tangente hiperbdlica e modulado pelo resultado da sigmoide. A Figura 13

indica os componentes da célula LSTM que formam a Porta de Saida.
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Figura 13 - Output Gate
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Fonte: Autor.

3.4 TECNICAS COMPLEMENTARES PARA MELHORIA DE PREVISAO

Em previsoes, redes neurais e aprendizado de maquina no geral, o tratamento de
dados é fundamental para um bom treinamento e resultado, sendo muitas vezes o principal
fator contribuinte para o sucesso do projeto. Os dados devem ser sempre analisados e
entendidos antes mesmo de iniciar a criacao e treinamento do modelo de inteligéncia
artificial. Usando métodos e andlises é possivel, tratar e modelar o banco de dados para
melhores respostas (20). A seguir, tem-se algumas técnicas comuns em aprendizado

profundo para melhoria de previsoes.

3.4.1 Pré-processamento de Dados

No pré-processamento de dados, visando um treinamento de rede neural, é de
boa pratica a realizagao de duas técnicas, principalmente, a primeira é a engenharia de

variaveis (feature engeneering), ja a segunda é a normalizagao das varidveis de entrada.

Feature engeneering é o processo de analise e escolha das melhores variaveis para
serem usadas na entrada do modelo. Ou seja, usa-se técnicas visando encontrar as varidveis
de entrada mais eficientes para a previsao da variavel alvo. Buscando quais fatores melhor
explicam o evento que se quer prever, isso pode ser feito analisando as correlacoes entre os
valores. Nesse processo é importante entender que o objetivo é usar o menor niimero de

variaveis possivel, assim busca-se evitar a "maldi¢cao da dimensionalidade".

A normalizagao, por outro lado é uma técnica que faz todas as variaveis usadas no
treinamento assumirem a mesma escala, normalmente entre zero e um, de forma em que
os modelos computacionais nao acabem recebendo dados enviesados. Ou seja, evita que o
modelo acabe implementando preferéncia sobre certos atributos com escalas diferentes, ja

que em certos casos, podem acabar recebendo "pesos'.
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3.4.1.1 Maldicao da Dimensionalidade

A maldicdo da dimensionalidade é um fen6meno que acontece em problemas de
analise de dados e aprendizado de maquina. Quando o niimero de variaveis ¢ muito grande
em relacdo ao numero de amostras, é gerada uma série de desafios computacionais e

estatisticos. O que impacta na eficiéncia e na eficacia dos modelos.

O termo refere-se ao comportamento nao muito intuitivo de dados em espacos
com muitas dimensdes. Quanto mais o nimero de dimensdes aumenta, mais o volume do
espago cresce; mais os dados tornam-se esparsos, mais dificuldade ha na generalizagao de

modelos e mais as distancias entre pontos perdem significado (21).

3.4.2 Variaveis Endégenas de Séries Temporais

Outra técnica, é a extracao de variaveis endogenas da série temporal, ou seja,
a obtencao de dados a partir da prépria série para melhorar o contexto do problema,
fornecendo mais informagoes para a previsao. Dentre essas variaveis, pode-se destacar
algumas mais comuns, como amostras atrasadas, variaveis temporais, variaveis de Fourier

e variaveis estatisticas.

a) As amostras atrasadas: Mais comumente chamadas de "lags", sdo valores
no passado das variaveis de entrada, que possuem uma alta correlacao com a
variavel que se dejesa prever. Ao utilizar-se desses valores, é possivel o acesso as
informagoes nao somente imediatamente anteriores aos valores lidos em tempo
presente, para prever as proximas amostras, mas também valores em passados
mais distantes. A imagem a seguir (Figura 14) ilustra como essas varidveis
sao construidas, considerando um exemplo em que trés lags sao utilizados para

prever a variavel de saida.

Figura 14 - Previsao de Variavel Usando Trés Lags
na Entrada
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Fonte: Autor.
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b) Varidveis temporais: Sao basicamente dados relacionados ao tempo, retirados
da propria série, que sao explicitados e inseridos na entrada do modelo, esses
dados podem ser horas do dia, dia do ano, més do ano, estacao do ano, entre
outros. Elas, assim como as variaveis de Fourier, sdo normalmente usadas para

lidar com sazonalidades do problema.

