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“Se nos lembrarmos da estrutura extremamente complexa do cé-
rebro, parecerá pouco provável que o processo que finalmente
ocorre no córtex cerebral guarde ainda qualquer semelhança com
o estímulo físico de que partimos”

(Johannes Hessen, Teoria do conhecimento, p. 77)



RESUMO

As Interfaces Cérebro-Máquina (BCI) possuem diversas aplicações nas áreas de
entretenimento, saúde e qualidade de vida. Por isso, elas vêm tendo sua pesquisa cada vez
mais fomentada. Esses incentivos ao desenvolvimento das BCIs ocorrem principalmente
através de competições. Porém, por causa dessa forma de incentivo ser predominante, as
competições criaram um viés na avaliação das BCIs. Atualmente, as BCIs são avaliadas
principalmente em sua capacidade de classificação em um instante fixo de tempo com poucos
trabalhos fazendo uma avaliação mas holística das BCIs considerando a questão temporal.
Assim, as características temporais presentes nas aplicações de BCI são negligenciadas.
Esse trabalho tem como objetivo principal propor novas métricas que incorporem as
propriedades temporais das BCIs. Além disso, fazer uma análise dos diferentes tipos de
filtros temporais e espaciais para BCI, juntamente com o uso de redes neurais convolucionais.
Para avaliar as novas métricas propostas, foram criados 48 diferentes modelos para BCI
e testados em 5 conjuntos de dados da literatura. Os resultados mostraram que as
novas métricas trouxeram novas interpretações sobre o desempenho das BCIs. Inclusive,
mostrando que modelos como a EEGNet, que são considerados levemente superiores aos
demais, apresentam limitações em aplicações reais que ainda não foram apontadas pela
literatura quanto à estabilidade.

Palavras-chave: Interface Cérebro-Máquina; Imaginação Motora; Eletroencefalograma;
Métricas.



ABSTRACT

Brain-Computer Interfaces (BCIs) have several applications in the areas of enter-
tainment, health, and quality of life. For this reason, their research has been increasingly
encouraged. These incentives for the development of BCIs occur primarily through compe-
titions. However, because this form of incentive is predominant, it has caused a bias in the
evaluation of BCIs. Currently, BCIs are evaluated mainly on the basis of their classification
capacity at a fixed point in time. Thus, all the temporal characteristics present in the
BCI applications are neglected. The main objective of this work is to propose new metrics
that incorporate the temporal properties of BCIs. In addition, it analyzes the different
types of temporal and spatial filters for BCIs together with the use of convolutional neural
networks. To evaluate the new proposed metrics, 48 different models for BCIs were created
and tested on five data sets from the literature. The results showed that the new metrics
brought about new interpretations of the performance of the BCIs. Including showing that
models like EEGNet, which are considered slightly superior to the others, would present
some limitations in real applications that have not yet been pointed out in the literature.

Keywords: Brain-Machine Interface; Motor Imagination; Electroencephalogram; Metrics.
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1 Introdução

Interfaces Cérebro-Máquina (BCIs1) vêm atraindo a atenção da comunidade cientí-
fica por sua vasta gama de aplicações e seu potencial de inovação. Elas são capazes de enviar
comandos para sistemas computacionais através do processamento de sinais cerebrais [1].
Dessa forma, não há necessidade de entradas convencionais como teclados, controles e
microfones. Essa abordagem permite uma melhor qualidade de vida e independência para
pessoas que, por algum motivo, não são capazes de usar os métodos convencionais [2].
As BCIs podem ser usadas para controle de cadeiras de rodas, exoesqueletos e próteses,
permitindo uma melhor locomoção e interação com objetos por pessoas tetraplégicas ou
amputadas [3]. Além disso, também podem ser usadas para reabilitação pós-Acidente
Vascular Cerebral (pós-AVC), controle de drones, jogos, entre outros [4].

Pode-se dizer que as BCIs são interfaces que utilizam um sinal coletado do cérebro
e traduzem esse sinal em um comando com significado para um dispositivo computacional.
A tradução desse sinal depende de diversos fatores como, por exemplo, o equipamento que
está sendo usado para coletar o sinal cerebral, o equipamento disponível para a tradução,
o tipo de informação que se deseja obter do cérebro, entre outros [5]. As aplicações
para reabilitação motora pós-AVC e controle de cadeira de rodas usam, geralmente, o
Eletroencefalograma (EEG) para a coleta do sinal cerebral e traduzem sinais de movimento
imaginado (MI) [6]. Por exemplo, na reabilitação motora pós-AVC, a pessoa imagina seu
membro em movimento, o sinal do cérebro é coletado pelo EEG, traduzido pela BCI que
irá liberar um estímulo elétrico e/ou visual para o paciente [7].

Um dos métodos mais conhecidos para classificação de MI coletados com EEG
para BCI é o Filter Bank Common Spatial Pattern (FBCSP) [8]. Esse método se tornou
referência na literatura após a BCI Competition IV [9], na qual o método apresentou
os melhores resultados para a classificação de imaginação motora. No FBCSP, são
primeiramente aplicados diversos filtros passa-banda (4–8, 8–12, . . . , 36–40 Hz); depois
disso, o Common Spatial Pattern (CSP) é usado para fazer a filtragem espacial, seguido
da função LogPower que extrai as características do sinal. A seleção das melhores
características é feita com o Mutual Information-based Best Individual Feature (MIBIF) e
a classificação do sinal é feita usando o Naive-Bayes Parzen-Window (NBPW).

Outras abordagens podem ser encontradas na literatura, como, por exemplo, o
uso de wavelets [10], geometria riemanniana [11] e redes convolucionais [12]. Dentre as
redes convolucionais, estão os modelos DeepConvNet, ShallowNet e EEGNet, sendo a
EEGNet o modelo com os melhores resultados entre elas [13]. A EEGNet é um modelo
proposto por Lawhern et al. e se baseia em agrupar as etapas do FBCSP dentro de uma
única rede convolucional. Ela possui um conjunto de convoluções temporais e espaciais
1 do inglês Brain-Computer Interfaces
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representando os filtros passa-banda e CSP e uma convolução separável representando
a extração e seleção das características, seguida de uma softmax para a classificação.
Apesar da literatura relatar bons resultados, nos trabalhos publicados com a EEGNet, são
usadas as métricas de acurácia, Kappa e F1-score de forma pontual para a avaliação do
modelo. Essas métricas acabam supervalorizando a taxa de acerto do modelo sobre outras
características igualmente importantes, como, por exemplo, o atraso de classificação do
modelo.

As aplicações com BCI são multiobjetivo e precisam de mais avaliações do que
apenas sua eficácia. Outros pontos como aprendizado, eficiência e facilidade de controle
também precisam ser avaliados para a escolha do melhor modelo. Um modelo que demora
de 2 a 3 segundos para conseguir traduzir a intenção de um movimento é desvantajoso em
diversas aplicações (como o controle de uma prótese, por exemplo), mesmo que possua
uma acurácia alta.

Esse método de avaliar as BCIs foi bastante influenciado pelas competições envol-
vendo BCIs que usualmente desconsideram outras características, além da taxa de acerto
dos modelos. Nesse trabalho, são propostas três novas métricas para BCI, considerando a
variabilidade da classificação das BCIs ao longo do tempo. Apresentando os resultados das
BCIs por novos pontos de vista, é possível uma interpretação mais holística do problema,
se adequando mais à situação em que ela será colocada em aplicações de tempo real. Este
trabalho está de acordo com o Objetivo 3 de Desenvolvimento Sustentável da Organização
das Nações Unidas, sobre Saúde e Bem-Estar.

O objetivo principal desse trabalho é diminuir a lacuna na avaliação dos modelos
de BCI, que atualmente negligenciam a questão temporal intrínseca das aplicações em
tempo real. Para isso, os objetivos secundários para essa tarefa são:

• Propor novas métricas para avaliação de modelos BCI considerando a questão
temporal;

• Propor diferentes modelos de BCI e compará-los com o FBCSP e a EEGNet;

• Avaliar os modelos propostos usando a métrica kappa para BCI;

• Fazer uma avaliação comparativa das métricas propostas com o kappa; e

• Avaliar as métricas em conjunto de dados com diferentes propostas.

Os resultados obtidos durante o cumprimento dos objetivos estão destacados nos trabalhos
científicos presentes na Tabela 1.
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Tabela 1 – Lista de trabalhos científicos desenvolvidos e relacionados ao doutorado.
Trabalhos ainda sem local estão em processo de submissão.

Título Local
Analysis of Window-Delay Score for Data Augmentation
Methods in Brain-Computer Interfaces [14] ENIAC

Analyzing Data Augmentation Methods for Convolutional
Neural Network-based Brain-Computer Interfaces [15] IJCNN

EEG data for motor imagery based brain-computer
interface using low-cost equipment [16] LADS

Euclidean Alignment for Transfer Learning in Multi-band
Common Spatial Pattern [17] BRACIS

Feature Extraction for a Genetic Programming-Based
Brain-Computer Interface [18] BRACIS

Genetic Programming for Feature Extraction in Motor
Imagery Brain-Computer Interface [19] EPIA

Residual Attention Module on EEGNet for
Brain-Computer Interface [20] SSCI

Short-Term Fourier Transform as Preprocessing for
Commom Spatial Pattern [21] IJCNN

Single Electrode Energy on Clinical Brain–Computer
Interface Challenge [22] BSPC

Window-Delay Analysis on EEGNet ICSCMI
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2 Interface Cérebro-Máquina

BCIs são interfaces que permitem uma comunicação direta entre o cérebro e algum
sistema eletrônico. Isso é feito sem o uso dos neurônios motores, os quais são os neurônios
responsáveis por mexer os músculos. Dessa forma, a BCI pode ser usada para substituir o
controle motor em diversas aplicações como controle de exoesqueletos [23], próteses [24],
máquinas industriais [25], computadores [26], entre outros [27]. Além das aplicações
voltadas para controle, a BCI também pode ser usada para modular o funcionamento do
cérebro, como, por exemplo, recuperar o movimento de uma pessoa que teve um AVC [28]
ou para melhorar a atenção em pessoas no espectro autista [29].

O programa de uma BCI é composto por 2 partes principais: o treinamento e o
uso. Para a etapa de treinamento, temos:

1. A pessoa é submetida a uma condição de controle, em que ela já sabe a tarefa que
deve ser executada naquele trial.

2. O sinal do cérebro dessa pessoa é coletado durante o experimento.

3. Esse sinal é armazenado para treinar o modelo antes do seu uso.

Apesar de existirem modelos de BCI que não necessitam de treinamento, eles ainda
não apresentam bons resultados quando comparados com os demais métodos [30]. Isso
ocorre pelo fato de o cérebro das pessoas ser único e, normalmente, não é possível criar
um modelo generalizado. Algumas abordagens visam reduzir a quantidade de amostras do
sujeito necessária para o treinamento, como, por exemplo, as áreas de Transferência de
Aprendizado [17] e Aumento de Dados [14]. Apesar de reduzirem o tempo de coleta para
o treinamento, essa etapa continua sendo necessária.

Para exemplificar uma coleta de treinamento, iremos apresentar uma sequência
usual para coletar dados de MI [31].

1. Uma mensagem avisando que uma sequência de atividades vai começar é apresentada.

2. Após alguns segundos, o movimento a ser imaginado é apresentado.

3. A pessoa imagina o movimento indicado.

4. É feito um pequeno descanso antes de iniciar o próximo trial (uma execução de
tarefa).

Existem várias sequências possíveis, porém todas com apenas singelas variações da apre-
sentada. Por exemplo, no começo do trial, pode ter um sinal sonoro para ajudar a pessoa
a focar ou pode ter um pequeno intervalo entre a pessoa saber o que vai imaginar para ter
a imaginação.
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No geral, a sequência de atividades para a gravação de um movimento imaginado
para MI dura de 6 a 10 segundos e isso é repetido até que o número de execuções objetivado
para o conjunto de treino seja atingido. É indicado que o tempo dessa coleta não passe
de uma hora, já que isso pode trazer desconforto, dor de cabeça e insônia com o uso
prolongado desse sistema.

Após a coleta dos dados de treinamento, podemos armazená-los da forma usual
para aprendizado de máquina. Nesse caso, nós teremos os dados coletados X, cujo formato
depende do equipamento, e um vetor y indicando qual tarefa foi executada em cada trial.

Para coletar o sinal do cérebro, vários equipamentos podem ser usados. Normal-
mente, eles são divididos em 2 tipos [32]: invasivos e não-invasivos. Os equipamentos
invasivos costumam ter uma maior precisão espacial e menos ruído. Porém, trazem todos
os empecilhos de um sistema invasivo, pois precisam de um procedimento cirúrgico para
serem usados. Esses equipamentos costumam ser usados de forma bem restrita, quando a
pessoa já iria passar por uma cirurgia que deixaria o cérebro exposto ou quando não há
outra alternativa. Dentre os equipamentos usados de forma invasiva, temos os chips e a
eletrocorticografia (ECoG) [33].

Os equipamentos não invasivos trazem muito mais segurança para a pessoa. Porém,
possuem uma menor precisão espacial e muito mais ruído que os métodos invasivos. O
EEG é o único equipamento não invasivo que coleta o funcionamento elétrico do cérebro.
Os demais métodos usam informações correlatas para avaliar a atividade cerebral. Por
exemplo, a Ressonância Magnética Funcional (fMRI) [34] verifica a concentração de
oxigênio nas hemoglobinas. Outros equipamentos não invasivos são a Tomografia por
Emissão de Pósitrons (PET) [35], Espectroscopia de Infravermelho Próximo (NIRS) [36] e
Magnetoencefalografia (MEG) [37]. Porém, como o EEG é o único a coletar sinais elétricos,
ter um baixo custo, ser portátil e de rápida montagem, ele é o mais usado para aplicações
de BCI. Por esse motivo, iremos focar apenas em aplicações baseadas em EEG daqui em
diante.

Para o EEG, o sinal coletado X será um tensor de 3 dimensões da forma (trial,
eletrodo e tempo). Dessa forma, temos que cada matriz Xi (eletrodo, tempo) equivale a
uma tarefa yi. Mais detalhes sobre o equipamento de EEG serão mostrados em sessões
adiante no texto. Após a coleta do sinal de treino, ele é usado para encontrar um modelo
que encontre ci para uma amostra Xi, com ci podendo assumir um valor que representa
cada uma das classes possíveis.

Com o modelo treinado, é possível iniciar a etapa de uso da BCI. Nesse momento,
a pessoa consegue observar em tempo real o que está sendo classificado pelo modelo. A
sequência de atividades durante a fase do uso é:

1. A pessoa imagina a tarefa.
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2. O EEG coleta o sinal elétrico do cérebro da pessoa.

3. O modelo classifica o sinal cerebral.

4. A classificação é usada para que um sistema eletrônico execute uma tarefa.

5. A pessoa observa a tarefa sendo executada (etapa de Feedback).

Esse ciclo se repete enquanto a pessoa estiver usando o equipamento e, assim como a etapa
de treino, pode haver algumas mudanças dependendo do experimento. Por exemplo, para
reabilitação motora pós-AVC, temos que todas as imaginações são igualmente espaçadas.
Porém, para o controle de uma prótese, o intervalo entre cada execução é flexível.

Dada a complexidade de um sinal de EEG, várias etapas precisam ser executadas
tanto no treinamento quanto no uso para que o modelo possa ter uma classificação
adequada [38]. As etapas para classificação do sinal de EEG são:

1. Pré-processamento

• reamostragem

• eliminação de trials

• aplicação de baseline

• remoção de eletrodos

• janelamento

2. Filtragem

• filtragem temporal

• filtragem espacial

3. Criação de características

• extração de características

• seleção de características

4. Classificação

Inicialmente, o sinal passa por uma etapa de pré-processamento; nessa etapa, é
avaliada a qualidade do sinal e são feitas transformações individuais (o sinal de Xi não é
afetado pelo sinal de Xj). Os métodos presentes nessa parte não possuem nenhuma etapa
de treinamento e são aplicados diretamente pelo conhecimento do especialista. A primeira
técnica de pré-processamento apresentada aqui é a reamostragem. Para explicar essa técnica
de forma mais didática, iremos supor um conjunto de dados X ∈ R Nt× Ne× (Nd×sfreq) onde
Nt é a quantidade de trials, Ne é a quantidade de eletrodos, Nd é a duração de um trial
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em segundos e sfreq é a frequência de aquisição (quantidade de valores coletados por
segundo). A reamostragem é um método capaz de modificar sfreq; por exemplo, podemos
ter um sinal coletado a 250Hz e fazer uma reamostragem dele para 128Hz. As vantagens
da reamostragem são reduzir a dimensão do sinal e ajustar o formato para usar modelos
mais genéricos (como a EEGNet, que normalmente usa 128Hz).

Outro pré-processamento é a eliminação de trials que possuam alguma característica
indesejada. Por exemplo, quando uma pessoa espirra, o sinal tem uma flutuação muito
grande e esse trial pode ser descartado para evitar problemas no treinamento. Isso costuma
ser feito verificando se todo o sinal está em uma mesma imagem, por exemplo, todo o
sinal deve estar entre −150µV e 150µV e o que estiver fora desse intervalo é descartado.

A aplicação do baseline é usada para centralizar os dados. O sinal de EEG é
bastante sensível e sofre flutuações causadas pelas condições dos eletrodos e da pasta
condutora usada. O esperado é que o sinal tenha média zero ou próxima de zero; para
isso, o sinal é transladado para próximo de zero. Isso é feito subtraindo a média de todo o
sinal ou de alguma janela dentro dele, por exemplo, os 2 primeiros segundos.

Às vezes, há algum problema na coleta, como um eletrodo saindo da posição, com
mau contato ou com uma quantidade errada de gel condutor. Nesse caso, o eletrodo pode
ser descartado de todos os trials. Apesar de não ser algo frequente, uma vez que isso é
verificado antes de começar a coleta, isso ainda pode acontecer esporadicamente.

Por fim, temos o corte de uma janela de tempo do sinal. Como dito anteriormente,
um trial pode durar até 10 segundos, porém o período que a pessoa imagina a tarefa é
menor. Por exemplo, a pessoa pode estar executando a tarefa entre 2 e 6 segundos, então
o resto do sinal pode ser descartado. Além disso, essa redução pode também diminuir a
complexidade dos modelos. A grande maioria dos modelos usa uma janela de 2 segundos
começando 0,5 segundos após a pessoa receber a tarefa. Dessa forma, mesmo que a tarefa
executada tenha um intervalo de 2 até 6 segundos, apenas a janela de 2,5 até 4,5 é usada.

Para a etapa de filtragem, existem 2 tipos principais, as temporais e as espaciais. A
filtragem temporal visa reduzir o ruído do sinal ao longo do tempo e remover informações
que são irrelevantes à classificação. Existem vários tipos de filtros temporais possíveis,
sendo que alguns precisam de outros sinais de referência. Por exemplo, ao mesmo tempo
que o EEG é gravado, pode ser feita uma coleta dos batimentos cardíacos para remover a
interferência dele no sinal. Também é possível usar o sinal de Eletro-oculografia (EOG)
para remover os artefatos gerados pelo movimento ocular da pessoa. Dois dos filtros
temporais mais usados são o filtro passa-banda e o filtro notch. O filtro passa-banda
remove/atenua as frequências irrelevantes para a tarefa, enquanto o filtro notch é usado
para remover uma frequência específica onde já se sabe que há ruído. A maioria das coletas
de EEG são feitas com um filtro notch de 50Hz ou 60Hz, por causa da corrente alternada
presente nas fiações domésticas. Em alguns casos, esses filtros podem estar implementados
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diretamente no hardware e, nesse caso, podem ser considerados como pré-processamento.

O filtro espacial também tenta reduzir as informações irrelevantes para a classifi-
cação, porém, levando o sinal para um espaço normal de eletrodos. Com isso, os filtros
temporais visam remover a correlação entre os eletrodos e as influências que eles têm entre
si.

Após a filtragem, ainda há uma dimensão alta para Xi. A etapa de extração
de características procura reduzir o tamanho do sinal, normalmente, removendo a parte
temporal do sinal. Assim, um sinal Xi que inicialmente pertence a R Ne,Nd×sfreq pode
ser reduzido a R Ne . Porém, nem sempre isso é suficiente para ajustar a quantidade de
características para um classificador e, além de extrair as características do sinal, ainda é
preciso selecionar apenas as melhores para continuar o processo.

A última etapa do modelo é o classificador que irá calcular a probabilidade de cada
classe a partir das características selecionadas.

Nem sempre todas essas etapas estão presentes nos modelos, mas essa é a estrutura
básica para todos os modelos de BCI. Por exemplo, a EEGNet é uma rede convolucional
profunda que possui filtragem, criação de características e classificação embutidos dentro
do próprio classificador [13].

2.1 BCI para reabilitação pós-AVC

Nessa seção, iremos exemplificar todas as etapas descritas para o funcionamento
do BCI usando uma aplicação prática. O AVC é uma das principais causas de morte do
mundo e uma das que mais incapacita pessoas [39]. A BCI pode ser usada em pessoas
que tiveram AVC para recuperar os movimentos [40]. O ciclo de atividades da BCI para
reabilitação pós-AVC pode ser visto na Figura 1.

