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“The creation of a single world comes from a huge number of
fragments and chaos.” (Cavallaro, 2015, p. 5).



ABSTRACT

Classification techniques are essential for interpreting complex data across vari-
ous engineering domains, including signal processing, manufacturing, and environmental
monitoring, providing actionable insights and informing critical decision-making processes.
System identification and data-driven modeling methodologies offer robust frameworks
for analyzing these complex engineering processes. Parametric modeling approaches, no-
tably Nonlinear AutoRegressive models with eXogenous inputs (NARX), are particularly
advantageous due to their linear-in-the-parameter form, enabling interpretability and
model transparency. Although recent developments have extended NARX methodologies
to classification tasks, their application remains predominantly limited to regression and
binary classification, leaving multiclass scenarios relatively unexplored. To bridge this
gap, this thesis introduces a novel classification algorithm, Logistic-NARX Multinomial,
combining logistic regression with NARX modeling principles. This integration facilitates
direct interaction among input terms, resulting in sparse, interpretable models where the
significance of individual and combined input variables is clearly discernible. Extensive
evaluations using benchmark and real-world datasets confirm that Logistic-NARX Multi-
nomial achieves competitive predictive performance compared to traditional classifiers.
Additionally, this thesis proposes a practical engineering methodology for railway infras-
tructure maintenance. Utilizing acceleration data from railway vehicles and multibody
simulations, the developed Logistic-NARX Multinomial framework provides interpretable
and transparent predictive models capable of effectively assessing track conditions, signifi-
cantly enhancing geo-referenced decision-making and contributing to improved safety and

maintenance practices.

Keywords: machine learning; system identification; NARX models; power quality; multi-

class classfication; wheel-rail contact dynamic forces; railroad dynamics.



RESUMO

Técnicas de classificagdo sao fundamentais para interpretar dados complexos em
diversas areas da engenharia, incluindo processamento de sinais, manufatura e monitora-
mento ambiental, fornecendo insights tuteis e auxiliando processos criticos de tomada de
decisao. A identificacao de sistemas e a modelagem orientada a dados oferecem estruturas
robustas para analisar esses processos complexos da engenharia. Entre essas abordagens,
destacam-se os modelos paramétricos, como os modelos AutoRegressivos Nao Lineares
com entradas eXdgenas (NARX), particularmente vantajosos devido a sua estrutura linear
nos parametros, que facilita a interpretabilidade e a transparéncia dos modelos resultantes.
Embora desenvolvimentos recentes tenham estendido os modelos NARX para tarefas de
classificagao, sua aplicacdo permanece predominantemente restrita a cenarios de regressao
e classificagao bindria, deixando relativamente inexploradas as situacoes de classificacao
multiclasse. Para preencher essa lacuna, esta tese propoe um novo algoritmo denominado
Logistic-NARX Multinomial, integrando a regressao logistica aos principios da modelagem
NARX. Essa integracao permite interacoes diretas entre os termos de entrada, resultando
em modelos esparsos e interpretaveis, nos quais a relevancia das variaveis individuais e
suas interagoes fica claramente identificada. Avaliagoes extensivas utilizando conjuntos de
dados classicos e reais confirmam que o Logistic-NARX Multinomial apresenta desempenho
preditivo competitivo em relagdo a classificadores tradicionais. Adicionalmente, a tese
propoe uma metodologia pratica aplicada a manutencao da infraestrutura ferroviaria.
Utilizando dados de aceleragao provenientes de veiculos ferroviarios e simulagoes multi-
corpo, o modelo Logistic-NARX Multinomial gera modelos preditivos interpretaveis e
transparentes, capazes de avaliar efetivamente as condi¢oes da via férrea, aprimorando
significativamente a tomada de decisoes georreferenciadas e contribuindo para praticas

mais seguras e eficientes de manutencao.

Palavras-chave: aprendizado de maquina; identificagdo de sistemas; modelos NARX,

qualidade de energia; classificacao multiclasse; contato roda-trilho; dinamica ferroviaria.
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1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Understanding physical phenomena through observed signals is essential in engi-
neering and scientific disciplines, as these signals convey the behavior and interactions
of dynamic systems (Oppenheim et al., 1997). In many applications, input-output relati-
onships govern how systems respond to external stimuli, and modeling these interactions
allows for both interpretation and prediction of complex processes (Rogers and Girolami,
2011; Billings, 2013).

In recent decades, the exponential growth in data availability has transformed the
modeling landscape. With an estimated 90% of the world’s data generated in just the
last two years (John Walker, 2014), a major challenge has emerged: transforming vast,
unstructured, and often noisy datasets into actionable insights (Manyika et al., 2011).
This shift has accelerated the development of empirical and data-driven models in domains
ranging from finance and healthcare to energy systems, transportation, and environmental
monitoring (Abu-Mostafa, 2012; Liu et al., 2023; Jayaprakash and Balamurugan, 2021).
These models aim to uncover latent patterns and relationships directly from measurements,
enabling what is commonly referred to as knowledge discovery or learning from data (Shu
and Ye, 2023; Pazzani, 2000).

