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RESUMO

A previsão de geração fotovoltaica é essencial para otimizar a operação de sistemas

elétricos e garantir a gestão eficiente de energia. Nos últimos anos, métodos baseados em

aprendizado de máquina e redes neurais têm sido amplamente utilizados para melhorar

a precisão de tais previsões, o que é fundamental para sistemas com fontes renováveis,

como as microrredes. Este trabalho oferece uma revisão da literatura sobre as técnicas

aplicadas à previsão da geração fotovoltaica, com ênfase em abordagens que utilizam redes

Long Short-Term Memory (LSTM). Além disso, são abordados os principais desafios e

tendências atuais da área, com o objetivo de fornecer uma base teórica sólida para futuras

pesquisas e aplicações.

Palavras-chave: Aprendizado de Máquina; Inteligência Artificial; LSTM; Previsão.



ABSTRACT

The forecasting of photovoltaic generation is essential for optimizing the operation

of electrical systems and ensuring efficient energy management. In recent years, machine

learning and neural network-based methods have been widely used to improve the accuracy

of such predictions, which is crucial for systems with renewable sources, such as micro-

grids. This paper provides a literature review on the techniques applied to photovoltaic

generation forecasting, with an emphasis on approaches using Long Short-Term Memory

(LSTM) networks. Additionally, the main challenges and current trends in the field are dis-

cussed, aiming to provide a solid theoretical foundation for future research and applications.

Keywords: Artificial Intelligence; Forecasting; LSTM; Machine Learning.
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1 INTRODUÇÃO

Desde as últimas décadas, a utilização da energia fotovoltaica tem crescido significa-

tivamente no mundo todo. Vários países passaram a investir e estudar esse tipo de geração

com maior atenção, isso devido à necessidade de transição para fontes renováveis. No Brasil,

esse cenário é particularmente favorável, já que o país apresenta altos índices de incidência

solar, proporcionando grande potencial para a geração dessa energia. Como resultado,

a participação da geração fotovoltaica na matriz energética do país vem aumentando

continuamente, com previsões indicando um crescimento ainda maior nos próximos anos.

A Figura 1 mostra a matriz energética brasileira do Sistema Interligado Nacional, e a

previsão do Operador Nacional do Sistema Elétrico para os próximos anos.

Figura 1 - Matriz elétrica brasileira 2023-
2027

Fonte: Operador Nacional do Sistema
Elétrico. Disponível em:
https://www.ons.org.br/AcervoDigital

DocumentosEPublicacoes/2023-Relatorio

-Anual-acessivel_21032024.pdf

Nota: Relatório Anual Acessível/2023.
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A expansão da energia solar não é limitada somente a usinas de grande porte, mas

também se destaca em sistemas distribuídos, como microrredes e redes isoladas. Nestes

contextos, a gestão eficiente de sistemas de gerenciamento de energia e do fluxo de potência

torna-se indispensável para garantir estabilidade e confiabilidade na operação. Um dos

principais desafios enfrentados nesses sistemas é a alta variabilidade da geração fotovoltaica,

sendo ela, diretamente influenciada por fatores meteorológicos. Para mitigar tal impacto,

técnicas de previsão são amplamente empregadas, já que processos de otimização deste tipo

de sistema sempre devem se orientar a partir de pontos futuros, permitindo a integração

da energia solar com outras fontes de geração e armazenamento de energia, além de reduzir

custos operacionais.

Dentre os diversos métodos de previsão, modelos baseados em aprendizado de

máquina e aprendizado profundo se destacam pela capacidade de capturar padrões com-

plexos em séries temporais. Long Short-Term Memory (LSTMs), que surgiram a partir

de Redes Neurais Recorrentes (RNNs - Recurrent Neural Networks), vem demonstrando

grande potencial na previsão da geração fotovoltaica, permitindo análises mais precisas e

robustas. Porém, antes de implementar essas abordagens, é essencial avaliar suas vantagens

e limitações e identificar as estratégias mais eficazes.

Este trabalho tem como objetivo realizar uma revisão da literatura sobre a aplicação

de redes neurais LSTM na previsão da geração fotovoltaica. Serão abordados temas desde

a análise de dados e pré-processamento até o funcionamento do modelo. Dessa forma,

busca-se fornecer um embasamento teórico sólido para futuras pesquisas e aplicações na

área.

A revisão da literatura foi conduzida, principalmente, a partir de artigos científicos

publicados em bases de dados reconhecidas, como ResearchGate, ScienceDirect e Google

Scholar, além de artigos provenientes de repositórios acadêmicos de instituições federais de

pesquisa, como a Universidade Federal do Ceará, por exemplo. Foram utilizadas palavras-

chave como "photovoltaic power", "time series forecasting", "machine learning", "deep

learning"e "LSTM for solar power forecasting". Para garantir a relevância dos trabalhos

analisados, em relação à redes neurais profundas, foram incluídos quinze artigos publicados

nos últimos seis anos, e em relação a aprendizado de máquina foram utilizados mais

cinco artigos de até treze anos de publicação. Artigos muito antigos ou que abordavam

aprendizado de máquina fora do contexto de previsão foram excluídos. A análise foi

realizada comparando diferentes contextos utilizados na previsão da geração fotovoltaica

com o uso de redes neurais, com foco nos métodos baseados em redes LSTM.

A estrutura do trabalho é organizados nos capítulos seguintes, discutindo os

conceitos fundamentais, para entender o contexto de previsões de geração fotovoltaica;

previsão com redes neurais, para analisar o escopo de estudo; resultados, buscando análises

e comparações de métodos de previsão; e conclusão, discutindo tendências e desafios.
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2 CONCEITOS FUNDAMENTAIS

Para entender o cenário abordado no artigo, é necessário compreender conceitos

básicos do estudo, como o que é energia solar fotovoltaica; como os sistemas que utilizam

dessa tecnologia são enxergados; como a previsão da geração impacta eles; o que seria

uma série temporal e o que é aprendizado de máquina. Abordados os contextos, é possível

entender como redes neurais são aplicadas no problema.