Figura 1 – Ciclo esquemático de uma BCI para reabilitação motora pós-AVC.

Estímulo

Elétrico

Pessoa

Modelo BCI

Filtragem

Temporal

pré

processamento

Filtragem

Espacial

Extração de

Características Classificador

Estímulo

Visual

EEG

Imagem de produção própria.



20

A etapa de treino será ignorada aqui uma vez que não apresenta nenhuma diferença
do caso geral apresentado anteriormente. Para a etapa de uso, primeiramente a pessoa
imagina o movimento do membro. O sinal do cérebro dela é coletado por um equipamento
de EEG durante essa imaginação. Esse sinal é classificado pelo modelo da BCI e essa
classificação é usada para gerar 2 tipos de feedback. O sistema pode gerar uma corrente
elétrica diretamente no músculo da pessoa, fazendo o membro se mover ou apresentar
uma mão virtual se mexendo em uma tela. Ambos os modelos funcionam e podem ser
usados juntos, apesar de que a estimulação elétrica do músculo costuma ter melhores
resultados [41].
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3 Eletroencefalografia

O EEG é um equipamento não invasivo capaz de coletar a atividade elétrica cerebral.
Ele coleta a diferença de potencial elétrico entre 2 eletrodos posicionados no corpo do
sujeito, principalmente no couro cabeludo. A posição na qual os eletrodos são posicionados
depende do comportamento procurado. Para referência das posições dos eletrodos, existe
o sistema 10-20 que é um dos mais usados para EEG; ele indica a posição em que cada
eletrodo deve ficar sobre o couro cabeludo. Além disso, caso se queira uma aquisição com
maior densidade, pode-se adotar o sistema 10-10 [42]. As posições dos eletrodos em ambos
os sistemas podem ser vistas na Figura 2. Os eletrodos sobre a área motora primária (C3,
Cz e C4) são os mais usados nas aplicações de MI-BCI, contendo ou não outras regiões do
sistema motor [43].

Figura 2 – Sistema 10-10 para EEG. Eletrodos também do sistema 10-20 em cinza.
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3.1 Conjuntos de Dados

Esta seção apresenta os conjuntos de dados usados neste trabalho, onde é consi-
derado o uso de 2 tipos de dados: (i) conjunto de dados públicos de MI disponíveis na
literatura; e (ii) um conjunto de dados coletado pelo nosso grupo (HCG dataset). A lista
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de conjuntos de dados usados pode ser vista na Tabela 2. Todos os conjuntos de dados
usados são de EEG, uma vez que é o equipamento mais usado para MI-BCIs.

Tabela 2 – Conjunto de Dados avaliados.

Nome Acrônimo Sujeitos Eletrodos classes trials
BCI Competition IV 2a 2a 9 22 4 288
BCI Competition IV 2b 2b 9 3 2 600
Clinical BCI Challenge cbcic 8 12 2 80

Physionet MI phy 108 64 4 92
HCG Dataset hcgd 6 16 2 160

Apesar de todos serem conjuntos de dados de MI, cada um deles foi proposto para
um objetivo diferente. O BCICIV2a [9] foi coletado para experimentos com várias classes,
o BCICIV2b [9] foi coletado com poucos sinais da forma bipolar (onde cada eletrodo tem
seu próprio referencial) e protocolos com feedback. O CBCIC [44] foi coletado de pacientes
que tiveram alguma perda motora causada por um AVC e o Phy [45] coletou poucos trials
por pessoa, porém, de várias pessoas, objetivando um suporte para a criação de uma BCI
generalizada. O nosso conjunto de dados HCGD [16] foi projetado usando equipamentos
de baixo custo, visando deixar os métodos mais robustos para dados com mais ruído do
que as demais bases, porém, com maior potencial de mercado.

Os eletrodos usados em cada conjunto de dados podem ser vistos na Tabela 3. Nela
é possível notar a predominância dos eletrodos acima de M1 (região dos eletrodos C3, Cz e
C4) juntamente com algumas áreas motoras suplementares (abaixo dos eletrodos P3 e P4,
por exemplo) [46]. Isso é esperado uma vez que os conjuntos de dados utilizam o protocolo
MI; para outros paradigmas, outras áreas seriam mais interessantes. Por exemplo, no
paradigma P300, há uma preferência pelos eletrodos acima do córtex visual como O1, Oz
e O2 [47].

Tabela 3 – Eletrodos usados em cada conjunto de dados.

conjunto de dados Eletrodos

BCICIV2a Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6,
CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, POz

BCICIV2b C3, Cz, C4
CBCIC F3, FC3, C3, CP3, P3, FCz, CPz, F4, FC4, C4, CP4, P4

Phy

Fc5, Fc3, Fc1, Fcz, Fc2, Fc4, Fc6, C5, C3, C1, Cz, C2, C4, C6,
Cp5, Cp3, Cp1, Cpz, Cp2, Cp4, Cp6, Fp1, Fpz, Fp2, Af7, Af3,
Afz, Af4, Af8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, Ft7, Ft8,
T7, T8, T9, T10, Tp7, Tp8, P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2, Iz

HCGD Fp1, Fz, C3, C4, T5, T6, Cz, Pz, F7, F8, F3, F4, T3, T4, P3,
P4
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As etapas de cada trial possuem várias semelhanças entre si para todos os conjuntos
de dados, como pode ser visto na Figura 3. Com exceção do conjunto de dados Phy, todos
os demais possuem um período de preparação com duração de 2 a 3 segundos. Nessa parte,
o sujeito mantém sua atenção focada na atividade para receber a dica. Depois disso, é
indicado qual movimento o sujeito deve executar ou imaginar, seguido da execução da
tarefa. Em alguns casos, a dica pode permanecer na tela durante o período de execução.
Finalmente, existe uma pequena pausa antes de se iniciar um novo trial.

A duração exata de cada um desses períodos pode variar de acordo com o objetivo
do conjunto de dados. Por exemplo, o phy possui tempos mais enxutos dada a quantidade
de sujeitos (mais de 100 pessoas no conjunto de dados). Enquanto isso, o cbcic possui
um tempo para execução da tarefa bem maior, uma vez que se trata de pacientes com
sequelas de AVC. Dessa forma, esse trabalho aborda conjuntos de dados com diferentes
características, mas que ainda mantêm as semelhanças necessárias para aplicações de
MI-BCI.

Figura 3 – Configuração das atividades dentro de um trial para os conjuntos de dados.
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4 Avaliação dos modelos

A avaliação de Interfaces Cérebro-Máquina continua sendo bastante discutida entre
os pesquisadores da área. Não existe um consenso sobre como fazer essa avaliação, já que a
classificação não é suficiente para indicar a performance das BCIs [48]. O modelo uFEEL
(Usabilidade, Afeto, Ergonomia e Qualidade de Vida) para experiência de usuário (UX)
foi usado como um norte para essa avaliação [49]. Para cada um desses 4 pontos, existe
um conjunto de critérios que pode ser avaliado, entre eles:

• Usabilidade

– Efetividade: taxa de acerto do modelo.

– Eficiência: tempo necessário para conclusão da tarefa.

– Aprendizado: facilidade de ser aprendido pelo usuário.

– Satisfação: atitude positiva do usuário em frente ao sistema.

• Afeto

– Valência: se possui uso prazeroso.

– Excitação: se gera engajamento em frente ao sistema.

– Sentimento: sentimentos gerados durante o uso do sistema.

– Conforto: o quão confortável é o sistema.

• Ergonomia

– Carga cognitiva: nível de dificuldade para usar o sistema.

– Fatiga: cansaço gerado ao usar o sistema.

– Controle: liberdade de controle e graus de liberdade do sistema.

• Qualidade de Vida

– Retorno do Investimento: o quanto de benefício é gerado de acordo com o custo
do sistema.

– Qualidade da experiência: o quanto o sistema ajuda e promove vantagens ao
usuário.

Apesar de existirem todas essas características a serem avaliadas em uma BCI.
Ainda hoje, a maioria dos trabalhos utiliza acurácia, Kappa e matriz de confusão para
avaliar as BCIs [50]. Todas essas métricas avaliam apenas a efetividade da BCI, o que
limita a avaliação dos modelos.
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Depois da avaliação da efetividade dos modelos, alguns trabalhos ainda focam
no aprendizado. Isso porque um dos principais problemas para a popularização desse
sistema são as pessoas “iletradas em BCI”. É visto que em torno de 20% das pessoas não
conseguem gerar ondas cerebrais suficientemente diferenciáveis para as BCIs [48]. Para
verificar a qualidade do sinal do usuário, normalmente é usada a informação mútua entre
o sinal e a classe [48].

A escolha da métrica representa, normalmente, o que foi considerado mais impor-
tante a ser destacado nos resultados. A eficiência também é avaliada em trabalhos que
envolvem Potenciais Evocados Visuais (VEP) [49]. Porém, dentro do nosso conhecimento,
nenhum trabalho avaliou a eficiência das BCIs dentro do paradigma de MI.

Nos trabalhos de BCI, a acurácia é calculada considerando que a BCI vai ter a
mesma saída durante todo o período de um trial. Dessa forma, ela não considera o atraso
da classificação ou quanto tempo a classificação permanece correta dentro de uma tentativa.
Além disso, a acurácia possui algumas limitações quando se trata de um conjunto de
dados desbalanceados. Em situações controladas, como competições e experimentos de
laboratório, é factível garantir essa condição; porém, o mesmo não acontece para aplicações
reais de BCI como controle de próteses. Nesse caso, há uma tendência das classes estarem
desbalanceadas, uma vez que uma pessoa usa mais uma mão do que a outra dependendo
de sua lateralidade. Esse problema já tem sido notado pela literatura com o uso de mais
de uma métrica para avaliar o desempenho.

Seguido da acurácia, as demais métricas mais usadas para avaliar a efetividade são:
Error rate, precisão, sensibilidade, especificidade, Kappa, F-score, recall e erro quadrático
médio [48]. As formulações dessas métricas podem ser vistas na Tabela 4, onde TP, TN,
FP e FN representam Verdadeiro Positivo, Verdadeiro Negativo, Falso Positivo e Falso
Negativo, respectivamente. Na fórmula do kappa, Po é a concordância observada e Pe a
concordância esperada. Finalmente, em Entropia Cruzada e Erro Quadrático Médio (MSE),
y é o valor real e ŷ é o valor previsto. Porém, mesmo essas outras métricas não consideram
a característica temporal de uma BCI.



26

Tabela 4 – Definição das métricas de desempenho encontradas na literatura.

Métrica Fórmula

Acurácia TP + TN

TP + FN + TN + FP

Error Rate FP + FN

TP + FN + TN + FP

Precisão TP

TP + FP

Especificidade TN

TN + FP

Kappa Po − Pe

1 − Pe

Recall TP

TP + FN

F-score 2 · precision · recall

precision + recall

MSE 1
n

.
n∑

i=1
(yi − ŷi)2

Entropia Cruzada − 1
n

.
n∑

i=1
[yi · log(ŷi) + (1 − yi) · log(1 − ŷi)]

4.1 Competições

Esse foco da avaliação na efetividade está provavelmente ligado à forma como
o desenvolvimento das BCI tem sido fomentado ao longo dos anos. Na Tabela 5, é
possível ver algumas competições no contexto de BCI para MI junto com a informação
se o tempo é usado na avaliação (uso indireto indica que vários tempos são utilizados,
mas sem ponderamento entre eles) [51, 52, 9, 44, 53]. No período de maior crescimento
das pesquisas em BCI, entre 2000 e 2005, houve uma grande quantidade de competições
para MI, de acordo com os dados apresentados na Tabela 5. Todas as competições
avaliavam o resultado baseando-se em 3 principais métricas: Acurácia, Erro Quadrático
Médio e Kappa. Algumas das competições ainda avaliavam diferentes janelas de tempo,
porém, sem ponderar sua posição, ou seja, modelos que atingem o mesmo valor, mas em
tempos diferentes, são considerados iguais. Por exemplo, na competição do dataset 2a, foi
calculado o Kappa de todas as janelas e foi usada a janela que possuía o maior Kappa,
ou seja, não importava se o modelo vencedor atingia isso com 1 segundo de atraso ou
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com 10 minutos. Isso já era um avanço na forma de avaliação quando comparado com as
estratégias de avaliação de janela única. Alguns meios de avaliação ainda consideram a
questão temporal de forma indireta na avaliação, como usar o maior valor independente
do tempo ou fazer uma média da acurácia ao longo de todo o experimento. Porém, isso
ainda não é o suficiente para analisar todas as nuanças de uma BCI. Outras métricas de
avaliação precisam ser incluídas na análise de resultados; apenas a precisão e a taxa de
erro não são suficientes para expressar a qualidade de uma BCI. As métricas apresentadas
avaliam o desempenho da classificação, mas é importante considerar que os problemas
de BCI possuem diferentes pontos que precisam ser melhorados além do desempenho de
classificação, exigindo a avaliação de características adicionais. Isso inclui fatores como
atraso, taxa de amostragem, número de eletrodos, entre outros.

Tabela 5 – Competições de BCI com MI.

Competição Ano Métrica Uso do tempo
BCIC II Dataset II 2003 Máxima Informação Mutua Indireto
BCIC III Dataset IIIa 2005 Kappa Médio Indireto
BCIC III Dataset IIIb 2005 Máxima Informação Mutua Indireto
BCIC III Dataset IVa 2005 Acurácia Não
BCIC III Dataset IVb 2005 Erro quadrático Não
BCIC III Dataset IVc 2005 Erro quadrático Não
BCIC IV Dataset 1 2008 Erro quadrático Não
BCIC IV Dataset 2a 2008 Máximo Kappa Indireto
BCIC IV Dataset 2b 2008 Máximo Kappa Indireto
Clinical BCI Challenge 2020 Kappa Não
International BCIC Track 4 2020 Acurácia Não

4.2 Perfis de Desempenho

Outra limitação dos trabalhos envolvendo BCI está relacionada ao iletramento em
BCI por parte dos sujeitos. A eficácia do modelo não depende apenas do modelo, mas
também da capacidade do sujeito em utilizar o sistema. Por isso, quando vários sujeitos
são avaliados, a diferença entre os sujeitos impede uma comparação justa entre os modelos.
Isso ocorre porque a diferença entre os sujeitos gera uma diferença na qualidade avaliada
maior do que a diferença entre os classificadores. Para contornar esse problema, propomos
também o uso dos perfis de desempenho para avaliar a eficácia do modelo.

Atualmente, os trabalhos de BCI utilizam diretamente a média entre os resultados
dos sujeitos. Por exemplo, para o dataset 2a, é calculado o kappa para os 9 sujeitos de
forma independente e depois é feita a média desses 9 valores. Porém, a variação intrínseca
entre esses sujeitos atrapalha uma análise mais justa desses resultados. Isso ocorre pois
uma variação em um sujeito iletrado vai gerar um impacto muito menor na média do que
a mesma variação em um sujeito que possui boa proficiência em BCI.
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Ao contrário da média, os perfis de desempenho conseguem prover uma comparação
ponderada percentualmente de acordo com o melhor resultado de cada sujeito. O perfil de
desempenho foi inicialmente proposto para avaliar métodos em conjuntos de diferentes
problemas. Por causa disso, ele consegue lidar bem com sujeitos que possuem diferentes
faixas de resultados.

O Perfil de Desempenho consiste em uma curva onde o eixo x indica a distância
em porcentagem do melhor caso e o eixo y indica a porcentagem dos problemas que
são resolvidos com, no máximo, essa tolerância. O perfil de desempenho avalia então os
modelos que possuem menor distância para o melhor caso de cada problema de minimização.
Para fazer esse cálculo percentual, primeiro é verificado o melhor resultado para cada
sujeito/problema e todos os resultados são divididos por esse valor. A partir disso, todos
os problemas vão estar normalizados, sendo 1 o melhor valor para todos eles.

Considerando um conjunto de S métodos e P problemas/sujeitos, o resultado do
s-ésimo sujeito para o p-ésimo problema pode ser definido como op,s. A partir disso, o
desempenho relativo de cada valor para o melhor resultado daquele problema pode ser
definido como:

rp,s = op,s

min{op,s : s ∈ S}
(4.1)

A partir dessa definição, pode-se então calcular a cardinalidade do conjunto de
problemas como:

ρs(τ) = 1
Np

|{p ∈ P : rp,s ≤ τ}| (4.2)

onde ρs(τ) é a probabilidade do desempenho relativo rp,s do método s estar dentro de um
raio τ ≥ 1 do melhor resultado do problema p.

A partir desses cálculos, 3 principais informações podem ser tiradas dos perfis de
desempenho: (i) ρs(1) indica para quantos problemas/sujeito o método s obteve o melhor
resultado, (ii) Área abaixo da curva, ou

∫
ρs(τ)dτ , indica o desempenho geral do modelo s

e (iii) Menor ρ(τ) = 1 representa quando o modelo consegue resolver todos os problemas e
menores valores indicam modelos mais confiáveis.

Como o perfil de desempenho foi proposto para problemas de minimização, ele será
utilizado com f(x) = 2 − Kappa, essa função foi escolhida pois transforma o Kappa em
um problema de minimização e com o menor valor possível sendo 1. Assim, essa função
impede possíveis divisões por zero e, ao mesmo tempo, permite o seu uso como função de
minimização.
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5 Métodos

Esse capítulo descreve os métodos usados na criação das BCI usadas nesse trabalho.
As etapas usadas no BCI são pré-processamento, filtragem temporal, filtragem espacial,
extração de características, seleção de características e classificação, como foi citado na
Seção 2. Cada etapa possui suas peculiaridades e seu conjunto de métodos mais utilizados.
Enquanto algumas partes, como a filtragem temporal e a extração de características, modi-
ficam significativamente os resultados do modelo, etapas como a seleção de características
e o classificador possuem um impacto menor nos resultados obtidos quando modificadas.
A influência de cada etapa no desempenho da BCI também foi considerada na hora de
escolher esses métodos. Sendo assim, foram escolhidos mais métodos de filtragem temporal
e espacial do que métodos usados nas demais etapas da BCI, já que eles impactam mais
nos resultados.

5.1 Reamostragem

Os processos de reamostragem servem para modificar a taxa de amostragem do
sinal coletado. Cada conjunto de dados usado nesse trabalho possui uma taxa de aquisição
diferente, porém, alguns métodos apresentam melhores resultados com taxas específicas.
Por exemplo, a EEGNet foi desenvolvida para funcionar com um sinal de entrada a
128Hz. Nesse trabalho, foram usadas 2 formas de reamostragem: (i) usando o domínio da
frequência e (ii) fazendo uma interpolação cúbica.

A reamostragem usando o domínio de frequência parece ser a mais adequada
quando filtros passa-banda são aplicados. Experimentos preliminares apontaram que a
filtragem passa-banda usando a Transformada Rápida de Fourier (FFT) não apresenta bons
resultados para a EEGNet. Portanto, decidiu-se incluir a spline cúbica aos experimentos.
Dado um sinal X ∈ RT ×B×E×S, a reamostragem irá modificar X para o espaço RT ×B×E×S′

onde S ′ é a nova taxa de amostragem.

Na reamostragem por domínio da frequência, o sinal de um eletrodo Xt,b,e é passado
para o domínio da frequência usando a FFT e, depois, as frequências e fases encontradas
são usadas para reconstruir o sinal, usando os valores de tempo encontrados a partir da
nova frequência de amostragem.

Já para a spline cúbica, é encontrada uma função de terceiro grau para cada
intervalo dentro do sinal original, com a garantia de que a função final encontrada possui
primeira e segunda derivadas contínuas. Depois, essas funções polinomiais são usadas para
encontrar o valor do sinal nos novos instantes de tempo.
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5.2 Filtros Temporais

Os filtros temporais são ferramentas cruciais no processamento de sinais para BCIs.
Eles são utilizados para aprimorar a qualidade dos sinais coletados, reduzindo a quantidade
de ruído do sinal e removendo características desnecessárias. Nesse trabalho, iremos adotar
o filtro passa-banda com Chebyshev II ou por convolução, o banco de filtros, o Modo de
Decomposição Empírica (EMD), a Transformada de Fourier de Curta Duração (STFT) e
a Wavelet.

5.2.1 Filtros passa-banda

Um filtro passa-banda é um tipo de filtro que permite a passagem de frequências
em um intervalo específico. Ele atenua as frequências que estão fora desse intervalo. Essa
filtragem pode ser feita passando o sinal para o domínio da frequência (no caso do Chebyshev
II) ou ser feita diretamente no domínio do tempo (filtragem por convolução) [54, 55].

5.2.1.1 Passa banda com Chebyshev II

O filtro passa-banda usando Chebyshev II é um tipo de filtro que se destaca pela
sua capacidade de minimizar a variação de ganho dentro da faixa de frequências permitidas.
Esse tipo de filtro é projetado para ter uma resposta em frequência mais suave, garantindo
uma transição mais gradual nos extremos da banda permitida. A implementação de um
filtro passa-banda Chebyshev II pode ser realizada através da transformação do sinal para
o domínio da frequência, onde as frequências fora da faixa desejada são zeradas. Após essa
etapa, é aplicada a transformada inversa de Fourier para voltar o sinal para o domínio
do tempo. Após a aplicação desse filtro passa-banda, as fases de cada frequência no sinal
original são alteradas. Isso ocorre porque o filtro pode introduzir deslocamentos de fase.