Data-driven approaches, particularly those grounded in machine learning and
system identification, have gained prominence due to their adaptability and potential for
automation (Wu et al., 2014; Janiesch et al., 2021). However, despite substantial advances,
significant challenges remain, particularly in ensuring the transparency, interpretability,
and reliability of such models in critical engineering contexts. Many existing techniques
act as black boxes, offering little understanding of how predictions are generated (Witten
et al., 2016). This lack of interpretability can hinder their adoption in domains where
accountability, regulatory compliance, and human-in-the-loop decisions are vital (Kuhn
and Johnson, 2013; Zhang and Lang, 2022).

To bridge this gap, it is essential to develop models that strike a balance between
predictive accuracy and structural clarity. These models must not only perform well but
also offer insight into the underlying system dynamics, feature relevance, and interaction
mechanisms (Gu and Wei, 2018). The integration of sparse structures with interpretable
parameters is especially critical in real-world settings, where decision-making often relies

on understanding which variables are most influential.

A promising candidate to address these demands is the Nonlinear AutoRegressive
model with eXogenous inputs (NARX), known for its compact, flexible, and interpretable
architecture (Vidyalashmi et al., 2024; Aguirre, 2007). Built using measured input-output

data, the NARX model facilitates the identification of significant nonlinear relationships
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while simultaneously managing redundancy and multicollinearity (Billings and Wei, 2019).
Recent advances in NARX modeling have expanded its applications, yet its use has
remained largely confined to regression and binary classification tasks (Ayala Solares
et al., 2019). This presents an opportunity to extend its capabilities to more intricate

classification scenarios, such as those involving multiple discrete classes.

This thesis responds to that opportunity by proposing a hybrid modeling framework
that adapts the NARX methodology for multiclass classification problems. By incorpora-
ting logistic regression into the NARX structure, the resulting Logistic-NARX Multinomial
model achieves transparent and interpretable classification outcomes. This approach is
particularly suitable for scenarios where a parsimonious yet expressive model is needed to

support both analysis and decision-making.

One practical domain where these methodological advances are highly relevant is
the railway sector. With increasing demands on rail networks due to heavier traffic and
higher speeds, infrastructure degradation poses significant safety and operational risks
(Lasisi and Attoh-Okine, 2018). Traditional diagnostic approaches, such as inspections via
specialized vehicles, are costly, infrequent, and can disrupt operations (Malekjafarian et al.,
2019). In this context, data-driven models based on acceleration signals and dynamic
simulation have emerged as viable alternatives for inferring track conditions (Sun et al.,
2024; Marasco et al., 2024). By combining physical insight from multibody dynamics with
classification-based modeling, this research enables indirect estimation of critical variables,
such as wheel-rail contact forces, and provides actionable information for maintenance

planning through georeferenced tools.

Thus, this thesis is motivated by the need to construct models that are not only
accurate but also interpretable and adaptable to practical engineering challenges. The
proposed methodology seeks to advance the field by offering a robust framework for
multiclass classification, particularly suited for applications where explainability and data

complexity intersect.

1.2 OBJECTIVES AND SPECIFIC GOALS

This research seeks to investigate and develop hybrid modeling strategies that
integrate system identification techniques with machine learning methods to address
complex classification challenges in engineering domains. The primary focus is on creating
interpretable and efficient models capable of handling multiclass classification tasks, with
a strong emphasis on transparency and alignment with the physical behavior of real-world

systems.

The general objective of this study is:

« To propose and develop a classification methodology that combines the NARX
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(Nonlinear AutoRegressive with eXogenous inputs) modeling framework with logis-
tic regression, enabling the analysis of multiclass classification problems through

interpretable and structurally simple models.
The research is further guided by the following specific objectives:

o To extend the conventional NARX modeling approach, traditionally used for regres-

sion and binary classification, to effectively address multiclass scenarios;

o To formulate and validate the Logistic-NARX Multinomial algorithm, employing an
accuracy-based criterion for term selection and using cross-validation techniques to

ensure model generalization;

o To assess the performance of the proposed methodology using benchmark datasets,

focusing on classification accuracy, interpretability of model terms, and parsimony;

o To apply the developed approach to the classification of Power Quality disturbances,
using synthetically generated waveform data to demonstrate its practical applicability

and discriminative capability in a well-established context;

« To apply and validate the proposed methodology in the context of railway track
condition assessment, using data from multibody dynamic simulations and inertial
sensor measurements. This application has a dual contribution: it serves as a
high-impact validation case and introduces an innovative approach for railway
infrastructure monitoring, capable of inferring safety indicators and supporting

georeferenced maintenance strategies through interpretable, data-driven models.