2.1 ENERGIA SOLAR FOTOVOLTAICA E SUA PREVISÃO

A energia solar é uma das principais fontes renováveis hoje, consequência da

tecnologia desenvolvida em volta dos fotovoltaicos, da abundância e do potencial que essa

fonte tem para aplicações em diferentes escalas. O processo de conversão da luz solar em

eletricidade ocorre devido ao efeito fotovoltaico, fenômeno onde materiais semicondutores,

como o silício por exemplo, geram uma corrente elétrica em resposta a exposição à radiação

solar (1). Esse é o princípio de funcionamento das células fotovoltaicas, que por sua vez,

são base para os módulos solares utilizados em sistemas de geração de energia.

2.1.1 Funcionamento dos sistemas fotovoltaicos

Os sistemas fotovoltaicos podem ser classificados em sistemas conectados à rede

(grid-tied) e sistemas isolados (off-grid). Nos sistemas grid-tied, a energia gerada pelos

painéis pode ser injetada na rede elétrica, podendo ser utilizada localmente ou enviada

para a concessionária, permitindo créditos energéticos ao proprietário. Já os sistemas

off-grid operam de forma independente, geralmente associados a geradores e baterias

para o armazenamento da energia gerada, garantindo fornecimento contínuo mesmo nos

períodos onde não há incidência solar.

A estrutura básica de um sistema fotovoltaico normalmente inclui os seguintes

componentes:

a) Módulos fotovoltaicos: compostos por células fotovoltaicas, realizam a conversão

da luz em eletricidade (2).

b) Inversores: convertem a corrente contínua (CC) gerada pelos painéis em corrente

alternada (CA), compatível com a rede elétrica e dispositivos usuais.

c) Sistemas de armazenamento: utilizam baterias para armazenar a energia exce-

dente, permitindo uso posterior em momentos de baixa geração.

d) Medidores e sistemas de monitoramento: acompanham o desempenho do sistema,

otimizando sua operação e manutenção.

e) Sistemas de Gerenciamento: sistemas fotovoltaicos, principalmente aqueles com

Sistemas de Armazenamento de Energia em Baterias (BESS - Battery Energy
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Storage System), possuem abordagens para realizar o controle da rede, sendo

essas o Sistema de Controle de Potência (PCS - Power Control System), Sistema

de Gerenciamento de Baterias (BMS - Battery Management System) e Sistema

de Gerenciamento de Energia (EMS - Energy Management System) (3).

A eficiência de um sistema fotovoltaico depende de fatores como irradiância solar,

temperatura ambiente, velocidade do vento ao longo do dia, ângulo de inclinação dos

painéis e possíveis sombreamentos. Assim, prever com precisão a geração ao longo do

tempo é fundamental para otimizar a operação destes sistemas.

2.1.2 Importância da previsão de geração fotovoltaica

A geração fotovoltaica é, por natureza, intermitente, já que depende de condições

atmosféricas variáveis, como, além das já apontadas, precipitação, cobertura de nuvens, e

outros fatores meteorológicos (4). Essa alta variabilidade impacta diretamente a estabili-

dade dos sistemas elétricos, especialmente em microrredes e redes elétricas inteligentes

(smart grids), onde a junção de fontes renováveis exige estratégias eficientes de controle e

gerenciamento de energia.

A previsão precisa da geração fotovoltaica possibilita uma melhor gestão da operação

da rede elétrica, otimização de armazenamento de energia, redução de custos operacionais e

maior confiabilidade. Já que nos permite maior eficiência na alocação de recursos, podendo

garantir equilíbrio entre compra e venda de energia, ou auxiliar no controle de carga e

descarga de baterias, por exemplo, além de minimizar os impactos da intermitência na

estabilidade da rede elétrica.

Além dos modelos estatísticos clássicos, modelos baseados em inteligência artificial,

especialmente aprendizado profundo, têm sido cada vez mais aplicados para melhorar a

previsão da geração fotovoltaica, permitindo maior precisão na estimativa da produção

energética. Essas técnicas são fundamentais para garantir um melhor uso dessa energia e

permitir a expansão sustentável das fontes renováveis no cenário energético mundial.

2.1.3 Séries Temporais e Previsões

A previsão de geração solar é um desafio complexo, isso devido à alta variabilidade

que está exposta. Em tal situação, as séries temporais desempenham o papel fundamental

de fornecer contexto, já que representam visualizações históricas de padrões. Técnicas

que utilizam inteligência artificial buscam aprimorar o entendimento desses padrões e

projetar estimativas para o futuro, realizando a predição da geração fotovoltaica, tornando

os sistemas mais robustos.

Uma série temporal é uma sequência de informações na mesma escala ao longo

do tempo, onde a variável alvo da previsão, de forma generalizada, é influenciada por

sazonalidades, tendências e ruídos. A série é considerada como tendo uma tendência
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quando há uma mudança que evolui lentamente ao longo do tempo. Ela possui uma

componente sazonal quando tem movimentos cíclicos padronizados. E o ruído, seria o que

resta dela, caso as outras componentes citadas sejam removidas (5).

Quando a série temporal não apresenta alterações nas suas propriedades estatísticas

ao longo do tempo, como média, variância e autocovariância ela é considerada estácionária.

Em casos contrários, e mais comuns, ela é não-estacionária. Normalmente, quando há

sazonalidade e tendência, como no caso da geração solar, ela apresenta não-estacionáridade.

Na geração fotovoltaica, a série temporal representa a potência gerada ao longo

do tempo, sendo impactada pelos fatores já mencionados, que em certos casos, podem

ser usados como variáveis de entrada do algoritmo de previsão. A análise destas séries

permite entender e capturar os padrões recorrentes na geração de energia, o que facilita a

construção de modelos preditivos mais precisos.

