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“Se nos lembrarmos da estrutura extremamente complexa do cé-
rebro, parecerd pouco provavel que o processo que finalmente

ocorre no cortex cerebral guarde ainda qualquer semelhanga com

o estimulo fisico de que partimos”

(Johannes Hessen, Teoria do conhecimento, p. 77)



RESUMO

As Interfaces Cérebro-Méquina (BCI) possuem diversas aplicagbes nas areas de
entretenimento, satide e qualidade de vida. Por isso, elas vém tendo sua pesquisa cada vez
mais fomentada. Esses incentivos ao desenvolvimento das BCIs ocorrem principalmente
através de competicoes. Porém, por causa dessa forma de incentivo ser predominante, as
competicdes criaram um viés na avaliagdo das BCIs. Atualmente, as BCls sdo avaliadas
principalmente em sua capacidade de classificacdo em um instante fixo de tempo com poucos
trabalhos fazendo uma avaliagdo mas holistica das BCIs considerando a questao temporal.
Assim, as caracteristicas temporais presentes nas aplicagoes de BCI sdo negligenciadas.
Esse trabalho tem como objetivo principal propor novas métricas que incorporem as
propriedades temporais das BCIs. Além disso, fazer uma anélise dos diferentes tipos de
filtros temporais e espaciais para BCI, juntamente com o uso de redes neurais convolucionais.
Para avaliar as novas métricas propostas, foram criados 48 diferentes modelos para BCI
e testados em 5 conjuntos de dados da literatura. Os resultados mostraram que as
novas métricas trouxeram novas interpretacoes sobre o desempenho das BCls. Inclusive,
mostrando que modelos como a EEGNet, que sao considerados levemente superiores aos
demais, apresentam limitagoes em aplicagoes reais que ainda nao foram apontadas pela

literatura quanto a estabilidade.

Palavras-chave: Interface Cérebro-Maquina; Imaginacao Motora; Eletroencefalograma;

Métricas.



ABSTRACT

Brain-Computer Interfaces (BClIs) have several applications in the areas of enter-
tainment, health, and quality of life. For this reason, their research has been increasingly
encouraged. These incentives for the development of BCIs occur primarily through compe-
titions. However, because this form of incentive is predominant, it has caused a bias in the
evaluation of BCIs. Currently, BCIs are evaluated mainly on the basis of their classification
capacity at a fixed point in time. Thus, all the temporal characteristics present in the
BCI applications are neglected. The main objective of this work is to propose new metrics
that incorporate the temporal properties of BCIs. In addition, it analyzes the different
types of temporal and spatial filters for BCIs together with the use of convolutional neural
networks. To evaluate the new proposed metrics, 48 different models for BCIs were created
and tested on five data sets from the literature. The results showed that the new metrics
brought about new interpretations of the performance of the BCIs. Including showing that
models like EEGNet, which are considered slightly superior to the others, would present

some limitations in real applications that have not yet been pointed out in the literature.

Keywords: Brain-Machine Interface; Motor Imagination; Electroencephalogram; Metrics.
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1 Introducao

Interfaces Cérebro-Maquina (BCIs!) vém atraindo a atengdo da comunidade cienti-
fica por sua vasta gama de aplicagoes e seu potencial de inovagao. Elas sao capazes de enviar
comandos para sistemas computacionais através do processamento de sinais cerebrais [1].
Dessa forma, nao ha necessidade de entradas convencionais como teclados, controles e
microfones. Essa abordagem permite uma melhor qualidade de vida e independéncia para
pessoas que, por algum motivo, ndo sao capazes de usar os métodos convencionais [2].
As BCIs podem ser usadas para controle de cadeiras de rodas, exoesqueletos e proteses,
permitindo uma melhor locomocao e interagao com objetos por pessoas tetraplégicas ou
amputadas [3]. Além disso, também podem ser usadas para reabilitagdo pds-Acidente

Vascular Cerebral (p6s-AVC), controle de drones, jogos, entre outros [4].

Pode-se dizer que as BClIs sao interfaces que utilizam um sinal coletado do cérebro
e traduzem esse sinal em um comando com significado para um dispositivo computacional.
A traducao desse sinal depende de diversos fatores como, por exemplo, o equipamento que
esta sendo usado para coletar o sinal cerebral, o equipamento disponivel para a traducao,
o tipo de informacgao que se deseja obter do cérebro, entre outros [5]. As aplicagbes
para reabilitacdo motora pés-AVC e controle de cadeira de rodas usam, geralmente, o
Eletroencefalograma (EEG) para a coleta do sinal cerebral e traduzem sinais de movimento
imaginado (MI) [6]. Por exemplo, na reabilitagdo motora pds-AVC, a pessoa imagina seu
membro em movimento, o sinal do cérebro ¢é coletado pelo EEG, traduzido pela BCI que

ird liberar um estimulo elétrico e/ou visual para o paciente [7].

Um dos métodos mais conhecidos para classificacao de MI coletados com EEG
para BCI é o Filter Bank Common Spatial Pattern (FBCSP) [8]. Esse método se tornou
referéncia na literatura apos a BCI Competition IV [9], na qual o método apresentou
os melhores resultados para a classificacdo de imaginacao motora. No FBCSP, sao
primeiramente aplicados diversos filtros passa-banda (4-8, 8-12, ..., 36-40 Hz); depois
disso, o Common Spatial Pattern (CSP) é usado para fazer a filtragem espacial, seguido
da fungdo LogPower que extrai as caracteristicas do sinal. A selecdo das melhores
caracteristicas é feita com o Mutual Information-based Best Individual Feature (MIBIF) e

a classificacdo do sinal ¢ feita usando o Naive-Bayes Parzen- Window (NBPW).

Outras abordagens podem ser encontradas na literatura, como, por exemplo, o
uso de wavelets [10], geometria riemanniana [11] e redes convolucionais [12]. Dentre as
redes convolucionais, estao os modelos DeepConvNet, ShallowNet e EEGNet, sendo a
EEGNet o modelo com os melhores resultados entre elas [13]. A EEGNet é um modelo
proposto por Lawhern et al. e se baseia em agrupar as etapas do FBCSP dentro de uma

unica rede convolucional. Ela possui um conjunto de convolugoes temporais e espaciais

L do inglés Brain-Computer Interfaces
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representando os filtros passa-banda e CSP e uma convolugao separavel representando
a extracao e selecdo das caracteristicas, seguida de uma softmax para a classificacao.
Apesar da literatura relatar bons resultados, nos trabalhos publicados com a EEGNet, sao
usadas as métricas de acuracia, Kappa e Fl-score de forma pontual para a avaliagao do
modelo. Essas métricas acabam supervalorizando a taxa de acerto do modelo sobre outras
caracteristicas igualmente importantes, como, por exemplo, o atraso de classificacao do

modelo.

As aplicagoes com BCI sao multiobjetivo e precisam de mais avaliagdes do que
apenas sua eficacia. Outros pontos como aprendizado, eficiéncia e facilidade de controle
também precisam ser avaliados para a escolha do melhor modelo. Um modelo que demora
de 2 a 3 segundos para conseguir traduzir a intencao de um movimento é desvantajoso em
diversas aplicagdes (como o controle de uma protese, por exemplo), mesmo que possua

uma acuracia alta.

Esse método de avaliar as BCIs foi bastante influenciado pelas competicoes envol-
vendo BCIs que usualmente desconsideram outras caracteristicas, além da taxa de acerto
dos modelos. Nesse trabalho, sdo propostas trés novas métricas para BCI, considerando a
variabilidade da classificagdo das BCIs ao longo do tempo. Apresentando os resultados das
BCIs por novos pontos de vista, é possivel uma interpretacdo mais holistica do problema,
se adequando mais a situacao em que ela sera colocada em aplicagoes de tempo real. Este
trabalho estd de acordo com o Objetivo 3 de Desenvolvimento Sustentével da Organizagio

das Nagoes Unidas, sobre Saude e Bem-Estar.

O objetivo principal desse trabalho é diminuir a lacuna na avaliacao dos modelos
de BCI, que atualmente negligenciam a questao temporal intrinseca das aplica¢oes em

tempo real. Para isso, os objetivos secundarios para essa tarefa sao:

o Propor novas métricas para avaliagdo de modelos BCI considerando a questao

temporal;
» Propor diferentes modelos de BCI e compara-los com o FBCSP e a EEGNet;
o Avaliar os modelos propostos usando a métrica kappa para BCI;
o Fazer uma avaliacao comparativa das métricas propostas com o kappa; e

o Avaliar as métricas em conjunto de dados com diferentes propostas.

Os resultados obtidos durante o cumprimento dos objetivos estao destacados nos trabalhos

cientificos presentes na Tabela 1.
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Tabela 1 — Lista de trabalhos cientificos desenvolvidos e relacionados ao doutorado.

Trabalhos ainda sem local estao em processo de submissao.

Titulo Local
Analysis of Window-Delay Score for Data Augmentation ENTAC
Methods in Brain-Computer Interfaces [14]

Analyzing Data Augmentation Methods for Convolutional [JONN
Neural Network-based Brain-Computer Interfaces [15]

EEG data for motor imagery based brain-computer

) . . LADS
interface using low-cost equipment [16]

Euclidean Alignment for Transfer Learning in Multi-band BRACIS
Common Spatial Pattern [17]

Feature Extraction for a Genetic Programming-Based
Brain-Computer Interface [18] BRACIS
Genetic Programming for Feature Extraction in Motor EPIA
Imagery Brain-Computer Interface [19]

Residual Attention Module on EEGNet for 90T
Brain-Computer Interface [20]

Short-Term Fourier Transform as Preprocessing for LJONN
Commom Spatial Pattern [21]

Single Electrode Energy on Clinical Brain—-Computer BSPC
Interface Challenge [22]

Window-Delay Analysis on EEGNet ICSCMI

Fractal Dimention for Common Spatial Pattern based
Brain-Computer Interface

Autoregressive Funtions for Feature Extraction on
Brain-Computer Interface

A Systematic Review of Evolutionary Algorithms for
Brain-Computer Interface Problems

Analysis of Window Delay score for different windowing
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2  Interface Cérebro-Maquina

BClIs sao interfaces que permitem uma comunicacao direta entre o cérebro e algum
sistema eletronico. Isso é feito sem o uso dos neurdnios motores, os quais sdo os neuronios
responsaveis por mexer os musculos. Dessa forma, a BCI pode ser usada para substituir o
controle motor em diversas aplicagdes como controle de exoesqueletos [23], préteses [24],
méquinas industriais [25], computadores [26], entre outros [27]. Além das aplicagoes
voltadas para controle, a BCI também pode ser usada para modular o funcionamento do
cérebro, como, por exemplo, recuperar o movimento de uma pessoa que teve um AVC [2§]

ou para melhorar a atengdo em pessoas no espectro autista [29].

O programa de uma BCI é composto por 2 partes principais: o treinamento e o

uso. Para a etapa de treinamento, temos:

1. A pessoa é submetida a uma condicao de controle, em que ela ja sabe a tarefa que

deve ser executada naquele trial.
2. O sinal do cérebro dessa pessoa é coletado durante o experimento.

3. Esse sinal é armazenado para treinar o modelo antes do seu uso.

Apesar de existirem modelos de BCI que nao necessitam de treinamento, eles ainda
nao apresentam bons resultados quando comparados com os demais métodos [30]. Isso
ocorre pelo fato de o cérebro das pessoas ser tinico e, normalmente, ndo é possivel criar
um modelo generalizado. Algumas abordagens visam reduzir a quantidade de amostras do
sujeito necessaria para o treinamento, como, por exemplo, as areas de Transferéncia de
Aprendizado [17] e Aumento de Dados [14]. Apesar de reduzirem o tempo de coleta para

o treinamento, essa etapa continua sendo necessaria.

Para exemplificar uma coleta de treinamento, iremos apresentar uma sequéncia

usual para coletar dados de MI [31].

1. Uma mensagem avisando que uma sequéncia de atividades vai comecar é apresentada.
2. Apoés alguns segundos, o movimento a ser imaginado é apresentado.
3. A pessoa imagina o movimento indicado.

4. E feito um pequeno descanso antes de iniciar o préximo trial (uma execugao de

tarefa).

Existem varias sequéncias possiveis, porém todas com apenas singelas variacoes da apre-
sentada. Por exemplo, no comeco do trial, pode ter um sinal sonoro para ajudar a pessoa
a focar ou pode ter um pequeno intervalo entre a pessoa saber o que vai imaginar para ter

a imaginagao.
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No geral, a sequéncia de atividades para a gravacao de um movimento imaginado
para MI dura de 6 a 10 segundos e isso é repetido até que o nimero de execugoes objetivado
para o conjunto de treino seja atingido. E indicado que o tempo dessa coleta nao passe
de uma hora, ja que isso pode trazer desconforto, dor de cabeca e insonia com o uso

prolongado desse sistema.

Apoés a coleta dos dados de treinamento, podemos armazena-los da forma usual
para aprendizado de maquina. Nesse caso, nés teremos os dados coletados X, cujo formato

depende do equipamento, e um vetor y indicando qual tarefa foi executada em cada trial.

Para coletar o sinal do cérebro, varios equipamentos podem ser usados. Normal-
mente, eles sao divididos em 2 tipos [32]: invasivos e nao-invasivos. Os equipamentos
invasivos costumam ter uma maior precisao espacial e menos ruido. Porém, trazem todos
os empecilhos de um sistema invasivo, pois precisam de um procedimento cirirgico para
serem usados. Esses equipamentos costumam ser usados de forma bem restrita, quando a
pessoa ja iria passar por uma cirurgia que deixaria o cérebro exposto ou quando nao ha
outra alternativa. Dentre os equipamentos usados de forma invasiva, temos os chips e a
eletrocorticografia (ECoG) [33].

Os equipamentos nao invasivos trazem muito mais seguranca para a pessoa. Porém,
possuem uma menor precisao espacial e muito mais ruido que os métodos invasivos. O
EEG é o tnico equipamento nao invasivo que coleta o funcionamento elétrico do cérebro.
Os demais métodos usam informacoes correlatas para avaliar a atividade cerebral. Por
exemplo, a Ressondncia Magnética Funcional (fMRI) [34] verifica a concentragao de
oxigénio nas hemoglobinas. Outros equipamentos nao invasivos sao a Tomografia por
Emissdo de Pésitrons (PET) [35], Espectroscopia de Infravermelho Préximo (NIRS) [36] e
Magnetoencefalografia (MEG) [37]. Porém, como o EEG é o tinico a coletar sinais elétricos,
ter um baixo custo, ser portatil e de rapida montagem, ele é o mais usado para aplicagoes
de BCI. Por esse motivo, iremos focar apenas em aplicagoes baseadas em EEG daqui em

diante.

Para o EEG, o sinal coletado X serd um tensor de 3 dimensoes da forma (trial,
eletrodo e tempo). Dessa forma, temos que cada matriz X; (eletrodo, tempo) equivale a
uma tarefa y;. Mais detalhes sobre o equipamento de EEG serao mostrados em sessoes
adiante no texto. Apds a coleta do sinal de treino, ele é usado para encontrar um modelo
que encontre ¢; para uma amostra X;, com ¢; podendo assumir um valor que representa

cada uma das classes possiveis.

Com o modelo treinado, é possivel iniciar a etapa de uso da BCI. Nesse momento,
a pessoa consegue observar em tempo real o que esta sendo classificado pelo modelo. A

sequéncia de atividades durante a fase do uso é:

1. A pessoa imagina a tarefa.
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2. O EEG coleta o sinal elétrico do cérebro da pessoa.
3. O modelo classifica o sinal cerebral.
4. A classificacdo é usada para que um sistema eletronico execute uma tarefa.

5. A pessoa observa a tarefa sendo executada (etapa de Feedback).

Esse ciclo se repete enquanto a pessoa estiver usando o equipamento e, assim como a etapa
de treino, pode haver algumas mudancas dependendo do experimento. Por exemplo, para
reabilitacdo motora p6s-AVC, temos que todas as imaginagoes sao igualmente espagadas.

Porém, para o controle de uma prétese, o intervalo entre cada execucao é flexivel.

Dada a complexidade de um sinal de EEG, vérias etapas precisam ser executadas
tanto no treinamento quanto no uso para que o modelo possa ter uma classificagao

adequada [38]. As etapas para classificacdo do sinal de EEG sao:

1. Pré-processamento

reamostragem

o eliminacao de trials
o aplicacao de baseline
e remocao de eletrodos

e janelamento
2. Filtragem

o filtragem temporal

« filtragem espacial
3. Criagado de caracteristicas

« extracao de caracteristicas

e selecao de caracteristicas

4. Classificagao

Inicialmente, o sinal passa por uma etapa de pré-processamento; nessa etapa, €
avaliada a qualidade do sinal e sdo feitas transformagoes individuais (o sinal de X; nao é
afetado pelo sinal de X;). Os métodos presentes nessa parte nao possuem nenhuma etapa
de treinamento e sao aplicados diretamente pelo conhecimento do especialista. A primeira
técnica de pré-processamento apresentada aqui é a reamostragem. Para explicar essa técnica

R Nix Nex (Ngxsfreq

de forma mais didatica, iremos supor um conjunto de dados X € ) onde

N; é a quantidade de trials, N, é a quantidade de eletrodos, N,y é a duracao de um trial
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em segundos e sfreq é a frequéncia de aquisicdo (quantidade de valores coletados por
segundo). A reamostragem é um método capaz de modificar sfreq; por exemplo, podemos
ter um sinal coletado a 250H z e fazer uma reamostragem dele para 128 Hz. As vantagens
da reamostragem sao reduzir a dimensao do sinal e ajustar o formato para usar modelos

mais genéricos (como a EEGNet, que normalmente usa 128H z).

Outro pré-processamento é a eliminacao de trials que possuam alguma caracteristica
indesejada. Por exemplo, quando uma pessoa espirra, o sinal tem uma flutuagao muito
grande e esse trial pode ser descartado para evitar problemas no treinamento. Isso costuma
ser feito verificando se todo o sinal estd em uma mesma imagem, por exemplo, todo o

sinal deve estar entre —150uV e 150uV e o que estiver fora desse intervalo é descartado.

A aplicagao do baseline é usada para centralizar os dados. O sinal de EEG é
bastante sensivel e sofre flutuagoes causadas pelas condi¢oes dos eletrodos e da pasta
condutora usada. O esperado é que o sinal tenha média zero ou proxima de zero; para
isso, o sinal é transladado para proximo de zero. Isso é feito subtraindo a média de todo o

sinal ou de alguma janela dentro dele, por exemplo, os 2 primeiros segundos.

As vezes, ha algum problema na coleta, como um eletrodo saindo da posi¢ao, com
mau contato ou com uma quantidade errada de gel condutor. Nesse caso, o eletrodo pode
ser descartado de todos os trials. Apesar de nao ser algo frequente, uma vez que isso é

verificado antes de comecar a coleta, isso ainda pode acontecer esporadicamente.

Por fim, temos o corte de uma janela de tempo do sinal. Como dito anteriormente,
um trial pode durar até 10 segundos, porém o periodo que a pessoa imagina a tarefa é
menor. Por exemplo, a pessoa pode estar executando a tarefa entre 2 e 6 segundos, entao
o resto do sinal pode ser descartado. Além disso, essa reducao pode também diminuir a
complexidade dos modelos. A grande maioria dos modelos usa uma janela de 2 segundos
comecando 0,5 segundos apos a pessoa receber a tarefa. Dessa forma, mesmo que a tarefa

executada tenha um intervalo de 2 até 6 segundos, apenas a janela de 2,5 até 4,5 é usada.

Para a etapa de filtragem, existem 2 tipos principais, as temporais e as espaciais. A
filtragem temporal visa reduzir o ruido do sinal ao longo do tempo e remover informagoes
que sao irrelevantes a classificagao. Existem varios tipos de filtros temporais possiveis,
sendo que alguns precisam de outros sinais de referéncia. Por exemplo, ao mesmo tempo
que o EEG ¢é gravado, pode ser feita uma coleta dos batimentos cardiacos para remover a
interferéncia dele no sinal. Também é possivel usar o sinal de Eletro-oculografia (EOG)
para remover os artefatos gerados pelo movimento ocular da pessoa. Dois dos filtros
temporais mais usados sao o filtro passa-banda e o filtro notch. O filtro passa-banda
remove/atenua as frequéncias irrelevantes para a tarefa, enquanto o filtro notch é usado
para remover uma frequéncia especifica onde ja se sabe que ha ruido. A maioria das coletas
de EEG sao feitas com um filtro notch de 50Hz ou 60Hz, por causa da corrente alternada

presente nas fiacoes domésticas. Em alguns casos, esses filtros podem estar implementados
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diretamente no hardware e, nesse caso, podem ser considerados como pré-processamento.