Por isso, esse método não se adapta bem ao modelo EEGNet devido ao deslocamento
de fase que ele provoca. Essa alteração de fase pode comprometer a sincronização temporal
dos eventos ao longo do sinal, que é a informação que a EEGNet busca capturar. Dessa
forma, também consideramos o uso de um filtro passa-banda por convolução nesse trabalho.
Mais detalhes sobre a EEGNet serão apresentados na Seção 5.6.2.

5.2.1.2 Passa banda por convolução

O filtro passa-banda por convolução é uma abordagem que permite a filtragem
de sinais diretamente no domínio do tempo, utilizando um núcleo (kernel) que define
a resposta do filtro. Essa técnica se baseia na operação de convolução, onde o sinal de
entrada é convoluído com a função de filtragem. Essa função é projetada para realçar as
frequências em uma determinada faixa e reduzir as demais.
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Para o caso contínuo, esse processo de convolução pode ser escrito da forma:

Rt,b,e(s) = Xt,b,e(s) ∗ h(s) =
∫ ∞

−∞
Xt,b,e(τ)h(s − τ)dτ (5.1)

onde h(s) é o nosso núcleo de convolução.

Por outro lado, como o sinais de EEG está no domínio discreto com uma taxa de
amostragem Sfreq, podemos reescrever a operação de convolução como:

Rt,b,e[s] =
Nh∑

m=0
Xt,b,e[s + m] · h[Nh − m] (5.2)

onde Nh é o tamanho do núcleo usado na filtragem.

O tamanho do núcleo tem um impacto direto no comportamento do filtro. Um
núcleo maior possui uma transição mais suave nas bordas da banda. Por outro lado, um
núcleo menor pode levar a transições mais abruptas, podendo introduzir artefatos no sinal.
O tamanho do núcleo também pode modificar o tamanho do sinal de saída. O sinal se
mantém da forma esperada apenas na parte válida da convolução. Para um núcleo de
tamanho Nh, o sinal de saída vai ter uma parte válida de S − Nh + 1, enquanto as bordas
fora desse intervalo serão descartadas ou serão deterioradas. Por isso, o tamanho do núcleo
é uma escolha difícil de ser feita, principalmente em sinais pequenos.

5.2.1.3 Banco de Filtros

O banco de filtros foi introduzido em BCI no modelo do FBCSP (Filter Bank
Common Spatial Pattern) permitindo a análise de diferentes bandas de frequência [8]. Essa
abordagem consiste em aplicar múltiplos filtros a um sinal de entrada de forma paralela,
cada um com uma faixa de frequência diferente, resultando em várias representações do
sinal.

Os filtros podem ser implementados utilizando diferentes abordagens, 2 delas são:
filtragem com o método Chebyshev II ou por convolução. Ao optar pelo filtro Chebyshev
II, cada filtro realça uma faixa de frequência diferente, minimizando a variação de ganho
dentro da banda. Esse método é bom em termos de processamento, mas, como visto
anteriormente, pode introduzir deslocamentos de fase que impedem o uso de alguns
métodos em etapas sequentes.

Por outro lado, com a convolução, a filtragem é feita diretamente no domínio
do tempo, utilizando núcleos projetados para realçar cada frequência. Essa abordagem
mantém a fase do sinal mais intacta, evitando os problemas associados ao filtro Chebyshev
II, mas pode exigir um maior custo computacional dependendo do número de filtros e do
tamanho dos núcleos.

Uma desvantagem do uso do banco de filtros é o aumento da dimensão do sinal. Já
que um sinal de entrada no espaço RT,B,E,S passa a pertencer ao espaço RT,B·B′,E,S, onde
B′ é a quantidade de filtros presentes no banco.
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5.2.2 Modo de Decomposição Empírica

O Modo de Decomposição Empírica (EMD) é uma técnica muito usada para analisar
sinais não estacionários [56], pois ele decompõe um sinal em componentes intrínsecas,
ou Modos Intrínsecos de Oscilação (IMFs). A ideia do EMD é que qualquer sinal pode
ser representado como a soma de uma série de IMFs e um resíduo. Isso ocorre de forma
similar com a decomposição em séries de senos e cossenos, mas usando as IMFs no lugar
das funções trigonométricas.

A criação das IMFs é feita a partir da localização dos mínimos e máximos locais do
sinal. Depois, é gerada uma onda a partir da interpolação desses pontos, dando origem à
primeira IMF e a uma onda que seja a diferença entre a IMF e o sinal original. O processo
pode ser reaplicado ao sinal diferença para gerar novas IMFs até um critério de parada,
que normalmente é feito considerando a quantidade de máximos e mínimos locais do sinal.

5.2.3 Transformada de Fourier de Curta Duração

A Transformada de Fourier de Curta Duração (STFT) é uma técnica que permite
a representação simultânea de informações temporais e de frequência [57]. Ao contrário da
Transformada de Fourier clássica, que fornece uma visão global do espectro de frequência
de um sinal, a STFT divide o sinal em segmentos menores e aplica a Transformada de
Fourier a cada um deles. Isso possibilita a análise das mudanças no conteúdo de frequência
ao longo do tempo. Essa transformada pode ser vista como uma mistura dos processos da
transformada de Fourier clássica com o uso de uma convolução. Na convolução, o núcleo
percorre o sinal gerando resultados locais ao longo do sinal. Já na STFT, existe uma janela
que percorre o sinal, porém, fazendo a transformada de Fourier clássica em cada janela.

Na transformada de Fourier clássica, um sinal Xt,b,e ∈ Rs, passa a ser Rs ∈ Rf ,
onde f é o número de frequências extraídas do sinal. Na STFT, entretanto, a saída passa
a ser Rs ∈ Rs/j×f , onde j é o tamanho da janela usada. Dessa forma, o STFT transforma
um sinal que era inicialmente unidimensional em um sinal bidimensional, normalmente
chamado de domínio tempo-frequência.

5.2.4 Wavelet

A transformada wavelet pode ser usada para separar o sinal em diferentes janelas
de frequência, podendo ter um ou mais níveis [58]. Essa abordagem é bastante útil
principalmente para tratar sinais não estacionários, pelo fato dela lidar com diferentes
intervalos de frequência e resoluções do sinal. No primeiro nível, filtros passa-baixa e
passa-alta são aplicados independentemente. Os sinais são então reduzidos à metade de
seus tamanhos originais. O sinal do filtro passa-baixa é usado novamente no processo
quando há mais níveis a serem aplicados. Cada passagem divide o domínio pela metade
(parte baixa e alta). A Figura 4 mostra uma representação esquemática de uma wavelet
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de 3 níveis. Neste caso, há quatro séries de saída, três de filtros passa-alta (D1, D2 e D3)
e outra de um filtro passa-baixa (A3).

Figura 4 – Wavelet de 3 níveis.
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5.3 Filtros Espaciais

Filtros espaciais possuem um papel importante nas BCIs, pois o sinal coletado pelo
EEG é um sinal resultante do que está acontecendo no cérebro, mas não o próprio sinal.
Isso significa que o sinal coletado por um eletrodo é uma combinação de todos os sinais
presentes no ambiente. Entre esses sinais, estão o campo elétrico de outras regiões mais
distantes no cérebro, de equipamentos próximos, ruídos provocados por movimento ou
mudança da impedância da pele (normalmente provocada por reações na pasta condutora).
O objetivo dos filtros espaciais é separar essas fontes que possuem origens diferentes,
retirando a correlação entre os eletrodos. Na situação ideal, após a aplicação de um filtro
espacial, os eletrodos não possuem mais correlação entre si, facilitando as próximas etapas
da BCI.

Um dos métodos mais utilizados para a filtragem espacial em BCIs é o Common
Spatial Pattern (CSP). O CSP é uma técnica projetada para maximizar a variância dos
sinais em classes específicas, permitindo uma melhor separação entre 2 estados mentais ou
tarefas. Ele é usado principalmente para separação de tarefas motoras, porém, possui as
limitações de ser um método supervisionado e para apenas 2 classes. Outro filtro espacial
bastante utilizado é o Alinhamento Euclidiano (EA). Esse método é usado principalmente
para alinhar o sinal cerebral de diferentes sujeitos, porém, também pode ser usado para
filtragem espacial através da aplicação de uma transformação linear no sinal original.

5.3.1 Common Spatial Pattern

O CSP é uma transformação linear que visa maximizar a diferença entre as
variâncias de 2 grupos [59]. Ele é aplicado ao sinal da forma

Zt,b,s = W T × Rt,b,s, (5.3)
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onde Zt,b,s é o sinal transformado após a aplicação do filtro espacial W ∈ RE×E, que é a
matriz de transformação do CSP.

No caso de sinais de eletroencefalograma, o objetivo do CSP é maximizar a diferença
de variância entre as matrizes de correlação entre os eletrodos de cada classe. A matriz de
correlação entre os eletrodos de uma dada classe c pode ser escrita como

Σ(c)
b = 1

Nc

Nc∑
i

R
(c)
i,b,e,s × R

(c)
i,b,s,e (5.4)

onde Σ(c)
b ∈ RS×S é a matriz de correlação entre os eletrodos e Nc é o número de amostras

de treinamento da classe c.

A maximização da diferença entre as variâncias pode ser vista como a diagonalização
simultânea das duas matrizes de correlação, como

W T Σ(1)
b W = Λ(1), e

W T Σ(2)
b W = Λ(2).

(5.5)

Essa maximização é restringida para que a soma das matrizes diagonais formadas
pelos autovalores Λ(1) e Λ(2) seja igual à matriz identidade. Este problema é equivalente a
resolver o problema generalizado de autovalor, que pode ser definido como:

Σ(1)
b Wb =

(
Σ(1)

b + Σ(2)
b

)
WbΛb (5.6)

O número de filtros gerados pelo CSP é igual ao número de sinais coletados. Para
reduzir o número de filtros, apenas m filtros são escolhidos para serem usados (com m par).
Como o CSP maximiza a variância da classe 1 nos primeiros autovetores e da classe 2 nos
últimos, são usadas apenas as m/2 primeiras colunas de Wb e as m/2 últimas colunas de
Wb.

5.3.2 Alinhamento Euclidiano

O EA [17] foi proposto como uma alternativa ao Alinhamento Riemanniano (RA) [60]
para o alinhamento do sinal cerebral de diferentes pessoas. Ele usa uma matriz de referên-
cia, calculada por meio dos dados de EEG, para alinhar os dados de diferentes sujeitos.
Porém, para o caso de filtro espacial, isso é feito limitando suas etapas a uma única pessoa.
Uma matriz de referência R̄s é a média da covariância dos dados desse sujeito da mesma
forma que apresentada anteriormente para o CSP na Equação 5.4, porém, sem a separação
por classe. Ficando, assim, da forma

Σb = 1
T

T∑
i

Ri,b,e,s × Ri,b,s,e (5.7)

Após o cálculo de Σb, essa matriz é usada diretamente para transformar os dados a
partir da equação

Zt,b,s = (Σb)− 1
2 × Rt,b,s (5.8)



35

O sinal após a aplicação do EA como filtro espacial passa a ter a nova matriz de
referência igual à matriz identidade. Isso reduz a correlação entre os eletrodos do sinal,
assim como esperado de um filtro espacial para BCI.

5.4 LogPower

Após as etapas de filtragem, o sinal Z passa pela etapa de extração de características.
A extração de características transforma os sinais brutos coletados em informações úteis que
podem ser utilizadas para classificação e transdução do sinal. A extração de características
transforma cada matriz Zt,b em um vetor It,b. Para o CSP, é normalmente usada a função
LogPower para a extração dessas características, uma vez que ela se alinha com a própria
ideia dos autovetores generalizados encontrados pelo CSP.

A função LogPower é definida como o logaritmo da energia de um sinal, ela é usada
principalmente com o CSP, mas também pode ser usada em outras abordagens. Ela pode
ser escrita como

It,b = log
 S∑

i

|Zi
t,b,e|
S

 (5.9)

5.5 Mutual information-based best individual feature

Há situações em que o vetor de características I continua com um tamanho muito
grande para alguns classificadores. Nesses casos, é necessário um método de seleção de
características para reduzir essa quantidade.

O MIBIF é um método de seleção de características que seleciona as melhores
características considerando informações mútuas entre características e classes [8]. Este
método classifica as características com base em informações mútuas em ordem decrescente
como

M(Ii; Ȳ ) = H(Ȳ ) − H(Ȳ |Ii) (5.10)

onde M(·) é a função de informação mútua, H(·) é a função de entropia, H(·|·) é a função
de entropia condicional e Ȳ são os labels reais.

O cálculo da entropia de Y é feito por H(Y ) = − ∑C
c P (c) · log2 P (c). A entropia

condicional H(Y |Ii) de Y dado Ii é calculada como

H(Y |Ii) = −
C∑
c

Nc∑
j

P (c|Ij,i) · log2[P (c|Ij,i)] (5.11)

onde, P (c|Ij,i) = P (c)·P (Ii,j |c)
P (Ii,j) é a probabilidade condicional de c dado Ij,i definido usando o

teorema de Bayes. Nc é o número de amostras da classe c.

Porém, P (c|Ij,i) pode ser substituído pela probabilidade encontrada pelo classifica-
dor usado pela BCI. Como neste trabalho o MIBIF é apenas usado com o LDA, P (c|Ij,i) é
calculado pelo próprio classificador.
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Após o cálculo de M , os k primeiros valores de I serão usados para criar o vetor
de características F que será passado ao classificador.

5.6 Classificadores

Após a criação e seleção das melhores características F , um modelo de classificação
é usado para determinar a classe. Na maioria dos trabalhos com BCI, são usados classifica-
dores como Máquina de Vetor de Suporte (SVM), Análise de Discriminante Linear (LDA)
ou Softmax. Outros classificadores como o NBPW também podem ser observados com
menor frequência. Dentre eles, o LDA se destaca entre os demais, sendo o mais utilizado
nos modelos para MI. Por esse motivo, ele será usado como classificador para todas as
BCIs que possuem extração de características neste trabalho.

Além disso, também abordaremos o uso da EEGNet, que é uma rede convolucional
rasa que visa agrupar várias etapas do processamento da BCI em sua arquitetura. Nesse
caso, ela será usada em modelos que não usam extração de características, uma vez que
ela recebe diretamente o sinal Z.

5.6.1 Análise de Discriminante linear

O LDA será usado para classificar um sinal a partir de suas características F . Ele
é um método estatístico utilizado para problemas de classificação. O LDA visa encontrar
uma combinação linear de características que maximize a separação entre diferentes classes.

O LDA calcula a média e a variância para cada classe e projeta os dados em
uma nova dimensão. Essa dimensão maximiza a distância entre as médias das classes e
minimiza a variação dentro de cada classe. Matematicamente, isso é representado pela
maximização da razão entre a variância entre classes e a variância dentro das classes. A
partir disso, o LDA constrói um vetor discriminante que define a direção de projeção
dos dados. Esse vetor é obtido através da resolução de um problema de autovalores que
considera as matrizes de covariância e as médias das classes. Depois da projeção dos dados
na direção do vetor discriminante, a classe de saída do LDA é escolhida pela classe com
menor distância para o ponto projetado nesse novo espaço.

5.6.2 EEGNet

A EEGNet é uma rede neural convolucional compacta baseada nas etapas do FBCSP.
O FBCSP é composto pelas etapas [8]: (i) filtros passa-banda; (ii) CSP; (iii) MIBIF; e
(iv) NBPW. Correlacionando os modelos, o EEGNet possui: (i) convoluções temporais;
(ii) convoluções espaciais; (iii) convoluções separáveis; e (iv) Softmax. Portanto, o EEGNet
tem uma estrutura compacta, mas robusta, pois é baseado em um pipeline que tem
mostrado bons resultados na literatura. A Figura 5 mostra um diagrama mais detalhado
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das etapas do EEGNet. Primeiro, o sinal passa por um conjunto de convoluções temporais
F1 (em azul). Depois disso, cada novo sinal passa por D convoluções espaciais (em laranja)
seguidas por uma função ELU (A), uma camada de pooling (P) e uma camada de dropout
(D) representada com um corte por fazer parte apenas do treinamento. Para a convolução
separável, outro filtro temporal é aplicado, seguido por uma convolução profunda de
tamanho F2 (em roxo). Finalmente, o sinal passa pela função de ativação ELU, a camada
de pooling, dropout e é classificado usando uma Softmax após um merge do sinal (M).

Figura 5 – Arquitetura da EEGNet.
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5.7 Modelos para BCI

Os principais modelos para MI-EEG-BCI são o FBCSP e a EEGNet. Conforme
apontado na Seção 5.6.2, o FBCSP é um modelo formado pela sequência: (i) banco de
filtros passa-banda do tipo Chebyshev II, (ii) CSP, (iii) LogPower, (iv) MIBIF e (v) NBPW.
Porém, com o tempo, o NBPW foi sendo substituído pelo LDA e, atualmente, esse é o
classificador mais usado na última etapa do FBCSP. Já a EEGNet segue a mesma estrutura
mostrada na Seção 5.6.2, porém, com a aplicação de uma etapa de reamostragem por
transformada de Fourier antes.

Para avaliar as métricas da literatura e propostas, foram testados 48 modelos
diferentes que foram gerados por combinações das abordagens apresentadas aqui para
cada uma das etapas da BCI. Os nomes dos modelos foram gerados a partir de 4 letras,
indicando diferentes etapas na BCI. As 4 letras indicam em ordem: reamostragem, filtro
temporal, filtro espacial e classificador. Sendo as possibilidades para cada uma das 4
posições na sigla:

• Reamostragem

– N - Nenhum

– C - Cúbico

– F - Fourier
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• Temporal

– H - Chebychev II

– C - Convolução

– E - EMD

– F - Banco Chebychev II

– V - Banco Convolução

– N - Nenhum

– S - STFT

– W - Wavelet

• Espacial

– C - CSP

– N - Nenhum

– E - EA

• Classificador

– L - LDA

– E - EEGNet

Por exemplo, o modelo NHCL não possui reamostragem e é composto pelas etapas
Chebyshev II como filtro temporal, CSP como filtro espacial e LDA como classificador.
Além disso, o X na nomenclatura é utilizado para indicar um grupo de modelos, por
exemplo, o NHXL indica o conjunto dos modelos NHNL, NHCL e NHEL. Em todos os
casos, a função LogPower foi usada como extração de característica e a reamostragem foi
utilizada apenas nos modelos com a EEGNet. Por questões de referência, o FBCSP agora
passará a ser chamado de NFCL, seguindo a nova nomenclatura dos métodos.

Dentre esses modelos, nós propomos o uso do STFT junto com o CSP em BCI e o uso
do EA junto com o banco de filtros temporais. Além disso, muitas das combinações geradas
nesse trabalho não foram testadas na literatura, sendo, assim, alternativas propostas desta
tese. Isso porque, normalmente, é avaliada apenas uma das combinações por trabalho, e
não diversas combinações como aqui. Por exemplo, o NFCL usa banco de filtros Chebychev
II e o NHEL usa o alinhamento euclidiano como filtro espacial, porém, do que temos
conhecimento, fomos os primeiros a usá-los juntos, gerando uma nova abordagem para
BCI.

Desta forma, vale destacar que diversos métodos para BCIs foram desenvolvidos
durante este doutoramento, conforme destacado na Tabela 1. Porém, decidiu-se por focar
esta tese nas métricas de desempenho que são apresentadas no Capítulo 6.
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6 Métricas Propostas

Nesse trabalho é abordado 2 problemas principais dentro da avaliação das BCIs:
(i) a influência do iletramento em BCI no cálculo da eficácia do modelo e (ii) a eficiência do
modelo (influenciada pelo atraso temporal). Para o primeiro ponto, será utilizado o perfil
de desempenho explicado na Seção 4.2. Para a eficiência, novas métricas são propostas
nesse capítulo. No final, 6 métricas serão usadas nesse trabalho e as análises dessas métricas
serão feitas com perfis de desempenho. Cada uma das métricas apresentadas nesse capítulo
é dependente de uma métrica clássica para avaliação de eficácia. Elas serão exemplificadas
aqui usando Kappa como função de avaliação, porém, qualquer outra métrica apresentada
na Tabela 4 pode ser usada. Com a consideração de que, para métricas de maximização, a
métrica deve ser invertida de alguma forma. São usadas 6 métricas neste trabalho, onde as
métricas de 1 a 3 já são usadas na literatura e as métricas de 4 a 6 estão sendo propostas
nesse trabalho. As 6 métricas avaliadas nesse trabalho são:

• D1: Kappa avaliado em 2,5 segundos após a dica. Métrica mais comum para avaliar
a eficácia de uma BCI (Valor em 2,5 segundos na Figura 6).

D1(Y, Ȳ ) = Kappa(Y, Ȳ2,5+t0) (6.1)

onde Ȳ2,5+t0 é a previsão do modelo em 2, 5 + t0 e t0 indica o início da tarefa.