Para obter previsões precisas, diversos métodos de modelagem de séries temporais

podem ser aplicados, sendo as redes neurais profundas, ou seja, redes neurais que utilizam

do conceito de aprendizado profundo, uma das abordagens mais promissoras.

2.2 FUNDAMENTOS DE APRENDIZADO DE MÁQUINA

Aprendizado de máquina (Machine Learning) é uma área da inteligência artificial,

que busca modelos computacionais capazes de aprender padrões a partir de dados. Não

necessáriamente tendo que seguir regras pré-definidas, esses sistemas usam os dados

históricos para melhorar seu desempenho no decorrer do tempo, ficando cada vez mais

precisos em suas previsões (6).

O funcionamento básico de um aprendizado de máquina é construido a partir de

três pilares principais, primeiramente os Dados, que são as informações usadas para treinar

e validar o modelo; o segundo pilar é o Modelo, que é a representação computacional que

captura os padrões desses dados; por fim o Algoritmo, que é o método usado para treinar

o modelo (Regressão Linear, Árvores de Decisão, Redes Neurais, entre outros).

Além disso, vale ressaltar que existem três tipos de aprendizado de máquina.

Aprendizado Supervisionado, onde o modelo é treinado com dados rotulados, ou seja,

cada entrada tem uma saída definida; Aprendizado Não-Supervisionado, onde o modelo é

treinado com dados não rotulados, sendo assim, busca identificar padrões ou agrupamentos

nos dados; e por último, Aprendizado por Reforço, onde o modelo aprende por tentativa e

erro, recebendo resposta com base em suas ações.

Os modelos de aprendizado de máquina passam por um treinamento. Para redes

neurais, e para a previsão de geração solar, é muito comum treinamentos supervisionados.

Usando essa técnica, para questões de validação, o mais praticado é um processo onde

os dados são divididos em bancos de treino, validação e teste. Os dados de treino serão
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àqueles que o modelo conseguirá observar e se adaptar, os de validação serão àqueles

usados para averiguar se o modelo consegue generalizar bem as informações, e os de teste

são àqueles que o modelo nunca chegou a ver, e serão usado para averiguar seu desempenho

de fato. A quantidade de dados em cada grupo pode variar de acordo com a quantidade

de dados totais, e com o contexto do problema. Para saber o desempenho do modelo,

são usadas métricas de erro. A Figura 2 indica como o banco de dados é dividido para

treinamento neste processo.

Figura 2 - Divisão de Dados

Fonte: Autor.

2.2.1 Métricas de Erro

Modelos de aprendizado de máquina, são avaliados a partir de alguma métrica

de erro, ou seja, uma função de perda (7). Para definir a função de perda, cada métrica

deve ser escolhida com cuidado para cada tipo de cenário, as mais comuns para casos de

regressão são:

a) Erro Médio Absoluto (MAE - Mean Absolute Error)

b) Erro Quadrático Médio (MSE - Mean Squared Error)

c) Raiz do Erro Quadrático Médio (RMSE - Root Mean Squared Error)

d) Erro Percentual Absoluto Médio (MAPE - Mean Absolute Percentage Error)

Normalmente, funções de perda retornam um valor que indica o quão bem um de-

terminado algoritmo de aprendizado de máquina consegue resolver (otimizar e generalizar)

uma tarefa. Para uma situação de regressão, de forma geral, um valor alto retornado pela

função de perda indica que o modelo está mal otimizado. Por outro lado, um valor baixo

indicaria que o modelo está bem otimizado e adequado para modelar o conjunto de dados

fornecido. As fórmulas das métricas mais populares são:

O MAE é dado por:

MAE =
1

n

n
∑

i=1

|yi − ŷi| (2.1)
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A fórmula do MSE é:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (2.2)

Já, o RMSE é dado por:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (2.3)

Por fim, o MAPE é:

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

∣

× 100 (2.4)

Em situações como previsões de geração solar, onde ocorre a intermitência, e a

ocorrência de muitos números de magnitude zero na função, o MSE ou sua raiz (RMSE)

são as métricas de erro mais recomendadas, pois como visto nas fórmulas anteriores, o

MSE retorna o erro com base na média, ja o MAE, na mediana. Assim, o MAE pode

ignorar alguns valores de forma em que o treinamento é prejudicado.

2.2.2 Otimização x Generalização

O modelo ideal é aquele cuja otimização consegue manter equilíbrio com a genera-

lização de dados, ou seja, é o modelo que consegue prever bem os valores de treino e ao

mesmo tempo realizar bem a mesma tarefa para valores de validação e teste.

Um cenário comum, para caso o modelo esteja muito otimizado para os valores de

treino, é o retorno de métricas de erro muito baixas para os dados de treino, porém métricas

muito altas para dados de validação. Isso caracteriza o que é chamado de overfitting,

quando o modelo não consegue aprender os padrões daquele fenômeno, mas sim decorar

os padrões específicos daqueles dados.

Outro cenário comum, é quando o modelo não consegue reduzir a métrica de erro

para os dados de treino e teste. Quando isso acontece, usa-se o termo underfitting, quando

o modelo não tem capacidade de aprender determinados padrões.

O ideal é um modelo entre os dois cenários extremos, equilibrando a otimização e

generalização. Quando o modelo apresenta overfitting, normalmente aplica-se regulariza-

ções, e quando o modelo apresenta underfitting, o ideal é aumentar sua complexidade. A

Figura 3 indica um diagrama para visualizar esse processo.
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Figura 3 - Melhor Modelo

Fonte: Autor.

Esses casos são os mais comuns, porém é conhecido que underfitting e overfitting

podem se apresentar de outras formas, isso normalmente depende dos tipos de dados

usados e do contexto (8).