O filtro espacial também tenta reduzir as informagoes irrelevantes para a classifi-
cagao, porém, levando o sinal para um espaco normal de eletrodos. Com isso, os filtros
temporais visam remover a correlagao entre os eletrodos e as influéncias que eles tém entre
si.

Apés a filtragem, ainda ha uma dimensao alta para X;. A etapa de extracao
de caracteristicas procura reduzir o tamanho do sinal, normalmente, removendo a parte
temporal do sinal. Assim, um sinal X, que inicialmente pertence a R Ne:Naxsfrea pode
ser reduzido a R Ve. Porém, nem sempre isso é suficiente para ajustar a quantidade de
caracteristicas para um classificador e, além de extrair as caracteristicas do sinal, ainda é

preciso selecionar apenas as melhores para continuar o processo.

A 1ltima etapa do modelo é o classificador que ira calcular a probabilidade de cada

classe a partir das caracteristicas selecionadas.

Nem sempre todas essas etapas estao presentes nos modelos, mas essa é a estrutura
basica para todos os modelos de BCI. Por exemplo, a EEGNet é uma rede convolucional
profunda que possui filtragem, criagao de caracteristicas e classificagao embutidos dentro

do préprio classificador [13].

2.1 BCI para reabilitacao pos-AVC

Nessa secao, iremos exemplificar todas as etapas descritas para o funcionamento
do BCI usando uma aplicacao pratica. O AVC é uma das principais causas de morte do
mundo e uma das que mais incapacita pessoas [39]. A BCI pode ser usada em pessoas
que tiveram AVC para recuperar os movimentos [40]. O ciclo de atividades da BCI para

reabilitagao pos-AVC pode ser visto na Figura 1.

Figura 1 — Ciclo esquematico de uma BCI para reabilitacdo motora p6s-AVC.

Filtragem Filtragem Extragdo de o
; Temporal ™ Espacial | Caracteristicas [ Classificador ;
; A .
: Modelo BCI :
, v v
pré
processamento Estimulo Estimulo
'y Elétrico Visual
EEG < Pess0a  [d---mremstemses )

Imagem de producgao propria.
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A etapa de treino sera ignorada aqui uma vez que nao apresenta nenhuma diferenca
do caso geral apresentado anteriormente. Para a etapa de uso, primeiramente a pessoa
imagina o movimento do membro. O sinal do cérebro dela é coletado por um equipamento
de EEG durante essa imaginacao. Esse sinal é classificado pelo modelo da BCI e essa
classificacao é usada para gerar 2 tipos de feedback. O sistema pode gerar uma corrente
elétrica diretamente no musculo da pessoa, fazendo o membro se mover ou apresentar
uma mao virtual se mexendo em uma tela. Ambos os modelos funcionam e podem ser
usados juntos, apesar de que a estimulacao elétrica do musculo costuma ter melhores
resultados [41].
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3  Eletroencefalografia

O EEG é um equipamento nao invasivo capaz de coletar a atividade elétrica cerebral.
Ele coleta a diferenca de potencial elétrico entre 2 eletrodos posicionados no corpo do
sujeito, principalmente no couro cabeludo. A posicao na qual os eletrodos sao posicionados
depende do comportamento procurado. Para referéncia das posi¢oes dos eletrodos, existe
o sistema 10-20 que é um dos mais usados para EEG; ele indica a posicdo em que cada
eletrodo deve ficar sobre o couro cabeludo. Além disso, caso se queira uma aquisi¢ao com
maior densidade, pode-se adotar o sistema 10-10 [42]. As posigoes dos eletrodos em ambos
os sistemas podem ser vistas na Figura 2. Os eletrodos sobre a &rea motora priméria (C3,
Cz e C4) sao os mais usados nas aplicagdes de MI-BCI, contendo ou nao outras regides do

sistema motor [43].

Figura 2 — Sistema 10-10 para EEG. Eletrodos também do sistema 10-20 em cinza.

Imagem de producgao propria.

3.1 Conjuntos de Dados

Esta secao apresenta os conjuntos de dados usados neste trabalho, onde é consi-
derado o uso de 2 tipos de dados: (i) conjunto de dados publicos de MI disponiveis na

literatura; e (ii) um conjunto de dados coletado pelo nosso grupo (HCG dataset). A lista
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de conjuntos de dados usados pode ser vista na Tabela 2. Todos os conjuntos de dados

usados sao de EEG, uma vez que é o equipamento mais usado para MI-BClIs.

Tabela 2 — Conjunto de Dados avaliados.

Nome Acrénimo | Sujeitos | Eletrodos | classes | trials

BCI Competition IV 2a 2a, 9 22 4 288
BCI Competition IV 2b 2b 9 3 2 600
Clinical BCI Challenge chcic 8 12 2 80
Physionet MI phy 108 64 4 92
HCG Dataset hegd 6 16 2 160

Apesar de todos serem conjuntos de dados de MI, cada um deles foi proposto para
um objetivo diferente. O BCICIV2a [9] foi coletado para experimentos com vérias classes,
o BCICIV2b [9] foi coletado com poucos sinais da forma bipolar (onde cada eletrodo tem
seu proprio referencial) e protocolos com feedback. O CBCIC [44] foi coletado de pacientes
que tiveram alguma perda motora causada por um AVC e o Phy [45] coletou poucos trials
por pessoa, porém, de varias pessoas, objetivando um suporte para a criacao de uma BCI
generalizada. O nosso conjunto de dados HCGD [16] foi projetado usando equipamentos
de baixo custo, visando deixar os métodos mais robustos para dados com mais ruido do

que as demais bases, porém, com maior potencial de mercado.

Os eletrodos usados em cada conjunto de dados podem ser vistos na Tabela 3. Nela
é possivel notar a predominancia dos eletrodos acima de M1 (regido dos eletrodos C3, Cz e
C4) juntamente com algumas areas motoras suplementares (abaixo dos eletrodos P3 e P4,
por exemplo) [46]. Isso é esperado uma vez que os conjuntos de dados utilizam o protocolo
MI; para outros paradigmas, outras areas seriam mais interessantes. Por exemplo, no
paradigma P300, ha uma preferéncia pelos eletrodos acima do cértex visual como O1, Oz
e 02 [47].

Tabela 3 — Eletrodos usados em cada conjunto de dados.

conjunto de dados | Eletrodos
Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6,
BCICTV2a CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, POz
BCICIV2b C3, Cz, C4
CBCIC F3, FC3, C3, CP3, P3, FCz, CPz, F4, FC4, C4, CP4, P4
Fcb, Fed, Fel, Fez, Fe2, Fed, Feb, C5, C3, C1, Cz, C2, C4, C6,
Cpb, Cp3, Cpl, Cpz, Cp2, Cp4, Cpb, Fpl, Fpz, Fp2, Af7, Af3,
Phy Afz, Af4, Af8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, Ft7, Ft8,
T7, T8, T9, T10, Tp7, Tp8, P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO7, PO3, POz, PO4, POS, O1, Oz, 02, Iz
HOGD Ezl, Fz, C3, C4, T5, T6, Cz, Pz, F7, F8, F3, F4, T3, T4, P3,
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As etapas de cada trial possuem varias semelhancas entre si para todos os conjuntos
de dados, como pode ser visto na Figura 3. Com exce¢dao do conjunto de dados Phy, todos
os demais possuem um periodo de preparacao com duracao de 2 a 3 segundos. Nessa parte,
o sujeito mantém sua atencao focada na atividade para receber a dica. Depois disso, é
indicado qual movimento o sujeito deve executar ou imaginar, seguido da execuc¢ao da
tarefa. Em alguns casos, a dica pode permanecer na tela durante o periodo de execucao.

Finalmente, existe uma pequena pausa antes de se iniciar um novo trial.

A duracao exata de cada um desses periodos pode variar de acordo com o objetivo
do conjunto de dados. Por exemplo, o phy possui tempos mais enxutos dada a quantidade
de sujeitos (mais de 100 pessoas no conjunto de dados). Enquanto isso, o cbcic possui
um tempo para execucao da tarefa bem maior, uma vez que se trata de pacientes com
sequelas de AVC. Dessa forma, esse trabalho aborda conjuntos de dados com diferentes

caracteristicas, mas que ainda mantém as semelhancas necessarias para aplicacoes de

MI-BCL.

Figura 3 — Configuragao das atividades dentro de um t¢rial para os conjuntos de dados.
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Imagem de producgao propria.



24
4  Avaliacao dos modelos

A avaliagao de Interfaces Cérebro-Maquina continua sendo bastante discutida entre
os pesquisadores da area. Nao existe um consenso sobre como fazer essa avalia¢ao, ja que a
classificacao nao ¢ suficiente para indicar a performance das BCIs [48]. O modelo uFEEL
(Usabilidade, Afeto, Ergonomia e Qualidade de Vida) para experiéncia de usuéario (UX)
foi usado como um norte para essa avaliagao [49]. Para cada um desses 4 pontos, existe

um conjunto de critérios que pode ser avaliado, entre eles:

e Usabilidade

— Efetividade: taxa de acerto do modelo.
— Eficiéncia: tempo necessario para conclusao da tarefa.
— Aprendizado: facilidade de ser aprendido pelo usuério.

— Satisfacao: atitude positiva do usuario em frente ao sistema.

o Afeto

Valéncia: se possui uso prazeroso.

— Excitacao: se gera engajamento em frente ao sistema.

Sentimento: sentimentos gerados durante o uso do sistema.

— Conforto: o quao confortavel é o sistema.
o Ergonomia

— Carga cognitiva: nivel de dificuldade para usar o sistema.
— Fatiga: cansago gerado ao usar o sistema.

— Controle: liberdade de controle e graus de liberdade do sistema.
o Qualidade de Vida

— Retorno do Investimento: o quanto de beneficio é gerado de acordo com o custo

do sistema.

— Qualidade da experiéncia: o quanto o sistema ajuda e promove vantagens ao

usuério.

Apesar de existirem todas essas caracteristicas a serem avaliadas em uma BCI.
Ainda hoje, a maioria dos trabalhos utiliza acuracia, Kappa e matriz de confusao para
avaliar as BCIs [50]. Todas essas métricas avaliam apenas a efetividade da BCI, o que

limita a avaliacao dos modelos.
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Depois da avaliacao da efetividade dos modelos, alguns trabalhos ainda focam
no aprendizado. Isso porque um dos principais problemas para a popularizacao desse
sistema sdo as pessoas “iletradas em BCI”. E visto que em torno de 20% das pessoas nio
conseguem gerar ondas cerebrais suficientemente diferencidveis para as BCIs [48]. Para
verificar a qualidade do sinal do usuério, normalmente é usada a informagdo mutua entre

o sinal e a classe [48].

A escolha da métrica representa, normalmente, o que foi considerado mais impor-
tante a ser destacado nos resultados. A eficiéncia também é avaliada em trabalhos que
envolvem Potenciais Evocados Visuais (VEP) [49]. Porém, dentro do nosso conhecimento,

nenhum trabalho avaliou a eficiéncia das BCIs dentro do paradigma de MI.

Nos trabalhos de BCI, a acuracia é calculada considerando que a BCI vai ter a
mesma saida durante todo o periodo de um trial. Dessa forma, ela nao considera o atraso
da classificacao ou quanto tempo a classificagdo permanece correta dentro de uma tentativa.
Além disso, a acuracia possui algumas limitagoes quando se trata de um conjunto de
dados desbalanceados. Em situacoes controladas, como competigoes e experimentos de
laboratoério, é factivel garantir essa condigao; porém, o mesmo nao acontece para aplicagoes
reais de BCI como controle de proteses. Nesse caso, hd uma tendéncia das classes estarem
desbalanceadas, uma vez que uma pessoa usa mais uma mao do que a outra dependendo
de sua lateralidade. Esse problema ja tem sido notado pela literatura com o uso de mais

de uma métrica para avaliar o desempenho.

Seguido da acuracia, as demais métricas mais usadas para avaliar a efetividade sao:
Error rate, precisao, sensibilidade, especificidade, Kappa, F-score, recall e erro quadratico
médio [48]. As formulagoes dessas métricas podem ser vistas na Tabela 4, onde TP, TN,
FP e FN representam Verdadeiro Positivo, Verdadeiro Negativo, Falso Positivo e Falso
Negativo, respectivamente. Na féormula do kappa, P, é a concordancia observada e P, a
concordancia esperada. Finalmente, em Entropia Cruzada e Erro Quadrético Médio (MSE),
y € o valor real e g é o valor previsto. Porém, mesmo essas outras métricas nao consideram

a caracteristica temporal de uma BCI.
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Tabela 4 — Definicao das métricas de desempenho encontradas na literatura.

Meétrica Férmula

TP+TN
TP+ FN+TN+ FP

Acurécia

B Rat FP+ FN
rror Rate
TP+ FN+TN+FP
Preciss TP
recisao TP+ FP
TN
E ifici -
specificidade TN+ FP
P,— P,
K o e
appa )
TP
11 -
Reca TP+ N
precision - recall
F-score 2- —
precision + recall
1 »n o
MSE . E (yi — 3i)
n =1

1 n
Entropia Cruzada ——.% [y; - log(4;) + (1 —vi) - log(1 — 4;)]

4.1 Competicoes

Esse foco da avaliacao na efetividade esta provavelmente ligado a forma como
o desenvolvimento das BCI tem sido fomentado ao longo dos anos. Na Tabela 5, é
possivel ver algumas competi¢des no contexto de BCI para MI junto com a informagao
se o tempo ¢é usado na avaliacao (uso indireto indica que varios tempos sao utilizados,
mas sem ponderamento entre eles) [51, 52, 9, 44, 53]. No periodo de maior crescimento
das pesquisas em BCI, entre 2000 e 2005, houve uma grande quantidade de competicoes
para MI, de acordo com os dados apresentados na Tabela 5. Todas as competigoes
avaliavam o resultado baseando-se em 3 principais métricas: Acuracia, Erro Quadratico
Médio e Kappa. Algumas das competicoes ainda avaliavam diferentes janelas de tempo,
porém, sem ponderar sua posi¢ao, ou seja, modelos que atingem o mesmo valor, mas em
tempos diferentes, sao considerados iguais. Por exemplo, na competicao do dataset 2a, foi
calculado o Kappa de todas as janelas e foi usada a janela que possuia o maior Kappa,

ou seja, nao importava se o modelo vencedor atingia isso com 1 segundo de atraso ou
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com 10 minutos. Isso ja era um avango na forma de avaliagdo quando comparado com as
estratégias de avaliagdo de janela tunica. Alguns meios de avaliagdo ainda consideram a
questao temporal de forma indireta na avaliacdo, como usar o maior valor independente
do tempo ou fazer uma média da acuracia ao longo de todo o experimento. Porém, isso
ainda nao é o suficiente para analisar todas as nuangas de uma BCI. Outras métricas de
avaliagao precisam ser incluidas na analise de resultados; apenas a precisao e a taxa de
erro nao sao suficientes para expressar a qualidade de uma BCI. As métricas apresentadas
avaliam o desempenho da classificacdo, mas é importante considerar que os problemas
de BCI possuem diferentes pontos que precisam ser melhorados além do desempenho de
classificacao, exigindo a avaliagao de caracteristicas adicionais. Isso inclui fatores como

atraso, taxa de amostragem, nimero de eletrodos, entre outros.

Tabela 5 — Competigoes de BCI com MI.

Competicao Ano Métrica Uso do tempo
BCIC II Dataset 11 2003 Maxima Informacao Mutua Indireto
BCIC III Dataset Illa 2005 Kappa Médio Indireto
BCIC III Dataset I11b 2005 Méxima Informacao Mutua Indireto
BCIC III Dataset IVa 2005 Acuracia Nao
BCIC' III Dataset IVb 2005 Erro quadratico Nao
BCIC III Dataset IVe 2005 Erro quadratico Nao
BCIC IV Dataset 1 2008 Erro quadratico Nao
BCIC' IV Dataset 2a 2008 Maximo Kappa Indireto
BCIC IV Dataset 2b 2008 Maximo Kappa Indireto
Clinical BCI Challenge 2020 Kappa Nao
International BCIC Track 4 2020 Acuracia Nao

4.2 Perfis de Desempenho

Outra limitacao dos trabalhos envolvendo BCI esta relacionada ao iletramento em
BCI por parte dos sujeitos. A eficicia do modelo nao depende apenas do modelo, mas
também da capacidade do sujeito em utilizar o sistema. Por isso, quando varios sujeitos
sao avaliados, a diferenca entre os sujeitos impede uma comparagao justa entre os modelos.
Isso ocorre porque a diferenca entre os sujeitos gera uma diferenca na qualidade avaliada
maior do que a diferenca entre os classificadores. Para contornar esse problema, propomos

também o uso dos perfis de desempenho para avaliar a eficacia do modelo.

Atualmente, os trabalhos de BCI utilizam diretamente a média entre os resultados
dos sujeitos. Por exemplo, para o dataset 2a, é calculado o kappa para os 9 sujeitos de
forma independente e depois é feita a média desses 9 valores. Porém, a variacao intrinseca
entre esses sujeitos atrapalha uma andlise mais justa desses resultados. Isso ocorre pois
uma variacao em um sujeito iletrado vai gerar um impacto muito menor na média do que

a mesma variagdo em um sujeito que possui boa proficiéncia em BCI.
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Ao contrario da média, os perfis de desempenho conseguem prover uma comparagao
ponderada percentualmente de acordo com o melhor resultado de cada sujeito. O perfil de
desempenho foi inicialmente proposto para avaliar métodos em conjuntos de diferentes
problemas. Por causa disso, ele consegue lidar bem com sujeitos que possuem diferentes

faixas de resultados.

O Perfil de Desempenho consiste em uma curva onde o eixo x indica a distancia
em porcentagem do melhor caso e o eixo y indica a porcentagem dos problemas que
sao resolvidos com, no maximo, essa tolerancia. O perfil de desempenho avalia entao os
modelos que possuem menor distancia para o melhor caso de cada problema de minimizagao.
Para fazer esse cédlculo percentual, primeiro é verificado o melhor resultado para cada
sujeito/problema e todos os resultados sdo divididos por esse valor. A partir disso, todos

os problemas vao estar normalizados, sendo 1 o melhor valor para todos eles.

Considerando um conjunto de S métodos e P problemas/sujeitos, o resultado do
s-ésimo sujeito para o p-ésimo problema pode ser definido como o, . A partir disso, o
desempenho relativo de cada valor para o melhor resultado daquele problema pode ser

definido como:

Op.s
s — ; 7 4.1
» min{o,s: s € S} (4.1)

A partir dessa definicdo, pode-se entao calcular a cardinalidade do conjunto de

problemas como:

pal(r) = ;pr{p €P 1y <Y (4.2)

onde p,(7) é a probabilidade do desempenho relativo r, ; do método s estar dentro de um

raio 7 > 1 do melhor resultado do problema p.

A partir desses célculos, 3 principais informagoes podem ser tiradas dos perfis de
desempenho: (i) ps(1) indica para quantos problemas/sujeito o método s obteve o melhor
resultado, (i) Area abaixo da curva, ou [ p,(7)dr, indica o desempenho geral do modelo s
e (iii) Menor p(7) = 1 representa quando o modelo consegue resolver todos os problemas e

menores valores indicam modelos mais confidveis.

Como o perfil de desempenho foi proposto para problemas de minimizacao, ele sera
utilizado com f(z) = 2 — Kappa, essa fungao foi escolhida pois transforma o Kappa em
um problema de minimizacao e com o menor valor possivel sendo 1. Assim, essa funcao
impede possiveis divisdes por zero e, ao mesmo tempo, permite o seu uso como funcao de

minimizacao.
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5 Métodos

Esse capitulo descreve os métodos usados na criacao das BCI usadas nesse trabalho.
As etapas usadas no BCI sao pré-processamento, filtragem temporal, filtragem espacial,
extracao de caracteristicas, selecao de caracteristicas e classificagdo, como foi citado na
Secao 2. Cada etapa possui suas peculiaridades e seu conjunto de métodos mais utilizados.
Enquanto algumas partes, como a filtragem temporal e a extragdo de caracteristicas, modi-
ficam significativamente os resultados do modelo, etapas como a selecao de caracteristicas
e o classificador possuem um impacto menor nos resultados obtidos quando modificadas.
A influéncia de cada etapa no desempenho da BCI também foi considerada na hora de
escolher esses métodos. Sendo assim, foram escolhidos mais métodos de filtragem temporal
e espacial do que métodos usados nas demais etapas da BCI, ja que eles impactam mais

nos resultados.