¢) Varidveis de Fourier: Sao atributos obtidos a partir da decomposi¢ao da
série temporal com o uso da transformada de Fourier. Onde sdo obtidas as
frequéncias mais relevantes para a composicao da série e aplicadas a ondas
senoidais, capazes de explicar o comportamento da funcdo. Geralmente, sao
usadas para lidar com sazonalidades, como as variaveis temporais, e também

com tendéncias, como as variaveis estatisticas.

d) Varidveis estatisticas: Sao varidveis obtidas a partir de valores estatiticos da
série temporal, como média, desvio padrao e mediana, por exemplo. Comumente,
sao aplicadas janelas méveis, onde sdo feitos esses clculos. E normal o uso de
mais de uma janela, com periodos diferentes, assim é possivel captar os valores
estatisticos moéveis para diferentes intervalos de tempo, analisando diferentes

tendéncias na série.

3.4.3 Meétodos de Regularizacao

Em aprendizado de maquina, e em aprendizado profundo, principalmente, ocorrem
situacoes onde o modelo nao aprende corretamente, ele decora valores. Ou seja, em redes
neurais sempre é procurado o modelo que melhor equilibra otimizacao e generalizacao,
encontrando os melhores valores, porém capaz de generalizar esse contexto para situagoes
onde nao ocorreu o treinamento. Em aprendizados supervisionados, se o modelo nao
aprende corretamente, é possivel que ocorra o overfitting, para resolver o problema, aplica-se
técnicas de regularizagdo no modelo. No estado de overfitting a rede tem muita capacidade
de otimizagao, porém pouca de generalizacao, e as técnicas de regularizagao proporcionam

isso para ela.

E conhecido que aprendizado profundo necessita de muitos dados para ter um
bom treinamento, alguns bancos de dados nao possuem tanta informagao. Quando isso
acontece, para realizar a regularizacao é implementada uma técnica chamada de Aumento
de Dados (data augmentation), que é a criagdo de mais valores, com caracteristicas da
série original para melhora do treinamento do modelo (22). Outras técnicas comuns de
regularizagao, principalmente em modelos LSTM, sao validacao cruzada (cross validation),
parada antecipada (early stopping), adicao camadas de dropout, e adicao de regularizacao
L1 e L2

A validacao cruzada é a divisdao o conjunto de dados em varios subconjuntos,

treinando e testando o modelo em diferentes combinagoes. Isso faz com que o treinamento
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nao dependa de uma parte especifica do grupo de dados. O early stopping é a interrupcao
do treinamento quando o desempenho no conjunto de validagao para de melhorar. A
camada de dropout é uma camada no modelo que desativa aleatoriamente neurtnios
durante o treinamento, impedindo que a rede dependa de neurdnios especificos para prever.
E, as regularizacoes L1 e L2 adicionam penalidades aos pesos da rede para evitar valores
extremos. Onde L1 penaliza o valor absoluto dos pesos e L2 penaliza o quadrado dos

pesos.

E importante mencionar que, um dos modelos mais comuns de validacdo cruzada é
o "k-fold", onde o conjunto de dados de treino e validagdo é dividido em varios lotes (ou
"pastas'). A cada rodada de treinamento, uma pasta é usada para valida¢do, enquanto as
outras sao utilizadas para treino. No entanto, para séries temporais, esse método nao pode
ser aplicado. Isso porque, ao dividir os dados dessa forma, pode ocorrer vazamentos, ou seja,
o modelo poderia usar informagdes futuras para prever o passado, o que comprometeria a

previsao. A Figura 15 mostra o método comum de aplicar a validacao cruzada (método

k-fold).

Figura 15 - Exemplo de Validagao K-Fold
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Fonte: Autor.

No caso da previsao de geracao solar, os métodos mais usados de validacao cruzada

sao a 'janela expansiva'e a "janela mével".
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A janela expansiva é indicada quando se deseja preservar o contexto temporal da

série desde o seu inicio, capturando o maximo de padroes possiveis ao longo do tempo. Na

Figura 16, indica-se um exemplo do método de janela expansiva.

Figura 16 - Exemplo de Validacao com Janela Expansiva

Dados de Treino e Validagio D"T"E‘::e
Rodada 1 I
Rodada 2 1
Rodada 3 Pasta de Treino Test :
Rodada 4 e I

Fonte: Autor.