2.3 PRINCIPAIS ABORDAGENS PARA PREVISÃO

As técnicas de previsão de séries temporais tradicionais são as chamadas abordagens

estatísticas, atualmente, busca-se aprimorar métodos baseados em aprendizado de máquina

e aprendizado profundo. Nesse contexto, as redes neurais profundas têm se destacado

devido à sua capacidade de capturar padrões mais complexos e relações não lineares entre

variáveis. Algumas das abordagens mais relevantes são:

a) Modelos Estatísticos Tradicionais (9):

1. Médias móveis e suavização exponencial: técnicas simples que proje-

tam valores futuros com base na média ponderada dos valores passados.

2. AutoRegressive Integrated Moving Average (ARIMA): modelo

estatístico amplamente utilizado para séries temporais estacionárias, base-

ado na combinação de autoregressão, diferenciação e médias móveis (O

modelo ARIMA também apresenta outras formas como o Autoregressive

Moving Average (ARMA), sem capacidade de diferenciação e o Seasonal

Autoregressive Integrated Moving Average (SARIMA), com a capacidade

extra de lidar com sazonalidades).

b) Modelos Baseados em aprendizado de máquina (10):

1. Random Forest Regressor: Modelo projetado pensando em árvores de

decisões, que utiliza um conjunto de árvores para realizar a previsão.

2. Support Vector Regression: Método baseado em Máquinas de Vetores

de Suporte (SVM - Support Vector Machine), buscando encontrar uma

função de regressão para prever.

c) Modelos Baseados em aprendizado profundo (11):
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1. Redes Neurais Recorrentes (RNNs): projetadas para lidar com dados

sequenciais, o que permite que o modelo aprenda dependências temporais.

2. Long Short-Term Memories (LSTMs): uma versão melhorada das

RNNs, capaz de capturar padrões de longo prazo em séries temporais,

sendo amplamente utilizada na previsão de geração solar.

A escolha de qual abordagem usar depende da complexidade dos dados, da necessi-

dade de interpretação dos resultados e dos requisitos computacionais do sistema utilizado.

Porém, dentre as redes neurais profundas, para determinadas situações, as arquiteturas

baseadas em LSTM, têm demonstrado um desempenho superior na previsão da geração

fotovoltaica, fornecendo estimativas mais precisas e robustas.

O estudo e aprimoramento desses modelos são essenciais para garantir melhores

previsões, o que contribui para a estabilidade e eficiência dos sistemas de energia renovável.
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3 REDES NEURAIS NA PREVISÃO DE GERAÇÃO SOLAR

A previsão da geração fotovoltaica apresenta desafios devido à sua natureza esto-

cástica e dependência de variáveis ambientais. Modelos menos complexos, como regressões

estatísticas, diversas vezes não conseguem capturar padrões mais difíceis e variações

não-lineares nos dados. Neste contexto, redes neurais aparecem como uma abordagem

promissora, já que permitem a extração mais eficiente de padrões e relações entre as

variáveis envolvidas na previsão.

Uma rede neural padrão, consiste em várias unidades de processamento conectadas

entre si, onde cada uma, quando recebe uma entrada, produz um valor de saída relacionado

a uma determinada função de ativação. Essas unidades conectadas são chamadas de

neurônios, e podem ser organizadas em redes mais complexas, que são frequentemente

utilizadas para aproximar funções (12). A Figura 4 mostra como é uma rede neural simples,

com as representações de neurônios, pesos, viéses e camadas.

Figura 4 - Representação de Pesos, Veises e Funções de Ativação

Fonte: Autor.

Uma rede neural pode ser considerada simples (ou "vanilla"), caso contenha uma, ou

uma quantidade muito pequena de camadas computacionais na qual um ou mais neurônios

operam. Porém, é a sequência de várias camadas computacionais que fornece profundidade

à rede neural, formando o conceito de aprendizado profundo (deep learning).

O aprendizado profundo, em sua essência, é uma subclasse das redes neurais. As

ideias e conceitos fundamentais do aprendizado profundo nascem de pesquisas realizadas

no campo da neurociência. É importante entender também, que os conceitos associados

à redes neurais e aprendizado profundo não visam imitar o funcionamento do cérebro,

apenas se inspiram em conceitos abstratos e complexos, relacionados à funcionalidade do

órgão humano.
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3.1 FUNDAMENTOS DE REDES NEURAIS

Como apontado anteriormente, as redes neurais são compostas por diversas camadas

interconectadas, de forma geral essas camadas podem ser divididas em:

a) Camadas de Entrada: responsáveis por receber os dados brutos;

b) Camadas Ocultas: realizam a extração de características e transformação

dos dados por meio de neurônios conectados e funções de ativação;

c) Camadas de Saída: produzem a previsão final, que pode ser um valor contínuo

ou categórico.

A Figura 5 representa como é uma rede neural um pouco mais complexa, demons-

trando que os números de neurônios por camadas pode se variado, assim como quantidade

de camadas ocultas.

Figura 5 - Representação Simplificada de uma Rede Neural

Fonte: Autor.

As redes neurais sofrem um processo de otimização, assim como já apontado, elas

passam por um treinamento de aprendizado, que contém os elementos abordados a seguir.

3.1.1 Retropropagação

Essas redes funcionam com base em pesos e vieses, valores entre as camadas, que

são otimizados e usados para generalizar os dados e criar predições. Nesses sistemas, usa-se

um conceito chamado de retropropagação (backpropagation) para buscar a otimização, ele

consiste em:

a) Propagação Direta (Forward Pass): os dados de entrada passam pela

rede, camada por camada, até gerar uma saída.
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b) Cálculo do Erro: a saída da rede é comparada com o valor real e um erro é

calculado (por exemplo, com a função de erro MSE ou MAE).

c) Cálculo dos Gradientes: através da diferenciação da função de erro, os

gradientes são calculados para indicar como os pesos devem ser ajustados.

d) Atualização dos Pesos: utilizando um otimizador (como o modelo de Esti-

mativa Adaptativa de Momento (Adam - Adaptive Moment Estimation), por

exemplo), os pesos são ajustados de acordo com a direção e magnitude do

gradiente.

e) Repetição: o processo se repete por várias épocas até que o erro seja minimi-

zado.