5.1 Reamostragem

Os processos de reamostragem servem para modificar a taxa de amostragem do
sinal coletado. Cada conjunto de dados usado nesse trabalho possui uma taxa de aquisi¢ao
diferente, porém, alguns métodos apresentam melhores resultados com taxas especificas.
Por exemplo, a EEGNet foi desenvolvida para funcionar com um sinal de entrada a
128Hz. Nesse trabalho, foram usadas 2 formas de reamostragem: (i) usando o dominio da

frequéncia e (ii) fazendo uma interpolagao cubica.

A reamostragem usando o dominio de frequéncia parece ser a mais adequada
quando filtros passa-banda sao aplicados. Experimentos preliminares apontaram que a
filtragem passa-banda usando a Transformada Répida de Fourier (FFT) ndo apresenta bons
resultados para a EEGNet. Portanto, decidiu-se incluir a spline ciibica aos experimentos.
Dado um sinal X € RT*B*EXS 5 reamostragem ird modificar X para o espaco RT*BxExS’

onde S’ é a nova taxa de amostragem.

Na reamostragem por dominio da frequéncia, o sinal de um eletrodo X} . ¢ passado
para o dominio da frequéncia usando a FFT e, depois, as frequéncias e fases encontradas
sao usadas para reconstruir o sinal, usando os valores de tempo encontrados a partir da

nova frequéncia de amostragem.

Ja para a spline cubica, é encontrada uma funcdo de terceiro grau para cada
intervalo dentro do sinal original, com a garantia de que a funcao final encontrada possui
primeira e segunda derivadas continuas. Depois, essas fungdes polinomiais sao usadas para

encontrar o valor do sinal nos novos instantes de tempo.
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5.2 Filtros Temporais

Os filtros temporais sdo ferramentas cruciais no processamento de sinais para BClIs.
Eles sao utilizados para aprimorar a qualidade dos sinais coletados, reduzindo a quantidade
de ruido do sinal e removendo caracteristicas desnecessarias. Nesse trabalho, iremos adotar
o filtro passa-banda com Chebyshev II ou por convolucao, o banco de filtros, o Modo de
Decomposigao Empirica (EMD), a Transformada de Fourier de Curta Duracao (STFT) e
a Wavelet.

5.2.1 Filtros passa-banda

Um filtro passa-banda é um tipo de filtro que permite a passagem de frequéncias
em um intervalo especifico. Ele atenua as frequéncias que estao fora desse intervalo. Essa
filtragem pode ser feita passando o sinal para o dominio da frequéncia (no caso do Chebyshev

IT) ou ser feita diretamente no dominio do tempo (filtragem por convolugao) [54, 55].

5.2.1.1 Passa banda com Chebyshev II

O filtro passa-banda usando Chebyshev II é um tipo de filtro que se destaca pela
sua capacidade de minimizar a variacao de ganho dentro da faixa de frequéncias permitidas.
Esse tipo de filtro é projetado para ter uma resposta em frequéncia mais suave, garantindo
uma transicao mais gradual nos extremos da banda permitida. A implementacao de um
filtro passa-banda Chebyshev II pode ser realizada através da transformagao do sinal para
o dominio da frequéncia, onde as frequéncias fora da faixa desejada sao zeradas. Apos essa
etapa, é aplicada a transformada inversa de Fourier para voltar o sinal para o dominio
do tempo. Apds a aplicacao desse filtro passa-banda, as fases de cada frequéncia no sinal

original sao alteradas. Isso ocorre porque o filtro pode introduzir deslocamentos de fase.

Por isso, esse método nao se adapta bem ao modelo EEGNet devido ao deslocamento
de fase que ele provoca. Essa alteragao de fase pode comprometer a sincronizagao temporal
dos eventos ao longo do sinal, que é a informacao que a EEGNet busca capturar. Dessa
forma, também consideramos o uso de um filtro passa-banda por convolu¢ao nesse trabalho.

Mais detalhes sobre a EEGNet serdao apresentados na Secao 5.6.2.

5.2.1.2 Passa banda por convolugao

O filtro passa-banda por convolu¢do é uma abordagem que permite a filtragem
de sinais diretamente no dominio do tempo, utilizando um ntcleo (kernel) que define
a resposta do filtro. Essa técnica se baseia na operagao de convolucao, onde o sinal de
entrada é convoluido com a funcao de filtragem. Essa funcao é projetada para realgar as

frequéncias em uma determinada faixa e reduzir as demais.
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Para o caso continuo, esse processo de convolucao pode ser escrito da forma:
Ruge(s) = Xupels) 1 h(s) = [ Xopo(r)h(s = 7)dr (5.1)
—00
onde h(s) é o nosso nicleo de convolugao.

Por outro lado, como o sinais de EEG esta no dominio discreto com uma taxa de

amostragem Sf,.q, podemos reescrever a operagao de convolucao como:

Repels] = 3 Xunels +m] - h[Ny — m) (5.2)

m=0

onde N, é o tamanho do ntucleo usado na filtragem.

O tamanho do ntucleo tem um impacto direto no comportamento do filtro. Um
nicleo maior possui uma transi¢cao mais suave nas bordas da banda. Por outro lado, um
nucleo menor pode levar a transi¢coes mais abruptas, podendo introduzir artefatos no sinal.
O tamanho do ntcleo também pode modificar o tamanho do sinal de saida. O sinal se
mantém da forma esperada apenas na parte valida da convolugao. Para um nucleo de
tamanho N}, o sinal de saida vai ter uma parte valida de S — N, + 1, enquanto as bordas
fora desse intervalo serdo descartadas ou serdao deterioradas. Por isso, o tamanho do nticleo

é uma escolha dificil de ser feita, principalmente em sinais pequenos.

5.2.1.8 Banco de Filtros

O banco de filtros foi introduzido em BCI no modelo do FBCSP (Filter Bank
Common Spatial Pattern) permitindo a andlise de diferentes bandas de frequéncia [8]. Essa
abordagem consiste em aplicar multiplos filtros a um sinal de entrada de forma paralela,
cada um com uma faixa de frequéncia diferente, resultando em varias representagoes do

sinal.

Os filtros podem ser implementados utilizando diferentes abordagens, 2 delas sao:
filtragem com o método Chebyshev II ou por convolugao. Ao optar pelo filtro Chebyshev
II, cada filtro realga uma faixa de frequéncia diferente, minimizando a variacao de ganho
dentro da banda. Esse método é bom em termos de processamento, mas, como visto
anteriormente, pode introduzir deslocamentos de fase que impedem o uso de alguns

métodos em etapas sequentes.

Por outro lado, com a convolugao, a filtragem ¢ feita diretamente no dominio
do tempo, utilizando nicleos projetados para realcar cada frequéncia. Essa abordagem
mantém a fase do sinal mais intacta, evitando os problemas associados ao filtro Chebyshev
IT, mas pode exigir um maior custo computacional dependendo do niimero de filtros e do

tamanho dos nucleos.

Uma desvantagem do uso do banco de filtros é o aumento da dimensao do sinal. J&
. =Y
que um sinal de entrada no espaco RT%F-5 passa a pertencer ao espaco RTZB5F:S onde

B’ é a quantidade de filtros presentes no banco.
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5.2.2 Modo de Decomposicao Empirica

O Modo de Decomposigao Empirica (EMD) é uma técnica muito usada para analisar
sinais nao estaciondrios [56], pois ele decompde um sinal em componentes intrinsecas,
ou Modos Intrinsecos de Oscilacao (IMFs). A ideia do EMD é que qualquer sinal pode
ser representado como a soma de uma série de IMFs e um residuo. Isso ocorre de forma
similar com a decomposicao em séries de senos e cossenos, mas usando as IMFs no lugar

das fungoes trigonométricas.

A criacao das IMFs é feita a partir da localizacao dos minimos e maximos locais do
sinal. Depois, é gerada uma onda a partir da interpolacao desses pontos, dando origem a
primeira IMF e a uma onda que seja a diferenca entre a IMF e o sinal original. O processo
pode ser reaplicado ao sinal diferenca para gerar novas IMFs até um critério de parada,

que normalmente é feito considerando a quantidade de maximos e minimos locais do sinal.

5.2.3 Transformada de Fourier de Curta Duracao

A Transformada de Fourier de Curta Duracao (STFT) é uma técnica que permite
a representagao simultanea de informagoes temporais e de frequéncia [57]. Ao contréario da
Transformada de Fourier classica, que fornece uma visdo global do espectro de frequéncia
de um sinal, a STF'T divide o sinal em segmentos menores e aplica a Transformada de
Fourier a cada um deles. Isso possibilita a analise das mudangas no contetudo de frequéncia
ao longo do tempo. Essa transformada pode ser vista como uma mistura dos processos da
transformada de Fourier classica com o uso de uma convolucao. Na convolucao, o nicleo
percorre o sinal gerando resultados locais ao longo do sinal. Ja na STFT, existe uma janela

que percorre o sinal, porém, fazendo a transformada de Fourier classica em cada janela.

Na transformada de Fourier clssica, um sinal X;;. € R®, passa a ser R® € R/,
onde f é o nimero de frequéncias extraidas do sinal. Na STFT, entretanto, a saida passa
a ser R* € R*7*/ onde j é o tamanho da janela usada. Dessa forma, o STFT transforma
um sinal que era inicialmente unidimensional em um sinal bidimensional, normalmente

chamado de dominio tempo-frequéncia.

5.2.4 Wayvelet

A transformada wavelet pode ser usada para separar o sinal em diferentes janelas
de frequéncia, podendo ter um ou mais niveis [58]. Essa abordagem é bastante util
principalmente para tratar sinais nao estacionarios, pelo fato dela lidar com diferentes
intervalos de frequéncia e resolucdes do sinal. No primeiro nivel, filtros passa-baixa e
passa-alta sao aplicados independentemente. Os sinais sao entao reduzidos a metade de
seus tamanhos originais. O sinal do filtro passa-baixa é usado novamente no processo
quando ha mais niveis a serem aplicados. Cada passagem divide o dominio pela metade

(parte baixa e alta). A Figura 4 mostra uma representagdo esquematica de uma wavelet
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de 3 niveis. Neste caso, hd quatro séries de saida, trés de filtros passa-alta (D1, D2 e D3)

e outra de um filtro passa-baixa (A3).

Figura 4 — Wavelet de 3 niveis.

Signal > High Pass |2 D1
Low pass |2 High Pass |2
Low pass |2 > High Pass |2 D3
Low pass |2 A3

Imagem de producao propria.

5.3 Filtros Espaciais

Filtros espaciais possuem um papel importante nas BCIs, pois o sinal coletado pelo
EEG é um sinal resultante do que estd acontecendo no cérebro, mas nao o préprio sinal.
Isso significa que o sinal coletado por um eletrodo é uma combinagdo de todos os sinais
presentes no ambiente. Entre esses sinais, estdo o campo elétrico de outras regioes mais
distantes no cérebro, de equipamentos proximos, ruidos provocados por movimento ou
mudanga da impedéancia da pele (normalmente provocada por reagoes na pasta condutora).
O objetivo dos filtros espaciais é separar essas fontes que possuem origens diferentes,
retirando a correlagao entre os eletrodos. Na situacao ideal, apds a aplicagao de um filtro
espacial, os eletrodos ndo possuem mais correlagao entre si, facilitando as proximas etapas
da BCIL.

Um dos métodos mais utilizados para a filtragem espacial em BCIs é o Common
Spatial Pattern (CSP). O CSP é uma técnica projetada para maximizar a varidncia dos
sinais em classes especificas, permitindo uma melhor separacao entre 2 estados mentais ou
tarefas. Ele é usado principalmente para separacao de tarefas motoras, porém, possui as
limitacoes de ser um método supervisionado e para apenas 2 classes. Outro filtro espacial
bastante utilizado é o Alinhamento Euclidiano (EA). Esse método é usado principalmente
para alinhar o sinal cerebral de diferentes sujeitos, porém, também pode ser usado para

filtragem espacial através da aplicagao de uma transformacao linear no sinal original.

5.3.1 Common Spatial Pattern

O CSP é uma transformacao linear que visa maximizar a diferenca entre as

variancias de 2 grupos [59]. Ele é aplicado ao sinal da forma

Zips =W X Ry, (5.3)
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REXE

onde Z;; s ¢ o sinal transformado apés a aplicacao do filtro espacial W € , que é a

matriz de transformagao do CSP.

No caso de sinais de eletroencefalograma, o objetivo do CSP é maximizar a diferenca
de varidncia entre as matrizes de correlagdo entre os eletrodos de cada classe. A matriz de

correlacao entre os eletrodos de uma dada classe ¢ pode ser escrita como

i,b,8,e

c 1 e c c
El()) = ﬁ ZRZ(,I;),e,S X R( ) (54)

onde ch) € R5*9 ¢ a matriz de correlagiio entre os eletrodos e N, é o niimero de amostras

de treinamento da classe c.

A maximizacgao da diferenca entre as varidncias pode ser vista como a diagonalizagao

simultanea das duas matrizes de correlagao, como

WISIW = A0, e

WISPW = A, (5:5)

Essa maximizagao é restringida para que a soma das matrizes diagonais formadas
pelos autovalores A e A® seja igual & matriz identidade. Este problema ¢ equivalente a

resolver o problema generalizado de autovalor, que pode ser definido como:

SOWs = (357 + 557) WA, (5.6)

O namero de filtros gerados pelo CSP ¢ igual ao niimero de sinais coletados. Para
reduzir o nimero de filtros, apenas m filtros sao escolhidos para serem usados (com m par).
Como o CSP maximiza a variancia da classe 1 nos primeiros autovetores e da classe 2 nos

ultimos, sao usadas apenas as m/2 primeiras colunas de W, e as m/2 tltimas colunas de

Wi.

5.3.2 Alinhamento Euclidiano

O EA [17] foi proposto como uma alternativa ao Alinhamento Riemanniano (RA) [60]
para o alinhamento do sinal cerebral de diferentes pessoas. Ele usa uma matriz de referén-
cia, calculada por meio dos dados de EEG, para alinhar os dados de diferentes sujeitos.
Porém, para o caso de filtro espacial, isso é feito limitando suas etapas a uma tnica pessoa.
Uma matriz de referéncia R, é a média da covariancia dos dados desse sujeito da mesma
forma que apresentada anteriormente para o CSP na Equagao 5.4, porém, sem a separagio

por classe. Ficando, assim, da forma
1 T
2b = T Z Rz‘,b,e,s X Ri,b,s,e (57)

Apoés o célculo de Xy, essa matriz é usada diretamente para transformar os dados a
partir da equagao
1
Zt:bﬁ = (Eb) 2 X Rt,b,s (58)
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O sinal ap6s a aplicacdo do EA como filtro espacial passa a ter a nova matriz de
referéncia igual a matriz identidade. Isso reduz a correlagao entre os eletrodos do sinal,

assim como esperado de um filtro espacial para BCI.

5.4 LogPower

Apos as etapas de filtragem, o sinal Z passa pela etapa de extragao de caracteristicas.
A extragao de caracteristicas transforma os sinais brutos coletados em informagoes titeis que
podem ser utilizadas para classificacao e transducao do sinal. A extracao de caracteristicas
transforma cada matriz Z;;, em um vetor I;;. Para o CSP, é normalmente usada a funcao
LogPower para a extracao dessas caracteristicas, uma vez que ela se alinha com a propria

ideia dos autovetores generalizados encontrados pelo CSP.

A func¢ao LogPower é definida como o logaritmo da energia de um sinal, ela é usada
principalmente com o CSP, mas também pode ser usada em outras abordagens. Ela pode
ser escrita como

o 5 ‘Zib,e‘
It,b = lOg Z ? (59)

5.5 Mutual information-based best individual feature

Ha situagoes em que o vetor de caracteristicas I continua com um tamanho muito
grande para alguns classificadores. Nesses casos, é necessario um método de selegao de

caracteristicas para reduzir essa quantidade.

O MIBIF é um método de selecao de caracteristicas que seleciona as melhores
caracteristicas considerando informages mutuas entre caracteristicas e classes [8]. Este
método classifica as caracteristicas com base em informagoes mituas em ordem decrescente
como

M(I;Y) = HY) - HY|L) (5.10)

onde M(+) é a fungao de informagdo mutua, H(-) é a fungao de entropia, H(:|-) é a fungao
de entropia condicional e Y s@o os labels reais.

O célculo da entropia de Y é feito por H(Y) = — 3¢ P(c) - log, P(c). A entropia
condicional H(Y'|I;) de Y dado I; é calculada como

C N.

H(YIE) = = 223 Plellio) logl Pl (5.11)

onde, P(c|l;;) = w ¢ a probabilidade condicional de ¢ dado I;; definido usando o

teorema de Bayes. N, é o nimero de amostras da classe c.

Porém, P(c|l;;) pode ser substituido pela probabilidade encontrada pelo classifica-
dor usado pela BCI. Como neste trabalho o MIBIF é apenas usado com o LDA, P(c|I;;) é

calculado pelo proprio classificador.
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Apods o calculo de M, os k primeiros valores de [ serao usados para criar o vetor

de caracteristicas F' que serd passado ao classificador.

5.6 Classificadores

Apods a criacao e selecdo das melhores caracteristicas F', um modelo de classificagao
é usado para determinar a classe. Na maioria dos trabalhos com BCI, sdao usados classifica-
dores como Maquina de Vetor de Suporte (SVM), Andlise de Discriminante Linear (LDA)
ou Softmax. Outros classificadores como o NBPW também podem ser observados com
menor frequéncia. Dentre eles, o LDA se destaca entre os demais, sendo o mais utilizado
nos modelos para MI. Por esse motivo, ele sera usado como classificador para todas as

BCIs que possuem extracao de caracteristicas neste trabalho.

Além disso, também abordaremos o uso da EEGNet, que é uma rede convolucional
rasa que visa agrupar varias etapas do processamento da BCI em sua arquitetura. Nesse
caso, ela serd usada em modelos que nao usam extragao de caracteristicas, uma vez que

ela recebe diretamente o sinal Z.

5.6.1 Andlise de Discriminante linear

O LDA sera usado para classificar um sinal a partir de suas caracteristicas F'. Ele
é um método estatistico utilizado para problemas de classificacdo. O LDA visa encontrar

uma combinacao linear de caracteristicas que maximize a separacao entre diferentes classes.

O LDA calcula a média e a varidncia para cada classe e projeta os dados em
uma nova dimensao. Essa dimensdo maximiza a distancia entre as médias das classes e
minimiza a variacao dentro de cada classe. Matematicamente, isso é representado pela
maximizac¢ao da razdo entre a variancia entre classes e a variancia dentro das classes. A
partir disso, o LDA constréi um vetor discriminante que define a dire¢do de projecao
dos dados. Esse vetor é obtido através da resolucao de um problema de autovalores que
considera as matrizes de covariancia e as médias das classes. Depois da projecao dos dados
na dire¢ao do vetor discriminante, a classe de saida do LDA é escolhida pela classe com

menor distancia para o ponto projetado nesse novo espago.

5.6.2 EEGNet

A EEGNet é uma rede neural convolucional compacta baseada nas etapas do FBCSP.
O FBCSP ¢é composto pelas etapas [8]: (i) filtros passa-banda; (ii) CSP; (iii) MIBIF; e
(iv) NBPW. Correlacionando os modelos, o EEGNet possui: (i) convolugbes temporais;
(ii) convolugoes espaciais; (iii) convolugoes separaveis; e (iv) Softmax. Portanto, o EEGNet
tem uma estrutura compacta, mas robusta, pois é baseado em um pipeline que tem

mostrado bons resultados na literatura. A Figura 5 mostra um diagrama mais detalhado
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das etapas do EEGNet. Primeiro, o sinal passa por um conjunto de convolugdes temporais
F; (em azul). Depois disso, cada novo sinal passa por D convolugoes espaciais (em laranja)
seguidas por uma fungdo ELU (A), uma camada de pooling (P) e uma camada de dropout
(D) representada com um corte por fazer parte apenas do treinamento. Para a convolugao
separavel, outro filtro temporal é aplicado, seguido por uma convolucao profunda de
tamanho Fy (em roxo). Finalmente, o sinal passa pela fungio de ativagdo ELU, a camada

de pooling, dropout e é classificado usando uma Softmax apds um merge do sinal (M).

Figura 5 — Arquitetura da EEGNet.

Imagem de producgao propria.