• D2: Kappa máximo avaliado em todos os instantes da janela de teste. Mais relevante
que a D1, porém, ainda sem avaliar diretamente a eficiência do modelo. (Valor
máximo para y na Figura 6)

D2(Y, Ȳ ) = maxKappa(Y,Ȳϕ) ∀ ϕ ∈ janelas de teste (6.2)

• D3: Integral do Kappa ao longo de todo o teste. Consegue avaliar melhor a eficácia
do modelo que as métricas D1 e D2, porém, ainda sem informação de eficiência
(Integral da curva da Figura 6).

D3(Y, Ȳ ) =
∫

Kappa(Y, Ȳt) dt (6.3)

• D4: Instante de tempo, após a dica, que obtém o maior valor de Kappa (tempo em
segundos para o maior valor de y na Figura 6). Capaz de dar uma ideia inicial sobre
a eficiência do modelo quando analisado junto com a métrica D2.

D4(Y, Ȳ ) = argmaxt(Kappa(Y, Ȳt)) − t0 (6.4)

• D5: Instante de tempo que maximiza a derivada do Kappa ao longo do tempo (Valor
em segundos onde ocorre a maior derivada de y na Figura 6). Essa métrica tem como
objetivo encontrar um dos instantes de tempo mais significativos para a classificação.

D5(Y, Ȳ ) = argmaxt

( d
dtKappa(Y, Ȳt)

)
− t0 (6.5)



40

• D6: Oscilação do Kappa ao longo do tempo. Serve para verificar a estabilidade do
modelo ao longo do tempo.

D6(Y, Ȳ ) =
∫ ( d

dtKappa(Y, Ȳt)
)2

dt (6.6)

A métrica D1 representa a avaliação que é feita na maioria dos trabalhos envolvendo
BCI. Ela se limita a verificar o valor da métrica apenas 2,5 segundos após a apresentação
da tarefa. Além de não considerar a eficiência do problema, ainda pode gerar uma análise
incompleta da eficácia, já que ela não executa a métrica em outros instantes de tempo.
Normalmente, os modelos de BCI são avaliados de acordo com métricas de desempenho
na mesma janela usada para o treinamento. Por exemplo, na EEGNet, os trabalhos para
MI treinam o modelo com a janela 0,5-2,5 segundos após a pessoa começar a imaginar o
movimento [13]. Porém, em aplicações em tempo real, o modelo será usado em todos os
instantes de tempo durante o experimento. A Figura 6 mostra o desempenho da EEGNet
com os parâmetros propostos por Lawhern [13] ao longo de 4 segundos após o sujeito
iniciar a tarefa. Como esperado, o modelo apresenta um melhor desempenho 2,5 segundos
após a tarefa (momento em que se encerra a janela de treinamento).

Figura 6 – Acurácia média da EEGNet ao longo de um trial.
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Alguns poucos trabalhos e competições utilizam as métricas D2 e D3. Essas
métricas usam a questão temporal na hora de calcular a eficácia, porém não avaliam a
eficiência do modelo. Por esse motivo, elas foram listadas como as métricas que usam
o tempo de forma indireta na Tabela 5. As métricas 4 e 5 avaliam exclusivamente a
eficiência do modelo. Ao avaliar o instante de tempo de maior valor ou de maior derivada,
é possível avaliar quanto tempo leva para a pessoa conseguir executar a tarefa e o instante
em que a informação mais relevante da atividade começa a ser coletada. Dessa forma, as
métricas 1, 2 e 3 devem ser usadas juntamente com as métricas 4 e 5 para obter uma visão
mais completa sobre a performance da BCI. Essas novas métricas vieram para completar
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as métricas atuais e não substituí-las. É importante notar também que as métricas 4 e
5 são independentes do tempo de execução do modelo, o atraso sendo avaliado aqui é
referente apenas ao tempo necessário para o cérebro gerar os sinais que o classificador está
esperando.

Podemos separar o tempo entre a pessoa imaginar o movimento e o movimento
realmente acontecer em 3 partes: (i) atraso de comunicação; (ii) atraso da aparição das
características; e (iii) atraso gerado pelo tempo de execução do modelo;

O atraso de comunicação se refere ao tempo gasto para a comunicação do EEG
com o modelo de classificação. Esse é insignificante na maioria das vezes, principalmente
quando todo o sistema está funcionando localmente e via cabo.

O atraso da aparição da característica notada nessas métricas é o tempo que
demora para o cérebro da pessoa gerar a característica que o modelo busca. Por exemplo,
considerando que 2,5 segundos após a pessoa imaginar um movimento, o cérebro da
pessoa vai estar em um determinado estado que é exatamente o estado que foi usado no
treinamento do modelo. Dessa forma, o modelo vai estar sempre 2,5 segundos defasado,
já que ele precisa esperar o cérebro gerar a característica que ele quer. Esse atraso é
independente da máquina usada ou da complexidade do modelo e está atrelado muito
mais à própria conceituação do problema sobre o sinal de interesse.

O atraso gerado pela execução está relacionado ao tempo necessário para a execução
do modelo, podendo ser um valor irrelevante em modelos mais simples. Porém, mesmo nos
modelos que necessitam de mais recurso computacional, como nas redes convolucionais
profundas, esse valor costuma ser negligenciável, já que ele não considera o tempo de
treinamento da BCI, mas apenas o tempo de execução do modelo para um único trial.

Por fim, a métrica 6 avalia a estabilidade do modelo, ou seja, o quanto a classificação
oscila ao longo do tempo. Essa métrica está ligada à percepção do sujeito sobre o
funcionamento da BCI. Pois, se o modelo varia a classificação muitas vezes em um curto
espaço de tempo, o sujeito perde a confiança na classificação, gerando uma melhor satisfação
com a interface.
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7 Experimentos Computacionais

Esse capítulo apresenta os resultados brutos dos experimentos executados nesse
trabalho, no Capítulo 8 são levantadas as discussões geradas a partir desses resultados.
Todos os testes foram feitos usando a validação cruzada balanceada com 5 grupos. O
treinamento foi feito com uma janela de 2 segundos iniciada em meio segundo após a
apresentação da tarefa a ser executada. Isso permitiu o alinhamento de todos os conjuntos
de dados para podermos juntar seus resultados, já que a tarefa de cada conjunto de dados
ocorre em um instante diferente. O código desenvolvido neste trabalho foi publicado como
um pacote para Python1. A nomenclatura dos modelos manterá a mesma apresentada
no 5.7.

7.1 Dataset base

O resultado médio entre os sujeitos para as 6 métricas avaliadas para o dataset 2a
está presente na Tabela 6. Para a métrica D1 (avaliação em 2,5 segundos após a dica),
o método com o melhor resultado foi o FVNE com um kappa de 0,7901. Comparando
os diferentes filtros temporais, os modelos com Chebychev II apresentaram os melhores
resultados quando usados com o LDA, independentemente do filtro espacial usado. O
mesmo padrão ocorreu com os modelos com CSP, que apresentaram os melhores resultados
independentemente do filtro espacial utilizado. Dessa forma, o melhor resultado para o
LDA foi composto pelo filtro Chebychev II juntamente com o CSP, indicado na tabela
como NHCL. Entre os métodos com a EEGNet como classificador, os melhores métodos
para filtragem espacial foram o filtro passa-banda por convolução e o banco de filtros por
convolução. Ambos os métodos apresentaram resultados próximos, independentemente da
técnica de reamostragem utilizada. Já para a técnica de reamostragem, o uso da FFT se
mostrou mais eficiente que as demais.

Para a métrica D2, as conclusões foram similares às de D1, tendo os melhores
resultados o uso de Chebychev II com o CSP para os modelos com LDA de classificador e
o FVNE como o melhor modelo com a EEGNet. Porém, o melhor modelo geral para essa
métrica foi o NHCL, apesar da diferença entre o melhor modelo com LDA e com EEGNet
ter sido pequena tanto para D1 quanto para D2. A métrica D3, integral do período da
tarefa, foi a que mais apresentou diferença entre as métricas para avaliar a eficácia das
BCIs. Para ela, os modelos com LDA de classificador apresentaram melhores resultados
que os modelos com a EEGNet de forma consistente. O melhor resultado para essa métrica
foi o NHCL que obteve um resultado 13% melhor que a FVNE (melhor modelo com a
EEGNet).

Para a métrica D4, o melhor resultado foi obtido pelo CWNE, que conseguiu
1 https://pypi.org/project/bciflow/
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atingir seu melhor resultado com menos de 1 segundo após a apresentação da dica (0,8889
segundos). Comparando os modelos com o LDA e a EEGNet, os modelos com a EEGNet
obtiveram seu pico de eficácia bem antes do que os modelos com o LDA. Além disso, houve
uma tendência de melhores resultados para os modelos que utilizavam a Wavelet como
filtro temporal. A métrica D3, que avalia o ponto de maior crescimento da eficácia, teve os
mesmos resultados para a EEGNet, no qual a Wavelet apresentou os melhores resultados
para os modelos com a EEGNet. Porém, o modelo que obteve a melhora máxima de
eficácia mais rápido foi o NCCL. Por fim, para a métrica D6, os modelos com a EEGNet
se mostraram bem mais estáveis do que os modelos com o LDA e, novamente, houve uma
tendência para os modelos com a Wavelet para essa métrica.

Os resultados baseados nos perfis de desempenho estão presentes nas Tabelas 7, 8, 9.
Para a área dos perfis de desempenho, os resultados ficaram similares aos apresentados na
Tabela 6. Os modelos com Chebychev II apresentaram melhores resultados com o LDA,
assim como o CSP. Considerando D1, o melhor método foi o CCNE, porém, bem próximo
do NHCL e FCNE. Já para D2, o melhor método foi o NHCL, mas ainda próximo dos
outros 2 métodos. Porém, quando se observa a quantidade de vezes que o método obtém os
maiores valores, pode-se observar uma clara vantagem na eficácia do NHCL sobre os outros
modelos. Principalmente para a métrica D3, onde o NHCL obteve o melhor resultado para
5 sujeitos, enquanto os métodos com a EEGNet não obtiveram o melhor resultado para
nenhum dos 9 sujeitos desse dataset. Para as métricas D4 e D5, o resultado foi o oposto,
em que os modelos com a EEGNet obtiveram os melhores resultados, enquanto os modelos
com o LDA não foram superiores para nenhum dos sujeitos. Também é possível observar
uma consistência no fato da Wavelet ter obtido os melhores resultados para essas métricas,
assim como mostrado nas áreas dos perfis de desempenho. O método mais estável foi o
NFCL, uma vez que ele apresentou o melhor pior caso, sendo 14,71% pior, seguido pelo
CVNE com 17,81% para a métrica D1. Assim como nas outras avaliações, também foi
possível observar uma correlação entre D1 e D2, com a ordem dos melhores métodos sendo
bastante similar.

7.2 Dataset com poucos eletrodos

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
BCICIV2b está apresentado na Tabela 10, que fornece uma visão consolidada do desempe-
nho médio das diferentes combinações de filtragem temporal e classificadores avaliados.
Nas três primeiras métricas, D1, D2 e D3, observa-se um padrão claro: os métodos que
combinam filtragem temporal via STFT com LDA (XSXL) obtiveram consistentemente os
melhores resultados. Em todas essas métricas, o desempenho desses métodos superou de
forma clara e repetida aquele alcançado pelos métodos que utilizam filtragem temporal
por banco de convolução combinada com EEGNet (XCXE).
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Na métrica D4, que mede o tempo para atingir o pico de desempenho, houve
uma inversão de destaque. Nesse caso, os métodos com filtragem temporal via Wavelet
combinada com EEGNet (XWXE) se sobressaíram, atingindo tempos menores para
alcançar seu melhor desempenho.

No que diz respeito à estabilidade de desempenho, medida pela métrica D6, verificou-
se que os modelos com EEGNet (XXXE) apresentaram maior consistência em relação aos
métodos baseados em LDA (XXXL). Essa característica sugere que, embora os métodos com
LDA possam ser mais eficientes em termos de acurácia inicial em determinadas métricas,
os modelos com EEGNet mantêm um desempenho mais estável ao longo do tempo ou sob
condições variáveis. Ainda dentro do grupo com EEGNet, destaca-se que todos os melhores
resultados para a métrica D5 foram negativos, com predominância do método NFNE, o
que indica que o modelo não foi capaz de aprender as características desejadas. Essas
observações são corroboradas pela análise global apresentada na Tabela 11. A convergência
entre os resultados médios por métrica e a área total indica que os métodos que se
destacam em métricas isoladas também tendem a figurar entre os de maior desempenho
geral, reforçando a consistência das tendências observadas.

Ao considerar os piores casos, conforme mostrado na Tabela 13, os métodos XSXL
mantêm sua robustez, apresentando os melhores resultados para as três primeiras métricas
e também se destacando na métrica D5 entre os modelos com LDA. Já no conjunto
de métodos com EEGNet, os que utilizam filtragem temporal por banco de convolução
(XVXE) apresentaram os melhores desempenhos no cenário de pior caso, sugerindo que,
mesmo sob condições adversas, essas configurações mantêm certa resiliência.

Por fim, a análise individual por sujeito, apresentada na Tabela 12, revelou que
o método NSCL foi o mais recorrente entre os melhores resultados para D1, D2 e D3.
Especificamente, ele se destacou em 2 sujeitos para D1, 3 para D2 e 5 para D3.

7.3 Dataset de pacientes pós-AVC

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
CBCIC está apresentado na Tabela 14, permitindo uma visão abrangente do desempenho
de cada abordagem considerada. Nas três primeiras métricas, D1, D2 e D3, observou-se um
padrão bastante claro: os métodos baseados na arquitetura EEGNet (XXXE) superaram,
de forma consistente e com margens consideráveis, os métodos que utilizam LDA (XXXL).
Esse comportamento indica que, no contexto dessas métricas, a capacidade de extração
de características mais complexas oferecida pelo EEGNet foi decisiva para garantir um
desempenho superior. Entretanto, a situação muda na métrica D6, que avalia a estabilidade.
Nesse caso, os métodos com LDA apresentaram resultados mais altos, o que sugere que,
embora menos expressivos nas primeiras métricas, eles podem oferecer maior estabilidade.

Ao analisar mais detalhadamente os modelos com EEGNet, percebe-se uma pre-
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ferência marcante por configurações que aplicam filtragem temporal do tipo Wavelet
(XWXE). Esses métodos não apenas ocuparam posições de destaque nas tabelas de resulta-
dos, como também alcançaram o melhor desempenho médio geral dentro do grupo XXXE.
No caso dos métodos com LDA, o panorama foi menos uniforme. Os melhores resultados
estiveram distribuídos entre diferentes combinações, em especial NVCL, NSNL e NNEL,
sem que uma delas se destacasse de forma consistente ao longo de todas as métricas.

Outro ponto relevante é o desempenho na métrica D4, que mede o tempo necessário
para atingir o pico de desempenho. O menor valor registrado foi obtido pelo método
NCNL, evidenciando que, embora não seja o mais eficaz em termos de kappa geral, essa
configuração é altamente eficiente em alcançar rapidamente seu melhor desempenho. Na
métrica D5, o melhor resultado individual foi obtido pelo método NHEL. Porém, quando se
considera a média de todos os métodos, as abordagens com LDA apresentaram resultados
superiores, sugerindo que, para essa métrica, há uma vantagem coletiva do grupo XXXL.

A comparação entre as Tabelas 15 e 16 reforça as conclusões obtidas na análise
de desempenho médio. Os padrões observados por métrica também se reproduzem na
análise por área, o que demonstra uma consistência significativa dos resultados, ou seja,
não se trata de casos isolados, mas de tendências recorrentes. Quando se examinam os
cenários de pior caso, apresentados na Tabela 17, para as três primeiras métricas, os
métodos NSXL apresentaram o melhor desempenho entre os modelos com LDA. Já entre
os modelos com EEGNet, o destaque ficou para os métodos XNNE, que obtiveram os
melhores resultados mesmo nos piores casos, seguido de perto por CHNE e NWNE. Por
fim, a análise individual por sujeito, detalhada na Tabela 16, revelou que o método CWNE
foi o mais recorrente entre os melhores resultados para D1, D2 e D3.

7.4 Dataset com poucos trials

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
Physionet está apresentado na Tabela 18. No grupo de métodos com LDA (XXXL), não
foi possível identificar um único algoritmo dominante ao longo das métricas, já que os
melhores resultados estiveram distribuídos entre diferentes combinações: NHCL, NECL,
NNNL, NVEL, NEEL, NVNL e NWCL. Essa dispersão sugere que, no caso deste dataset,
não há uma configuração única que maximize o desempenho global quando o classificador
LDA é utilizado, e que a eficácia pode depender fortemente de características específicas
dos sujeitos ou da métrica em questão. Ainda assim, alguns padrões consistentes puderam
ser observados: os métodos XEXL destacaram-se de forma recorrente na métrica D2,
apresentando uma constância que o diferencia dos demais nesse indicador específico,
enquanto os métodos XNXL demonstraram desempenho sólido e repetitivo na métrica D6,
o que pode indicar uma maior adequação desse arranjo para contextos que demandam
estabilidade.
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No grupo de métodos com EEGNet (XXXE), a distribuição de desempenho foi
menos dispersa e apresentou maior especialização por métrica. Os métodos XVXE
obtiveram de forma consistente os melhores resultados nas métricas D1, D3 e D4, sugerindo
que essa combinação é especialmente eficiente tanto para o desempenho inicial quanto para
o desempenho acumulado e para o tempo até atingir o pico de eficácia. Por outro lado,
os métodos XHXE foram os que apresentaram os melhores resultados nas métricas D5 e
D6, mostrando-se mais aptos em contextos onde a taxa de crescimento e a estabilidade
são fatores críticos. Já os métodos XEXE destacaram-se de forma clara na métrica
D2, mostrando uma superioridade específica, mas menos abrangente que os XVXE.
Considerando o panorama geral de desempenho, ao analisar agora a Tabela 19, os métodos
XVXE se sobressaíram entre todos os avaliados, apresentando consistência e superioridade
não apenas nas métricas em que lideraram, mas também mantendo um bom desempenho
nas demais.

Ao observar a Tabela 21, um aspecto curioso observado foi que todos os piores
casos para as métricas D4 e D5 resultaram no mesmo valor, independentemente do método
utilizado, indicando que, para essas métricas, a variação entre abordagens foi irrelevante
em termos de pior desempenho. Isso ocorreu pelo fato de não ser possível avaliar esse
dataset por um tempo longo, uma vez que cada trial tem apenas 4 segundos. Para as
demais métricas, entretanto, verificou-se que os melhores piores resultados ocorreram de
forma recorrente nos métodos XVXE, reforçando a percepção de que este arranjo apresenta
um desempenho confiável mesmo em seus piores casos.

A análise individual por sujeito, apresentada na Tabela 20, revela ainda um padrão
interessante de preferência por determinados algoritmos. O método FVNE apresentou-se
como o mais frequente para D1, com 12 sujeitos obtendo o melhor resultado. Para D2,
o destaque foi o método FENE, com 14 sujeitos, enquanto para D3 o método NHCL foi
o mais eficaz, com 9 sujeitos. Apesar dessa variação entre as métricas, é notável a forte
presença dos métodos XVXE na lista de melhores resultados por sujeito, abrangendo de
forma expressiva as três primeiras métricas e reafirmando seu desempenho consistente.

7.5 Dataset com EEG de baixo custo

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
HCGD está apresentado na Tabela 22. A análise dos métodos baseados em LDA (XXXL)
e no conjunto geral (XXXX) revela um padrão consistente: os métodos da família XHXL
apresentaram o melhor desempenho nas três primeiras métricas, D1, D2 e D3), superando
de forma clara os demais nesse grupo. Já ao restringir a análise apenas aos métodos com
EEGNet (XXXE), o destaque recai sobre a família XFXE, que também obteve os melhores
resultados nessas mesmas métricas.

No que se refere às métricas finais, a análise por grupos mostra que, entre os
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métodos com LDA (XXXL), os modelos da família XCXL alcançaram o melhor resultado
para D5, enquanto os XNXL foram superiores na métrica D6. A métrica D4 não apresentou
um grupo dominante, sendo os melhores resultados compartilhados entre NNCL, NSNL e
NWEL. Já no grupo com EEGNet (XXXE), a métrica D4 teve como melhor desempenho
o método NHNE, a D5 foi liderada pelo método FSNE, e a D6 apresentou como destaque
o método CCNE.

Considerando o desempenho total apresentado na Tabela 23, observa-se que os
métodos XHXL mantêm sua liderança nas métricas D1, D2 e D3, enquanto a família
XNXL se destaca nas métricas D4, D5 e D6. No caso dos métodos com EEGNet, os XFXE
mantêm o melhor desempenho global para as três primeiras métricas, mas não reproduzem
a mesma superioridade nas métricas finais.

A análise dos piores casos, apresentada na Tabela 25, confirma a confiabilidade dos
métodos XHXL, que apresentaram o melhor desempenho nesse cenário adverso, seguidos
de perto pelos métodos XFXL. Dentro do subconjunto EEGNet (XXXE), o método CHNE
apresentou o melhor resultado no pior caso para todas as métricas de forma isolada;
no entanto, de maneira geral, os métodos XFNE e XHNE foram aqueles que mais se
destacaram nesse grupo, apresentando desempenhos mais consistentes frente às condições
menos favoráveis.