3.1.2 Gradiente Descendente

Os cálculos dos gradientes são uma parte vital da operação, e a utilização desse

conceito foi o que possibilitou o ressurgimento das redes neurais no séculos passado. O

gradiente consiste no vetor resultante da derivada parcial das dimensões da função de

erro da previsão, esse vetor sempre aponta para o sentido de crescimento da curva. Já

o gradiente descendente nada mais é do que o vetor no sentido inverso do gradiente,

apontando sempre para o mínimo.

Com o objetivo final do treinamento sendo minimizar o erro e otimizar o modelo,

são constantemente reajustados os pesos e os vieses da rede, a partir da regra da cadeia.

Para isso, usa-se o gradiente descendente.

3.1.3 Funções de Ativação

As funções de ativação são um elemento fundamental nas redes neurais, elas são

responsáveis por decidir se um neurônio será ou não ativado, baseado na relevância da

informação recebida por ele. Algumas das funções de ativação mais comuns são rectified

linear unit (ReLU), tangente hiperbólica (tanh) e sigmoide (13).

a) Rectified Linear Unit (ReLU): A função ReLU apresenta simplicidade e efi-

ciencia computacional, evita desaparecimento do gradiente e acaba sendo muito

utilizada em redes neurais profundas. Porém, ela pode causar a inatividade dos

neurônios caso a entrada seja negativa para todo o treinamento. A Figura 6

representa a função ReLU no plano cartesiano, além disso sua fórmula é:

f(x) = max(0, x) (3.1)
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Figura 6 - Representação da Fun-
ção ReLU

Fonte: Autor.

b) Tangente Hiperbólica (tanh): A função tanh tem capacidade de centralizar

a saída em torno de zero, podendo acelerar o treinamento. Porém, ainda pode

sofrer com o problema do desaparecimento do gradiente em redes neurais muito

profundas. A Figura 7 representa a função tanh no plano cartesiano, assim sua

fórmula é:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.2)

Figura 7 - Representação da Fun-
ção Tanh

Fonte: Autor.
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c) Sigmoide: A função sigmoide é util para problemas de classificação binária,

onde a saída pode ser interpretada como uma probabilidade, esta fórmula é

usada, assim como a tanh, na construção da LSTM. Porém, também sofre com

o desaparecimento do gradiente, além disso, não apresenta saídas centralizadas

em zero, o que pode tornar o treinamento mais lento. A Figura 8 representa a

função sigmoide no plano cartesiano, sendo sua fórmula representada como:

f(x) = σ(x) =
1

1 + e−x
(3.3)

Figura 8 - Representação da Fun-
ção Sigmoide

Fonte: Autor.

3.2 FUNDAMENTOS DE APRENDIZADO PROFUNDO

O aprendizado profundo, como abordado anteriormente, é uma subárea do apren-

dizado de máquina que utiliza redes neurais com múltiplas camadas para processar e

aprender padrões complexos dos dados. Diferente dos métodos tradicionais, as redes que

aplicam aprendizado profundo são capazes de aprender representações hierárquicas dos

dados, tornando-se mais eficientes para tarefas como classificação, reconhecimento de

padrões e previsão de séries temporais (14).

A evolução do aprendizado profundo foi impulsionada por avanços computacionais,

maior disponibilidade de dados e melhorias nos algoritmos de treinamento. Inicialmente,

redes neurais profundas enfrentavam dificuldades devido ao problema do "desapareci-

mento/explosão do gradiente", que dificultava a convergência dos modelos.

O desenvolvimento de técnicas como normalização por lotes, funções de ativação

aprimoradas e otimizadores avançados possibilitou o treinamento de redes mais eficientes

e estáveis.
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3.3 MODELOS DE APRENDIZADO PROFUNDO PARA PREVISÃO

Como citado anteriormente, alguns dos modelos mais abordados são as RNNs e as

LSTMs, assim, é feita uma análise mais específica sobre os modelos. Quais seus problemas,

suas diferenças e funcionamentos (15).

3.3.1 Redes Neurais Recorrentes (RNNs)

As redes neurais recorrentes (RNNs) foram feitas para modelar dados em sequência,

já que conseguem manter uma memória dos estados anteriores por meio de ligações recor-

rentes (realimentações). Diferente das redes neurais tradicionais, as RNNs compartilham

pesos ao longo do tempo, permitindo capturar essas dependências temporais (16). A Figura

9 mostra uma representação de uma rede neural recorrente, e como sua realimentação

pode ser apresentada.

Figura 9 - Representação Simplificada de uma Rede Neural Recor-
rente

Fonte: Autor.

3.3.1.1 Explosão/Desaparecimento do Gradiente

Explosão de gradiente é o nome dado a um problema muito comum em redes

neurais recorrentes. Como essa arquitetura permite que amostras passadas influenciem as

saídas, ela depende da propagação dos gradientes ao longo do tempo. No entanto, durante

o backpropagation, se os pesos da rede forem muito grandes ou houver muitas camadas,

os gradientes podem ser multiplicados repetidamente por valores elevados. Isso pode fazer

com que os gradientes cresçam exponencialmente, assumindo valores extremamente altos,

prejudicando o treinamento do modelo.

Por outro lado, caso os pesos sejam mantidos entre zero e um, ocorre um outro

problema, chamado de desaparecimento do gradiente, onde ele é reduzido exponencialmente

até se tornar insignificante. Isso impede que camadas anteriores da rede aprendam de

forma eficaz, dificultando a convergência do modelo (17).
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Diferentes abordagens podem ser usadas para mitigar esses problemas. Algumas to-

pologias como LSTMs foram criadas para evitar essas situações, já que incluem mecanismos

internos que controlam melhor a propagação da informação ao longo do tempo.