Ja a janela madvel é preferida quando a prioridade é maior eficiéncia computacional
e quando padroes muito antigos nao tém tanta importancia para a previsao atual. A

Figura 17 mostra um exemplo do método de janela moével para a validagao cruzada.

Figura 17 - Exemplo de Validagdo com Janela Mével

Dados de

Dados de Treino e Validagao =

Rodada 1

Rodada 2

Rodada 3

Fonte: Autor.
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4 ANALISE DE RESULTADOS

Com o objetivo de comparar o desempenho das redes LSTM na previsao da geracao
fotovoltaica com outras abordagens, foram analisados quatro estudos que aplicam diferentes
metodologias para previsao de irradiancia solar. A escolha destes trabalhos foi baseada na

relevancia das abordagens propostas e na utilizagdo de métricas de avaliacdo comparaveis,
como o RMSE.

Além disso, é importante mencionar que no estudo de Alzahrani et al. (26) a
irradiancia foi registrada usando um piranémetro LI-200S a cada milissegundo, em seguida,
foi calculada a média em um periodo de 10 milissegundos, sendo esse o passo da previsao.

Todos os outros estudos usam o passo de uma hora.

Yu, Cao e Zhu (23) investigaram a previsao da irradidncia em trés cidades diferentes,
sob condigoes climaticas complexas. Para a entrada do modelo utilizaram onze variaveis
climaticas, como tipo de nuvem; temperatura; humidade relativa; velocidade do vento;
entre outras. Eles demonstraram que a LSTM superou modelos tradicionais, como o
ARIMA; modelos de aprendizado de maquina como o SVR; e outros varios modelos.
Alcangando uma Raiz do Erro Quadratico Médio (RMSE) de 45,84 W/m? em Atlanta,
41,37 W/m? em Nova lorque e 66,69 W/m? no Havai. Esses resultados sugerem que a

LSTM é eficaz em diferentes contextos geograficos e climaticos.

Qing e Niu (24) também mostram a eficicia da LSTM na previsao horaria da
irradidncia solar utilizando dados meteorologicos. Como entrada foram usadas trés variaveis
temporais, como més; dia do més e hora do dia, além de seis variaveis exdgenas, como
temperatura; humidade; visibilidade; velocidade do vento; entre outras. Obtiveram o
RMSE de 122,7 W/m?, significativamente inferior ao de modelos baseados em regressao
linear, que apresentam RMSE de 195,8 W/m?. Esse estudo destacou a importancia de
usar dados meteorolégicos como variaveis de entrada dos modelos para melhorar a precisao

das previsoes.

Mukherjee, Ain e Dasgupta (25) exploraram redes neurais profundas para prever a
irradidncia solar com base em tendéncias histéricas e concluiram que a LSTM obteve maior
precisao do que modelos de redes neurais artificiais comuns. Para a entrada utilizaram
duas variaveis temporais como hora e més, mais oito variaveis exdgenas climaticas, como
temperatura; humidade relativa; velocidade do vento; entre outras. E obtiveram RMSE
de 57,249 W/m? comparado ao RMSE de 68,051 W/m? das redes comuns. Assim, foi

destacada sua capacidade de capturar padroes temporais complexos.

Por fim, Alzahrani et al. (26) comparam redes LSTM com modelos de redes neurais
diretas e modelos SVR. Para a entrada do modelo utlizaram variaveis end6genas de Fourier
e variaveis climaticas como irradiancia horizontal global; irradidncia global inclinada e

cobertura de nuvens. Constataram que a LSTM apresentou RMSE normalizado de 0,086,
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enquanto os outros modelos apresentam RMSEs normalizados de 0,16 e 0,11, para as
redes neurais e para o SVR, respectivamente. Esse estudo refor¢cou, mais uma vez, a

superioridade da LSTM em cenarios de alta variabilidade.

Os trabalhos da literatura que apresentam melhores resultados, normalmente
realizam um processo de engenharia de variaveis para escolher quais as melhores entradas
para o modelo. Como aplicado por Qing e Niu e Mukherjee, Ain e Dasgupta, normalmente
essa escolha de variaveis ¢ feita a partir da andlise da correlacdo delas com a variavel alvo,

no caso a irradiancia solar.