Por fim, a avaliação individual por sujeito, mostrada na Tabela 24, aponta o método
NHEL como aquele que mais vezes aparece entre os melhores resultados. Especificamente,
ele liderou em 2 sujeitos para a métrica D1, em 3 sujeitos para D2 e em 1 sujeito para
D3, consolidando-se como um dos métodos mais relevantes para as métricas iniciais no
contexto do dataset HCGD.
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Tabela 6 – Resultado Médio para as 6 métricas no conjunto 2a.
D1 D2 D3 D4 D5 D6

NHCL 0,7832 0,8056 0,6696 2,6000 2,3000 0,0162
NCCL 0,6412 0,6902 0,5861 1,8667 0,5444 0,0132
NECL 0,6505 0,6794 0,5789 2,7778 2,4889 0,0199
NFCL 0,7697 0,7944 0,6600 2,3444 1,2889 0,0171
NVCL 0,7361 0,7681 0,6360 2,2222 1,4222 0,0151
NNCL 0,6944 0,7292 0,6181 2,5111 1,6667 0,0134
NSCL 0,7488 0,7728 0,6477 2,6222 2,0333 0,0174
NWCL 0,6871 0,7188 0,6080 2,1889 1,7222 0,0151
NHNL 0,7172 0,7381 0,6275 2,7667 2,2000 0,0162
NCNL 0,5996 0,6358 0,5561 2,4444 1,8667 0,0146
NENL 0,6038 0,6350 0,5607 2,6778 1,9111 0,0178
NFNL 0,6100 0,6427 0,5595 2,4000 2,8111 0,0160
NVNL 0,6111 0,6370 0,5602 2,7667 2,8778 0,0145
NNNL 0,6173 0,6543 0,5717 2,9333 2,5889 0,0145
NSNL 0,6474 0,6798 0,5883 2,9000 2,0444 0,0133
NWNL 0,5401 0,5864 0,5241 2,9000 2,3778 0,0146
NHEL 0,7569 0,7808 0,6493 2,7222 2,0667 0,0173
NCEL 0,5529 0,5961 0,5472 2,3778 3,0333 0,0130
NEEL 0,6238 0,6451 0,5639 2,4778 1,9778 0,0192
NFEL 0,7222 0,7411 0,6218 2,5333 2,5000 0,0167
NVEL 0,6798 0,6968 0,5955 2,3222 2,2222 0,0139
NNEL 0,6771 0,7141 0,6064 3,1222 2,4889 0,0127
NSEL 0,7303 0,7469 0,6365 2,2667 2,3111 0,0174
NWEL 0,6713 0,6933 0,5891 2,1778 2,7111 0,0147
CHNE 0,5355 0,5424 0,5263 1,8111 1,6778 0,0038
CCNE 0,7859 0,7897 0,5306 2,5222 2,2444 0,0253
CENE 0,6323 0,6528 0,5543 2,9333 1,7333 0,0175
CFNE 0,5235 0,5305 0,5204 2,3778 1,8333 0,0042
CVNE 0,7778 0,7824 0,5925 2,1889 2,0000 0,0178
CNNE 0,6096 0,6181 0,5361 2,4556 1,9667 0,0095
CSNE 0,5274 0,5517 0,5234 3,0444 2,3667 0,0067
CWNE 0,5073 0,5100 0,5118 0,8889 0,6889 0,0020
FHNE 0,5347 0,5378 0,5277 1,5333 1,6222 0,0026
FCNE 0,7863 0,7905 0,5329 2,5000 2,2111 0,0259
FENE 0,6246 0,6377 0,5439 3,0000 1,6333 0,0159
FFNE 0,5355 0,5425 0,5241 1,9333 1,3667 0,0036
FVNE 0,7901 0,7971 0,5931 2,4444 2,0556 0,0195
FNNE 0,6578 0,6690 0,5497 2,4889 2,0778 0,0121
FSNE 0,5490 0,5683 0,5328 2,3000 1,4000 0,0078
FWNE 0,5116 0,5193 0,5159 1,2667 1,2111 0,0026
NHNE 0,5232 0,5351 0,5203 1,8556 2,1444 0,0039
NCNE 0,7751 0,7789 0,5262 2,4889 2,2778 0,0255
NENE 0,5996 0,6200 0,5416 2,5000 2,3778 0,0155
NFNE 0,5177 0,5216 0,5177 1,6556 1,3556 0,0028
NVNE 0,7164 0,7187 0,5659 2,4556 2,6000 0,0133
NNNE 0,6779 0,6890 0,5627 2,4778 1,8667 0,0115
NSNE 0,5393 0,5532 0,5309 2,7667 3,0444 0,0064
NWNE 0,5066 0,5139 0,5124 1,3556 1,0333 0,0024
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Tabela 7 – Áreas dos perfis de desempenho para as 6 métricas no conjunto 2a.
D1 D2 D3 D4 D5 D6

NHCL 0,4712 0,4262 0,2506 3,1121 2,9589 0,0113
NCCL 0,3399 0,3189 0,1820 3,8515 4,5253 0,0098
NECL 0,3524 0,3127 0,1790 2,9283 2,7903 0,0132
NFCL 0,4626 0,4193 0,2435 3,3677 3,8765 0,0118
NVCL 0,4307 0,3938 0,2242 3,4838 3,7553 0,0108
NNCL 0,3951 0,3605 0,2108 3,1950 3,5346 0,0099
NSCL 0,4436 0,4005 0,2343 3,0899 3,2013 0,0119
NWCL 0,3861 0,3482 0,2015 3,5232 3,4857 0,0108
NHNL 0,4123 0,3656 0,2169 2,9454 3,0467 0,0113
NCNL 0,3018 0,2679 0,1587 3,2495 3,3233 0,0105
NENL 0,3086 0,2706 0,1636 3,0465 3,3124 0,0121
NFNL 0,3140 0,2780 0,1626 3,3060 2,4958 0,0112
NVNL 0,3162 0,2729 0,1634 2,9455 2,4243 0,0105
NNNL 0,3226 0,2891 0,1728 2,7788 2,6962 0,0105
NSNL 0,3505 0,3130 0,1862 2,8182 3,1881 0,0099
NWNL 0,2491 0,2257 0,1340 2,8061 2,8897 0,0105
NHEL 0,4473 0,4039 0,2341 2,9838 3,1694 0,0119
NCEL 0,2573 0,2313 0,1508 3,3404 2,3170 0,0097
NEEL 0,3273 0,2806 0,1667 3,2525 3,2471 0,0128
NFEL 0,4189 0,3702 0,2131 3,1909 2,7771 0,0116
NVEL 0,3767 0,3267 0,1909 3,3959 3,0327 0,0102
NNEL 0,3763 0,3429 0,2003 2,5838 2,7871 0,0095
NSEL 0,4259 0,3755 0,2247 3,4394 2,9456 0,0119
NWEL 0,3688 0,3238 0,1862 3,5283 2,5852 0,0105
CHNE 0,2439 0,1844 0,1356 3,8828 3,5106 0,0050
CCNE 0,4715 0,4106 0,1391 3,1838 3,0093 0,0159
CENE 0,3367 0,2890 0,1587 2,7788 3,4646 0,0120
CFNE 0,2336 0,1739 0,1313 3,3040 3,3722 0,0052
CVNE 0,4692 0,4090 0,1903 3,5171 3,2253 0,0121
CNNE 0,3142 0,2567 0,1439 3,2505 3,2557 0,0079
CSNE 0,2372 0,1927 0,1334 2,6616 2,8982 0,0065
CWNE 0,2178 0,1545 0,1242 4,7445 4,4080 0,0041
FHNE 0,2440 0,1811 0,1372 4,1789 3,5735 0,0044
FCNE 0,4712 0,4108 0,1408 3,2060 3,0412 0,0163
FENE 0,3282 0,2746 0,1500 2,7122 3,5556 0,0112
FFNE 0,2448 0,1856 0,1340 3,7668 3,8027 0,0049
FVNE 0,4807 0,4222 0,1910 3,2677 3,1779 0,0130
FNNE 0,3565 0,3014 0,1551 3,2171 3,1577 0,0093
FSNE 0,2580 0,2096 0,1413 3,3939 3,7662 0,0071
FWNE 0,2225 0,1633 0,1274 4,4273 3,9378 0,0044
NHNE 0,2319 0,1768 0,1310 3,8323 3,0832 0,0051
NCNE 0,4623 0,4012 0,1357 3,2232 2,9790 0,0160
NENE 0,3057 0,2588 0,1483 3,2182 2,8944 0,0110
NFNE 0,2277 0,1653 0,1287 4,0506 3,8128 0,0046
NVNE 0,4139 0,3510 0,1683 3,2566 2,6784 0,0099
NNNE 0,3786 0,3236 0,1653 3,2404 3,3419 0,0089
NSNE 0,2490 0,1956 0,1395 2,9273 2,2821 0,0064
NWNE 0,2173 0,1577 0,1246 4,3263 4,0871 0,0044
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Tabela 8 – Quantidade de vezes do melhor resultado para as 6 métricas no conjunto 2a.
D1 D2 D3 D4 D5 D6

NHCL 3 3 5 0 0 0
NCCL 0 0 0 0 1 0
NECL 0 0 0 0 1 1
NFCL 0 0 1 0 0 0
NVCL 0 0 0 0 0 0
NNCL 1 0 0 0 0 0
NSCL 0 0 0 0 0 0
NWCL 0 0 1 0 0 0
NHNL 0 0 1 0 0 0
NCNL 0 0 0 0 1 0
NENL 0 0 0 0 0 0
NFNL 0 0 0 0 0 0
NVNL 0 0 0 0 0 0
NNNL 0 0 0 0 0 0
NSNL 0 0 0 0 0 0
NWNL 0 0 0 0 0 0
NHEL 1 1 1 0 1 0
NCEL 0 0 0 0 0 0
NEEL 0 0 0 0 0 0
NFEL 0 0 0 0 0 0
NVEL 0 0 1 0 1 0
NNEL 0 0 0 0 0 0
NSEL 0 0 0 0 0 0
NWEL 0 0 0 0 0 0
CHNE 0 0 0 2 2 0
CCNE 2 2 0 0 0 3
CENE 0 0 0 0 0 0
CFNE 0 0 0 2 1 0
CVNE 1 1 0 0 0 0
CNNE 0 0 0 0 1 0
CSNE 0 0 0 0 0 0
CWNE 0 0 0 5 4 0
FHNE 0 0 0 4 4 0
FCNE 2 2 0 0 0 2
FENE 0 0 0 0 2 0
FFNE 0 0 0 3 3 0
FVNE 2 1 0 0 0 0
FNNE 0 0 0 0 0 0
FSNE 0 0 0 0 1 0
FWNE 0 0 0 4 4 0
NHNE 0 0 0 1 1 0
NCNE 0 0 0 0 0 3
NENE 0 0 0 0 0 0
NFNE 0 0 0 4 3 0
NVNE 0 0 0 0 0 0
NNNE 1 1 0 0 0 0
NSNE 0 0 0 0 0 0
NWNE 0 0 0 4 4 0
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Tabela 9 – Pior caso no Perfil de Desempenho para as 6 métricas no conjunto 2a.
D1 D2 D3 D4 D5 D6

NHCL 1,3235 1,3059 1,1818 4,2000 5,5455 1,0086
NCCL 1,4470 1,3767 1,2627 3,3000 1,7273 1,0106
NECL 1,3627 1,3289 1,1990 5,4000 5,0000 1,0079
NFCL 1,1471 1,0993 1,0812 3,8000 2,3846 1,0077
NVCL 1,3660 1,3421 1,2084 3,4000 4,9091 1,0090
NNCL 1,3791 1,3354 1,1838 5,2000 4,3636 1,0105
NSCL 1,2418 1,1875 1,1060 5,0000 5,4545 1,0083
NWCL 1,3925 1,3869 1,2428 3,9000 5,0909 1,0114
NHNL 1,3334 1,3321 1,2107 5,1000 5,3636 1,0080
NCNL 1,4197 1,3938 1,2464 5,2000 5,2727 1,0095
NENL 1,3922 1,3618 1,2321 5,4000 4,7273 1,0084
NFNL 1,4313 1,3815 1,2141 5,5000 5,5455 1,0082
NVNL 1,3268 1,3124 1,1998 5,2000 5,8182 1,0106
NNNL 1,3529 1,3519 1,2116 5,5000 5,0909 1,0090
NSNL 1,3954 1,3552 1,1996 5,5000 5,3636 1,0103
NWNL 1,5085 1,4271 1,2692 6,1000 5,6364 1,0093
NHEL 1,3399 1,3388 1,2035 4,3000 5,3636 1,0078
NCEL 1,5426 1,4315 1,2783 6,0000 5,9091 1,0104
NEEL 1,3750 1,3552 1,2134 4,4000 4,6364 1,0077
NFEL 1,2255 1,2105 1,1199 4,4000 5,3636 1,0081
NVEL 1,4248 1,3914 1,2339 3,7000 5,4545 1,0101
NNEL 1,3922 1,3486 1,2115 6,5000 5,0909 1,0104
NSEL 1,2255 1,2137 1,1064 3,7000 5,0000 1,0080
NWEL 1,4300 1,4178 1,2583 3,4000 5,3636 1,0111
CHNE 1,4448 1,4644 1,2699 4,8000 5,8182 1,0156
CCNE 1,2354 1,2363 1,2702 3,6000 3,0909 1,0027
CENE 1,3447 1,3356 1,2158 6,1000 2,9091 1,0090
CFNE 1,4709 1,4726 1,2679 5,9000 5,3636 1,0169
CVNE 1,1781 1,1732 1,2153 3,5000 3,0909 1,0121
CNNE 1,3812 1,3831 1,2468 4,5000 5,5455 1,0150
CSNE 1,4709 1,4589 1,2678 6,5000 5,5455 1,0157
CWNE 1,4709 1,4760 1,2679 4,1000 2,7273 1,0170
FHNE 1,4482 1,4678 1,2730 5,2000 5,9091 1,0156
FCNE 1,2082 1,2123 1,2738 3,6000 3,0909 1,0024
FENE 1,4470 1,4178 1,2416 6,3000 4,8182 1,0140
FFNE 1,4709 1,4760 1,2679 5,8000 4,8182 1,0170
FVNE 1,2103 1,2067 1,2119 3,5000 3,3636 1,0093
FNNE 1,3003 1,3017 1,2102 3,7000 3,0000 1,0129
FSNE 1,4437 1,4315 1,2463 4,6000 4,4545 1,0140
FWNE 1,4778 1,4829 1,2741 4,4000 3,9091 1,0170
NHNE 1,4778 1,4760 1,2733 4,3000 5,3636 1,0168
NCNE 1,2593 1,2534 1,2749 3,6000 4,6364 1,0037
NENE 1,4334 1,4212 1,2434 4,7000 5,9091 1,0124
NFNE 1,4572 1,4589 1,2630 5,3000 5,0000 1,0156
NVNE 1,2884 1,3039 1,2120 3,6000 5,5455 1,0123
NNNE 1,3478 1,3525 1,2348 3,6000 3,0909 1,0143
NSNE 1,4300 1,4177 1,2465 6,4000 5,9091 1,0155
NWNE 1,4641 1,4577 1,2669 4,8000 4,0909 1,0156
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Tabela 10 – Resultado Médio para as 6 métricas no conjunto 2b.
D1 D2 D3 D4 D5 D6

NHCL 0,7300 0,7395 0,6287 2,6333 1,7778 0,0099
NCCL 0,5691 0,6001 0,5413 2,2333 1,1444 0,0077
NECL 0,6963 0,7177 0,6154 2,5111 1,5111 0,0121
NFCL 0,7092 0,7239 0,6086 2,7222 1,9556 0,0111
NVCL 0,6716 0,6921 0,6005 2,3889 1,5556 0,0096
NNCL 0,6480 0,6743 0,5851 2,7556 1,2111 0,0090
NSCL 0,7523 0,7720 0,6454 2,5556 1,1889 0,0104
NWCL 0,5865 0,6069 0,5523 3,0000 1,0000 0,0093
NHNL 0,7162 0,7248 0,6210 2,6111 1,6444 0,0097
NCNL 0,5583 0,5892 0,5351 2,2333 0,7889 0,0087
NENL 0,6926 0,7108 0,6116 2,5889 1,1222 0,0120
NFNL 0,6912 0,7076 0,5999 2,7778 1,1778 0,0109
NVNL 0,6876 0,7021 0,6043 2,6889 1,3667 0,0096
NNNL 0,6098 0,6510 0,5677 2,8889 1,7556 0,0081
NSNL 0,7400 0,7542 0,6371 2,6000 1,3778 0,0102
NWNL 0,6130 0,6295 0,5691 2,7000 1,4000 0,0090
NHEL 0,7213 0,7360 0,6249 2,6667 1,6444 0,0100
NCEL 0,5467 0,5764 0,5293 2,0111 1,8444 0,0078
NEEL 0,6919 0,7108 0,6102 2,4556 1,1778 0,0116
NFEL 0,7054 0,7172 0,6051 2,3000 1,6111 0,0109
NVEL 0,6828 0,6931 0,6025 2,3556 1,6222 0,0096
NNEL 0,6166 0,6436 0,5661 2,8889 1,6000 0,0082
NSEL 0,7440 0,7574 0,6378 2,5000 1,1444 0,0109
NWEL 0,6130 0,6236 0,5672 2,6556 1,0556 0,0088
CHNE 0,5316 0,5372 0,5253 1,5444 0,5556 0,0025
CCNE 0,6901 0,6976 0,5187 2,4333 2,2444 0,0213
CENE 0,5248 0,5304 0,5179 1,8667 1,3333 0,0046
CFNE 0,5061 0,5095 0,5119 0,5667 -0,0889 0,0015
CVNE 0,5787 0,5823 0,5344 2,5333 1,5444 0,0058
CNNE 0,6066 0,6126 0,5280 2,6000 1,6556 0,0091
CSNE 0,5173 0,5223 0,5168 2,2333 0,8333 0,0026
CWNE 0,5046 0,5074 0,5110 0,1556 -0,0667 0,0008
FHNE 0,5127 0,5167 0,5143 1,1556 0,7778 0,0012
FCNE 0,6881 0,6933 0,5187 2,4444 2,3000 0,0205
FENE 0,5049 0,5075 0,5099 0,3889 0,2889 0,0015
FFNE 0,5012 0,5034 0,5100 -0,5222 -0,2444 0,0005
FVNE 0,6032 0,6070 0,5348 1,7444 1,0556 0,0081
FNNE 0,5977 0,6030 0,5292 2,5333 1,7000 0,0083
FSNE 0,5186 0,5254 0,5173 2,2778 1,2667 0,0026
FWNE 0,5000 0,5006 0,5091 -0,5778 -0,5111 0,0001
NHNE 0,5138 0,5187 0,5154 1,4222 0,9778 0,0016
NCNE 0,6925 0,6949 0,5205 2,4556 2,1778 0,0187
NENE 0,5165 0,5192 0,5103 2,3111 0,8444 0,0034
NFNE 0,5060 0,5094 0,5113 0,4111 -0,1556 0,0015
NVNE 0,5770 0,5823 0,5296 2,0444 1,2111 0,0057
NNNE 0,5983 0,6039 0,5290 2,5667 1,8778 0,0072
NSNE 0,5407 0,5427 0,5263 1,5111 0,6778 0,0031
NWNE 0,5021 0,5032 0,5090 -0,5000 0,3222 0,0013
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Tabela 11 – Áreas dos perfis de desempenho para as 6 métricas no conjunto 2b.
D1 D2 D3 D4 D5 D6