3.3.2 Long Short-Term Mermory (LSTMs)

Para superar as limitações das RNNs convencionais, foram desenvolvidas arquitetu-

ras como Long Short-Term Memory (LSTM). Essas redes utilizam mecanismos de portas

(gates) que controlam as informações, permitindo que a rede aprenda relações de curto e

longo prazo de maneira eficiente (18). A Figura 10 mostra como é uma célula LSTM.

Figura 10 - Representação Simplificada de uma LSTM

Fonte: Autor.

A LSTM possui células de memória que regulam a entrada, saída e esquecimento de

informações, sendo amplamente utilizada na previsão de séries temporais. Sua estrutura

pode ser separada em três portões principais (19):

a) Porta de Esquecimento (Forget Gate): Decide quais informações do estado

da célula anterior serão descartadas. Além disso, utiliza uma função sigmoide

para gerar um valor entre 0 e 1, onde 0 indica esquecimento completo e 1 indica

retenção total. A Figura 11 indica os componentes da célula LSTM que formam

a Porta de Esquecimento.
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Figura 11 - Forget Gate

Fonte: Autor.

b) Porta de Entrada (Input Gate): Determina quais novas informações serão

adicionadas ao estado da célula. Sendo composta por duas partes, uma para

decisão de valores a serem atualizados, que utiliza uma função sigmoide, e outra

onde são gerados novos valores candidatos para atualização, que utiliza uma

função de tangente hiperbólica. A Figura 12 indica os componentes da célula

LSTM que formam a Porta de Entrada.

Figura 12 - Input Gate

Fonte: Autor.

c) Porta de Saída (Output Gate): Determina qual será a próxima saída

oculta. Primeiramente, uma função sigmoide decide quais partes da memória

serão usadas. Posteriormente, o estado da célula é passado por uma função

de tangente hiperbólica e modulado pelo resultado da sigmoide. A Figura 13

indica os componentes da célula LSTM que formam a Porta de Saída.
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Figura 13 - Output Gate

Fonte: Autor.

3.4 TÉCNICAS COMPLEMENTARES PARA MELHORIA DE PREVISÃO

Em previsões, redes neurais e aprendizado de máquina no geral, o tratamento de

dados é fundamental para um bom treinamento e resultado, sendo muitas vezes o principal

fator contribuinte para o sucesso do projeto. Os dados devem ser sempre analisados e

entendidos antes mesmo de iniciar a criação e treinamento do modelo de inteligência

artificial. Usando métodos e análises é possível, tratar e modelar o banco de dados para

melhores respostas (20). A seguir, tem-se algumas técnicas comuns em aprendizado

profundo para melhoria de previsões.

3.4.1 Pré-processamento de Dados

No pré-processamento de dados, visando um treinamento de rede neural, é de

boa pratica a realização de duas técnicas, principalmente, a primeira é a engenharia de

variáveis (feature engeneering), já a segunda é a normalização das variáveis de entrada.

Feature engeneering é o processo de análise e escolha das melhores variáveis para

serem usadas na entrada do modelo. Ou seja, usa-se técnicas visando encontrar as variáveis

de entrada mais eficientes para a previsão da variavel alvo. Buscando quais fatores melhor

explicam o evento que se quer prever, isso pode ser feito analisando as correlações entre os

valores. Nesse processo é importante entender que o objetivo é usar o menor número de

variáveis possível, assim busca-se evitar a "maldição da dimensionalidade".

A normalização, por outro lado é uma técnica que faz todas as variáveis usadas no

treinamento assumirem a mesma escala, normalmente entre zero e um, de forma em que

os modelos computacionais não acabem recebendo dados enviesados. Ou seja, evita que o

modelo acabe implementando preferência sobre certos atributos com escalas diferentes, já

que em certos casos, podem acabar recebendo "pesos".
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3.4.1.1 Maldição da Dimensionalidade

A maldição da dimensionalidade é um fenômeno que acontece em problemas de

análise de dados e aprendizado de máquina. Quando o número de variáveis é muito grande

em relação ao número de amostras, é gerada uma série de desafios computacionais e

estatísticos. O que impacta na eficiência e na eficácia dos modelos.

O termo refere-se ao comportamento não muito intuitivo de dados em espaços

com muitas dimensões. Quanto mais o número de dimensões aumenta, mais o volume do

espaço cresce; mais os dados tornam-se esparsos, mais dificuldade há na generalização de

modelos e mais as distâncias entre pontos perdem significado (21).

3.4.2 Variáveis Endógenas de Séries Temporais

Outra técnica, é a extração de variáveis endógenas da série temporal, ou seja,

a obtenção de dados a partir da própria série para melhorar o contexto do problema,

fornecendo mais informações para a previsão. Dentre essas variáveis, pode-se destacar

algumas mais comuns, como amostras atrasadas, variáveis temporais, variáveis de Fourier

e variáveis estatísticas.

a) As amostras atrasadas: Mais comumente chamadas de "lags", são valores

no passado das variáveis de entrada, que possuem uma alta correlação com a

variável que se dejesa prever. Ao utilizar-se desses valores, é possível o acesso às

informações não somente imediatamente anteriores aos valores lidos em tempo

presente, para prever as próximas amostras, mas também valores em passados

mais distantes. A imagem a seguir (Figura 14) ilustra como essas variáveis

são construídas, considerando um exemplo em que três lags são utilizados para

prever a variável de saída.