5.7 Modelos para BCI

Os principais modelos para MI-EEG-BCI sao o FBCSP e a EEGNet. Conforme
apontado na Segao 5.6.2, o FBCSP é um modelo formado pela sequéncia: (i) banco de
filtros passa-banda do tipo Chebyshev II, (ii) CSP, (iii) LogPower, (iv) MIBIF e (v) NBPW.
Porém, com o tempo, o NBPW foi sendo substituido pelo LDA e, atualmente, esse é o
classificador mais usado na ultima etapa do FBCSP. J4 a EEGNet segue a mesma estrutura
mostrada na Sec¢ao 5.6.2, porém, com a aplicacdo de uma etapa de reamostragem por

transformada de Fourier antes.

Para avaliar as métricas da literatura e propostas, foram testados 48 modelos
diferentes que foram gerados por combinagoes das abordagens apresentadas aqui para
cada uma das etapas da BCI. Os nomes dos modelos foram gerados a partir de 4 letras,
indicando diferentes etapas na BCI. As 4 letras indicam em ordem: reamostragem, filtro
temporal, filtro espacial e classificador. Sendo as possibilidades para cada uma das 4

posicoes na sigla:

o Reamostragem

— N - Nenhum
— C - Cubico

— F - Fourier
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o Temporal

— H - Chebychev 11

— C - Convolugao

— E - EMD

— F - Banco Chebychev 11

— V - Banco Convolugao

— N - Nenhum

— S-STFT

— W - Wayvelet
« Espacial

— C-CSP

— N - Nenhum

— E-EA

e Classificador

— L - LDA
— E - EEGNet

Por exemplo, o modelo NHCL nao possui reamostragem e é composto pelas etapas
Chebyshev I como filtro temporal, CSP como filtro espacial e LDA como classificador.
Além disso, o X na nomenclatura é utilizado para indicar um grupo de modelos, por
exemplo, o NHXL indica o conjunto dos modelos NHNL, NHCL e NHEL. Em todos os
casos, a funcao LogPower foi usada como extragdo de caracteristica e a reamostragem foi
utilizada apenas nos modelos com a EEGNet. Por questoes de referéncia, o FBCSP agora

passara a ser chamado de NFCL, seguindo a nova nomenclatura dos métodos.

Dentre esses modelos, nés propomos o uso do STFT junto com o CSP em BCI e o uso
do EA junto com o banco de filtros temporais. Além disso, muitas das combinagoes geradas
nesse trabalho nao foram testadas na literatura, sendo, assim, alternativas propostas desta
tese. Isso porque, normalmente, é avaliada apenas uma das combinacoes por trabalho, e
nao diversas combinagoes como aqui. Por exemplo, o NFCL usa banco de filtros Chebychev
IT e o NHEL usa o alinhamento euclidiano como filtro espacial, porém, do que temos
conhecimento, fomos os primeiros a usa-los juntos, gerando uma nova abordagem para

BCL

Desta forma, vale destacar que diversos métodos para BClIs foram desenvolvidos
durante este doutoramento, conforme destacado na Tabela 1. Porém, decidiu-se por focar

esta tese nas métricas de desempenho que sao apresentadas no Capitulo 6.
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6  Meétricas Propostas

Nesse trabalho é abordado 2 problemas principais dentro da avaliacao das BCls:
(i) a influéncia do iletramento em BCI no calculo da eficicia do modelo e (ii) a eficiéncia do
modelo (influenciada pelo atraso temporal). Para o primeiro ponto, serd utilizado o perfil
de desempenho explicado na Se¢ao 4.2. Para a eficiéncia, novas métricas sao propostas
nesse capitulo. No final, 6 métricas serao usadas nesse trabalho e as andlises dessas métricas
serao feitas com perfis de desempenho. Cada uma das métricas apresentadas nesse capitulo
¢ dependente de uma métrica classica para avaliacao de eficacia. Elas serdao exemplificadas
aqui usando Kappa como funcao de avaliagdo, porém, qualquer outra métrica apresentada
na Tabela 4 pode ser usada. Com a consideragao de que, para métricas de maximizagao, a
métrica deve ser invertida de alguma forma. Sao usadas 6 métricas neste trabalho, onde as
métricas de 1 a 3 ja sao usadas na literatura e as métricas de 4 a 6 estao sendo propostas

nesse trabalho. As 6 métricas avaliadas nesse trabalho sdo:

D1: Kappa avaliado em 2,5 segundos apods a dica. Métrica mais comum para avaliar

a eficacia de uma BCI (Valor em 2,5 segundos na Figura 6).
D1(Y,Y) = Kappa(Y, Ya5114,) (6.1)
onde }72,5“0 é a previsao do modelo em 2,5 + tg e ty indica o inicio da tarefa.
« D2: Kappa maximo avaliado em todos os instantes da janela de teste. Mais relevante

que a D1, porém, ainda sem avaliar diretamente a eficiéncia do modelo. (Valor

méximo para y na Figura 6)
D2(Y,Y) = MAT fappa(y,¥,) ¥ ¢ € janelas de teste (6.2)
e D3: Integral do Kappa ao longo de todo o teste. Consegue avaliar melhor a eficacia

do modelo que as métricas D1 e D2, porém, ainda sem informacao de eficiéncia

(Integral da curva da Figura 6).

D3(Y,Y) = / Kappa(Y,Yy) dt (6.3)

« D4: Instante de tempo, ap6s a dica, que obtém o maior valor de Kappa (tempo em
segundos para o maior valor de y na Figura 6). Capaz de dar uma ideia inicial sobre

a eficiéncia do modelo quando analisado junto com a métrica D2.
DA(Y,Y) = argmax,(Kappa(Y,Y;)) — to (6.4)
o D5: Instante de tempo que maximiza a derivada do Kappa ao longo do tempo (Valor

em segundos onde ocorre a maior derivada de y na Figura 6). Essa métrica tem como

objetivo encontrar um dos instantes de tempo mais significativos para a classificacao.

_ d _
D5(Y)Y) = argma$t<dtKappa(Y, Y})) — 1o (6.5)
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o D6: Oscilagao do Kappa ao longo do tempo. Serve para verificar a estabilidade do

modelo ao longo do tempo.

D6(Y,Y) = / (iKappa(Y, Y}))zdt (6.6)

A métrica D1 representa a avaliagdo que é feita na maioria dos trabalhos envolvendo
BCI. Ela se limita a verificar o valor da métrica apenas 2,5 segundos apds a apresentagao
da tarefa. Além de nao considerar a eficiéncia do problema, ainda pode gerar uma anélise
incompleta da eficacia, ja que ela nao executa a métrica em outros instantes de tempo.
Normalmente, os modelos de BCI sao avaliados de acordo com métricas de desempenho
na mesma janela usada para o treinamento. Por exemplo, na EEGNet, os trabalhos para
MI treinam o modelo com a janela 0,5-2,5 segundos apds a pessoa comecgar a imaginar o
movimento [13]. Porém, em aplicagbes em tempo real, o modelo serd usado em todos os
instantes de tempo durante o experimento. A Figura 6 mostra o desempenho da EEGNet
com os pardmetros propostos por Lawhern [13] ao longo de 4 segundos apds o sujeito
iniciar a tarefa. Como esperado, o modelo apresenta um melhor desempenho 2,5 segundos

ap6s a tarefa (momento em que se encerra a janela de treinamento).

Figura 6 — Acurédcia média da EEGNet ao longo de um trial.

1.00
0.75 1
5
&
= 0.50 1
3
&
0.25 A
0.00 —— l l l l
0 1 2 3 4
Time [s]

Imagem de producao propria.

Alguns poucos trabalhos e competicoes utilizam as métricas D2 e D3. Essas
métricas usam a questao temporal na hora de calcular a eficacia, porém nao avaliam a
eficiéncia do modelo. Por esse motivo, elas foram listadas como as métricas que usam
o tempo de forma indireta na Tabela 5. As métricas 4 e 5 avaliam exclusivamente a
eficiéncia do modelo. Ao avaliar o instante de tempo de maior valor ou de maior derivada,
¢é possivel avaliar quanto tempo leva para a pessoa conseguir executar a tarefa e o instante
em que a informagao mais relevante da atividade comega a ser coletada. Dessa forma, as
métricas 1, 2 e 3 devem ser usadas juntamente com as métricas 4 e 5 para obter uma visao

mais completa sobre a performance da BCI. Essas novas métricas vieram para completar
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as métricas atuais e nao substitui-las. E importante notar também que as métricas 4 e
5 sdo independentes do tempo de execucao do modelo, o atraso sendo avaliado aqui é
referente apenas ao tempo necessario para o cérebro gerar os sinais que o classificador esté

esperando.

Podemos separar o tempo entre a pessoa imaginar o movimento e o movimento
realmente acontecer em 3 partes: (i) atraso de comunicagao; (ii) atraso da aparigao das

caracteristicas; e (iii) atraso gerado pelo tempo de execucao do modelo;

O atraso de comunicacao se refere ao tempo gasto para a comunicacao do EEG
com o modelo de classificacdo. Esse ¢é insignificante na maioria das vezes, principalmente

quando todo o sistema esta funcionando localmente e via cabo.

O atraso da aparicdo da caracteristica notada nessas métricas é o tempo que
demora para o cérebro da pessoa gerar a caracteristica que o modelo busca. Por exemplo,
considerando que 2,5 segundos apos a pessoa imaginar um movimento, o cérebro da
pessoa vai estar em um determinado estado que é exatamente o estado que foi usado no
treinamento do modelo. Dessa forma, o modelo vai estar sempre 2,5 segundos defasado,
ja que ele precisa esperar o cérebro gerar a caracteristica que ele quer. Esse atraso é
independente da maquina usada ou da complexidade do modelo e esta atrelado muito

mais a propria conceituagao do problema sobre o sinal de interesse.

O atraso gerado pela execucao estd relacionado ao tempo necessario para a execucao
do modelo, podendo ser um valor irrelevante em modelos mais simples. Porém, mesmo nos
modelos que necessitam de mais recurso computacional, como nas redes convolucionais
profundas, esse valor costuma ser negligenciavel, ja que ele nao considera o tempo de

treinamento da BCI, mas apenas o tempo de execu¢do do modelo para um tnico trial.

Por fim, a métrica 6 avalia a estabilidade do modelo, ou seja, o quanto a classificacao
oscila ao longo do tempo. Essa métrica estd ligada a percepcao do sujeito sobre o
funcionamento da BCI. Pois, se o modelo varia a classificacdo muitas vezes em um curto
espago de tempo, o sujeito perde a confianga na classificacao, gerando uma melhor satisfacao

com a interface.
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7  Experimentos Computacionais

Esse capitulo apresenta os resultados brutos dos experimentos executados nesse
trabalho, no Capitulo 8 sao levantadas as discussoes geradas a partir desses resultados.
Todos os testes foram feitos usando a validacao cruzada balanceada com 5 grupos. O
treinamento foi feito com uma janela de 2 segundos iniciada em meio segundo apés a
apresentacao da tarefa a ser executada. Isso permitiu o alinhamento de todos os conjuntos
de dados para podermos juntar seus resultados, ja que a tarefa de cada conjunto de dados
ocorre em um instante diferente. O codigo desenvolvido neste trabalho foi publicado como
um pacote para Python!'. A nomenclatura dos modelos manterd a mesma apresentada
no H.7.

7.1 Dataset base

O resultado médio entre os sujeitos para as 6 métricas avaliadas para o dataset 2a
estd presente na Tabela 6. Para a métrica D1 (avaliagdo em 2,5 segundos apds a dica),
o método com o melhor resultado foi o FVNE com um kappa de 0,7901. Comparando
os diferentes filtros temporais, os modelos com Chebychev II apresentaram os melhores
resultados quando usados com o LDA, independentemente do filtro espacial usado. O
mesmo padrao ocorreu com os modelos com CSP, que apresentaram os melhores resultados
independentemente do filtro espacial utilizado. Dessa forma, o melhor resultado para o
LDA foi composto pelo filtro Chebychev II juntamente com o CSP, indicado na tabela
como NHCL. Entre os métodos com a EEGNet como classificador, os melhores métodos
para filtragem espacial foram o filtro passa-banda por convolugao e o banco de filtros por
convolu¢ao. Ambos os métodos apresentaram resultados proximos, independentemente da
técnica de reamostragem utilizada. J& para a técnica de reamostragem, o uso da FFT se

mostrou mais eficiente que as demais.

Para a métrica D2, as conclusoes foram similares as de D1, tendo os melhores
resultados o uso de Chebychev II com o CSP para os modelos com LDA de classificador e
o FVNE como o melhor modelo com a EEGNet. Porém, o melhor modelo geral para essa
métrica foi o NHCL, apesar da diferenca entre o melhor modelo com LDA e com EEGNet
ter sido pequena tanto para D1 quanto para D2. A métrica D3, integral do periodo da
tarefa, foi a que mais apresentou diferenca entre as métricas para avaliar a eficacia das
BCls. Para ela, os modelos com LDA de classificador apresentaram melhores resultados
que os modelos com a EEGNet de forma consistente. O melhor resultado para essa métrica
foi o NHCL que obteve um resultado 13% melhor que a FVNE (melhor modelo com a
EEGNet).

Para a métrica D4, o melhor resultado foi obtido pelo CWNE, que conseguiu

L https://pypi.org/project/bciflow/
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atingir seu melhor resultado com menos de 1 segundo apés a apresentacao da dica (0,8889
segundos). Comparando os modelos com o LDA e a EEGNet, os modelos com a EEGNet
obtiveram seu pico de eficiacia bem antes do que os modelos com o LDA. Além disso, houve
uma tendéncia de melhores resultados para os modelos que utilizavam a Wavelet como
filtro temporal. A métrica D3, que avalia o ponto de maior crescimento da eficacia, teve os
mesmos resultados para a EEGNet, no qual a Wavelet apresentou os melhores resultados
para os modelos com a EEGNet. Porém, o modelo que obteve a melhora méaxima de
eficacia mais rapido foi o NCCL. Por fim, para a métrica D6, os modelos com a EEGNet
se mostraram bem mais estaveis do que os modelos com o LDA e, novamente, houve uma

tendéncia para os modelos com a Wavelet para essa métrica.

Os resultados baseados nos perfis de desempenho estao presentes nas Tabelas 7, 8, 9.
Para a area dos perfis de desempenho, os resultados ficaram similares aos apresentados na
Tabela 6. Os modelos com Chebychev Il apresentaram melhores resultados com o LDA,
assim como o CSP. Considerando D1, o melhor método foi o CCNE, porém, bem proximo
do NHCL e FCNE. Ja para D2, o melhor método foi o NHCL, mas ainda préximo dos
outros 2 métodos. Porém, quando se observa a quantidade de vezes que o método obtém os
maiores valores, pode-se observar uma clara vantagem na eficacia do NHCL sobre os outros
modelos. Principalmente para a métrica D3, onde o NHCL obteve o melhor resultado para
5 sujeitos, enquanto os métodos com a EEGNet nao obtiveram o melhor resultado para
nenhum dos 9 sujeitos desse dataset. Para as métricas D4 e D5, o resultado foi o oposto,
em que os modelos com a EEGNet obtiveram os melhores resultados, enquanto os modelos
com o LDA nao foram superiores para nenhum dos sujeitos. Também é possivel observar
uma consisténcia no fato da Wavelet ter obtido os melhores resultados para essas métricas,
assim como mostrado nas areas dos perfis de desempenho. O método mais estavel foi o
NFCL, uma vez que ele apresentou o melhor pior caso, sendo 14,71% pior, seguido pelo
CVNE com 17,81% para a métrica D1. Assim como nas outras avaliagoes, também foi
possivel observar uma correlacao entre D1 e D2, com a ordem dos melhores métodos sendo

bastante similar.

7.2 Dataset com poucos eletrodos

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
BCICIV2b esté apresentado na Tabela 10, que fornece uma visao consolidada do desempe-
nho médio das diferentes combinacoes de filtragem temporal e classificadores avaliados.
Nas trés primeiras métricas, D1, D2 e D3, observa-se um padrao claro: os métodos que
combinam filtragem temporal via STFT com LDA (XSXL) obtiveram consistentemente os
melhores resultados. Em todas essas métricas, o desempenho desses métodos superou de
forma clara e repetida aquele alcancado pelos métodos que utilizam filtragem temporal

por banco de convolugao combinada com EEGNet (XCXE).
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Na métrica D4, que mede o tempo para atingir o pico de desempenho, houve
uma inversao de destaque. Nesse caso, os métodos com filtragem temporal via Wavelet
combinada com EEGNet (XWXE) se sobressairam, atingindo tempos menores para

alcangar seu melhor desempenho.

No que diz respeito a estabilidade de desempenho, medida pela métrica D6, verificou-
se que os modelos com EEGNet (XXXE) apresentaram maior consisténcia em relagao aos
métodos baseados em LDA (XXXL). Essa caracteristica sugere que, embora os métodos com
LDA possam ser mais eficientes em termos de acuracia inicial em determinadas métricas,
os modelos com EEGNet mantém um desempenho mais estavel ao longo do tempo ou sob
condicoes variaveis. Ainda dentro do grupo com EEGNet, destaca-se que todos os melhores
resultados para a métrica D5 foram negativos, com predominancia do método NFNE, o
que indica que o modelo nao foi capaz de aprender as caracteristicas desejadas. Essas
observagoes sao corroboradas pela anélise global apresentada na Tabela 11. A convergéncia
entre os resultados médios por métrica e a area total indica que os métodos que se
destacam em métricas isoladas também tendem a figurar entre os de maior desempenho

geral, reforcando a consisténcia das tendéncias observadas.

Ao considerar os piores casos, conforme mostrado na Tabela 13, os métodos XSXL
mantém sua robustez, apresentando os melhores resultados para as trés primeiras métricas
e também se destacando na métrica D5 entre os modelos com LDA. Ja& no conjunto
de métodos com EEGNet, os que utilizam filtragem temporal por banco de convolugao
(XVXE) apresentaram os melhores desempenhos no cenério de pior caso, sugerindo que,

mesmo sob condig¢oes adversas, essas configuragdoes mantém certa resiliéncia.

Por fim, a analise individual por sujeito, apresentada na Tabela 12, revelou que
o método NSCL foi o mais recorrente entre os melhores resultados para D1, D2 e D3.

Especificamente, ele se destacou em 2 sujeitos para D1, 3 para D2 e 5 para D3.

7.3 Dataset de pacientes p6s-AVC

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
CBCIC esta apresentado na Tabela 14, permitindo uma visao abrangente do desempenho
de cada abordagem considerada. Nas trés primeiras métricas, D1, D2 e D3, observou-se um
padrao bastante claro: os métodos baseados na arquitetura EEGNet (XXXE) superaram,
de forma consistente e com margens consideraveis, os métodos que utilizam LDA (XXXL).
Esse comportamento indica que, no contexto dessas métricas, a capacidade de extracao
de caracteristicas mais complexas oferecida pelo EEGNet foi decisiva para garantir um
desempenho superior. Entretanto, a situagao muda na métrica D6, que avalia a estabilidade.
Nesse caso, os métodos com LDA apresentaram resultados mais altos, o que sugere que,

embora menos expressivos nas primeiras métricas, eles podem oferecer maior estabilidade.

Ao analisar mais detalhadamente os modelos com EEGNet, percebe-se uma pre-
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feréncia marcante por configuracoes que aplicam filtragem temporal do tipo Wavelet
(XWXE). Esses métodos nao apenas ocuparam posicoes de destaque nas tabelas de resulta-
dos, como também alcancaram o melhor desempenho médio geral dentro do grupo XXXE.
No caso dos métodos com LDA, o panorama foi menos uniforme. Os melhores resultados
estiveram distribuidos entre diferentes combinagoes, em especial NVCL, NSNL e NNEL,

sem que uma delas se destacasse de forma consistente ao longo de todas as métricas.

Outro ponto relevante é o desempenho na métrica D4, que mede o tempo necesséario
para atingir o pico de desempenho. O menor valor registrado foi obtido pelo método
NCNL, evidenciando que, embora nao seja o mais eficaz em termos de kappa geral, essa
configuragao é altamente eficiente em alcancar rapidamente seu melhor desempenho. Na
métrica D5, o melhor resultado individual foi obtido pelo método NHEL. Porém, quando se
considera a média de todos os métodos, as abordagens com LDA apresentaram resultados

superiores, sugerindo que, para essa métrica, had uma vantagem coletiva do grupo XXXL.