Os resultados dos estudos analisados indicam que a LSTM se destaca na previsao da
geracao fotovoltaica devido a sua capacidade de capturar padroes temporais complexos e
nao-lineares, além de identificar bem sazonalidades e tendéncias. No entanto, é importante
ressaltar que o desempenho da LSTM pode variar dependendo das caracteristicas dos
datasets e das condigoes climaticas. Estudos futuros poderiam explorar a combinagao da
LSTM com outras técnicas, como modelos hibridos, para melhorar ainda mais a precisao

das previsoes.
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5 CONCLUSAO

A previsao de geragao solar, vem envoluindo de forma significativa nos tltimos anos,
impulsionada pela inteligéncia artificial, aprendizado de maquina, aprendizado profundo, e
aumento da disponibilidade de dados, principalmente metereolégicos e operacionais. Essa
técnologia avanga de forma muito rapida, com uma série de novos métodos e melhoramentos
sendo estudados e introduzidos no mercado ao longo de um relativamente curto espaco de
tempo. Algumas das tendéncias e desafios hoje em dia em relacao a esse tipo de contexto,

sao abordadas nesse capitulo.

Os métodos tradicionais, como modelos estatisticos, e outras técnicas baseadas
em aprendizado de maquina ainda sao bastante utilizados. Porém, avancos recentes tém
demonstrado que modelos mais sofisticados, baseados em redes neurais profundas, apresen-
tam maior capacidade preditiva (27). Alguns dos avangos recentes podem ser representados

por Modelos Hibridos, redes neurais baseadas em Atencao e uso de Transformers.

Os Modelos Hibridos, sao a jun¢ao de diferentes métodos, como a fusao de redes
neurais Convolucionais com LSTMs ou o uso de combinagoes entre modelos estatisticos e
redes neurais, elas tem permitido melhorar a precisao das previsoes ao explorar diferentes
padroes nos dados. As redes neurais baseadas em Atencao, sdo basicamente redes com o
mecanismo de "Atencao", que tem sido amplamente utilizado para capturar dependéncias
temporais em séries de geracao solar, melhorando a interpretabilidade e a eficiéncia dos
modelos. Por fim, os Transformers, sdo modelos mais complexos que os abordados neste
artigo, que tém mostrado melhor desempenho na previsao de séries temporais, capturando

padroes de longo prazo de maneira mais eficiente que as RNNs e LSTMs tradicionais.

Além disso, apesar destes avancgos, varios desafios ainda precisam ser superados para
tornar a previsao mais precisa e aplicavel em cenarios realistas, como interpretabilidade dos
modelos, necessidade de grandes volumes de dados, generalizacao para diferentes regides e

robustez a condi¢oes extremas.

A interpretabilidade dos modelos, refere-se a questao de que redes neurais profundas
sdao frequentemente consideradas "caixas-pretas', ou seja, ndo se sabe exatamente o que
acontece entre as camadas, somente sao analisados dados de entrada e saida, dificultando
a compreensao das decisoes tomadas. A necessidade de grandes volumes de dados é
constante, pois modelos de aprendizado profundo necessitam de quantidades expressivas
de dados de treinamento, porém a coleta de dados meteorolégicos e operacionais de alta
qualidade ainda é um obstaculo em muitas localidades. A generalizacao para diferentes
regioes chega a ser um desafio pois modelos treinados em um determinado local nem
sempre generalizam bem para outros, devido a diferencas climaticas, geograficas e da
infraestrutura. Por fim, a robustez a condi¢oes extremas é um ponto de atencao, ja que

eventos climaticos atipicos, como tempestades e cobertura de nuvens inesperada, ainda
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representam desafios para modelos preditivos, reduzindo sua confiabilidade.

A previsao de geragao solar continua a evoluir além das redes LSTM, com o avango
de modelos e a integracdo de novas formas de coletar e gerar de dados. No entanto,
desafios como a interpretabilidade, a quantidade de dados e a capacidade de generalizacao
precisam ser resolvidos para aumentar a ado¢ao dessas técnicas em aplicagoes reais. E o
desenvolvimento de modelos hibridos, a utilizacao de Transformers sdo algumas tendéncias

que podem transformar a precisao e a confiabilidade da previsao solar nos préximos anos.
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