Figura 14 - Previsão de Variável Usando Três Lags

na Entrada

Fonte: Autor.
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b) Variáveis temporais: São basicamente dados relacionados ao tempo, retirados

da própria série, que são explicitados e inseridos na entrada do modelo, esses

dados podem ser horas do dia, dia do ano, mês do ano, estação do ano, entre

outros. Elas, assim como as variáveis de Fourier, são normalmente usadas para

lidar com sazonalidades do problema.

c) Variáveis de Fourier: São atributos obtidos a partir da decomposição da

série temporal com o uso da transformada de Fourier. Onde são obtidas as

frequências mais relevantes para a composição da série e aplicadas à ondas

senoidais, capazes de explicar o comportamento da função. Geralmente, são

usadas para lidar com sazonalidades, como as variáveis temporais, e também

com tendências, como as váriaveis estatísticas.

d) Variáveis estatísticas: São variáveis obtidas a partir de valores estatíticos da

série temporal, como média, desvio padrão e mediana, por exemplo. Comumente,

são aplicadas janelas móveis, onde são feitos esses cálculos. É normal o uso de

mais de uma janela, com períodos diferentes, assim é possível captar os valores

estatísticos móveis para diferentes intervalos de tempo, analisando diferentes

tendências na série.

3.4.3 Métodos de Regularização

Em aprendizado de máquina, e em aprendizado profundo, principalmente, ocorrem

situações onde o modelo não aprende corretamente, ele decora valores. Ou seja, em redes

neurais sempre é procurado o modelo que melhor equilíbra otimização e generalização,

encontrando os melhores valores, porém capaz de generalizar esse contexto para situações

onde não ocorreu o treinamento. Em aprendizados supervisionados, se o modelo não

aprende corretamente, é possível que ocorra o overfitting, para resolver o problema, aplica-se

técnicas de regularização no modelo. No estado de overfitting a rede tem muita capacidade

de otimização, porém pouca de generalização, e as técnicas de regularização proporcionam

isso para ela.

É conhecido que aprendizado profundo necessita de muitos dados para ter um

bom treinamento, alguns bancos de dados não possuem tanta informação. Quando isso

acontece, para realizar a regularização é implementada uma técnica chamada de Aumento

de Dados (data augmentation), que é a criação de mais valores, com características da

série original para melhora do treinamento do modelo (22). Outras técnicas comuns de

regularização, principalmente em modelos LSTM, são validação cruzada (cross validation),

parada antecipada (early stopping), adição camadas de dropout, e adição de regularização

L1 e L2.

A validação cruzada é a divisão o conjunto de dados em vários subconjuntos,

treinando e testando o modelo em diferentes combinações. Isso faz com que o treinamento
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não dependa de uma parte específica do grupo de dados. O early stopping é a interrupção

do treinamento quando o desempenho no conjunto de validação para de melhorar. A

camada de dropout é uma camada no modelo que desativa aleatoriamente neurônios

durante o treinamento, impedindo que a rede dependa de neurônios específicos para prever.

E, as regularizações L1 e L2 adicionam penalidades aos pesos da rede para evitar valores

extremos. Onde L1 penaliza o valor absoluto dos pesos e L2 penaliza o quadrado dos

pesos.

É importante mencionar que, um dos modelos mais comuns de validação cruzada é

o "k-fold", onde o conjunto de dados de treino e validação é dividido em vários lotes (ou

"pastas"). A cada rodada de treinamento, uma pasta é usada para validação, enquanto as

outras são utilizadas para treino. No entanto, para séries temporais, esse método não pode

ser aplicado. Isso porque, ao dividir os dados dessa forma, pode ocorrer vazamentos, ou seja,

o modelo poderia usar informações futuras para prever o passado, o que comprometeria a

previsão. A Figura 15 mostra o método comum de aplicar a validação cruzada (método

k-fold).

Figura 15 - Exemplo de Validação K-Fold

Fonte: Autor.

No caso da previsão de geração solar, os métodos mais usados de validação cruzada

são a "janela expansiva"e a "janela móvel".
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A janela expansiva é indicada quando se deseja preservar o contexto temporal da

série desde o seu início, capturando o máximo de padrões possíveis ao longo do tempo. Na

Figura 16, indica-se um exemplo do método de janela expansiva.

Figura 16 - Exemplo de Validação com Janela Expansiva

Fonte: Autor.

Já a janela móvel é preferida quando a prioridade é maior eficiência computacional

e quando padrões muito antigos não têm tanta importância para a previsão atual. A

Figura 17 mostra um exemplo do método de janela móvel para a validação cruzada.

Figura 17 - Exemplo de Validação com Janela Móvel

Fonte: Autor.
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4 ANÁLISE DE RESULTADOS

Com o objetivo de comparar o desempenho das redes LSTM na previsão da geração

fotovoltaica com outras abordagens, foram analisados quatro estudos que aplicam diferentes

metodologias para previsão de irradiância solar. A escolha destes trabalhos foi baseada na

relevância das abordagens propostas e na utilização de métricas de avaliação comparáveis,

como o RMSE.

Além disso, é importante mencionar que no estudo de Alzahrani et al. (26) a

irradiância foi registrada usando um piranômetro LI-200S a cada milissegundo, em seguida,

foi calculada a média em um período de 10 milissegundos, sendo esse o passo da previsão.

Todos os outros estudos usam o passo de uma hora.

Yu, Cao e Zhu (23) investigaram a previsão da irradiância em três cidades diferentes,

sob condições climáticas complexas. Para a entrada do modelo utilizaram onze variáveis

climáticas, como tipo de nuvem; temperatura; humidade relativa; velocidade do vento;

entre outras. Eles demonstraram que a LSTM superou modelos tradicionais, como o

ARIMA; modelos de aprendizado de máquina como o SVR; e outros vários modelos.

Alcançando uma Raiz do Erro Quadrático Médio (RMSE) de 45,84 W/m2 em Atlanta,

41,37 W/m2 em Nova Iorque e 66,69 W/m2 no Havaí. Esses resultados sugerem que a

LSTM é eficaz em diferentes contextos geográficos e climáticos.

Qing e Niu (24) também mostram a eficácia da LSTM na previsão horária da

irradiância solar utilizando dados meteorológicos. Como entrada foram usadas três variáveis

temporais, como mês; dia do mês e hora do dia, além de seis variáveis exógenas, como

temperatura; humidade; visibilidade; velocidade do vento; entre outras. Obtiveram o

RMSE de 122,7 W/m2, significativamente inferior ao de modelos baseados em regressão

linear, que apresentam RMSE de 195,8 W/m2. Esse estudo destacou a importância de

usar dados meteorológicos como variáveis de entrada dos modelos para melhorar a precisão

das previsões.