NHCL 0,3749 0,3728 0,1717 1,8667 2,4678 0,0099
NCCL 0,2376 0,2522 0,1054 2,2667 3,0001 0,0110
NECL 0,3469 0,3547 0,1619 1,9889 2,6745 0,0088
NFCL 0,3587 0,3604 0,1568 1,7778 2,2906 0,0093
NVCL 0,3260 0,3329 0,1505 2,1111 2,6263 0,0100
NNCL 0,3056 0,3172 0,1389 1,7445 2,9395 0,0103
NSCL 0,3947 0,4013 0,1844 1,9444 2,9720 0,0096
NWCL 0,2528 0,2585 0,1141 1,5000 3,1251 0,0102
NHNL 0,3630 0,3603 0,1659 1,8889 2,5688 0,0100
NCNL 0,2283 0,2427 0,1011 2,2667 3,3264 0,0108
NENL 0,3440 0,3491 0,1593 1,9111 3,0280 0,0088
NFNL 0,3439 0,3470 0,1504 1,7222 2,9650 0,0094
NVNL 0,3393 0,3414 0,1536 1,8111 2,8275 0,0100
NNNL 0,2738 0,2976 0,1261 1,6111 2,4616 0,0108
NSNL 0,3846 0,3868 0,1785 1,9000 2,7894 0,0098
NWNL 0,2744 0,2777 0,1267 1,8000 2,7615 0,0103
NHEL 0,3672 0,3697 0,1689 1,8333 2,5719 0,0098
NCEL 0,2182 0,2316 0,0966 2,4889 2,3668 0,0109
NEEL 0,3432 0,3489 0,1582 2,0444 2,9573 0,0090
NFEL 0,3550 0,3547 0,1541 2,2000 2,6240 0,0094
NVEL 0,3344 0,3328 0,1520 2,1444 2,5688 0,0100
NNEL 0,2786 0,2908 0,1246 1,6111 2,5890 0,0107
NSEL 0,3881 0,3893 0,1789 2,0000 3,0606 0,0094
NWEL 0,2754 0,2734 0,1256 1,8445 3,0606 0,0104
CHNE 0,2067 0,1997 0,0938 2,9555 3,5214 0,0136
CCNE 0,3376 0,3330 0,0887 2,0667 2,0233 0,0042
CENE 0,2009 0,1939 0,0883 2,6333 2,8159 0,0125
CFNE 0,1839 0,1750 0,0835 4,3446 4,1104 0,0144
CVNE 0,2485 0,2398 0,1012 1,9667 2,6643 0,0119
CNNE 0,2690 0,2626 0,0958 1,9000 2,5571 0,0103
CSNE 0,1939 0,1862 0,0873 2,2666 3,3404 0,0135
CWNE 0,1826 0,1731 0,0828 4,3446 4,0902 0,0144
FHNE 0,1901 0,1817 0,0854 3,3443 3,3256 0,0142
FCNE 0,3357 0,3291 0,0887 2,0556 1,9775 0,0046
FENE 0,1827 0,1731 0,0820 4,1112 3,8291 0,0140
FFNE 0,1798 0,1697 0,0821 5,0778 4,5175 0,0148
FVNE 0,2670 0,2587 0,1010 2,7555 3,1010 0,0108
FNNE 0,2611 0,2541 0,0967 1,9667 2,5198 0,0107
FSNE 0,1943 0,1882 0,0876 2,2222 2,8936 0,0135
FWNE 0,1786 0,1672 0,0814 5,0778 4,5175 0,0148
NHNE 0,1905 0,1827 0,0861 3,0777 3,1593 0,0140
NCNE 0,3397 0,3310 0,0900 2,0444 2,0839 0,0055
NENE 0,1921 0,1825 0,0823 2,1889 3,2976 0,0132
NFNE 0,1837 0,1747 0,0831 5,0000 4,1648 0,0142
NVNE 0,2452 0,2381 0,0972 2,4555 2,9627 0,0120
NNNE 0,2627 0,2559 0,0967 1,9333 2,3566 0,0112
NSNE 0,2148 0,2048 0,0947 2,9888 3,4165 0,0133
NWNE 0,1803 0,1693 0,0814 5,0000 3,7942 0,0142
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Tabela 12 – Quantidade de vezes do melhor resultado para as 6 métricas no conjunto 2b.
D1 D2 D3 D4 D5 D6

NHCL 1 0 1 0 0 0
NCCL 0 0 0 0 0 0
NECL 0 0 0 0 0 0
NFCL 0 0 0 0 0 0
NVCL 0 0 0 0 0 0
NNCL 0 0 1 0 0 0
NSCL 2 3 5 0 0 0
NWCL 0 0 0 0 0 0
NHNL 2 1 2 0 0 0
NCNL 0 0 0 0 0 0
NENL 0 0 0 0 0 0
NFNL 0 0 0 0 0 0
NVNL 0 0 0 0 0 0
NNNL 0 0 0 0 0 0
NSNL 1 1 0 0 0 0
NWNL 0 0 0 0 0 0
NHEL 0 0 1 0 0 0
NCEL 0 0 0 0 0 0
NEEL 0 1 0 0 0 0
NFEL 0 0 0 0 0 0
NVEL 0 0 0 0 0 0
NNEL 0 0 0 0 0 0
NSEL 2 0 0 0 0 0
NWEL 0 0 0 0 2 0
CHNE 0 0 0 2 2 2
CCNE 0 0 0 0 0 0
CENE 0 0 0 0 0 0
CFNE 0 0 0 2 4 2
CVNE 0 0 0 0 0 0
CNNE 0 0 0 0 0 0
CSNE 0 0 0 1 2 1
CWNE 0 0 0 4 5 4
FHNE 0 0 0 3 2 2
FCNE 1 1 0 0 0 0
FENE 0 0 0 3 2 1
FFNE 0 0 0 6 3 4
FVNE 0 0 0 1 0 0
FNNE 0 0 0 0 0 0
FSNE 0 0 0 0 0 0
FWNE 0 0 0 6 6 8
NHNE 0 0 0 1 1 1
NCNE 2 2 0 0 0 0
NENE 0 0 0 0 0 0
NFNE 0 0 0 5 3 4
NVNE 0 0 0 1 1 1
NNNE 0 0 0 0 0 0
NSNE 0 0 0 0 1 2
NWNE 0 0 0 6 6 6
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Tabela 13 – Pior caso no Perfil de Desempenho para as 6 métricas no conjunto 2b.
D1 D2 D3 D4 D5 D6

NHCL 1,1710 1,1585 1,0747 5,3000 4,1538 1,0066
NCCL 1,3828 1,3648 1,1753 5,3000 4,3636 1,0056
NECL 1,1757 1,1540 1,0653 5,0000 5,8182 1,0067
NFCL 1,1733 1,1654 1,0474 5,5000 4,3636 1,0066
NVCL 1,1927 1,1603 1,0836 5,1000 5,4545 1,0063
NNCL 1,2446 1,1958 1,1110 6,4000 4,1818 1,0056
NSCL 1,1517 1,1302 1,0074 5,0000 3,2727 1,0066
NWCL 1,3300 1,3300 1,1590 6,4000 3,6364 1,0057
NHNL 1,2230 1,2004 1,0940 5,2000 4,0909 1,0069
NCNL 1,4008 1,3802 1,1777 4,8000 3,9091 1,0056
NENL 1,1778 1,1756 1,0497 5,3000 3,7273 1,0074
NFNL 1,1823 1,1823 1,0489 5,4000 3,5455 1,0066
NVNL 1,1891 1,1857 1,0636 5,2000 3,7273 1,0059
NNNL 1,2614 1,2134 1,1125 6,5000 4,6364 1,0063
NSNL 1,2061 1,1846 1,0204 5,0000 3,6364 1,0064
NWNL 1,3480 1,3377 1,1524 5,4000 5,4545 1,0054
NHEL 1,1915 1,1591 1,0795 5,3000 4,0909 1,0063
NCEL 1,3970 1,3789 1,1749 4,9000 5,6364 1,0054
NEEL 1,1869 1,1744 1,0619 4,8000 5,2727 1,0068
NFEL 1,1687 1,1563 1,0557 5,2000 4,3846 1,0064
NVEL 1,1984 1,1911 1,0829 4,9000 5,5455 1,0059
NNEL 1,2763 1,2200 1,1318 6,0000 4,1818 1,0052
NSEL 1,1687 1,1416 1,0193 5,1000 3,6364 1,0068
NWEL 1,3119 1,3094 1,1437 6,0000 4,0909 1,0050
CHNE 1,3442 1,3474 1,1570 6,0000 3,6364 1,0030
CCNE 1,3094 1,3068 1,1843 4,5000 4,0000 1,0144
CENE 1,3209 1,3145 1,1519 6,3000 5,3636 1,0044
CFNE 1,4305 1,4291 1,1866 5,1000 3,8182 1,0026
CVNE 1,2578 1,2932 1,1376 5,7000 4,0000 1,0058
CNNE 1,3286 1,3274 1,1500 5,6000 4,0000 1,0082
CSNE 1,3699 1,3634 1,1636 6,4000 4,8462 1,0025
CWNE 1,4253 1,4228 1,1853 4,6000 3,8182 1,0027
FHNE 1,3751 1,3737 1,1671 5,0000 4,5455 1,0012
FCNE 1,3080 1,3055 1,1843 4,6000 4,0000 1,0148
FENE 1,4305 1,4266 1,1866 4,4000 4,5385 1,0025
FFNE 1,4214 1,4163 1,1808 4,9000 2,7273 1,0011
FVNE 1,2526 1,2980 1,1327 4,6000 4,0000 1,0080
FNNE 1,3570 1,3442 1,1550 6,4000 4,1818 1,0091
FSNE 1,4047 1,4022 1,1769 5,2000 4,8182 1,0021
FWNE 1,4305 1,4305 1,1866 3,4000 2,6154 1,0001
NHNE 1,4266 1,4228 1,1855 5,7000 4,0909 1,0018
NCNE 1,2926 1,2913 1,1841 4,5000 4,0909 1,0138
NENE 1,4305 1,4279 1,1862 6,4000 5,7273 1,0075
NFNE 1,4305 1,4291 1,1866 5,3000 3,6364 1,0032
NVNE 1,2603 1,2980 1,1356 6,5000 4,0000 1,0064
NNNE 1,2849 1,2956 1,1417 5,2000 4,0000 1,0072
NSNE 1,2849 1,2956 1,1304 4,8000 4,0000 1,0036
NWNE 1,4305 1,4305 1,1866 4,2000 4,3077 1,0033
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Tabela 14 – Resultado Médio para as 6 métricas no conjunto cbcic.
D1 D2 D3 D4 D5 D6

NHCL 0,7325 0,7858 0,6991 2,4200 0,8800 0,0259
NCCL 0,6275 0,6917 0,6206 1,5300 1,3300 0,0236
NECL 0,7025 0,7717 0,7114 1,7200 1,8100 0,0229
NFCL 0,6967 0,7475 0,6798 2,4900 1,3400 0,0280
NVCL 0,7808 0,8125 0,7273 2,8000 1,6700 0,0181
NNCL 0,7367 0,7600 0,7276 2,2500 1,1200 0,0094
NSCL 0,7475 0,8075 0,7478 2,2700 1,7700 0,0198
NWCL 0,7450 0,7850 0,7404 1,6300 1,1900 0,0165
NHNL 0,6183 0,6783 0,6054 2,5200 1,2400 0,0384
NCNL 0,5817 0,6633 0,5850 1,0800 1,3000 0,0284
NENL 0,7358 0,7908 0,7331 2,5200 2,7200 0,0182
NFNL 0,5983 0,7075 0,6304 1,9400 1,6900 0,0325
NVNL 0,6950 0,7400 0,6755 1,7800 1,1500 0,0176
NNNL 0,6908 0,7392 0,7072 1,9900 1,8700 0,0138
NSNL 0,7542 0,8100 0,7619 1,6800 1,9000 0,0174
NWNL 0,7092 0,7558 0,7111 2,1800 2,7200 0,0183
NHEL 0,7133 0,7658 0,6924 2,5600 0,6700 0,0272
NCEL 0,6208 0,6900 0,6036 2,2900 1,2800 0,0240
NEEL 0,7233 0,7683 0,7148 2,0300 1,2600 0,0203
NFEL 0,6742 0,7492 0,6667 2,1500 1,6200 0,0273
NVEL 0,7000 0,7508 0,6715 2,7200 1,5600 0,0189
NNEL 0,7317 0,7675 0,7375 2,0200 1,3000 0,0103
NSEL 0,6834 0,7333 0,6745 2,0100 0,8300 0,0219
NWEL 0,6867 0,7467 0,7032 1,3900 1,4600 0,0172
CHNE 0,8283 0,8475 0,7977 1,9900 1,1900 0,0198
CCNE 0,8033 0,8408 0,7792 1,3500 1,3100 0,0278
CENE 0,7492 0,8067 0,7363 2,0800 0,6800 0,0369
CFNE 0,7208 0,7900 0,7109 2,2000 1,3600 0,0321
CVNE 0,8300 0,8642 0,7982 2,4600 2,0700 0,0254
CNNE 0,8308 0,8650 0,8227 1,6800 2,4100 0,0177
CSNE 0,7708 0,8325 0,7760 1,7600 2,1200 0,0250
CWNE 0,8317 0,8708 0,8288 2,4000 1,1700 0,0187
FHNE 0,7900 0,8233 0,7493 2,3500 1,0100 0,0185
FCNE 0,7725 0,8100 0,7346 1,7000 1,7900 0,0251
FENE 0,7167 0,7967 0,7220 2,3400 1,5600 0,0341
FFNE 0,7250 0,7867 0,7101 2,1200 2,2800 0,0235
FVNE 0,8058 0,8400 0,7619 2,3800 1,3400 0,0207
FNNE 0,8308 0,8558 0,8028 2,4300 1,4400 0,0173
FSNE 0,7692 0,8083 0,7356 2,5900 0,9500 0,0201
FWNE 0,8100 0,8450 0,7863 1,2500 0,8900 0,0148
NHNE 0,7800 0,8225 0,7651 1,8000 1,2800 0,0246
NCNE 0,7550 0,8108 0,7515 1,8100 1,6900 0,0301
NENE 0,7383 0,7958 0,7262 1,7100 1,8900 0,0385
NFNE 0,7275 0,7892 0,7174 1,2200 0,9400 0,0350
NVNE 0,7766 0,8375 0,7697 2,5600 1,5700 0,0252
NNNE 0,7950 0,8333 0,7869 1,3500 1,3900 0,0189
NSNE 0,7717 0,8242 0,7670 2,0900 1,3300 0,0261
NWNE 0,8217 0,8683 0,8097 2,4900 1,8800 0,0202
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Tabela 15 – Áreas dos perfis de desempenho para as 6 métricas no conjunto cbcic.
g D1 D2 D3 D4 D5 D6
NHCL 0,3966 0,2524 0,3117 2,5243 3,3492 0,0112
NCCL 0,3032 0,1671 0,2430 3,3643 2,9250 0,0124
NECL 0,3719 0,2408 0,3243 3,1981 2,5136 0,0127
NFCL 0,3652 0,2177 0,2948 2,5538 2,9023 0,0101
NVCL 0,4398 0,2761 0,3353 2,1909 2,6311 0,0151
NNCL 0,4024 0,2303 0,3389 2,6827 3,1273 0,0194
NSCL 0,4118 0,2727 0,3556 2,6286 2,5205 0,0143
NWCL 0,4107 0,2536 0,3512 3,3520 3,0826 0,0159
NHNL 0,2948 0,1547 0,2305 2,4897 3,0288 0,0050
NCNL 0,2598 0,1403 0,2116 3,7854 2,9955 0,0099
NENL 0,4029 0,2594 0,3447 2,4890 1,6667 0,0151
NFNL 0,2780 0,1812 0,2524 3,1286 2,6197 0,0079
NVNL 0,3624 0,2099 0,2894 3,1124 3,1068 0,0153
NNNL 0,3626 0,2126 0,3234 3,0185 2,4606 0,0173
NSNL 0,4183 0,2759 0,3688 3,3038 2,4402 0,0154
NWNL 0,3783 0,2274 0,3265 2,8664 1,6841 0,0150
NHEL 0,3792 0,2337 0,3057 2,4490 3,5212 0,0106
NCEL 0,2970 0,1644 0,2284 2,6771 2,9765 0,0121
NEEL 0,3888 0,2369 0,3262 2,9027 3,0083 0,0140
NFEL 0,3445 0,2184 0,2836 2,8554 2,6780 0,0105
NVEL 0,3672 0,2199 0,2874 2,3035 2,7371 0,0147
NNEL 0,3957 0,2357 0,3458 2,9510 2,9818 0,0190
NSEL 0,3528 0,2048 0,2906 3,0124 3,3894 0,0132
NWEL 0,3581 0,2189 0,3184 3,5714 2,7962 0,0155
CHNE 0,4833 0,3094 0,3997 3,0450 3,0417 0,0142
CCNE 0,4611 0,3033 0,3841 3,5234 2,9644 0,0102
CENE 0,4130 0,2725 0,3463 2,8745 3,5083 0,0057
CFNE 0,3875 0,2562 0,3217 2,6580 2,9493 0,0081
CVNE 0,4849 0,3242 0,3996 2,6125 2,2606 0,0115
CNNE 0,4856 0,3251 0,4207 3,3029 1,9765 0,0153
CSNE 0,4333 0,2963 0,3810 3,1198 2,2038 0,0117
CWNE 0,4864 0,3304 0,4262 2,6199 3,0826 0,0148
FHNE 0,4489 0,2865 0,3549 2,5666 3,2447 0,0149
FCNE 0,4340 0,2755 0,3427 3,3107 2,5310 0,0116
FENE 0,3833 0,2624 0,3314 2,6079 2,7076 0,0071
FFNE 0,3903 0,2532 0,3200 2,9275 2,0947 0,0124
FVNE 0,4627 0,3018 0,3654 2,6617 2,9235 0,0138
FNNE 0,4854 0,3164 0,4020 2,5905 2,8220 0,0155
FSNE 0,4296 0,2728 0,3424 2,4273 3,2818 0,0141
FWNE 0,4669 0,3063 0,3877 3,6550 3,3030 0,0167
NHNE 0,4413 0,2871 0,3718 3,1198 2,9803 0,0118
NCNE 0,4187 0,2761 0,3595 3,2216 2,6190 0,0091
NENE 0,4029 0,2619 0,3364 3,2751 2,4440 0,0049
NFNE 0,3925 0,2554 0,3273 3,7185 3,2864 0,0067
NVNE 0,4378 0,2997 0,3745 2,4410 2,7258 0,0116
NNNE 0,4545 0,2969 0,3905 3,5092 2,8841 0,0147
NSNE 0,4343 0,2885 0,3729 2,9186 2,9227 0,0111
NWNE 0,4778 0,3280 0,4096 2,5259 2,4424 0,0141
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Tabela 16 – Quantidade de vezes do melhor resultado para as 6 métricas no conjunto cbcic.
D1 D2 D3 D4 D5 D6

NHCL 0 1 0 0 1 0
NCCL 0 0 0 0 0 0
NECL 0 0 0 0 0 0
NFCL 0 0 0 0 0 0
NVCL 0 0 0 0 0 0
NNCL 0 0 0 0 0 5
NSCL 0 0 0 0 0 0
NWCL 1 1 0 0 0 0
NHNL 0 0 0 0 0 0
NCNL 0 0 0 1 0 0
NENL 0 1 0 0 0 0
NFNL 0 0 0 0 0 0
NVNL 0 0 0 0 0 1
NNNL 0 1 1 0 0 1
NSNL 0 0 0 1 0 1
NWNL 0 1 0 0 0 0
NHEL 0 0 0 0 0 0
NCEL 0 0 0 0 0 0
NEEL 0 0 0 1 0 0
NFEL 0 0 0 0 0 0
NVEL 0 0 0 0 0 0
NNEL 1 0 1 0 1 2
NSEL 0 0 0 1 0 0
NWEL 0 0 1 1 0 0
CHNE 0 1 0 0 1 0
CCNE 1 1 0 0 0 0
CENE 0 0 0 0 0 0
CFNE 0 0 0 2 2 0
CVNE 1 0 0 0 0 0
CNNE 1 1 2 1 0 1
CSNE 0 0 0 2 1 0
CWNE 3 3 2 0 0 0
FHNE 0 0 0 0 0 0
FCNE 0 1 0 0 0 0
FENE 0 0 0 1 2 0
FFNE 0 0 0 0 0 0
FVNE 1 0 0 0 0 0
FNNE 2 2 2 0 0 0
FSNE 0 0 0 0 1 0
FWNE 0 1 0 0 2 0
NHNE 0 0 0 1 1 0
NCNE 0 0 0 0 0 0
NENE 0 0 0 0 0 0
NFNE 0 0 0 1 0 0
NVNE 0 1 0 0 0 0
NNNE 0 0 1 1 2 0
NSNE 0 0 0 0 2 0
NWNE 1 1 0 0 0 0
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Tabela 17 – Pior caso no Perfil de Desempenho para as 6 métricas no conjunto cbcic.
D1 D2 D3 D4 D5 D6