A comparacgao entre as Tabelas 15 e 16 reforca as conclusdes obtidas na analise
de desempenho médio. Os padroes observados por métrica também se reproduzem na
analise por area, o que demonstra uma consisténcia significativa dos resultados, ou seja,
nao se trata de casos isolados, mas de tendéncias recorrentes. Quando se examinam os
cenarios de pior caso, apresentados na Tabela 17, para as trés primeiras métricas, os
métodos NSXL apresentaram o melhor desempenho entre os modelos com LDA. J4 entre
os modelos com EEGNet, o destaque ficou para os métodos XNNE, que obtiveram os
melhores resultados mesmo nos piores casos, seguido de perto por CHNE e NWNE. Por
fim, a analise individual por sujeito, detalhada na Tabela 16, revelou que o método CWNE

foi o mais recorrente entre os melhores resultados para D1, D2 e D3.

7.4 Dataset com poucos trials

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
Physionet estd apresentado na Tabela 18. No grupo de métodos com LDA (XXXL), nao
foi possivel identificar um tnico algoritmo dominante ao longo das métricas, ja que os
melhores resultados estiveram distribuidos entre diferentes combinagoes: NHCL, NECL,
NNNL, NVEL, NEEL, NVNL e NWCL. Essa dispersao sugere que, no caso deste dataset,
nao ha uma configuracdo tnica que maximize o desempenho global quando o classificador
LDA é utilizado, e que a eficacia pode depender fortemente de caracteristicas especificas
dos sujeitos ou da métrica em questao. Ainda assim, alguns padrdes consistentes puderam
ser observados: os métodos XEXL destacaram-se de forma recorrente na métrica D2,
apresentando uma constancia que o diferencia dos demais nesse indicador especifico,
enquanto os métodos XNXL demonstraram desempenho solido e repetitivo na métrica D6,
o que pode indicar uma maior adequagao desse arranjo para contextos que demandam
estabilidade.
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No grupo de métodos com EEGNet (XXXE), a distribui¢ao de desempenho foi
menos dispersa e apresentou maior especializagdo por métrica. Os métodos XVXE
obtiveram de forma consistente os melhores resultados nas métricas D1, D3 e D4, sugerindo
que essa combinagao é especialmente eficiente tanto para o desempenho inicial quanto para
o desempenho acumulado e para o tempo até atingir o pico de eficacia. Por outro lado,
os métodos XHXE foram os que apresentaram os melhores resultados nas métricas D5 e
D6, mostrando-se mais aptos em contextos onde a taxa de crescimento e a estabilidade
sao fatores criticos. Ja os métodos XEXE destacaram-se de forma clara na métrica
D2, mostrando uma superioridade especifica, mas menos abrangente que os XVXE.
Considerando o panorama geral de desempenho, ao analisar agora a Tabela 19, os métodos
XVXE se sobressairam entre todos os avaliados, apresentando consisténcia e superioridade
nao apenas nas métricas em que lideraram, mas também mantendo um bom desempenho

nas demais.

Ao observar a Tabela 21, um aspecto curioso observado foi que todos os piores
casos para as métricas D4 e D5 resultaram no mesmo valor, independentemente do método
utilizado, indicando que, para essas métricas, a variacao entre abordagens foi irrelevante
em termos de pior desempenho. Isso ocorreu pelo fato de nao ser possivel avaliar esse
dataset por um tempo longo, uma vez que cada trial tem apenas 4 segundos. Para as
demais métricas, entretanto, verificou-se que os melhores piores resultados ocorreram de
forma recorrente nos métodos XVXE, reforcando a percepcao de que este arranjo apresenta

um desempenho confidvel mesmo em seus piores casos.

A analise individual por sujeito, apresentada na Tabela 20, revela ainda um padrao
interessante de preferéncia por determinados algoritmos. O método FVNE apresentou-se
como o mais frequente para D1, com 12 sujeitos obtendo o melhor resultado. Para D2,
o destaque foi o método FENE, com 14 sujeitos, enquanto para D3 o método NHCL foi
o mais eficaz, com 9 sujeitos. Apesar dessa variacao entre as métricas, é notavel a forte
presenca dos métodos XVXE na lista de melhores resultados por sujeito, abrangendo de

forma expressiva as trés primeiras métricas e reafirmando seu desempenho consistente.

7.5 Dataset com EEG de baixo custo

O resultado médio entre os sujeitos para as seis métricas avaliadas no dataset
HCGD esté apresentado na Tabela 22. A anélise dos métodos baseados em LDA (XXXL)
e no conjunto geral (XXXX) revela um padrao consistente: os métodos da familia XHXL
apresentaram o melhor desempenho nas trés primeiras métricas, D1, D2 e D3), superando
de forma clara os demais nesse grupo. Ja ao restringir a andlise apenas aos métodos com
EEGNet (XXXE), o destaque recai sobre a familia XFXE, que também obteve os melhores

resultados nessas mesmas métricas.

No que se refere as métricas finais, a analise por grupos mostra que, entre os
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métodos com LDA (XXXL), os modelos da familia XCXL alcancaram o melhor resultado
para D5, enquanto os XNXL foram superiores na métrica D6. A métrica D4 nao apresentou
um grupo dominante, sendo os melhores resultados compartilhados entre NNCL, NSNL e
NWEL. J4 no grupo com EEGNet (XXXE), a métrica D4 teve como melhor desempenho
o método NHNE, a D5 foi liderada pelo método FSNE, e a D6 apresentou como destaque
o método CCNE.

Considerando o desempenho total apresentado na Tabela 23, observa-se que os
métodos XHXL mantém sua lideranca nas métricas D1, D2 e D3, enquanto a familia
XNXL se destaca nas métricas D4, D5 e D6. No caso dos métodos com EEGNet, os XFXE
mantém o melhor desempenho global para as trés primeiras métricas, mas nao reproduzem

a mesma superioridade nas métricas finais.

A anadlise dos piores casos, apresentada na Tabela 25, confirma a confiabilidade dos
métodos XHXL, que apresentaram o melhor desempenho nesse cenario adverso, seguidos
de perto pelos métodos XFXL. Dentro do subconjunto EEGNet (XXXE), o método CHNE
apresentou o melhor resultado no pior caso para todas as métricas de forma isolada;
no entanto, de maneira geral, os métodos XFNE e XHNE foram aqueles que mais se
destacaram nesse grupo, apresentando desempenhos mais consistentes frente as condigoes

menos favoraveis.

Por fim, a avaliacao individual por sujeito, mostrada na Tabela 24, aponta o método
NHEL como aquele que mais vezes aparece entre os melhores resultados. Especificamente,
ele liderou em 2 sujeitos para a métrica D1, em 3 sujeitos para D2 e em 1 sujeito para
D3, consolidando-se como um dos métodos mais relevantes para as métricas iniciais no
contexto do dataset HCGD.



Tabela 6 — Resultado Médio para as 6 métricas no conjunto 2a.

D1 D2 D3 D4 D5 D6
NHCL 0,7832 0,8056 0,6696 2,6000 2,3000 0,0162
NCCL 0,6412 06902 0,581 1,8667 0,5444 0,0132
NECL 0,6505 0,6794 05789 2,7778  2.,4889  0,0199
NFCL  0,7697 0,7944 0,6600 2,3444 1,2889 0,0171
NVCL 0,7361 0,7681 0,6360 2,2222 14222 0,0151
NNCL 0,6944 0,7292 0,6181 255111 1,6667 0,0134
NSCL  0,748% 0,7728 06477 2,6222 2,0333  0,0174
NWCL 0,6871 0,718% 0,6080 2,1889 1,7222  0,0151
NINL 0,7172 0,7381 0,6275 2,7667 2,2000 0,0162
NCNL  0,5996 0,6358 0,5561 2,4444 1,8667 0,0146
NENL 0,6038 0,350 05607 2,6778 19111 0,0178
NFNL  0,6100 0,6427 0,5595 2,4000 28111 0,0160
NVNL 06111 0,370 05602 27667 2.8778  0,0145
NNNL  0,6173 06543 05717 29333  2,5880  0,0145
NSNL  0,6474 0,6798 0,5883 2,9000 2,0444 0,0133
NWNL 0,5401 0,5864 0,5241 2,9000 2,3778 0,0146
NHEL 0,7569 0,7808 0,6493 27222 20667 0,0173
NCEL 05529 05961 05472 23778  3,0333  0,0130
NEEL 0,6238 0,6451 0,5639 2,4778 1,9778 0,0192
NFEL 0,7222 0,7411 0,6218 2,5333 2,5000 0,0167
NVEL 0,6798 0,6968 0,5955 2,3222 2,2222  0,0139
NNEL 06771 0,7141 0,6064 3,1222 24889 0,0127
NSEL  0,7303 0,7469 0,6365 2,2667 23111 0,0174
NWEL 0,6713 0,6933 0,5891 2,1778 27111 0,0147
CHNE 05355 05424 05263 18111 1,6778 0,0038
CCNE 0,7859 0,7897 05306 25222 22444  0,0253
CENE 0,6323 0,528 05543 29333 17333 0,0175
CFNE 05235 05305 05204 23778 18333  0,0042
CVNE 07778 0,7824 0,5925 2,1889  2,0000 0,0178
CNNE 0,6096 06181 05361 24556 1,9667  0,0095
CSNE 05274 05517 0,5234 3,044 2,3667  0,0067
CWNE 05073 055100 0,5118 0,8889 0,6889 0,0020
FINE 05347 05378 05277 1,5333 1,6222 0,0026
FCNE 0,7863 0,7905 0,5329 2,5000 22111  0,0259
FENE 0,6246 06377 05439 3,0000 1,6333 0,0159
FFNE 05355 05425 005241 19333 1,3667 0,0036
FVNE 0,7901 0,7971 0,5931 24444 20556 0,0195
FNNE 06578 0,6690 05497 24889 2,0778  0,0121
FSNE 05490 055683 0,5328  2,3000 1,4000  0,0078
FWNE 05116 05193 05159 1,2667 1,2111 0,0026
NHNE 05232 05351 0,5203 1,8556  2,1444  0,0039
NCNE 0,7751 0,7789 05262 24889 22778  0,0255
NENE 05996 0,6200 05416 25000 2,3778  0,0155
NFNE 05177 05216 05177 1,6556 1,3556  0,0028
NVNE 07164 0,7187 0,5659 2,4556 2,6000 0,0133
NNNE 0,6779 0,6890 05627 24778 18667 0,0115
NSNE  0,5393 05532  0,5309 2,7667 3,0444  0,0064
NWNE 05066 05139 05124 1,3556 1,0333 0,0024
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Tabela 7 — Areas dos perfis de desempenho para as 6 métricas no conjunto 2a.

D1 D2 D3 D4 D5 D6
NHCL 0,4712 0,4262 0,2506 3,1121 2,9580 0,0113
NCCL 0,3399 023189 0,1820 3,8515 4,5253 0,0098
NECL 023524 023127 0,1790 29283 2,7903 0,0132
NFCL 04626 04193 02435 3,3677 3,8765 0,0118
NVCL 04307 03938 02242 34838 3,7553  0,0108
NNCL 0,3951 0,3605 02108 3,1950 3,5346  0,0099
NSCL 04436 0,005 02343 3,0899 3,2013  0,0119
NWCL 0,3861 03482 02015 3,5232 3,857 0,0108
NINL 0,4123 0,3656 0,2169 29454 3,0467 0,0113
NCNL 03018 02679 0,1587 3,2495 3,3233 0,0105
NENL 023086 02706 0,1636 3,0465 3,3124 0,0121
NFNL 03140 02780 0,1626 3,3060 2,4958 0,0112
NVNL 0,3162 02729 0,1634 2,9455 24243 0,0105
NNNL 0,3226 02891 0,1728 27788 2,6962 0,0105
NSNL  0,3505 0,3130 0,1862 28182 3,1881  0,0099
NWNL 02491 02257 0,1340 28061 2,8897  0,0105
NHEL 0,4473 0,4039 0,2341 29838 13,1694 0,0119
NCEL 02573 02313 0,1508 3,3404 2,3170  0,0097
NEEL 023273 02806 0,1667 3,2525 3,2471 0,0128
NFEL 04189 023702 02131 3,1909 27771 0,0116
NVEL 03767 023267 0,1909 3,3959 3,0327  0,0102
NNEL 03763 03429 02003 25838 2,7871  0,0095
NSEL 04259 023755 02247 34394 29456 0,0119
NWEL 0,368%8 0,3238 0,1862 3,5283 25852 0,0105
CHNE 02439 0,1844 0,1356 3,8828 3,5106  0,0050
CCNE 0,4715 0,4106 0,1391 3,1838 3,0093 0,0159
CENE 03367 02890 0,1587 27788 3,646 0,0120
CFNE 02336 0,1739 0,1313 3,3040 3,3722  0,0052
CVNE 04692 04090 0,1903 3,5171 3,2253 0,0121
CNNE 0,3142 02567 0,1439 32505 3,2557  0,0079
CSNE 02372 0,1927 0,1334 26616 2,8982  0,0065
CWNE 02178 0,1545 0,1242 4,7445 4,4080 0,0041
FINE 02440 0,1811 10,1372 4,1789 3,5735 0,0044
FCNE 04712 04108 0,1408 3,2060 3,0412 0,0163
FENE 0,3282 02746 0,1500 2,7122 3,5556 0,0112
FFNE 02448 0,1856 0,1340 3,7668 3,8027  0,0049
FVNE 0,4807 0,4222 0,1910 32677 3,1779  0,0130
FNNE 03565 03014 0,1551 32171 3,1577  0,0093
FSNE 02580 02096 0,1413 3,3939 3,7662  0,0071
FWNE 02225 0,1633 0,1274 4,4273 3,9378 0,0044
NHNE 02319 0,1768 0,1310 3,8323 3,0832 0,0051
NCNE 0,4623 0,4012 0,1357 3,2232 29790 0,0160
NENE 023057 025885 0,1483 32182 28944 0,0110
NFNE 02277 0,1653 0,1287 4,0506 3,8128  0,0046
NVNE 04139 03510 0,1683 32566 2,6784  0,0099
NNNE 0,3786 0,3236 0,1653 3,2404 3,3419  0,0089
NSNE 02490 0,1956 0,1395 29273 22821  0,0064
NWNE 02173 0,1577 0,1246 4,3263 4,0871 0,0044

49



20

Tabela 8 — Quantidade de vezes do melhor resultado para as 6 métricas no conjunto 2a.

D6

D1 D2 D3 D4 Db

3
0
0
0
0
1
0

NHCL

0

NCCL

NECL

NFCL

0
0
0
0

NVCL

NNCL

NSCL

NWCL 0

0
0
0
0
0
0
0

NHNL

0

NCNL

NENL

NFNL

0

NVNL

NNNL

0
0

NSNL

NWNL 0

1
0
0
0
0
0
0

NHEL

0

NCEL

NEEL

NFEL

0

NVEL

NNEL

0
0
0

NSEL

NWEL 0

0
2
0
0
1
0
0

CHNE

2
0
0
1
0
0
0

CCNE

CENE
CFNE
CVNE

CNNE

CSNE

CWNE 0
FHNE
FCNE
FENE
FFNE
FVNE

0
2
0
0
2
0
0

2

FNNE
FSNE

0

FWNE 0
NHNE

0
0
0
0
0

0

NCNE

NENE

NFNE
NVNE

0

1
0

NNNE

NSNE

0

NWNE 0




Tabela 9 — Pior caso no Perfil de Desempenho para as 6 métricas no conjunto 2a.

D1 D2 D3 D4 D5 D6
NHCL 1,3235 1,3059 1,1818 4,2000 5,5455 1,006
NCCL 14470 13767 12627 3,3000 1,7273 1,0106
NECL 11,3627 11,3289 1,1990 5,000 5,0000 1,0079
NFCL  1,1471 1,0993 1,0812 3,8000 23846 1,0077
NVCL 11,3660 1,3421 1,2084 3,4000 4,9091  1,0090
NNCL 11,3791 1,3354 1,1838 52000 4,3636 1,0105
NSCL  1,2418 11,1875 1,1060 5,0000 5.4545 1,0083
NWCL 1,3925 1,3869 12428 3,9000 5,0909 1,0114
NHNL 13334 13321 12107 b5,1000 5,3636 1,0080
NCNL 14197 1,3938 12464 52000 52727 1,0095
NENL 1,3022 1,3618 12321 54000 4,7273 1,0084
NFNL 14313 1,3815 12141 55000 5,5455 1,0082
NVNL 1,3268 1,3124 1,1998 52000 58182 1,0106
NNNL 1,3529 11,3519 12116 5,5000 5,0909  1,0090
NSNL  1,3954 11,3552 11,1996 55000 5,3636 1,0103
NWNL 1,5085 14271 12692 6,1000 5,6364 1,0093
NHEL 1,3399 1,338% 12035 4,3000 5,3636 1,0078
NCEL 15426 14315 12783 6,0000 5,9091 1,0104
NEEL 1,3750 11,3552 12134 44000 4,6364 1,0077
NFEL 1,2255 1,2105 1,1199 4,4000 5,3636 1,0081
NVEL 14248 11,3914 12339 3,7000 54545 1,0101
NNEL 1,3922 11,3486 12115 6,5000 5,0909 1,0104
NSEL 11,2255 12137 1,1064 3,7000 5,0000 1,0080
NWEL 14300 14178 12583 3,4000 5.3636 1,0111
CHNE 14448 14644 12699 4,8000 5,182 1,0156
CCNE 11,2354 11,2363 12702 3,6000 3,0909 1,0027
CENE 1,3447 11,3356 12158 6,1000 2,9091 1,0090
CFNE 14709 14726 12679 59000 5,3636 1,0169
CVNE 11,1781 1,1732 1,2153 3,5000 3,0909 1,0121
CNNE 11,3812 11,3831 12468 4,5000 5,5455 1,0150
CSNE 14709 14589 12678 6,5000 5,5455 1,0157
CWNE 14709 14760 12679 4,1000 2,7273  1,0170
FINE 14482 14678 12730 52000 5,9091 1,0156
FCNE 1,2082 12123 12738 3,6000 3,0909 1,0024
FENE 14470 14178 12416 6,3000 4,8182 1,0140
FFNE 14709 14760 12679 58000 4,8182 1,0170
FVNE 12103 1,2067 12119 3,5000 3,3636 1,0093
FNNE 1,3003 1,3017 1,2102 3,7000 3,0000 1,0129
FSNE 14437 14315 12463 4,6000 44545 1,0140
FWNE 14778 14829 12741 4,4000 3,9091 1,0170
NHNE 14778 14760 12733 4,3000 5,3636 1,0168
NCNE 11,2593 1,2534 12749 3,6000 4,6364 1,0037
NENE 14334 14212 12434 47000 59091 1,0124
NFNE 14572 14589 12630 5,3000 5,0000 1,0156
NVNE 1,2884 1,3039 1,2120 3,6000 55455 1,0123
NNNE 11,3478 1,3525 11,2348 3,6000 3,0909 1,0143
NSNE 14300 14177 12465 6,4000 5,9091 1,0155
NWNE 14641 14577 12669 4,8000 4,0909 1,0156
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Tabela 10 — Resultado Médio para as 6 métricas no conjunto 2b.