Mukherjee, Ain e Dasgupta (25) exploraram redes neurais profundas para prever a

irradiância solar com base em tendências históricas e concluíram que a LSTM obteve maior

precisão do que modelos de redes neurais artificiais comuns. Para a entrada utilizaram

duas variáveis temporais como hora e mês, mais oito variáveis exógenas climáticas, como

temperatura; humidade relativa; velocidade do vento; entre outras. E obtiveram RMSE

de 57,249 W/m2 comparado ao RMSE de 68,051 W/m2 das redes comuns. Assim, foi

destacada sua capacidade de capturar padrões temporais complexos.

Por fim, Alzahrani et al. (26) comparam redes LSTM com modelos de redes neurais

diretas e modelos SVR. Para a entrada do modelo utlizaram variáveis endógenas de Fourier

e variáveis climáticas como irradiância horizontal global; irradiância global inclinada e

cobertura de nuvens. Constataram que a LSTM apresentou RMSE normalizado de 0,086,



35

enquanto os outros modelos apresentam RMSEs normalizados de 0,16 e 0,11, para as

redes neurais e para o SVR, respectivamente. Esse estudo reforçou, mais uma vez, a

superioridade da LSTM em cenários de alta variabilidade.

Os trabalhos da literatura que apresentam melhores resultados, normalmente

realizam um processo de engenharia de variáveis para escolher quais as melhores entradas

para o modelo. Como aplicado por Qing e Niu e Mukherjee, Ain e Dasgupta, normalmente

essa escolha de variáveis é feita a partir da análise da correlação delas com a variável alvo,

no caso a irradiância solar.

Os resultados dos estudos analisados indicam que a LSTM se destaca na previsão da

geração fotovoltaica devido à sua capacidade de capturar padrões temporais complexos e

não-lineares, além de identificar bem sazonalidades e tendências. No entanto, é importante

ressaltar que o desempenho da LSTM pode variar dependendo das características dos

datasets e das condições climáticas. Estudos futuros poderiam explorar a combinação da

LSTM com outras técnicas, como modelos híbridos, para melhorar ainda mais a precisão

das previsões.
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5 CONCLUSÃO

A previsão de geração solar, vem envoluindo de forma significativa nos últimos anos,

impulsionada pela inteligência artificial, aprendizado de máquina, aprendizado profundo, e

aumento da disponibilidade de dados, principalmente metereológicos e operacionais. Essa

técnologia avança de forma muito rápida, com uma série de novos métodos e melhoramentos

sendo estudados e introduzidos no mercado ao longo de um relativamente curto espaço de

tempo. Algumas das tendências e desafios hoje em dia em relação à esse tipo de contexto,

são abordadas nesse capítulo.

Os métodos tradicionais, como modelos estatísticos, e outras técnicas baseadas

em aprendizado de máquina ainda são bastante utilizados. Porém, avanços recentes têm

demonstrado que modelos mais sofisticados, baseados em redes neurais profundas, apresen-

tam maior capacidade preditiva (27). Alguns dos avanços recentes podem ser representados

por Modelos Híbridos, redes neurais baseadas em Atenção e uso de Transformers.

Os Modelos Híbridos, são a junção de diferentes métodos, como a fusão de redes

neurais Convolucionais com LSTMs ou o uso de combinações entre modelos estatísticos e

redes neurais, elas tem permitido melhorar a precisão das previsões ao explorar diferentes

padrões nos dados. As redes neurais baseadas em Atenção, são basicamente redes com o

mecanismo de "Atenção", que tem sido amplamente utilizado para capturar dependências

temporais em séries de geração solar, melhorando a interpretabilidade e a eficiência dos

modelos. Por fim, os Transformers, são modelos mais complexos que os abordados neste

artigo, que têm mostrado melhor desempenho na previsão de séries temporais, capturando

padrões de longo prazo de maneira mais eficiente que as RNNs e LSTMs tradicionais.

Além disso, apesar destes avanços, vários desafios ainda precisam ser superados para

tornar a previsão mais precisa e aplicável em cenários realistas, como interpretabilidade dos

modelos, necessidade de grandes volumes de dados, generalização para diferentes regiões e

robustez a condições extremas.

A interpretabilidade dos modelos, refere-se à questão de que redes neurais profundas

são frequentemente consideradas "caixas-pretas", ou seja, não se sabe exatamente o que

acontece entre as camadas, somente são analisados dados de entrada e saída, dificultando

a compreensão das decisões tomadas. A necessidade de grandes volumes de dados é

constante, pois modelos de aprendizado profundo necessitam de quantidades expressivas

de dados de treinamento, porém a coleta de dados meteorológicos e operacionais de alta

qualidade ainda é um obstáculo em muitas localidades. A generalização para diferentes

regiões chega a ser um desafio pois modelos treinados em um determinado local nem

sempre generalizam bem para outros, devido a diferenças climáticas, geográficas e da

infraestrutura. Por fim, a robustez a condições extremas é um ponto de atenção, já que

eventos climáticos atípicos, como tempestades e cobertura de nuvens inesperada, ainda
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representam desafios para modelos preditivos, reduzindo sua confiabilidade.

A previsão de geração solar continua a evoluir além das redes LSTM, com o avanço

de modelos e a integração de novas formas de coletar e gerar de dados. No entanto,

desafios como a interpretabilidade, a quantidade de dados e a capacidade de generalização

precisam ser resolvidos para aumentar a adoção dessas técnicas em aplicações reais. E o

desenvolvimento de modelos híbridos, a utilização de Transformers são algumas tendências

que podem transformar a precisão e a confiabilidade da previsão solar nos próximos anos.
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