NHCL 1,2686 1,2500 1,2562 6,1000 3,4167 1,0181
NCCL 1,3307 1,2727 1,3522 5,1000 5,2727 1,0116
NECL 1,2128 1,1971 1,2047 5,6364 5,3636 1,0114
NFCL 1,2397 1,2149 1,2976 5,8182 5,6364 1,0157
NVCL 1,1984 1,1819 1,3023 6,1000 4,3636 1,0079
NNCL 1,2409 1,2537 1,2540 5,4000 3,4167 1,0022
NSCL 1,1492 1,1288 1,1292 6,0000 5,3636 1,0101
NWCL 1,1986 1,1897 1,1581 5,1818 4,2500 1,0067
NHNL 1,3283 1,2656 1,3371 6,1000 5,9091 1,0191
NCNL 1,5290 1,3554 1,4382 5,7000 5,2500 1,0143
NENL 1,2409 1,1865 1,2160 5,9000 5,7273 1,0087
NFNL 1,3066 1,2727 1,3219 5,2000 5,6364 1,0173
NVNL 1,3802 1,3554 1,4123 4,6364 4,7500 1,0081
NNNL 1,2057 1,2197 1,1894 6,4000 5,4545 1,0076
NSNL 1,2057 1,1172 1,1429 5,8000 5,9091 1,0108
NWNL 1,3358 1,2273 1,1895 5,9000 5,9091 1,0088
NHEL 1,2326 1,2067 1,2783 5,5000 3,8182 1,0124
NCEL 1,3389 1,3307 1,3953 6,5000 5,9091 1,0125
NEEL 1,2093 1,1575 1,1946 4,8182 3,8182 1,0027
NFEL 1,3059 1,2315 1,3129 5,9000 5,0909 1,0141
NVEL 1,2558 1,2362 1,3034 5,3000 5,8182 1,0088
NNEL 1,2686 1,2575 1,1946 6,3000 5,1818 1,0027
NSEL 1,2727 1,2273 1,2805 6,1000 4,7273 1,0116
NWEL 1,3656 1,2652 1,2159 4,8182 5,8182 1,0080
CHNE 1,0652 1,0630 1,0478 4,5000 4,6364 1,0078
CCNE 1,1419 1,1288 1,1230 4,5000 5,6364 1,0155
CENE 1,2015 1,1364 1,1598 6,1000 5,1818 1,0201
CFNE 1,1819 1,1819 1,2654 6,4000 5,2500 1,0185
CVNE 1,0942 1,1015 1,0828 4,8000 4,7273 1,0130
CNNE 1,0652 1,0630 1,0478 5,9091 5,6364 1,0088
CSNE 1,1641 1,1168 1,1135 5,1000 5,8182 1,0136
CWNE 1,1473 1,1024 1,0499 5,4545 4,6364 1,0078
FHNE 1,1571 1,1405 1,2417 5,7000 5,4545 1,0087
FCNE 1,1323 1,1439 1,2300 4,3000 5,6364 1,0142
FENE 1,2149 1,1488 1,2647 6,0000 5,8182 1,0186
FFNE 1,2397 1,1736 1,3247 5,7000 5,9091 1,0135
FVNE 1,1819 1,1405 1,2742 5,4000 5,4545 1,0124
FNNE 1,0909 1,0827 1,1491 4,7000 4,9091 1,0074
FSNE 1,2231 1,1653 1,2914 5,4000 4,9091 1,0104
FWNE 1,1086 1,0909 1,1551 4,3000 5,6364 1,0063
NHNE 1,1212 1,1024 1,0940 6,2000 5,3636 1,0118
NCNE 1,1865 1,1439 1,1400 6,0000 4,9091 1,0184
NENE 1,2089 1,1970 1,1881 4,6000 5,4167 1,0197
NFNE 1,2239 1,1653 1,2679 5,1000 4,9091 1,0163
NVNE 1,1515 1,1327 1,1243 5,5000 5,6364 1,0119
NNNE 1,1163 1,0788 1,0618 4,6000 5,2500 1,0094
NSNE 1,1492 1,0859 1,0988 5,3000 5,3636 1,0136
NWNE 1,1163 1,0788 1,0618 5,5455 5,7273 1,0098
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Tabela 18 – Resultado Médio para as 6 métricas no conjunto phy.
D1 D2 D3 D4 D5 D6

NHCL 0,5055 0,5672 0,5310 2,9410 3,0181 0,0253
NCCL 0,4932 0,5403 0,5099 2,7067 3,0295 0,0164
NECL 0,4995 0,5749 0,5187 2,7657 3,0124 0,0404
NFCL 0,4947 0,5649 0,5216 2,9495 3,0905 0,0295
NVCL 0,4875 0,5424 0,5133 2,8343 2,9571 0,0170
NNCL 0,4875 0,5297 0,5024 2,7276 3,0267 0,0158
NSCL 0,4922 0,5677 0,5226 2,8333 2,9276 0,0310
NWCL 0,4920 0,5566 0,5151 2,9305 2,9257 0,0279
NHNL 0,5023 0,5693 0,5232 2,8810 2,8990 0,0294
NCNL 0,5058 0,5668 0,5298 2,9724 2,9971 0,0195
NENL 0,5099 0,5719 0,5220 2,9105 3,0114 0,0336
NFNL 0,4923 0,5645 0,5166 2,9333 3,0114 0,0301
NVNL 0,5158 0,5726 0,5297 2,8333 2,9429 0,0265
NNNL 0,5162 0,5678 0,5325 2,7476 2,8981 0,0178
NSNL 0,5000 0,5649 0,5237 2,8238 2,9743 0,0256
NWNL 0,4925 0,5570 0,5140 2,9019 2,9562 0,0283
NHEL 0,5015 0,5672 0,5258 2,9676 3,0200 0,0295
NCEL 0,4979 0,5533 0,5188 2,8381 2,9771 0,0183
NEEL 0,4973 0,5742 0,5231 2,8029 2,9324 0,0360
NFEL 0,4938 0,5661 0,5195 2,9400 3,0771 0,0304
NVEL 0,5050 0,5598 0,5271 2,9619 2,9514 0,0215
NNEL 0,4927 0,5464 0,5177 2,9086 2,8895 0,0170
NSEL 0,4957 0,5665 0,5183 2,9657 3,0190 0,0330
NWEL 0,4932 0,5623 0,5205 2,9238 3,0067 0,0286
CHNE 0,5025 0,5318 0,5253 2,6410 2,8400 0,0114
CCNE 0,5517 0,5983 0,5553 2,6495 2,8619 0,0183
CENE 0,5541 0,6138 0,5537 2,7257 3,0248 0,0408
CFNE 0,4999 0,5645 0,5212 2,8781 3,0219 0,0272
CVNE 0,5807 0,6155 0,5678 2,5057 2,9133 0,0209
CNNE 0,5587 0,5995 0,5565 2,5819 3,0219 0,0178
CSNE 0,5019 0,5664 0,5198 2,7514 2,9981 0,0267
CWNE 0,4963 0,5558 0,5185 2,8533 3,0086 0,0246
FHNE 0,5009 0,5314 0,5267 2,7752 2,8057 0,0112
FCNE 0,5527 0,5995 0,5553 2,6067 2,9190 0,0189
FENE 0,5493 0,6192 0,5567 2,6790 2,9152 0,0406
FFNE 0,5013 0,5684 0,5231 2,9143 2,9171 0,0258
FVNE 0,5786 0,6166 0,5678 2,4895 2,8514 0,0209
FNNE 0,5573 0,5945 0,5551 2,5371 2,8648 0,0173
FSNE 0,5085 0,5685 0,5221 2,7162 2,9210 0,0251
FWNE 0,4997 0,5534 0,5187 2,8410 3,0352 0,0223
NHNE 0,4970 0,5321 0,5260 2,8229 2,8210 0,0110
NCNE 0,5602 0,5978 0,5564 2,4943 2,8762 0,0174
NENE 0,5544 0,6190 0,5536 2,6143 2,9705 0,0421
NFNE 0,4994 0,5638 0,5212 2,8400 2,8543 0,0271
NVNE 0,5735 0,6114 0,5666 2,5190 2,8029 0,0193
NNNE 0,5556 0,5983 0,5581 2,5162 2,9610 0,0167
NSNE 0,5109 0,5699 0,5256 2,8181 2,9248 0,0252
NWNE 0,4998 0,5617 0,5259 2,8314 2,9943 0,0235
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Tabela 19 – Áreas dos perfis de desempenho para as 6 métricas no conjunto phy.
D1 D2 D3 D4 D5 D6

NHCL 0,2255 0,1855 0,1643 0,2648 0,2395 0,0246
NCCL 0,2163 0,1651 0,1490 0,3233 0,2367 0,0291
NECL 0,2207 0,1911 0,1551 0,3086 0,2409 0,0171
NFCL 0,2169 0,1833 0,1571 0,2626 0,2218 0,0225
NVCL 0,2120 0,1666 0,1514 0,2914 0,2543 0,0288
NNCL 0,2123 0,1572 0,1436 0,3181 0,2374 0,0294
NSCL 0,2151 0,1857 0,1579 0,2917 0,2615 0,0218
NWCL 0,2152 0,1772 0,1526 0,2674 0,2620 0,0233
NHNL 0,2226 0,1867 0,1583 0,2798 0,2685 0,0226
NCNL 0,2250 0,1847 0,1631 0,2569 0,2446 0,0275
NENL 0,2284 0,1889 0,1576 0,2724 0,2411 0,0205
NFNL 0,2152 0,1832 0,1536 0,2667 0,2411 0,0223
NVNL 0,2327 0,1893 0,1631 0,2917 0,2578 0,0240
NNNL 0,2331 0,1859 0,1654 0,3131 0,2687 0,0284
NSNL 0,2210 0,1835 0,1588 0,2940 0,2502 0,0245
NWNL 0,2155 0,1778 0,1519 0,2745 0,2546 0,0231
NHEL 0,2221 0,1852 0,1603 0,2581 0,2390 0,0226
NCEL 0,2194 0,1745 0,1551 0,2905 0,2495 0,0281
NEEL 0,2187 0,1905 0,1583 0,2993 0,2604 0,0193
NFEL 0,2164 0,1842 0,1555 0,2650 0,2251 0,0221
NVEL 0,2245 0,1796 0,1611 0,2595 0,2557 0,0265
NNEL 0,2158 0,1696 0,1545 0,2729 0,2708 0,0288
NSEL 0,2176 0,1847 0,1548 0,2586 0,2392 0,0208
NWEL 0,2163 0,1817 0,1566 0,2691 0,2423 0,0230
CHNE 0,2226 0,1582 0,1598 0,3398 0,2829 0,0316
CCNE 0,2602 0,2095 0,1823 0,3376 0,2776 0,0281
CENE 0,2618 0,2212 0,1811 0,3186 0,2378 0,0169
CFNE 0,2209 0,1830 0,1570 0,2805 0,2385 0,0237
CVNE 0,2817 0,2226 0,1915 0,3736 0,2650 0,0268
CNNE 0,2653 0,2104 0,1832 0,3545 0,2385 0,0284
CSNE 0,2227 0,1847 0,1561 0,3121 0,2444 0,0239
CWNE 0,2183 0,1766 0,1549 0,2867 0,2418 0,0250
FHNE 0,2214 0,1579 0,1608 0,3062 0,2913 0,0317
FCNE 0,2612 0,2105 0,1824 0,3483 0,2636 0,0278
FENE 0,2582 0,2252 0,1832 0,3302 0,2646 0,0170
FFNE 0,2220 0,1861 0,1584 0,2714 0,2641 0,0244
FVNE 0,2801 0,2235 0,1914 0,3776 0,2801 0,0268
FNNE 0,2642 0,2065 0,1821 0,3657 0,2769 0,0286
FSNE 0,2274 0,1862 0,1577 0,3210 0,2632 0,0248
FWNE 0,2206 0,1747 0,1551 0,2898 0,2353 0,0261
NHNE 0,2187 0,1585 0,1603 0,2943 0,2876 0,0318
NCNE 0,2665 0,2092 0,1831 0,3764 0,2741 0,0286
NENE 0,2621 0,2250 0,1809 0,3464 0,2511 0,0163
NFNE 0,2207 0,1827 0,1570 0,2900 0,2794 0,0238
NVNE 0,2766 0,2198 0,1907 0,3702 0,2920 0,0277
NNNE 0,2630 0,2095 0,1843 0,3710 0,2534 0,0289
NSNE 0,2291 0,1873 0,1602 0,2955 0,2622 0,0247
NWNE 0,2208 0,1810 0,1604 0,2921 0,2453 0,0256
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Tabela 20 – Quantidade de vezes do melhor resultado para as 6 métricas no conjunto phy.
D1 D2 D3 D4 D5 D6

NHCL 5 7 9 12 7 0
NCCL 1 2 3 18 5 2
NECL 1 3 1 12 9 0
NFCL 1 2 3 9 5 0
NVCL 1 1 0 13 12 4
NNCL 0 0 2 19 4 5
NSCL 1 0 1 5 6 0
NWCL 1 1 1 8 8 0
NHNL 2 4 3 10 10 0
NCNL 2 3 1 12 10 0
NENL 5 2 4 9 8 0
NFNL 3 4 2 8 4 0
NVNL 3 4 3 9 7 0
NNNL 4 2 3 19 8 3
NSNL 2 3 2 10 7 0
NWNL 7 2 2 10 5 0
NHEL 2 7 5 5 9 0
NCEL 3 4 4 14 6 1
NEEL 4 2 2 9 6 0
NFEL 0 3 2 11 2 0
NVEL 2 0 3 9 5 0
NNEL 1 1 2 9 10 3
NSEL 4 2 3 11 6 0
NWEL 1 3 4 6 10 0
CHNE 1 0 1 31 18 29
CCNE 4 4 1 12 10 1
CENE 6 7 1 6 7 0
CFNE 0 0 0 11 5 0
CVNE 10 6 1 15 6 0
CNNE 8 3 4 25 6 4
CSNE 0 0 0 7 4 0
CWNE 2 0 0 12 4 0
FHNE 1 0 0 23 21 35
FCNE 5 3 4 13 14 1
FENE 10 14 3 7 4 0
FFNE 1 1 0 8 12 0
FVNE 12 7 6 18 14 0
FNNE 6 4 0 17 12 2
FSNE 0 2 0 12 10 0
FWNE 0 1 0 11 3 1
NHNE 0 0 0 24 24 33
NCNE 3 7 4 26 13 2
NENE 9 6 0 11 2 0
NFNE 0 1 2 21 6 0
NVNE 10 9 7 13 10 2
NNNE 5 4 7 23 14 3
NSNE 1 3 2 9 9 0
NWNE 0 1 0 15 9 0
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Tabela 21 – Pior caso no Perfil de Desempenho para as 6 métricas no conjunto phy.
D1 D2 D3 D4 D5 D6

NHCL 1,2167 1,2130 1,1606 1,5000 1,4634 1,0186
NCCL 1,2294 1,2315 1,1669 1,5000 1,4634 1,0111
NECL 1,2728 1,1944 1,1746 1,5000 1,4634 1,0308
NFCL 1,2845 1,2143 1,1867 1,5000 1,4634 1,0236
NVCL 1,2500 1,2389 1,2277 1,5000 1,4634 1,0111
NNCL 1,2501 1,2408 1,1863 1,5000 1,4634 1,0114
NSCL 1,2455 1,1944 1,1546 1,5000 1,4634 1,0236
NWCL 1,2478 1,1880 1,1715 1,5000 1,4634 1,0269
NHNL 1,2845 1,2281 1,2057 1,5000 1,4634 1,0214
NCNL 1,2728 1,2315 1,1991 1,5000 1,4634 1,0116
NENL 1,2660 1,1965 1,1638 1,5000 1,4634 1,0278
NFNL 1,2586 1,2086 1,1528 1,5000 1,4634 1,0220
NVNL 1,3028 1,2294 1,1946 1,5000 1,4634 1,0205
NNNL 1,2364 1,2019 1,1629 1,5000 1,4634 1,0116
NSNL 1,3211 1,2202 1,1919 1,5000 1,4634 1,0217
NWNL 1,2364 1,2019 1,1829 1,5000 1,4634 1,0200
NHEL 1,2672 1,1982 1,1902 1,5000 1,4634 1,0227
NCEL 1,3273 1,2685 1,2107 1,5000 1,4634 1,0123
NEEL 1,2807 1,1926 1,1931 1,5000 1,4634 1,0266
NFEL 1,2910 1,2222 1,2319 1,5000 1,4634 1,0250
NVEL 1,2368 1,1965 1,1782 1,5000 1,4634 1,0139
NNEL 1,2456 1,2130 1,1782 1,5000 1,4634 1,0123
NSEL 1,2545 1,2143 1,1797 1,5000 1,4634 1,0250
NWEL 1,2819 1,2110 1,1832 1,5000 1,4634 1,0205
CHNE 1,2455 1,2500 1,1656 1,5000 1,4634 1,0099
CCNE 1,1735 1,1111 1,1301 1,5000 1,4634 1,0164
CENE 1,1917 1,1111 1,1101 1,5000 1,4634 1,0341
CFNE 1,2273 1,2130 1,1687 1,5000 1,4634 1,0180
CVNE 1,1538 1,1240 1,1051 1,5000 1,4634 1,0161
CNNE 1,1538 1,1293 1,1312 1,5000 1,4634 1,0125
CSNE 1,2212 1,1926 1,1659 1,5000 1,4634 1,0164
CWNE 1,2545 1,2123 1,1987 1,5000 1,4634 1,0183
FHNE 1,2752 1,2294 1,1744 1,5000 1,4634 1,0147
FCNE 1,2052 1,1417 1,1374 1,5000 1,4634 1,0133
FENE 1,2636 1,1293 1,1077 1,5000 1,4634 1,0308
FFNE 1,2185 1,2130 1,1704 1,5000 1,4634 1,0172
FVNE 1,1322 1,1293 1,1156 1,5000 1,4634 1,0158
FNNE 1,1795 1,1466 1,1401 1,5000 1,4634 1,0136
FSNE 1,2212 1,1965 1,1663 1,5000 1,4634 1,0175
FWNE 1,2368 1,2054 1,1840 1,5000 1,4634 1,0166
NHNE 1,2202 1,2315 1,1577 1,5000 1,4634 1,0089
NCNE 1,1557 1,1513 1,1298 1,5000 1,4634 1,0125
NENE 1,1639 1,1240 1,1060 1,5000 1,4634 1,0335
NFNE 1,2631 1,1965 1,1597 1,5000 1,4634 1,0198
NVNE 1,1515 1,1405 1,1107 1,5000 1,4634 1,0152
NNNE 1,1826 1,1393 1,1313 1,5000 1,4634 1,0133
NSNE 1,2845 1,2019 1,1749 1,5000 1,4634 1,0178
NWNE 1,2455 1,2232 1,1666 1,5000 1,4634 1,0202
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Tabela 22 – Resultado Médio para as 6 métricas no conjunto hcgd.
D1 D2 D3 D4 D5 D6

NHCL 0,5271 0,6167 0,5298 2,3333 2,5000 0,0231
NCCL 0,4510 0,4969 0,4707 1,2333 0,7167 0,0059
NECL 0,5198 0,5771 0,5115 1,8000 2,0667 0,0263
NFCL 0,5344 0,5948 0,5264 2,2333 1,3167 0,0266
NVCL 0,4864 0,5365 0,4919 1,4333 2,0167 0,0150
NNCL 0,4583 0,4927 0,4699 0,6167 1,1500 0,0048
NSCL 0,4729 0,5208 0,4761 1,0333 1,8167 0,0190
NWCL 0,4552 0,5104 0,4724 3,1333 2,1333 0,0150
NHNL 0,5229 0,5906 0,5189 2,5667 2,0667 0,0256
NCNL 0,4479 0,4771 0,4603 1,6500 0,9167 0,0039
NENL 0,5229 0,5750 0,4943 2,2500 1,8000 0,0270
NFNL 0,5208 0,5698 0,5110 1,3667 3,0667 0,0242
NVNL 0,4302 0,4729 0,4422 1,9333 1,6167 0,0148
NNNL 0,4188 0,4364 0,4244 1,4667 0,9167 0,0026
NSNL 0,4896 0,5604 0,4857 1,1333 2,0667 0,0417
NWNL 0,4740 0,5636 0,4801 1,2667 1,7833 0,0413
NHEL 0,5427 0,6135 0,5328 2,2167 2,1333 0,0243
NCEL 0,5166 0,5594 0,5263 1,2667 0,2333 0,0063
NEEL 0,5094 0,5646 0,4991 2,3667 0,3500 0,0270
NFEL 0,5229 0,5958 0,5236 2,4333 1,4667 0,0256
NVEL 0,4802 0,5427 0,4978 1,7000 0,3833 0,0222
NNEL 0,5156 0,5354 0,5125 1,1833 2,0167 0,0052
NSEL 0,5031 0,5511 0,4961 2,2667 2,3833 0,0226
NWEL 0,4604 0,5135 0,4623 0,9833 1,6833 0,0237
CHNE 0,4948 0,5208 0,5051 1,6167 0,1333 0,0074
CCNE 0,4510 0,4656 0,4532 1,5833 2,0167 0,0026
CENE 0,4917 0,5344 0,5046 1,2000 1,2000 0,0168
CFNE 0,4875 0,5396 0,5097 1,9167 1,3833 0,0114
CVNE 0,4417 0,4635 0,4522 1,3167 1,0333 0,0031
CNNE 0,4531 0,4708 0,4621 0,9667 1,3667 0,0028
CSNE 0,4594 0,4750 0,4644 1,0333 0,7833 0,0036
CWNE 0,4687 0,5156 0,4835 1,9167 1,8333 0,0133
FHNE 0,4958 0,5177 0,5054 0,4833 2,1333 0,0060
FCNE 0,4427 0,4667 0,4507 0,7833 0,7333 0,0031
FENE 0,4979 0,5375 0,5028 1,1167 1,6833 0,0198
FFNE 0,4948 0,5208 0,5056 0,1667 1,4500 0,0069
FVNE 0,4594 0,4771 0,4648 1,0500 1,0000 0,0035
FNNE 0,4510 0,4708 0,4572 0,9333 1,1833 0,0027
FSNE 0,4552 0,4740 0,4633 -0,1333 -0,3833 0,0031
FWNE 0,4552 0,5000 0,4736 2,2833 1,6333 0,0119
NHNE 0,4990 0,5188 0,5074 -0,4500 1,3500 0,0076
NCNE 0,4437 0,4635 0,4561 0,7167 0,6667 0,0022
NENE 0,4916 0,5313 0,5031 1,3333 1,0833 0,0168
NFNE 0,5104 0,5323 0,5158 1,1833 1,8000 0,0086
NVNE 0,4573 0,4729 0,4614 1,7000 -0,0667 0,0039
NNNE 0,4458 0,4709 0,4585 1,7000 1,5667 0,0023
NSNE 0,4584 0,4739 0,4587 0,8500 0,8167 0,0043
NWNE 0,4427 0,4604 0,4497 0,1500 1,7333 0,0084
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Tabela 23 – Áreas dos perfis de desempenho para as 6 métricas no conjunto hcgd.
D1 D2 D3 D4 D5 D6