D1 D2 D3 D4 D5 D6
NHCL 0,7300 0,7395 0,6287  2,6333  1,7778  0,0099
NCCL 05691 0,6001 0,5413  2,2333 11,1444 0,0077
NECL 0,6963 0,7177 0,6154 25111 15111  0,0121
NFCL  0,7092 0,7239 0,6086  2,7222  1,9556  0,0111
NVCL 0,6716 0,6921 0,6005  2,3880  1,5556  0,0096
NNCL 0,6480 0,6743 0,5851  2,7556 12111  0,0090
NSCL 0,7523 0,7720 0,6454 25556  1,1889  0,0104
NWCL 0,5865 0,6060 0,5523  3,0000 1,0000  0,0093
NHNL 0,762 0,7248 06210 2,6111  1,6444  0,0007
NCNL 0,5583 0,5892 0,5351  2,2333 0,7889  0,0087
NENL 0,6926 0,7108 0,6116  2,5880  1,1222  0,0120
NFNL  0,6912 0,7076 05999  2,7778  1,1778  0,0109
NVNL 0,6876 0,7021 0,6043  2,6880  1,3667  0,0096
NNNL  0,6098 0,6510 0,5677 2,8880  1,7556  0,0081
NSNL  0,7400 0,7542 0,6371 2,6000 1,3778  0,0102
NWNL 0,6130 0,6295 0,5691  2,7000  1,4000  0,0090
NHEL 0,7213 0,7360 0,6249  2,6667 1,6444  0,0100
NCEL 05467 0,5764 05293  2,0111 1,8444  0,0078
NEEL 0,6919 07108 0,6102 24556  1,1778  0,0116
NFEL 0,7054 0,7172 0,6051  2,3000  1,6111  0,0109
NVEL 0,6828 0,6931 0,6025  2,3556  1,6222  0,0096
NNEL 0,6166 0,6436 05661  2,8880  1,6000  0,0082
NSEL  0,7440 0,7574 0,6378 2,5000  1,1444  0,0109
NWEL 0,6130 0,6236 05672  2,6556  1,0556  0,0088
CHNE 0,5316 05372 05253 15444  0,5556  0,0025
CCNE 0,6901 0,6976 05187 24333 22444  0,0213
CENE 0,5248 05304 05179  1,8667 1,3333  0,0046
CFNE  0,5061 05095 055119  0,5667  -0,0889 0,0015
CVNE 0,5787 05823 0,5344 2,5333 15444  0,0058
CNNE 0,6066 0,6126 055280  2,6000  1,6556  0,0091
CSNE 05173 05223 055168  2,2333  0,8333  0,0026
CWNE 0,5046 0,5074 055110 0,1556 -0,0667  0,0008
FINE 05127 05167 05143  1,1556 0,778 0,0012
FCNE 0,6881 0,6933 05187 24444 23000  0,0205
FENE 05049 0,5075 0,5099  0,3880  0,2889  0,0015
FFNE 0,5012 05034 05100 -0,5222 -0,2444  0,0005
FVNE 0,6032 0,6070 0,5348 1,7444  1,0556  0,0081
FNNE 05977 0,6030 0,5292  2,5333  1,7000  0,0083
FSNE 05186 05254 055173 22778 1,2667  0,0026
FWNE 0,5000 0,5006 0,5091 -0,5778 -0,5111 0,0001
NHNE 05138 05187 05154 14222 0,9778  0,0016
NCNE 0,6925 0,6949 05205 24556  2,1778  0,0187
NENE 05165 05192 055103  2,3111  0,8444  0,0034
NFNE 0,5060 05094 05113 04111  -0,1556  0,0015
NVNE 0,5770 0,5823  0,5296 2,0444 12111  0,0057
NNNE 05983 0,6039 0,5290  2,5667  1,8778  0,0072
NSNE  0,5407 05427 055263  1,5111  0,6778  0,0031
NWNE 0,5021 0,5032 05090 -0,5000 0,3222  0,0013
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Tabela 11 — Areas dos perfis de desempenho para as 6 métricas no conjunto 2b.

D1 D2 D3 D4 D5 D6
NHCL 0,3749 0,3728 0,717 1,8667 2,4678  0,0099
NCCL 02376 02522 0,1054 2,2667 3,000l 0,0110
NECL 03469 0,3547 0,1619 1,9889 26745  0,0088
NFCL 03587 0,3604 0,1568 1,7778 22906  0,0093
NVCL 0,3260 0,3320 0,1505 2,1111 2,6263  0,0100
NNCL 03056 0,3172 0,1389 1,7445 29395 0,0103
NSCL  0,3947 0,4013 0,1844 19444 29720  0,0096
NWCL 02528 0,2585 0,1141 1,5000 3,1251 0,0102
NHNL 0,3630 0,3603 0,1659 1,8889 2,5688 0,0100
NCNL 02283 02427 0,1011 2,2667 3,3264 0,0108
NENL 0,3440 0,3491 0,1593 1,9111 3,0280  0,0088
NFNL 03439 0,3470 0,1504 1,7222  2,9650  0,0094
NVNL 03393 0,3414 0,1536 1,8111 2.8275 0,0100
NNNL 02738 0,2976 0,1261 16111 24616 0,0108
NSNL 0,3846 0,3868 0,1785 1,0000 2.7894  0,0098
NWNL 072744 02777 0,1267 1,8000 2,7615 0,0103
NHEL 0,3672 0,3697 0,1689 1,8333 2,5719 0,008
NCEL 02182 0,2316 0,0966 2,4889 23668 0,0109
NEEL 03432 0,3489 0,1582 2,0444 29573  0,0090
NFEL 03550 0,3547 0,1541 22000 2,6240  0,0094
NVEL 03344 0,3328 0,1520 2,1444 25688  0,0100
NNEL 0,278 0,2908 0,1246 1,6111 2,5800  0,0107
NSEL 0,3881 0,3893 0,1789 20000 3,0606 0,0094
NWEL 02754 0,2734 0,1256 1,8445 3,0606 0,0104
CHNE 02067 0,1997 0,0938 2,9555 3,5214 0,0136
CCNE 0,3376 0,3330 0,0887 20667 2,0233 0,0042
CENE 02009 0,1939 0,0883 2,6333 2,8159 0,0125
CFNE 0,1839 0,1750 0,0835 4,3446 4,1104 0,0144
CVNE 02485 02398 0,1012 1,9667 2,6643 0,0119
CNNE 02690 0,2626 0,0958 1,9000 2,5571  0,0103
CSNE  0,1939 0,1862 0,073 2,2666 3,3404 0,0135
CWNE 0,1826 0,1731 0,0828 4,3446 4,0902 0,0144
FHNE 0,1901 0,1817 0,0854 3,3443 3,3256 0,0142
FCNE 0,3357 0,3291 0,0887 2,0556 19775  0,0046
FENE 0,1827 0,1731 0,0820 4,1112 3,8291  0,0140
FFNE 0,1798 0,1697 0,0821 5,0778 4,5175 0,0148
FVNE 02670 0,2587 0,1010 2,7555 3,1010  0,0108
FNNE 02611 0,2541 0,0967 1,9667 25198  0,0107
FSNE 0,1943 0,1882 0,0876 2,2222 28936 0,0135
FWNE 0,1786 0,1672 0,0814 5,0778 4,5175 0,0148
NHNE 0,1905 0,1827 0,0861 3,0777 3,1593 0,0140
NCNE 0,3397 0,3310 0,0000 2,0444 20839  0,0055
NENE 0,1921 0,1825 0,0823 2,1889 3,2976 0,0132
NFNE 0,1837 0,1747 0,0831 5,0000 4,1648 0,0142
NVNE 02452 0,2381 0,0972 2,4555 29627 0,0120
NNNE 02627 0,2559 0,0967 1,9333 2,3566 0,0112
NSNE 02148 0,2048 0,0047 2,9888 3,4165 0,0133
NWNE 0,1803 0,1693 0,0814 5,0000 3,7942 0,0142
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Tabela 12 — Quantidade de vezes do melhor resultado para as 6 métricas no conjunto 2b.

D6

D1 D2 D3 D4 Db

1
0
0
0
0
0
2

NHCL

0

NCCL

NECL

NFCL

0
0
3
0

NVCL

NNCL

NSCL

NWCL 0

2
0
0
0
0
0
1

NHNL

0

NCNL

NENL

NFNL

0

NVNL

NNNL

1
0

NSNL

NWNL 0

0
0
0
0
0
0
2

NHEL

0

NCEL

NEEL

NFEL

0

NVEL

NNEL

0
0
0
0
0
0
0
0
0
0

NSEL

NWEL 0

0
0
0
0
0
0
0

CHNE

CCNE

CENE
CFNE
CVNE

CNNE

CSNE

CWNE 0
FHNE
FCNE
FENE
FFNE
FVNE

0
1
0
0
0
0
0

1

FNNE
FSNE

0

FWNE 0
NHNE

0
2

2

NCNE

0
0
0

NENE

NFNE
NVNE

0
0

NNNE 0
NSNE

0

0

NWNE 0




Tabela 13 — Pior caso no Perfil de Desempenho para as 6 métricas no conjunto 2b.

D1 D2 D3 D4 D5 D6
NHCL 1,1710 11,1585  1,0747 53000 4,1538 1,0066
NCCL 11,3828 1,3648  1,1753 53000 4,3636 1,0056
NECL 1,1757 1,1540 1,0653 5,0000 5,8182 1,0067
NFCL 1,1733 1,1654  1,0474 55000 4,3636  1,0066
NVCL 1,1927 1,1603  1,0836 5,1000 5.4545 1,0063
NNCL 1,2446 1,1958  1,1110 6,4000 4,1818 1,0056
NSCL  1,1517 1,1302 1,0074 5,0000 3,2727 1,0066
NWCL 1,3300 1,3300  1,1590 6,000 3,6364 1,0057
NHNL 12230 1,2004 1,0940 52000 4,0909 1,0069
NCNL 1,008 1,3802  1,1777 4,8000 3,9091 1,0056
NENL 11,1778 1,1756 1,0497 53000 3,7273 1,0074
NFNL 1,1823 1,1823  1,0489 54000 3,5455 1,0066
NVNL 1,1891 1,1857  1,0636 52000 3,7273  1,0059
NNNL 1,2614 1,2134  1,1125 6,5000 4,6364 1,0063
NSNL 12061 1,1846 1,0204 50000 3,6364 1,0064
NWNL 1,3480 1,3377  1,1524 54000 54545 1,0054
NHEL 1,1915 1,1591  1,0795 5,3000 4,0909 1,0063
NCEL 1,3970 1,3780  1,1749 49000 5,6364 1,0054
NEEL 11,1869 1,1744  1,0619 4,8000 52727 1,0068
NFEL 1,1687 1,1563  1,0557 52000 4,3846 1,0064
NVEL 1,1984 1,1911  1,0829 4,9000 5,5455  1,0059
NNEL 1,2763 1,2200  1,1318 6,0000 4,1818 1,0052
NSEL  1,1687 1,1416 1,0193 5,1000 3,6364 1,0068
NWEL 13119 1,3094  1,1437 6,0000 4,0909 1,0050
CHNE 1,3442 13474 1,570 6,0000 3,6364 1,0030
CCNE 1,3094 1,3068  1,1843 4,5000 4,0000 1,0144
CENE 1,3209 123145 1,519 6,3000 5,3636 1,0044
CFNE 14305 14291  1,1866 5,1000 3,8182 1,0026
CVNE 1,2578 1,2932 1,1376 57000 4,0000 1,0058
CNNE 11,3286 1,3274  1,1500 5,6000 4,0000 1,0082
CSNE  1,3699 1,3634  1,1636 6,4000 4,8462 1,0025
CWNE 14253 14228  1,1853 4,6000 3,8182 1,0027
FHNE 13751 13737 1,1671 5,000 4,5455 1,0012
FCNE 1,3080 1,3055  1,1843 4,6000 4,0000 1,0148
FENE 14305 14266 1,1866 4,4000 4,5385 1,0025
FFNE 14214 14163  1,1808 4,9000 2,7273 1,0011
FVNE 1,2526 1,2980 1,1327 4,6000 4,0000 1,0080
FNNE 11,3570 1,3442  1,1550 6,4000 4,1818  1,0091
FSNE 14047 14022 1,1769 52000 4,8182 1,0021
FWNE 14305 14305 1,1866 3,4000 2,6154 1,0001
NHNE 1,4266 1,4228 1,1855 5,7000 4,0909 1,0018
NCNE 1,2926  1,2913 1,1841 4,5000 4,0909 1,0138
NENE 14305 14279 1,1862 6,000 5,7273  1,0075
NFNE 14305 14291  1,1866 53000 3,6364 1,0032
NVNE 11,2603 1,2980 1,1356 6,5000 4,0000 1,0064
NNNE 1,2849 1,2056  1,1417 5,2000 4,0000 1,0072
NSNE 12849 1,2956  1,1304 48000 4,0000 1,0036
NWNE 14305 14305 1,1866 4,2000 4,3077 1,0033

95



Tabela 14 — Resultado Médio para as 6 métricas no conjunto cbcic.

D1 D2 D3 D4 D5 D6
NHCL 0,7325 0,7858  0,6991 24200 0,8800 0,0259
NCCL 0,6275 0,6917  0,6206 1,5300 1,3300 0,0236
NECL 0,7025 0,7717  0,7114 1,7200 1,8100 0,0229
NFCL  0,6967 0,7475  0,6798 24900 1,3400  0,0280
NVCL 0,7808 0,8125 0,7273 2,8000 1,6700 0,0181
NNCL 0,7367 0,7600  0,7276 22500 1,1200 0,0094
NSCL  0,7475 0,8075  0,7478 22700 1,7700  0,0198
NWCL 0,7450 0,7850  0,7404 1,6300 1,1900  0,0165
NHNL 06183 0,6783  0,6054 25200 1,2400 0,0384
NCNL 0,5817 0,6633  0,5850 1,0800 1,3000 0,0284
NENL 0,7358 0,7908  0,7331 2,5200 2,7200 0,0182
NFNL 0,5983 0,7075  0,6304 1,9400 1,6900 0,0325
NVNL  0,6950 0,7400  0,6755 1,7800 1,1500 0,0176
NNNL 0,6908 0,7392  0,7072 1,9900 18700 0,0138
NSNL 0,7542 0,8100 0,7619 1,6800 1,9000 0,0174
NWNL 0,7092 0,7558  0,7111 2,1800 2,7200  0,0183
NHEL 0,7133 0,7658  0,6924 25600 0,6700 0,0272
NCEL  0,6208 0,6900  0,6036 22900 1,2800  0,0240
NEEL 0,7233 0,7683  0,7148 20300 1,2600  0,0203
NFEL 0,6742 0,7492  0,6667 2,1500 1,6200 0,0273
NVEL 0,7000 0,7508  0,6715 2,7200 1,5600 0,0189
NNEL 0,7317 0,7675 0,7375 2,0200 1,3000 0,0103
NSEL  0,6834 0,7333  0,6745 2,0100 0,8300  0,0219
NWEL 0,6867 0,7467  0,7032 1,3900 1,4600 0,0172
CHNE 0,8283 08475  0,7977 1,0900 1,1900 0,0198
CCNE 0,8033 0,8408  0,7792 1,3500 1,3100 0,0278
CENE 0,7492 0,8067 0,7363 2,0800 0,6800 0,0369
CFNE 0,720 0,7900  0,7109 2,2000 1,3600 0,0321
CVNE 0,8300 0,8642  0,7982 2,4600 2,0700  0,0254
CNNE 0,8308 0,8650  0,8227 1,6800 24100 0,0177
CSNE  0,7708 0,8325  0,7760 1,7600 2,1200  0,0250
CWNE 0,8317 0,8708 0,8288 24000 1,1700 0,0187
FHNE 0,7900 0,8233  0,7493 23500 1,0100 0,0185
FCNE 0,7725 0,8100  0,7346 1,7000 1,7900  0,0251
FENE 0,7167 0,7967  0,7220 2,3400 1,5600 0,0341
FFNE 0,7250 0,7867 0,710  2,1200 2,2800  0,0235
FVNE 08058 0,8400 0,7619 2,3800 1,3400  0,0207
FNNE 0,8308 0,8558 0,8028 24300 14400 0,0173
FSNE  0,7692 0,8083  0,7356  2,5900  0,9500  0,0201
FWNE 0,8100 0,8450 0,7863 1,2500 0,8900 0,0148
NHNE 0,7800 0,8225  0,7651 1,8000 1,2800 0,0246
NCNE 0,7550 0,8108  0,7515 1,8100 1,6900 0,0301
NENE 0,7383 0,7958  0,7262 1,7100 1,8900  0,0385
NFNE 0,7275 0,7892  0,7174 1,2200 0,9400 0,0350
NVNE 07766 0,8375  0,7697 25600 1,5700  0,0252
NNNE 0,7950 0,8333  0,7869 1,3500 1,3900 0,0189
NSNE 07717 0,8242  0,7670 2,0900 1,3300  0,0261
NWNE 0,8217 0,8683 0,8097 24900 1,8800  0,0202
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Tabela 15 — Areas dos perfis de desempenho para as 6 métricas no conjunto cbeic.

g D1 D2 D3 D4 D5 D6

NHCL 0,3966 02524 0,3117 2,5243 3,3492 0,0112
NCCL 023032 0,1671 02430 3,3643 29250 0,0124
NECL 0,3719 02408 0,3243 3,1981 25136 0,0127
NFCL  0,3652 02177 0,2948 2,5538 2,9023 0,0101
NVCL 0,4398 0,2761 03353 2,1909 2,6311 0,0151
NNCL 0,024 0,2303 0,3389 2,6827 3,1273 0,0194
NSCL 04118 02727 0,3556 26286 2,5205 0,0143
NWCL 04107 02536 03512 3,3520 3,0826 0,0159
NHNL 02948 0,1547 0,2305 2,4897 3,0288  0,0050
NCNL 0,2598 0,1403 02116 3,7854 2,9955 0,0099
NENL 0,029 02594 0,3447 24890 1,6667 0,0151
NFNL 02780 0,1812 02524 3,1286 2,6197 0,0079
NVNL  0,3624 02099 0,2894 3,1124 3,1068 0,0153
NNNL 03626 02126 03234 3,0185 24606 0,0173
NSNL  0,4183 0,2759 0,3688 3,3038 24402 0,0154
NWNL 0,3783 02274 03265 28664 1,6841 0,0150
NHEL 03792 02337 0,057 24490 3,5212 0,0106
NCEL 02970 0,1644 02284 26771 29765 0,0121
NEEL 0,3888 0,2369 0,3262 2,027 3,0083 0,0140
NFEL 03445 02184 0,2836 2,8554 2,6780 0,0105
NVEL 03672 02199 02874 23035 27371 0,0147
NNEL 0,3957 02357 0,3458 29510 29818 0,0190
NSEL  0,3528 02048 02906 3,0124 3,38904 0,0132
NWEL 0,3581 02189 03184 3,5714 27962 0,0155
CHNE 0,4833 0,094 10,3997 3,0450 3,0417 0,0142
CCNE 04611 03033 03841 3,5234 29644 0,0102
CENE 04130 02725 03463 28745 3,5083 0,0057
CFNE 03875 02562 03217 2,6580 2,9493  0,0081
CVNE 04849 03242 03996 26125 2,2606 0,0115
CNNE 04856 0,3251 0,4207 3,3029 19765 0,0153
CSNE 04333 02963 0,3810 3,1198 2,2038 0,0117
CWNE 0,4864 0,3304 0,4262 26199 3,0826 0,0148
FINE 04489 02865 0,3549 25666 3,2447 0,0149
FCNE 04340 02755 03427 3,3107 2,5310 0,0116
FENE 0,3833 02624 03314 26079 27076 0,0071
FFNE 0,3903 0,2532 0,3200 2,9275 2,0947 0,0124
FVNE 04627 023018 03654 26617 29235 0,0138
FNNE 0,4854 0,3164 0,4020 2,5905 28220 0,0155
FSNE 04296 02728 03424 24273 32818  0,0141
FWNE 04669 03063 03877 3,6550 3,3030 0,0167
NHNE 0,413 02871 0,3718 3,1108 2,9803 0,0118
NCNE 04187 02761 03595 3,2216 2,6190  0,0091
NENE 04029 02619 0,3364 32751 24440  0,0049
NFNE 03925 02554 03273 3,7185 3,2864 0,0067
NVNE 04378 02997 03745 24410 27258 0,0116
NNNE 04545 02969 0,3905 3,5092 2,8841 0,0147
NSNE 04343 02885 0,3729 29186 2,9227 0,0111
NWNE 0,4778 0,3280 0,4096 2,5259 24424 0,0141
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Tabela 16 — Quantidade de vezes do melhor resultado para as 6 métricas no conjunto cbcic.

D6

D1 D2 D3 D4 Db

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

NHCL

0

NCCL

NECL

NFCL

0
0
0
1

NVCL

NNCL

NSCL
NWCL

NHNL

0

NCNL

NENL

NFNL

0

NVNL

NNNL

0
1

NSNL

NWNL 0

0
0
0
0
0
1
0

NHEL

0

NCEL

NEEL

NFEL

0

NVEL

NNEL

0
0

NSEL

NWEL 0

0

CHNE

1
0
0
0

1
0
0

CCNE

CENE
CFNE
CVNE

1
1
0

CNNE

0
3

CSNE

CWNE 3
FHNE
FCNE
FENE
FFNE
FVNE

0
0
0
0

1

1
2
0

FNNE
FSNE

1

FWNE 0
NHNE

0

0

0
0
0
0

NCNE

NENE

NFNE
NVNE

1
0

NNNE 0
NSNE

0

1

NWNE 1
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Tabela 17 — Pior caso no Perfil de Desempenho para as 6 métricas no conjunto chcic.

D1 D2 D3 D4 D5 D6
NHCL 1,2686 1,2500 12562 6,1000 3,4167 1,0181
NCCL 11,3307 12727 13522 5,1000 52727 1,0116
NECL 12128 1,1971 12047 56364 53636 1,0114
NFCL 1,2397 12149 12976 58182 5,364 1,0157
NVCL 11,1984 11,1819 1,3023 6,1000 4,3636 1,0079
NNCL 1,2409 12537 12540 54000 3,4167 1,0022
NSCL  1,1492 1,1288 1,1292 6,0000 5,3636 1,0101
NWCL 1,1986 1,1897 1,1581 5,1818 4,2500  1,0067
NHNL 1,3283 1,2656 13371 6,1000 5,091 1,0191
NCNL 1,5290 1,3554 14382 57000 52500 1,0143
NENL 1,2409 1,1865 12160 5,9000 5,7273  1,0087
NFNL 1,3066 12727 153219 52000 5,6364 1,0173
NVNL 11,3802 11,3554 14123 4,6364 4,7500 1,0081
NNNL 1,2057 12197 1,1894 6,4000 54545 1,0076
NSNL  1,2057 1,1172 1,1429 58000 59091 1,0108
NWNL 1,3358 1,2273 1,1895 59000 5,9091 1,008
NHOEL 1,2326 1,2067 12783 55000 3,8182 1,0124
NCEL 11,3389 11,3307 1,3953 6,5000 5,9091 1,0125
NEEL 1,2093 1,1575 1,1946 4,8182 3,8182 1,0027
NFEL 1,3059 1,2315 13129 59000 5,0909 1,0141
NVEL 11,2558 1,2362 13034 5,3000 5,8182 1,0088
NNEL 1,2686 12575 1,1946 6,3000 5,1818 1,0027
NSEL 12727 12273 12805 6,1000 4,7273 1,0116
NWEL 1,3656 12652 12159 4,8182 58182 1,0080
CHNE 1,0652 1,0630 1,0478 4,5000 4,6364 1,0078
CCNE 1,1419 11,1288 1,1230 4,5000 5.6364 1,0155
CENE 12015 1,1364 1,1598 6,1000 5,1818 1,0201
CFNE 1,1819 11,1819 12654 6,000 5,2500 1,0185
CVNE 1,0042 1,1015 1,0828 4,8000 4,7273 1,0130
CNNE 1,0652 1,0630 1,0478 59091 5,6364 1,0088
CSNE 1,641 11,1168 1,1135 51000 5,182 1,0136
CWNE 1,1473 11,1024 1,0499 54545 4,6364 1,0078
FONE 1,1571 1,1405 12417 5,7000 5,4545 1,0087
FCNE 1,1323 11,1439 12300 4,3000 5,6364 1,0142
FENE 12149 11,1488 12647 6,0000 58182 1,0186
FFNE 1,2397 11,1736 13247 5,7000 5,9091 1,0135
FVNE 1,1819 1,1405 12742 54000 54545 1,0124
FNNE 1,0909 1,0827 1,1491 47000 4,9091 1,0074
FSNE  1,2231 1,1653 12914 54000 4,9091 1,0104
FWNE 1,1086 1,0909 1,1551 4,3000 56364 1,0063
NHNE 11,1212 1,1024 1,0940 6,2000 5,3636 1,0118
NCNE 11,1865 1,1439 1,1400 6,0000 4,9091 1,0184
NENE 1,2089 11,1970 1,1881 4,6000 54167 1,0197
NFNE 1,2239 11,1653 12679 5,1000 4,9091 1,0163
NVNE 1,515 1,1327 1,1243 55000 5,6364 1,0119
NNNE 1,1163 1,0788 1,0618 4,6000 52500 1,0094
NSNE 11,1492 11,0859 1,0988 53000 5,3636 1,0136
NWNE 1,1163 1,0788 1,0618 55455 57273  1,0098




Tabela 18 — Resultado Médio para as 6 métricas no conjunto phy.

D1 D2 D3 D4 D5 D6
NHCL 0,5055 05672 0,5310 29410 3,081 0,0253
NCCL 04932 05403 0,5099 2,7067 3,0295 0,0164
NECL 04995 0,5749 05187 27657 3,0124  0,0404
NFCL 04947 05649 05216 29495 3,0905  0,0295
NVCL 04875 05424 05133 28343 29571  0,0170
NNCL 04875 05297 0,5024 27276 3,0267 0,0158
NSCL 04922 05677 05226 28333 29276 0,0310
NWCL 04920 05566 0,5151 29305 2,9257 0,0279
NHNL 05023 05693 0,5232 28810 2,8990 0,0294
NCNL 055058 05668 0,5298 29724 29971  0,0195
NENL 05099 05719 05220 29105 3,0114  0,0336
NFNL 04923 05645 05166 29333 3,0114 0,0301
NVNL 05158 0,5726 05297 28333 2,942  0,0265
NNNL 0,5162 05678 0,5325 2,7476 2,8981 0,0178
NSNL 055000 05649 05237 2,8238 29743  0,0256
NWNL 04925 05570 05140 2,9019 2,9562  0,0283
NHEL 05015 05672 05258 29676 3,0200 0,0295
NCEL 04979 05533 05188 28381 29771  0,0183
NEEL 04973 0,5742 05231 2,8029 29324 0,0360
NFEL 04938 05661 0,5195 2,9400 3,0771  0,0304
NVEL 0,5050 0,5598 0,5271 2,9619 29514 0,0215
NNEL 04927 05464 05177 2,908 2,8895 0,0170
NSEL 04957 055665 05183 29657 3,0190  0,0330
NWEL 04932 05623 05205 29238 3,0067  0,0286
CHNE 05025 05318 0,5253 2,6410 2,8400 0,0114
CCNE 05517 05983 05553 2,6495 2.8619  0,0183
CENE 05541 06138 05537 27257 3,0248  0,0408
CFNE 04999 05645 05212 28781 3,0219  0,0272
CVNE 0,5807 0,6155 0,5678 2,5057 29133 0,0209
CNNE 055587 05995 05565 2,5819 3,0219  0,0178
CSNE 055019 05664 0,5198 2,7514  2,9981  0,0267
CWNE 04963 055558 05185 28533  3,0086  0,0246
FOINE 05009 05314 05267 2,7752 2,8057 0,0112
FCNE 05527 05995 05553  2,6067 2,9190  0,0189
FENE 05493 0,6192 05567 2,6790 29152  0,0406
FFNE 05013 05684 05231 29143 29171  0,0258
FVNE 0,5786 06166 0,5678 2,4895 28514  0,0209
FNNE 05573 05945 05551 25371 2.8648  0,0173
FSNE 05085 05685 05221 27162 2,9210  0,0251
FWNE 04997 05534 05187 28410 3,0352  0,0223
NHNE 04970 05321 0,5260 2,8229 28210 0,0110
NCNE 05602 05978 0,5564 2,4943 28762 0,0174
NENE 05544 0,6190 05536 26143 2,9705 0,0421
NFNE 04994 05638 05212 28400 2.8543  0,0271
NVNE 0,5735 06114 0,5666 2,5190 2,8029 0,0193
NNNE 05556 0,5983 0,5581 25162 2,9610 0,0167
NSNE 055109 055699 05256 28181 2,9248  0,0252
NWNE 04998 05617 05259 28314 2,9943  0,0235
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Tabela 19 — Areas dos perfis de desempenho para as 6 métricas no conjunto phy.

D1 D2 D3 D4 D5 D6
NHCL 0,2255 0,1855 0,1643 0,2648 0,2395 0,0246
NCCL 02163 0,1651 0,1490 0,3233 0,2367 0,0291
NECL 02207 0,1911 0,1551 0,3086 0,2409 0,0171
NFCL 02169 0,1833 0,1571 0,2626 0,2218  0,0225
NVCL 02120 0,1666 0,1514 0,2914 0,2543  0,0288
NNCL 02123 0,1572 0,1436 0,3181 0,2374 0,0294
NSCL 02151 0,1857 0,1579 0,2917 0,2615 0,0218
NWCL 02152 01772 0,1526 02674 0,2620 0,0233
NHNL 02226 0,1867 0,1583 0,2798 0,2685  0,0226
NCNL 02250 0,1847 0,1631 0,2569 0,2446  0,0275
NENL 0,2284 0,1889 0,1576 0,2724 0,2411  0,0205
NFNL 0,2152 0,1832 0,1536 0,2667 0,2411  0,0223
NVNL 02327 0,1893 0,1631 02917 0,2578  0,0240
NNNL 0,2331 0,1859 0,1654 0,3131 0,2687 0,0284
NSNL 02210 0,1835 0,1588 0,2940 0,2502  0,0245
NWNL 02155 01778 0,1519 02745 0,2546 0,0231
NHEL 02221 0,1852 0,1603 0,2581 0,2390 0,0226
NCEL 02194 01745 0,1551 0,2905 0,2495  0,0281
NEEL 02187 0,1905 0,1583 0,2993 0,2604 0,0193
NFEL 02164 0,1842 0,1555 0,2650 0,2251  0,0221
NVEL 0,2245 0,1796 0,1611 02595 0,2557  0,0265
NNEL 02158 0,1696 0,1545 0,2729 0,2708 0,0288
NSEL 02176 0,1847 0,1548 0,258 0,2392  0,0208
NWEL 02163 0,1817 0,1566 0,2691 0,2423  0,0230
CHNE 02226 0,1582 10,1598 0,3398 0,2829 0,0316
CCNE 02602 02095 0,1823 0,3376 0,2776 0,0281
CENE 02618 02212 01811 0,318 0,2378 0,0169
CFNE 02209 0,1830 0,1570 0,2805 0,2385  0,0237
CVNE 0,2817 0,2226 0,1915 0,3736 0,2650 0,0268
CNNE 02653 02104 0,1832 0,3545 0,2385  0,0284
CSNE  0,2227 10,1847 0,1561 0,3121 0,2444  0,0239
CWNE 02183 0,1766 0,1549 0,2867 0,2418  0,0250
FOINE 02214 0,1579 0,1608 0,3062 0,2913 0,0317
FCNE 02612 02105 0,1824 0,3483 0,2636  0,0278
FENE 0,2582 0,2252 0,1832 0,3302 0,2646 0,0170
FFNE 02220 0,1861 0,1584 02714 0,2641 0,024
FVNE 0,2801 02235 0,1914 0,3776 0,2801 0,0268
FNNE 02642 02065 0,1821 0,3657 0,2769  0,0286
FSNE 02274 0,1862 0,1577 0,3210 0,2632  0,0248
FWNE 02206 0,1747 0,1551 0,2898 0,2353  0,0261
NHNE 02187 0,1585 0,1603 0,2943 0,2876 0,0318
NCNE 02665 02092 0,1831 0,3764 02741 0,0286
NENE 02621 0,2250 0,1809 0,3464 0,2511 0,0163
NFNE 02207 0,1827 0,1570 0,2900 0,2794  0,0238
NVNE 0,2766 02198 0,1907 0,3702 0,2920 0,0277
NNNE 02630 02095 0,1843 0,3710 0,2534  0,0289
NSNE 02291 0,1873 0,1602 0,2955 0,2622  0,0247
NWNE 02208 0,1810 0,1604 0,2921 0,2453  0,0256
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Tabela 20 — Quantidade de vezes do melhor resultado para as 6 métricas no conjunto phy.

D1 D2 D3 D4 Db

-
S

NHCL 5 7T 9 12 7 0
NCCL 1 2 3 18 5 2
NECL 1 3 1 12 9 0
NFCL 1 2 3 9 5 0
NVCL 1 1 0 13 12 4
NNCL 0 0 2 19 4 5
NSCL 1 0 1 5 6 0
NWCL 1 1 1 8§ 8 0
NHNL 2 4 3 10 10 O
NCNL 2 3 1 1210 O
NENL 5 2 4 9 8 0
NFNL 3 4 2 8 4 O
NVNL 3 4 3 9 7 0
NNNL 4 2 3 19 8 3
NSNL 2 3 2 0 7 0
NWNL 7 2 2 10 5 0
NHEL 2 7T 5 5 9 0
NCEL 3 4 4 14 6 1
NEEL 4 2 2 9 6 O
NFEL 0 3 2 1 2 0
NVEL 2 0O 3 9 S 0
NNEL 1 1 2 9 10 3
NSEL 4 2 3 11 6 0
NWEL 1 3 4 6 10 0
CHNE 1 0 1 31 18 29
CCNE 4 4 1 12 10 1
CENE 6 7 1 6 7 0
CFNE 0 0 O 1 5 0
CVNE 10 6 1 15 6 0
CNNE 8 3 4 25 6 4
CSNE 0 0 0 7T 4 0
CWNE 2 0 0 12 4 0
FHNE 1 0 0 23 21 35
FCNE 5 3 4 13 14 1
FENE 10 14 3 7 4 0
FFNE 1 1 0 8 120
FVNE 12 7 6 18 14 0
FNNE 6 4 0 17 12 2
FSNE 0 2 0 1210 0
FWNE 0 1 0 11 3 1
NHNE 0 0 0 24 24 33
NCNE 3 7 4 26 13 2
NENE 9 6 0 1 2 0
NFNE 0 1 2 21 6 O
NVNE 10 9 7 13 10 2
NNNE 5 4 7 23 14 3
NSNE 1 3 2 9 9 0
NWNE 0 1 0 15 9 0




Tabela 21 — Pior caso no Perfil de Desempenho para as 6 métricas no conjunto phy.

D1 D2 D3 D4 D5 D6
NHCL 1,2167 12130 1,1606 1,5000 1,4634 1,0136
NCCL 1,2294 12315 1,1669 1,5000 1,4634 1,0111
NECL 12728 11,1944 1,1746 1,5000 1,4634 1,0308
NFCL 1,2845 172143 1,1867 1,5000 1,4634 1,0236
NVCL 1,2500 1,2380 12277 1,5000 1,4634 1,0111
NNCL 1,2501 1,2408 1,1863 1,5000 1,4634 1,0114
NSCL  1,2455 11,1944 1,1546 1,5000 1,4634 1,0236
NWCL 1,2478 1,1880 1,1715 1,5000 1,4634 1,0269
NHNL 12845 12281 12057 1,5000 1,4634 1,0214
NCNL 12728 12315 1,1991 1,5000 1,4634 1,0116
NENL 1,2660 1,1965 1,1638 1,5000 1,4634 1,0278
NFNL 1,258 1,208 1,1528 1,5000 1,4634 1,0220
NVNL  1,3028 1,2204 1,1946 1,5000 1,4634 1,0205
NNNL 1,2364 12019 1,1629 1,5000 1,4634 1,0116
NSNL 11,3211 12202 11,1919 1,5000 1,4634 1,0217
NWNL 1,2364 12019 1,1829 1,5000 1,4634 1,0200
NOEL 12672 1,1982 1,1902 1,5000 1,4634 1,0227
NCEL 1,3273 12685 12107 1,5000 1,4634 1,0123
NEEL 1,2807 11,1926 1,1931 1,5000 1,4634 1,0266
NFEL 1,2010 12222 12319 1,5000 1,4634 1,0250
NVEL 1,2368 1,1965 1,1782 1,5000 1,4634 1,0139
NNEL 11,2456 12130 1,1782 1,5000 1,4634 1,0123
NSEL  1,2545 12143 1,1797 1,5000 1,4634 1,0250
NWEL 1,2819 12110 1,1832 1,5000 1,4634 1,0205
CHNE 12455 12500 1,1656 1,5000 1,4634 1,0099
CCNE 1,735 11,1111 1,1301 1,5000 1,4634 1,0164
CENE 1,1917 11,1111 1,1101 1,5000 1,4634 1,0341
CFNE 1,2273 12130 1,1687 1,5000 1,4634 1,0180
CVNE 1,1538 1,1240 1,1051 1,5000 1,4634 1,0161
CNNE 1,1538 1,1203 11,1312 1,5000 1,4634 1,0125
CSNE 12212 11,1926 1,1659 1,5000 1,4634 1,0164
CWNE 1,2545 12123 11,1987 1,5000 1,4634 1,0183
FHNE 12752 12294 11,1744 1,5000 1,4634 1,0147
FONE 1,2052 11,1417 1,1374 1,5000 1,4634 1,0133
FENE 1,2636 1,1293 1,1077 1,5000 1,4634 1,0308
FFNE 12185 12130 1,1704 1,5000 1,4634 1,0172
FVNE 1,1322 1,1293 1,1156 1,5000 1,4634 1,0158
FNNE 11,1795 1,1466 1,1401 1,5000 1,4634 1,0136
FSNE  1,2212 11,1965 1,1663 1,5000 1,4634 1,0175
FWNE 1,2368 12054 1,1840 1,5000 1,4634 1,0166
NHONE 12202 12315 1,1577 1,5000 1,4634 1,0089
NCNE 1,557 1,1513 1,1298 1,5000 1,4634 1,0125
NENE 1,1639 1,1240 1,1060 1,5000 1,4634 1,0335
NFNE 1,2631 1,1965 1,1597 1,5000 1,4634 1,0198
NVNE 1,1515 1,1405 1,1107 1,5000 1,4634 1,0152
NNNE 1,1826 1,1393 1,1313 1,5000 1,4634 1,0133
NSNE 11,2845 11,2019 1,1749 1,5000 1,4634 1,0178
NWNE 1,2455 12232 11,1666 1,5000 1,4634 1,0202
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Tabela 22 — Resultado Médio para as 6 métricas no conjunto hcgd.

D1 D2 D3 D4 D5 D6

NIHCL 0,5271 0,6167 0,5298 23333  2,5000  0,0231
NCCL 04510 04969 04707 12333  0,7167 0,0059
NECL 0,5198 0,5771 05115 1,8000  2,0667  0,0263
NFCL 0,5344 0,5948 05264 22333  1,3167  0,0266
NVCL 04864 0,5365 0,919 14333  2,0167  0,0150
NNCL 04583 0,4927 04699 0,6167 1,1500  0,0048
NSCL 04729 0,5208 04761 1,0333 18167  0,0190
NWCL 04552 0,5104 04724 3,1333  2,1333  0,0150
NINL 0,5229 0,5906 0,5189 25667  2,0667  0,0256
NCNL  0,4479 04771 04603 1,6500 0,9167 0,0039
NENL 0,5229 0,5750 04943 22500  1,8000  0,0270
NFNL 0,5208 0,5698 05110 1,3667  3,0667  0,0242
NVNL 04302 04729 04422 10333 16167  0,0148
NNNL 04188 04364 04244 14667 0,9167 0,0026
NSNL  0,4896 0,5604 04857 1,1333 2,0667  0,0417
NWNL 0,740 0,5636 04801 1,2667  1,7833  0,0413
NHEL 0,5427 0,6135 0,5328 22167 2,1333  0,0243
NCEL 0,5166 0,5594 05263 1,2667 0,2333  0,0063
NEEL 0,5094 0,5646 0,991 23667  0,3500  0,0270
NFEL 0,5220 0,5958 0,5236 24333 14667  0,0256
NVEL 0,802 0,5427 04978 1,7000  0,3833  0,0222
NNEL 05156 0,5354 055125 1,1833  2,0167  0,0052
NSEL  0,5031 0,5511 04961 22667  2,3833  0,0226
NWEL 0,604 0,5135 04623 0,9833 16833  0,0237
CHNE 0,4948 0,5208 005051 16167 0,1333 0,0074
CCNE 04510 04656 04532 1,5833  2,0167  0,0026
CENE 0,917 0,5344 055046 1,2000  1,2000  0,0168
CFNE 04875 0,5396 0,5097 19167 13833  0,0114
CVNE 0,417 04635 04522 13167 1,0333  0,0031
CNNE 04531 04708 04621 0,9667 1,3667  0,0028
CSNE 04594 04750 04644 1,0333 0,7833  0,0036
CWNE 04687 0,5156 04835 19167 1,8333  0,0133
FONE 0,4958 0,5177 05054 0,4833  2,1333  0,0060
FCNE 0,427 04667 04507 0,7833  0,7333  0,0031
FENE 0,4979 0,5375 05028 1,1167 1,6833  0,0198
FFNE 0,4948 0,5208 0,5056 0,1667 14500  0,0069
FVNE 04594 04771 04648 1,0500  1,0000  0,0035
FNNE 04510 04708 04572 0,9333  1,1833  0,0027
FSNE 04552 04740 04633 -0,1333 -0,3833 0,0031
FWNE 04552 0,5000 04736 22833  1,6333  0,0119
NINE 0,4990 0,5188 05074 -0,4500 1,3500  0,0076
NCNE 0,437 04635 04561 0,7167 0,6667  0,0022
NENE 0,916 0,5313 05031 1,3333  1,0833  0,0168
NFNE 0,5104 0,5323 0,5158 1,1833  1,8000  0,0086
NVNE 04573 04729 04614 1,7000 -0,0667 0,0039
NNNE 0,4458 0,4709 04585 1,7000 15667  0,0023
NSNE 04584 04739 04587 0,8500 08167  0,0043
NWNE 0,4427 0,4604 04497 0,1500 1,7333  0,0084
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Tabela 23 — Arecas dos perfis de desempenho para as 6 métricas no conjunto hegd.