NHCL 0,1795 0,2310 0,1495 2,2061 1,8889 0,0153
NCCL 0,1238 0,1422 0,1080 3,2864 3,4988 0,0239
NECL 0,1732 0,2015 0,1363 2,7939 2,2903 0,0137
NFCL 0,1840 0,2145 0,1468 2,3287 2,9116 0,0135
NVCL 0,1495 0,1713 0,1226 3,1182 2,3232 0,0193
NNCL 0,1293 0,1392 0,1075 3,9181 3,1250 0,0244
NSCL 0,1400 0,1600 0,1118 3,4971 2,5114 0,0173
NWCL 0,1269 0,1522 0,1091 1,4211 2,1781 0,0194
NHNL 0,1759 0,2112 0,1414 1,9818 2,2450 0,0140
NCNL 0,1214 0,1277 0,1009 2,9469 3,2930 0,0248
NENL 0,1756 0,1994 0,1242 2,3304 2,4697 0,0133
NFNL 0,1744 0,1958 0,1360 3,1833 1,3599 0,0147
NVNL 0,1089 0,1238 0,0876 2,6061 2,6502 0,0195
NNNL 0,1007 0,0975 0,0756 3,1000 3,3016 0,0255
NSNL 0,1514 0,1888 0,1181 3,3923 2,2779 0,0060
NWNL 0,1407 0,1911 0,1142 3,2591 2,5240 0,0062
NHEL 0,1907 0,2289 0,1514 2,3227 2,2159 0,0147
NCEL 0,1712 0,1882 0,1467 3,2878 3,9002 0,0237
NEEL 0,1663 0,1917 0,1274 2,1834 3,8005 0,0133
NFEL 0,1759 0,2153 0,1449 2,1031 2,7879 0,0140
NVEL 0,1453 0,1759 0,1270 2,8606 3,7728 0,0157
NNEL 0,1707 0,1704 0,1370 3,3607 2,3005 0,0242
NSEL 0,1614 0,1816 0,1254 2,2758 1,9596 0,0155
NWEL 0,1312 0,1541 0,1021 3,5470 2,6300 0,0150
CHNE 0,1555 0,1591 0,1317 2,9469 3,9848 0,0231
CCNE 0,1243 0,1191 0,0957 3,0075 2,3245 0,0255
CENE 0,1533 0,1695 0,1314 3,3864 3,0720 0,0184
CFNE 0,1505 0,1732 0,1349 2,6712 2,8713 0,0211
CVNE 0,1176 0,1180 0,0952 3,2803 3,2096 0,0253
CNNE 0,1254 0,1228 0,1018 3,5530 2,8952 0,0254
CSNE 0,1298 0,1264 0,1039 3,4908 3,3939 0,0250
CWNE 0,1366 0,1557 0,1168 2,6606 2,4936 0,0202
FHNE 0,1562 0,1571 0,1319 4,0425 2,2171 0,0238
FCNE 0,1182 0,1198 0,0939 3,8030 3,4962 0,0252
FENE 0,1577 0,1716 0,1301 3,4530 2,6326 0,0169
FFNE 0,1556 0,1596 0,1321 4,3833 2,8358 0,0234
FVNE 0,1303 0,1277 0,1040 3,4879 3,2133 0,0251
FNNE 0,1243 0,1230 0,0986 3,5893 3,0694 0,0255
FSNE 0,1272 0,1257 0,1031 4,6818 4,4596 0,0253
FWNE 0,1271 0,1439 0,1096 2,3015 2,6767 0,0208
NHNE 0,1583 0,1579 0,1333 4,9833 2,9369 0,0230
NCNE 0,1189 0,1177 0,0980 3,8697 3,5505 0,0257
NENE 0,1534 0,1674 0,1304 3,2652 3,1302 0,0184
NFNE 0,1666 0,1680 0,1391 3,3833 2,5265 0,0225
NVNE 0,1286 0,1247 0,1017 2,8909 4,1780 0,0249
NNNE 0,1204 0,1227 0,0993 2,8575 2,7058 0,0256
NSNE 0,1295 0,1253 0,0996 3,6667 3,3687 0,0247
NWNE 0,1184 0,1145 0,0929 4,3726 2,5467 0,0226
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Tabela 24 – Quantidade de vezes do melhor resultado para as 6 métricas no conjunto hcgd.
D1 D2 D3 D4 D5 D6

NHCL 0 1 1 0 0 0
NCCL 0 0 0 0 1 0
NECL 0 1 0 0 0 0
NFCL 1 1 0 0 0 0
NVCL 0 0 0 0 0 0
NNCL 0 0 0 2 0 0
NSCL 0 0 0 0 0 0
NWCL 0 0 0 0 0 0
NHNL 0 1 0 0 0 0
NCNL 1 0 1 1 1 0
NENL 2 0 0 0 1 0
NFNL 0 0 0 0 0 0
NVNL 0 0 0 0 0 0
NNNL 0 0 0 1 0 1
NSNL 0 0 0 0 0 0
NWNL 0 0 0 0 0 0
NHEL 2 3 1 0 0 0
NCEL 0 0 1 0 0 0
NEEL 1 0 1 0 1 0
NFEL 0 0 0 0 0 0
NVEL 0 0 0 0 1 0
NNEL 0 0 0 0 0 0
NSEL 0 0 0 0 0 0
NWEL 0 0 0 1 0 0
CHNE 0 0 0 1 1 1
CCNE 0 0 0 2 0 0
CENE 0 0 0 1 1 0
CFNE 0 0 0 0 0 0
CVNE 0 0 0 1 1 0
CNNE 0 0 0 1 0 0
CSNE 0 0 0 0 1 0
CWNE 0 0 0 1 0 0
FHNE 0 0 0 0 0 0
FCNE 0 0 0 1 0 0
FENE 0 0 0 0 0 0
FFNE 0 0 0 1 1 1
FVNE 0 0 0 1 0 0
FNNE 0 0 0 1 2 1
FSNE 0 0 0 3 3 1
FWNE 0 0 0 1 0 0
NHNE 0 0 0 2 1 1
NCNE 0 0 0 1 0 0
NENE 0 0 0 0 0 0
NFNE 0 0 1 1 1 1
NVNE 0 0 0 0 0 0
NNNE 0 0 0 1 1 1
NSNE 0 0 0 1 0 0
NWNE 0 0 0 2 1 1
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Tabela 25 – Pior caso no Perfil de Desempenho para as 6 métricas no conjunto hcgd.
D1 D2 D3 D4 D5 D6

NHCL 1,0934 1,0493 1,0424 6,4000 4,8182 1,0143
NCCL 1,1814 1,1574 1,1186 6,0000 5,0000 1,0030
NECL 1,1255 1,0846 1,0733 6,0000 5,1818 1,0162
NFCL 1,0959 1,0548 1,0506 6,1000 5,0909 1,0154
NVCL 1,1348 1,1009 1,0875 4,6000 5,7273 1,0117
NNCL 1,1720 1,1502 1,1154 5,7000 5,2500 1,0030
NSCL 1,1441 1,1315 1,1072 5,8000 4,9091 1,0106
NWCL 1,1917 1,1527 1,1151 6,3000 5,9091 1,0092
NHNL 1,1250 1,0673 1,0745 6,4000 5,0909 1,0163
NCNL 1,2328 1,2037 1,1505 5,8182 4,6364 1,0016
NENL 1,1096 1,1058 1,0729 5,4000 4,9091 1,0166
NFNL 1,1096 1,1058 1,0729 4,8000 5,4545 1,0144
NVNL 1,1953 1,1944 1,1431 6,3000 5,1818 1,0111
NNNL 1,2054 1,2019 1,1577 5,5000 5,8182 1,0016
NSNL 1,1627 1,0962 1,0912 6,4000 5,0909 1,0224
NWNL 1,1581 1,0939 1,0979 6,2000 5,6364 1,0264
NHEL 1,0937 1,0529 1,0448 5,9000 2,8182 1,0145
NCEL 1,1069 1,0892 1,0640 5,7000 2,8182 1,0033
NEEL 1,1206 1,1442 1,1199 6,0000 3,0000 1,0152
NFEL 1,0889 1,0529 1,0544 4,6000 4,5455 1,0148
NVEL 1,1415 1,1250 1,0855 6,0000 3,3636 1,0144
NNEL 1,1050 1,1202 1,0723 4,6000 5,1818 1,0033
NSEL 1,1162 1,1442 1,0980 6,5000 5,4545 1,0144
NWEL 1,1278 1,1491 1,1103 5,2000 5,2727 1,0146
CHNE 1,1096 1,1298 1,0728 4,8000 3,7273 1,0030
CCNE 1,1689 1,1806 1,1107 6,2000 5,6364 1,0030
CENE 1,1162 1,1298 1,0739 5,6000 4,7500 1,0153
CFNE 1,1096 1,1491 1,0808 5,8000 5,6364 1,0086
CVNE 1,1644 1,1667 1,1097 5,8182 4,6364 1,0030
CNNE 1,2009 1,2130 1,1415 5,7000 4,3636 1,0034
CSNE 1,1963 1,2037 1,1345 4,8000 4,3636 1,0030
CWNE 1,1441 1,1436 1,0927 6,0000 5,0909 1,0092
FHNE 1,1162 1,1442 1,0733 5,3000 5,1818 1,0046
FCNE 1,1917 1,2083 1,1328 5,1818 4,7500 1,0037
FENE 1,1255 1,1298 1,0789 6,2000 4,7500 1,0132
FFNE 1,1162 1,1346 1,0740 3,9000 5,1818 1,0026
FVNE 1,2146 1,2315 1,1557 4,9000 5,7273 1,0032
FNNE 1,1162 1,1346 1,0733 6,2000 2,2727 1,0026
FSNE 1,1917 1,1991 1,1298 3,9000 2,2727 1,0026
FWNE 1,1415 1,1635 1,1108 6,0000 4,6667 1,0094
NHNE 1,1162 1,1394 1,0676 2,7000 2,6364 1,0026
NCNE 1,2100 1,2176 1,1460 5,1818 4,3333 1,0026
NENE 1,1162 1,1174 1,0696 5,9091 5,2727 1,0132
NFNE 1,1162 1,1174 1,0676 4,9000 4,7500 1,0082
NVNE 1,1872 1,1991 1,1302 5,4545 2,6364 1,0033
NNNE 1,1872 1,2037 1,1277 5,9000 5,3636 1,0032
NSNE 1,1734 1,1806 1,1128 6,5000 5,9091 1,0035
NWNE 1,1651 1,2500 1,1734 6,5000 5,9091 1,0101
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8 Discussões

Os resultados obtidos neste trabalho apontaram as limitações presentes nas métricas
atuais de avaliação para BCI. Por mais que existam diversas métricas para avaliação de
BCI, como apontado na Tabela 5, elas não consideram o atraso de classificação no problema.
Mesmo quando a métrica é aplicada em várias janelas, os trabalhos apenas utilizam o
melhor janelamento, sem considerar o tempo em que ele ocorreu ou fazem a média de
todos os janelamentos.

Seguindo a mesma avaliação comumente usada pela literatura, pode-se observar
algumas limitações. Por exemplo, modelos que apresentam comportamento periódico na
classificação, como a EEGNet, atingiram resultados altos para a avaliação em 2,5 segundos.
Porém, quando avaliados ao longo do trial, outros classificadores apresentaram resultados
até 2 vezes melhores que a EEGNet.

Os resultados da melhor janela de tempo para cada método corroboram a escolha
de 2,5 segundos feita pela literatura. Das janelas possíveis, a janela que obteve o maior
kappa com mais frequência foi justamente no final da janela de treinamento (entre 0,5 e
2,5 segundos). Isso indica um favorecimento dos métodos que treinam nessa janela. Por
exemplo, um modelo que treina com a janela de -0,5 a 1,5 atingiria seu melhor valor por
volta de 1,5. Porém, ao fazer a comparação usada na literatura, seria usado seu kappa
em torno de 2,5 segundos, que não é a região de melhor resultado para esse modelo. Essa
forma de avaliar também vai limitar técnicas de aumento de dados como a janela deslizante.
Como esse método utiliza várias posições ao mesmo tempo, também não é esperado um
pico em torno de 2,5.

Além disso, alguns métodos como o FBCSP, que possuem maior estabilidade ao
longo do tempo, também ficam em desvantagem quando avaliados apenas em 2,5 segundos.
A métrica de integração com oscilação proposta nesse trabalho conseguiu apontar essa
estabilidade do FBCSP. Uma vez que, apesar do FBCSP e da EEGNet terem atingido
valores similares, a EEGNet apresentou um valor inferior na integração. Isso indica que a
EEGNet atinge um pico em 2,5 segundos, porém, possui baixos valores em seu entorno.
Enquanto isso, o FBCSP apresenta um resultado mais constante ao longo do tempo. Além
disso, essa nova métrica abre espaço para novas pesquisas sobre como modificar o instante
em que o método atinge seu pico, já que a métrica considera outros instantes de tempo.

Para exemplificar o comportamento da EEGNet e do FBCSP em aplicações reais,
serão considerados aqui os casos de reabilitação pós-AVC e controle de prótese. Para o
controle de prótese, suponha que a pessoa queira manter a mão fechada por 4 segundos.
Dada a forma como a literatura avalia os modelos atualmente, a conclusão é que em 2,5
segundos ambos os modelos vão classificar o sinal como sendo de mão fechada. Agora,
quando é observada a partir das métricas propostas, a conclusão é que a EEGNet vai
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abrir e fechar a mão de forma rápida em torno de 2,5 segundos, enquanto o FBCSP vai
conseguir manter a mão fechada por mais tempo. Ambos os modelos atingiram seu pico
ao mesmo tempo, mas o FBCSP se mostra mais interessante para essa aplicação quando
reavaliamos eles sob essa nova abordagem.

Para o caso da reabilitação de pós-AVC, o feedback mostrado visualmente ou
eletricamente para o paciente tem papel fundamental na plasticidade cerebral. Suponha
que seja dada a instrução para a pessoa fechar a mão direita por 4 segundos. A EEGNet
vai dizer que ela fechou a mão e logo depois abriu de novo, fazendo com que a pessoa
tenha um desgaste mental maior após a abertura da mão por achar que está fazendo algo
errado. Por isso, a EEGNet da forma que foi avaliada aqui não seria uma boa escolha para
essa aplicação. Por mais que a EEGNet tenha um bom resultado em 2,5 segundos, como
mostram as métricas clássicas, ela causaria um desgaste do paciente e uma desmotivação
com o sistema, por visualmente só ver o comando que ele quer executar aparecendo bem
rápido. Já o FBCSP seria uma escolha melhor para a aplicação uma vez que consegue
manter a classificação após 2,5 segundos também com um valor bom para o kappa.

Em ambas as aplicações, as métricas atuais apontavam o FBCSP e a EEGNet com
resultados similares. Porém, ao usar as novas métricas propostas, foi possível observar
uma vantagem do FBCSP sobre a EEGNet. Dessa forma, as novas funções vêm como
um complemento das métricas atuais para avaliações de datasets de BCI. Através delas,
a avaliação de datasets da literatura se aproxima mais de avaliações de aplicações reais.
Apesar de ainda haver limitações comparadas a avaliações em tempo real com feedback, o
uso das novas métricas supre a limitação das métricas atuais sobre a avaliação temporal
dos modelos.
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9 Conclusões

Interfaces Cérebro-Máquina vêm ganhando bastante atenção da comunidade cien-
tífica dado seu potencial tecnológico e humano. Elas permitem novas aplicações sem a
necessidade da utilização dos músculos periféricos. Além do seu potencial para jogos e
controle de equipamentos, elas apresentam diversas soluções para melhorar a qualidade de
vida das pessoas. Controle de próteses, cadeiras de rodas e digitadores são alguns exemplos
de aplicação que trazem uma melhora significativa na vida de pessoas com limitações
físicas causadas por alguma doença. As BCIs também podem ser usadas durante o próprio
período de tratamento de pacientes por causa do feedback gerado pela aplicação. Por
exemplo, é possível recuperar os movimentos motores de uma pessoa acometida com um
Acidente Vascular Cerebral ou utilizá-la para melhorar a capacidade de atenção social em
crianças autistas.

Por causa de sua grande gama de aplicações, vários incentivos surgiram para que
pesquisas fossem feitas nessa área. A maioria desses incentivos veio através da criação
de competições para classificação de sinais de EEG. Principalmente para o paradigma de
Imaginação Motora, a BCI precisava indicar qual foi o movimento corporal em que uma
pessoa imaginou, por exemplo, fechar a mão esquerda.

Porém, essas competições trouxeram um viés na forma como as BCIs são classifica-
das. Começou uma corrida para ver quem conseguia uma maior qualidade de classificação
em janelas de treino bem controladas e que muitas vezes não fariam sentido em situações
reais. Condições como o tempo entre a imaginação e a classificação foram negligenciadas,
assim como o conforto do usuário e a fadiga provocada pelo seu uso.

Esse trabalho visou explorar a dependência temporal na classificação das BCIs.
Enquanto as competições avaliam o modelo em tempo único, sendo ele normalmente de
2,5 segundos após a pessoa iniciar a imaginação. Nesse trabalho, nós propusemos novas
métricas de avaliação para as BCIs que não utilizassem apenas um instante fixo de tempo
para avaliar os modelos. Dessa forma, as BCIs podem ter uma avaliação mais próxima
dos seus casos reais de uso.

Quando o tempo é avaliado juntamente com a taxa de acerto dos modelos, o
problema de avaliação das BCI se torna mais desafiador, principalmente porque o atraso
do modelo e a taxa de acerto são, normalmente, conflitantes. Por isso, nós propomos novas
formas de avaliar os modelos combinando o desempenho do modelo junto com: (i) tempo
para obter o maior kappa contra o maior kappa e (ii) integração ao longo do tempo pela
suavidade das mudanças ao longo do tempo.

Para avaliar as novas métricas propostas, foram utilizados 48 modelos com diferentes
características, como redes neurais convolucionais, filtros temporais e filtros espaciais.
Dessa forma, além da avaliação das métricas propostas, foi possível fazer um estudo sobre
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diferentes tipos de BCI. Dada a diferença normalmente presente entre os conjuntos de
dados, nós também utilizamos 5 conjuntos de dados com propostas diferentes.

Sobre as métricas propostas, foi possível observar uma melhora na forma de avaliar
os modelos, principalmente quando comparamos os modelos de redes neurais convolucionais
com as técnicas clássicas. As métricas comumente usadas para avaliar as BCIs mostravam as
redes profundas ligeiramente melhores que as demais técnicas. Porém, quando observamos
o seu desempenho ao longo do tempo, ele chega a apresentar um resultado até 7 vezes
pior que as técnicas clássicas de BCI.

Já para a métrica de atraso de janela com o kappa, foi possível observar que os
melhores valores de kappa para as redes profundas ocorrem em torno do final da janela
do treinamento. Ou seja, quando a rede é treinada com 2 segundos de sinal, começando
0,5 segundos após a apresentação da tarefa para o voluntário, as redes convolucionais
apresentam seu pico de classificação em torno de 2,5 segundos. Isso explica o porquê delas
apresentarem um resultado melhor que os demais métodos ao usar as métricas atuais, que
simplesmente avaliam qual foi o melhor método após 2,5 segundos. Já os modelos não
profundos são mais robustos ao longo do tempo e obtêm uma variação maior do tempo
necessário para atingir seu pico de classificação.

Na análise entre os diferentes modelos de BCI, é possível observar uma relação
entre o filtro e o classificador. Para as redes convolucionais, filtros temporais baseados
em convolução apresentam melhores resultados no geral, enquanto que para os demais
modelos, os filtros com transformada de Fourier foram melhores.

Apesar de melhorar a forma de avaliar as BCIs incluindo o tempo nas análises, as
métricas propostas continuam sendo uma forma de resumir os resultados de uma BCI.
Por esse motivo, continuam perdendo informação como qualquer outra métrica que visa
apresentar resultados de um modelo. Por isso, mesmo que usada para escolher os melhores
modelos, uma avaliação visual do comportamento da classificação ao longo do tempo ainda
é indicada como mostrada na Figura 6.

A partir das conclusões apresentadas, o objetivo principal proposto nesse trabalho
de reduzir a lacuna na avaliação das BCI sobre a questão temporal foi atingido com
as novas métricas propostas. Já dos objetivos secundários, os novos modelos propostos
também atingiram bons resultados quando comparados com os existentes na literatura
(FBCSP e EEGNet). Para a avaliação dos modelos, foram cobertos diferentes problemas
como datasets com poucos eletrodos e especializados em reabilitação de AVC.

Para trabalhos futuros, é possível avaliar as métricas com diferentes janelamentos
de treinamento. Já que as redes convolucionais apresentaram uma queda de desempenho
fora do intervalo de 2,5 segundos, é possível que a inclusão de novas janelas no treino reduza
esse problema. Além disso, o estudo não considera a variação entre sujeitos, mesmo isso
sendo um outro problema grande para as BCIs. Técnicas de visualização dessas diferenças
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podem agregar mais uma forma de avaliar os modelos fora das limitações trazidas pelas
competições.
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