D1 D2 D3 D4 D5 D6
NHCL 0,1795 0,2310 0,1495 22061 1,8889 0,0153
NCCL 0,1238 0,1422 0,100 3,2864 3,4988 0,0239
NECL 0,1732 02015 0,1363 27939 2,2903  0,0137
NFCL 0,1840 02145 0,1468 23287 29116 0,0135
NVCL 0,1495 0,1713 0,1226 3,1182 2,3232 0,0193
NNCL 0,1293 0,1392 0,1075 3,9181 3,1250 0,0244
NSCL  0,1400 0,1600 0,1118 34971 25114 0,0173
NWCL 0,1269 0,1522 0,1091 14211 2,1781 0,0194
NINL 0,1759 0,2112 0,1414 19818 22450 0,0140
NCNL 0,1214 0,1277 0,009 2,9469 3,2930  0,0248
NENL 0,1756 0,1994 0,1242 2,3304 24697 0,0133
NFNL  0,1744 0,1958 0,1360 3,1833 1,3599  0,0147
NVNL 0,1089 0,1238 0,0876 2,6061 2,6502 0,0195
NNNL  0,1007 0,0975 0,0756 3,1000 3,3016 0,0255
NSNL  0,1514 0,1888 0,1181 3,3923 22779  0,0060
NWNL 0,1407 0,1911 0,1142 32591 2,5240  0,0062
NHEL 0,1907 0,2289 0,1514 23227 22159 0,0147
NCEL 0,1712 0,1882 0,1467 3,2878 3,9002 0,0237
NEEL 0,1663 0,1917 0,1274 2,1834 3,8005 0,0133
NFEL 0,1759 02153 0,1449 2,1031 2,7879  0,0140
NVEL 0,1453 01759 0,1270 2,8606 3,7728  0,0157
NNEL 0,1707 0,1704 0,1370 3,3607 2,3005 0,0242
NSEL  0,1614 0,1816 0,1254 22758 1,9596 0,0155
NWEL 0,1312 0,1541 0,1021 3,5470 2,6300 0,0150
CHNE 0,1555 0,1591 0,1317 2,946 3,9848 0,0231
CCNE 0,1243 0,1191 0,0957 3,0075 23245 0,0255
CENE 0,1533 0,1695 0,1314 3,3864 3,0720 0,0184
CFNE 0,1505 0,1732 0,1349 26712 28713 0,0211
CVNE 0,1176 0,1180 0,0952 3,2803  3,2096  0,0253
CNNE 0,1254 0,1228 0,1018 3,5530 2.8952  0,0254
CSNE  0,1298 0,1264 0,1039 3,4908 3,3939  0,0250
CWNE 0,1366 0,1557 0,1168 2,6606 24936  0,0202
FINE 0,1562 0,1571 0,1319 4,0425 22171 0,0238
FCNE 0,1182 0,1198 0,0939 3,8030 3,4962  0,0252
FENE 0,1577 0,1716 0,1301 34530 2,6326  0,0169
FFNE 0,1556 0,1596 0,1321 4,3833 28358 0,0234
FVNE 0,1303 0,1277 0,1040 34879 3,2133 0,0251
FNNE 0,1243 0,1230 0,098 3,5893 3,0694 0,0255
FSNE  0,1272 0,257 0,1031 4,6818 4,4596 0,0253
FWNE 0,1271 0,1439 0,1096 23015 2,6767  0,0208
NHNE 0,1583 0,1579 0,1333 4,9833 29369 0,0230
NCNE 0,1189 0,1177 0,0980 3,8697 3,5505 0,0257
NENE 0,1534 0,1674 0,1304 32652 3,1302 0,0184
NFNE 0,1666 0,1680 0,1391 33833 2,5265 0,0225
NVNE 0,1286 0,1247 0,1017 2,8909 4,1780 0,0249
NNNE 0,1204 0,1227 0,0993 2,8575 2,7058 0,0256
NSNE 0,1295 0,1253 0,0996 3,6667 3,3687  0,0247
NWNE 0,1184 0,1145 0,0929 4,3726 2,5467 0,0226
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Tabela 24 — Quantidade de vezes do melhor resultado para as 6 métricas no conjunto hcgd.

D6

D1 D2 D3 D4 Db

0
0
0
1
0
0
0

NHCL

0

NCCL

NECL

NFCL

0
0
0
0

NVCL

NNCL

NSCL

NWCL 0

0
1
2
0
0
0
0

NHNL

0

NCNL

NENL

NFNL

0

NVNL

NNNL

0
0

NSNL

NWNL 0

2
0

NHEL

0

NCEL

1
0
0
0
0

NEEL

NFEL

0

NVEL

NNEL

0
0
0
0
0
0
0
0
0
0

NSEL

NWEL 0

0
0
0
0
0
0
0

CHNE

CCNE

CENE
CFNE
CVNE

CNNE

CSNE

CWNE 0
FHNE
FCNE
FENE
FFNE
FVNE

0
0
0
0
0
0
0

0

FNNE
FSNE

0

FWNE 0
NHNE

0
0
0
0
0

0

NCNE

NENE

NFNE
NVNE

0
0

NNNE 0
NSNE

0

0

NWNE 0
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Tabela 25 — Pior caso no Perfil de Desempenho para as 6 métricas no conjunto hegd.

D1 D2 D3 D4 D5 D6
NHCL 1,0034 1,0493 1,0424 6,4000 4,8182 1,0143
NCCL 1,1814 1,1574 1,1186 6,0000 5,0000 1,0030
NECL 1,1255 11,0846 10733 6,0000 5,1818 1,0162
NFCL 1,0959 1,0548 1,0506 6,1000 5,0909 1,0154
NVCL 1,348 11,1009 1,0875 4,6000 57273 1,0117
NNCL 1,1720 11,1502 1,1154 57000 52500 1,0030
NSCL  1,1441 1,1315 1,1072 58000 4,9091 1,0106
NWCL 1,1917 11,1527 1,1151 6,3000 5,9091  1,0092
NHNL 11,1250 1,0673 1,0745 6,4000 5,0909 1,0163
NCNL 1,2328 12037 1,1505 58182 4,6364 1,0016
NENL 11,1096 1,1058 1,0729 54000 4,9091 1,0166
NFNL 11,1096 1,1058 1,0729 4,8000 54545 1,0144
NVNL 1,1953 1,1944 1,1431 6,3000 5,1818 1,0111
NNNL 1,2054 12019 1,1577 5,5000 5,8182 1,0016
NSNL  1,1627 11,0962 1,0912 6,4000 5,0909 1,0224
NWNL 1,1581 1,0939 1,0979 6,2000 5,6364 1,0264
NHEL 1,0937 1,0529 1,0448 509000 2,8182 1,0145
NCEL 1,1069 1,0892 1,0640 5,7000 2,8182 1,0033
NEEL 1,1206 1,1442 1,1199 6,0000 3,0000 1,0152
NFEL 1,0889 1,0529 1,0544 4,6000 45455 1,0148
NVEL 1,1415 1,1250 1,0855 6,0000 3,3636 1,0144
NNEL 1,1050 11,1202 1,0723 4,6000 5,1818 1,0033
NSEL 11,1162 1,1442 1,0980 6,5000 54545 1,0144
NWEL 1,1278 1,1491 1,1103 52000 52727 1,0146
CHNE 1,1096 1,1298 1,0728 4,8000 3,7273 1,0030
CCNE 1,1689 11,1806 1,1107 6,2000 5,6364 1,0030
CENE 1,1162 1,1298 10739 5,6000 4,7500 1,0153
CFNE 11,1096 1,1491 10808 58000 5,6364 1,0086
CVNE 11,1644 1,1667 1,1097 58182 4,6364 1,0030
CNNE 1,2009 12130 1,1415 5,7000 4,3636  1,0034
CSNE  1,1963 11,2037 11,1345 4,8000 43636 1,0030
CWNE 1,1441 11,1436 1,0927 6,0000 5,0909  1,0092
FINE 1,1162 1,1442 1,0733 5,3000 5,1818 1,0046
FCNE 1,1917 11,2083 1,1328 5,1818 4,7500  1,0037
FENE 1,1255 11,1298 1,0789 6,2000 4,7500 1,0132
FFNE 1,1162 1,1346 1,0740 3,9000 5,1818 1,0026
FVNE 12146 12315 11557 4,9000 5,7273 1,0032
FNNE 1,1162 1,1346 1,0733 6,2000 2,2727 1,0026
FSNE  1,1917 1,1991 1,1298 3,9000 2,2727 1,0026
FWNE 1,1415 1,1635 1,1108 6,0000 4,6667 1,0094
NHONE 1,1162 1,1394 1,0676 2,7000 2,6364 1,0026
NCNE 12100 12176 1,1460 5,818 4,3333 1,0026
NENE 1,1162 1,1174 1,0696 59091 52727 1,0132
NFNE 11,1162 1,1174 1,0676 4,9000 4,7500  1,0082
NVNE 1,1872 1,1991 1,1302 54545 2,6364 1,0033
NNNE 11,1872 11,2037 1,1277 59000 5,3636 1,0032
NSNE 11,1734 11,1806 1,1128 6,5000 5,9091  1,0035
NWNE 1,1651 12500 1,1734 6,5000 5,9091 1,0101
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8 Discussoes

Os resultados obtidos neste trabalho apontaram as limitagoes presentes nas métricas
atuais de avaliacao para BCI. Por mais que existam diversas métricas para avaliacao de
BCI, como apontado na Tabela 5, elas nao consideram o atraso de classifica¢ao no problema.
Mesmo quando a métrica é aplicada em varias janelas, os trabalhos apenas utilizam o
melhor janelamento, sem considerar o tempo em que ele ocorreu ou fazem a média de

todos os janelamentos.

Seguindo a mesma avaliagdo comumente usada pela literatura, pode-se observar
algumas limitagoes. Por exemplo, modelos que apresentam comportamento peridédico na
classificagdo, como a EEGNet, atingiram resultados altos para a avaliagdo em 2,5 segundos.
Porém, quando avaliados ao longo do trial, outros classificadores apresentaram resultados

até 2 vezes melhores que a EEGNet.

Os resultados da melhor janela de tempo para cada método corroboram a escolha
de 2,5 segundos feita pela literatura. Das janelas possiveis, a janela que obteve o maior
kappa com mais frequéncia foi justamente no final da janela de treinamento (entre 0,5 e
2,5 segundos). Isso indica um favorecimento dos métodos que treinam nessa janela. Por
exemplo, um modelo que treina com a janela de -0,5 a 1,5 atingiria seu melhor valor por
volta de 1,5. Porém, ao fazer a comparagao usada na literatura, seria usado seu kappa
em torno de 2,5 segundos, que nao ¢ a regiao de melhor resultado para esse modelo. Essa
forma de avaliar também vai limitar técnicas de aumento de dados como a janela deslizante.
Como esse método utiliza varias posi¢coes ao mesmo tempo, também nao é esperado um

pico em torno de 2,5.

Além disso, alguns métodos como o FBCSP, que possuem maior estabilidade ao
longo do tempo, também ficam em desvantagem quando avaliados apenas em 2,5 segundos.
A métrica de integracao com oscilagao proposta nesse trabalho conseguiu apontar essa
estabilidade do FBCSP. Uma vez que, apesar do FBCSP e da EEGNet terem atingido
valores similares, a EEGNet apresentou um valor inferior na integracao. Isso indica que a
EEGNet atinge um pico em 2,5 segundos, porém, possui baixos valores em seu entorno.
Enquanto isso, o FBCSP apresenta um resultado mais constante ao longo do tempo. Além
disso, essa nova métrica abre espaco para novas pesquisas sobre como modificar o instante

em que o método atinge seu pico, ja que a métrica considera outros instantes de tempo.

Para exemplificar o comportamento da EEGNet e do FBCSP em aplicagoes reais,
serao considerados aqui os casos de reabilitacdo p6s-AVC e controle de prétese. Para o
controle de protese, suponha que a pessoa queira manter a mao fechada por 4 segundos.
Dada a forma como a literatura avalia os modelos atualmente, a conclusao é que em 2,5
segundos ambos os modelos vao classificar o sinal como sendo de mao fechada. Agora,

quando é observada a partir das métricas propostas, a conclusao é que a EEGNet vai
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abrir e fechar a mao de forma rapida em torno de 2,5 segundos, enquanto o FBCSP vai
conseguir manter a mao fechada por mais tempo. Ambos os modelos atingiram seu pico
ao mesmo tempo, mas o FBCSP se mostra mais interessante para essa aplicacado quando

reavaliamos eles sob essa nova abordagem.

Para o caso da reabilitacao de pdés-AVC, o feedback mostrado visualmente ou
eletricamente para o paciente tem papel fundamental na plasticidade cerebral. Suponha
que seja dada a instrucdo para a pessoa fechar a mao direita por 4 segundos. A EEGNet
vai dizer que ela fechou a mao e logo depois abriu de novo, fazendo com que a pessoa
tenha um desgaste mental maior apés a abertura da mao por achar que esta fazendo algo
errado. Por isso, a EEGNet da forma que foi avaliada aqui ndo seria uma boa escolha para
essa aplicagdo. Por mais que a EEGNet tenha um bom resultado em 2,5 segundos, como
mostram as métricas classicas, ela causaria um desgaste do paciente e uma desmotivacao
com o sistema, por visualmente s6 ver o comando que ele quer executar aparecendo bem
rapido. Ja o FBCSP seria uma escolha melhor para a aplicagdo uma vez que consegue

manter a classificacao apos 2,5 segundos também com um valor bom para o kappa.

Em ambas as aplicagoes, as métricas atuais apontavam o FBCSP e a EEGNet com
resultados similares. Porém, ao usar as novas métricas propostas, foi possivel observar
uma vantagem do FBCSP sobre a EEGNet. Dessa forma, as novas fun¢ées vém como
um complemento das métricas atuais para avaliagoes de datasets de BCI. Através delas,
a avaliagao de datasets da literatura se aproxima mais de avaliacoes de aplicagoes reais.
Apesar de ainda haver limitacoes comparadas a avalia¢coes em tempo real com feedback, o
uso das novas métricas supre a limitagdo das métricas atuais sobre a avaliagao temporal

dos modelos.
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9 Conclusoes

Interfaces Cérebro-Maquina vém ganhando bastante atencdo da comunidade cien-
tifica dado seu potencial tecnolégico e humano. Elas permitem novas aplicagoes sem a
necessidade da utilizacado dos musculos periféricos. Além do seu potencial para jogos e
controle de equipamentos, elas apresentam diversas solugoes para melhorar a qualidade de
vida das pessoas. Controle de préteses, cadeiras de rodas e digitadores sao alguns exemplos
de aplicacao que trazem uma melhora significativa na vida de pessoas com limitagoes
fisicas causadas por alguma doenga. As BCIs também podem ser usadas durante o préprio
periodo de tratamento de pacientes por causa do feedback gerado pela aplicagdo. Por
exemplo, é possivel recuperar os movimentos motores de uma pessoa acometida com um
Acidente Vascular Cerebral ou utilizé-la para melhorar a capacidade de atengao social em

criancas autistas.

Por causa de sua grande gama de aplicagoes, varios incentivos surgiram para que
pesquisas fossem feitas nessa area. A maioria desses incentivos veio através da criagao
de competicoes para classificagdo de sinais de EEG. Principalmente para o paradigma de
Imaginagao Motora, a BCI precisava indicar qual foi o movimento corporal em que uma

pessoa imaginou, por exemplo, fechar a mao esquerda.

Porém, essas competicoes trouxeram um viés na forma como as BClIs sao classifica-
das. Comecou uma corrida para ver quem conseguia uma maior qualidade de classificagao
em janelas de treino bem controladas e que muitas vezes nao fariam sentido em situacoes
reais. Condig¢oes como o tempo entre a imaginacao e a classificacao foram negligenciadas,

assim como o conforto do usuério e a fadiga provocada pelo seu uso.

Esse trabalho visou explorar a dependéncia temporal na classificagao das BCls.
Enquanto as competicoes avaliam o modelo em tempo tnico, sendo ele normalmente de
2,5 segundos apos a pessoa iniciar a imaginagao. Nesse trabalho, nés propusemos novas
métricas de avaliagdo para as BCIs que nao utilizassem apenas um instante fixo de tempo
para avaliar os modelos. Dessa forma, as BCIs podem ter uma avaliagdo mais préxima

dos seus casos reais de uso.

Quando o tempo é avaliado juntamente com a taxa de acerto dos modelos, o
problema de avaliacao das BCI se torna mais desafiador, principalmente porque o atraso
do modelo e a taxa de acerto sdo, normalmente, conflitantes. Por isso, nés propomos novas
formas de avaliar os modelos combinando o desempenho do modelo junto com: (i) tempo
para obter o maior kappa contra o maior kappa e (ii) integragdo ao longo do tempo pela

suavidade das mudancas ao longo do tempo.

Para avaliar as novas métricas propostas, foram utilizados 48 modelos com diferentes
caracteristicas, como redes neurais convolucionais, filtros temporais e filtros espaciais.

Dessa forma, além da avaliacdo das métricas propostas, foi possivel fazer um estudo sobre
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diferentes tipos de BCI. Dada a diferenca normalmente presente entre os conjuntos de

dados, nés também utilizamos 5 conjuntos de dados com propostas diferentes.

Sobre as métricas propostas, foi possivel observar uma melhora na forma de avaliar
os modelos, principalmente quando comparamos os modelos de redes neurais convolucionais
com as técnicas classicas. As métricas comumente usadas para avaliar as BCIs mostravam as
redes profundas ligeiramente melhores que as demais técnicas. Porém, quando observamos
o seu desempenho ao longo do tempo, ele chega a apresentar um resultado até 7 vezes

pior que as técnicas classicas de BCIL.

Ja para a métrica de atraso de janela com o kappa, foi possivel observar que os
melhores valores de kappa para as redes profundas ocorrem em torno do final da janela
do treinamento. Ou seja, quando a rede é treinada com 2 segundos de sinal, comegando
0,5 segundos apods a apresentagao da tarefa para o voluntario, as redes convolucionais
apresentam seu pico de classificagdo em torno de 2,5 segundos. Isso explica o porqué delas
apresentarem um resultado melhor que os demais métodos ao usar as métricas atuais, que
simplesmente avaliam qual foi o melhor método apds 2,5 segundos. Ja os modelos nao
profundos sao mais robustos ao longo do tempo e obtém uma variacao maior do tempo

necessario para atingir seu pico de classificacao.

Na andlise entre os diferentes modelos de BCI, é possivel observar uma relacao
entre o filtro e o classificador. Para as redes convolucionais, filtros temporais baseados
em convolucao apresentam melhores resultados no geral, enquanto que para os demais

modelos, os filtros com transformada de Fourier foram melhores.

Apesar de melhorar a forma de avaliar as BCIs incluindo o tempo nas anélises, as
métricas propostas continuam sendo uma forma de resumir os resultados de uma BCI.
Por esse motivo, continuam perdendo informacao como qualquer outra métrica que visa
apresentar resultados de um modelo. Por isso, mesmo que usada para escolher os melhores
modelos, uma avalia¢ao visual do comportamento da classificagdo ao longo do tempo ainda

¢ indicada como mostrada na Figura 6.

A partir das conclusoes apresentadas, o objetivo principal proposto nesse trabalho
de reduzir a lacuna na avaliagao das BCI sobre a questao temporal foi atingido com
as novas métricas propostas. Ja dos objetivos secundarios, os novos modelos propostos
também atingiram bons resultados quando comparados com os existentes na literatura
(FBCSP e EEGNet). Para a avaliagdo dos modelos, foram cobertos diferentes problemas

como datasets com poucos eletrodos e especializados em reabilitacao de AVC.

Para trabalhos futuros, é possivel avaliar as métricas com diferentes janelamentos
de treinamento. Ja que as redes convolucionais apresentaram uma queda de desempenho
fora do intervalo de 2,5 segundos, é possivel que a inclusao de novas janelas no treino reduza
esse problema. Além disso, o estudo nao considera a variagao entre sujeitos, mesmo isso

sendo um outro problema grande para as BCIs. Técnicas de visualizagao dessas diferencas
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podem agregar mais uma forma de avaliar os modelos fora das limitagoes trazidas pelas

competicoes.
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