By achieving these objectives, the thesis aims to contribute both methodologically,
by advancing transparent and hybrid classification models, and practically, by demonstra-
ting their applicability and effectiveness in diverse engineering problems, particularly in

power system diagnostics and railway safety monitoring.

1.3 CONTRIBUTIONS

This thesis proposes and evaluates a hybrid modeling approach that integrates
machine learning and system identification, specifically tailored to address multiclass
classification problems. The primary motivation is to bridge the gap between the high
predictive power of data-driven techniques and the need for structural clarity in engineering
models. The contributions of this work are twofold: methodological and applicational,

both strongly aligned with real-world engineering demands.
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First, the thesis introduces the Logistic-NARX Multinomial framework, a novel
classification methodology that adapts the NARX (Nonlinear AutoRegressive with eXoge-
nous inputs) paradigm to multiclass settings. Unlike conventional approaches where NARX
models are mostly employed in regression or binary classification tasks, the proposed
method extends its utility to problems where the output consists of categorical labels.
Through the use of logistic regression and orthogonal forward regression for structure
selection, this method enables the extraction of sparse, interpretable, and high-performing
models. Fach selected model term is analytically associated with a specific input variable
or interaction, thus revealing the role of features in the classification decision. This makes
the methodology not only accurate but also explainable, an essential requirement in many
engineering applications. The method was validated using benchmark datasets and a
practical case study involving power quality disturbance classification, demonstrating

competitive performance and valuable insights into feature relevance and system behavior.

Second, the thesis contributes to the railway domain by proposing and applying
the developed methodology to the problem of railway track condition assessment. This
is achieved through an innovative modeling strategy that employs acceleration data
from multibody dynamic simulations to classify different safety conditions of the railway
infrastructure. In this context, the Logistic-NARX Multinomial model is applied to
explore potential associations between dynamic behaviors and vehicle-track interaction
patterns that may influence proximity to critical safety thresholds. By enabling the indirect
inference of wheel-rail contact forces and relating them to stability thresholds, the method
supports the early detection of structural irregularities and enhances decision-making

through a georeferenced application.
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2020)
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Evaluation: Leveraging NARX Feature Interpretation,” in Anais do Congresso

Brasileiro de Automdtica (CBA), 2024. (Silva et al., 2024)

1.5 OVERVIEW

This thesis is organised as follows:

o Chapter 2 provides the theoretical foundation of nonlinear system identification,
with particular emphasis on NARX (Nonlinear AutoRegressive with eXogenous
inputs) models. It introduces the key concepts required for understanding the re-
mainder of the thesis, including model structure determination, parameter estimation,
and the Orthogonal Forward Regression (OFR) algorithm using the Error Reduction
Ratio (ERR) criterion.

o Chapter 3 introduces the proposed Logistic-NARX Multinomial framework, which
extends the conventional NARX model to address multiclass classification problems
through the integration of logistic regression and the One-Versus-All (OVA) decom-
position strategy. The chapter details the term selection strategy based on k-fold
cross-validation accuracy, enabling a transparent and interpretable model structure.
The methodology is evaluated using classical benchmark datasets, emphasizing both

predictive performance and feature relevance.

o Chapter 4 applies the proposed methodology to the classification of Power Quality
(PQ) disturbances. The chapter encompasses the simulation of electrical events,
preprocessing of voltage signals, and extraction of features using Higher Order Sta-
tistics (HOS). Feature selection is performed through Fisher’s Discriminant Analysis.
The results are compared with classical classifiers, demonstrating the method’s
capability to discriminate between PQ events and highlighting the interpretability

of the selected model terms.

« Chapter 5 focuses on a practical application in the railway domain. A novel approach
is developed for assessing railway track conditions using acceleration signals derived
from multibody simulations and instrumented railway vehicles. The Logistic-NARX
Multinomial model is employed to infer proximity to critical safety thresholds based
on dynamic behavior and vehicle—track interaction features. Feature selection and
subsampling strategies are used to enhance model generalization. Comparative
analyses with traditional machine learning techniques, including Random Forests
with hyperparameter tuning, are presented, along with a georeferenced application

that supports maintenance decision-making.
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o Chapter 6 concludes the thesis by summarizing the main findings, discussing metho-
dological contributions, and presenting perspectives for future research. Particular
attention is given to possible enhancements in the model selection process and

extensions to other domains.
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2 NONLINEAR SYSTEMS IDENTIFICATION

This chapter begins with an introduction to system identification, offering a
comprehensive overview of the fundamental concepts necessary for understanding the
topics discussed throughout this work. The subsequent sections present the main stages
of the identification process, with particular emphasis on the NARX model and the
Orthogonal Forward Regression (OFR) algorithm, which employs the Error Reduction
Ratio (ERR) criterion.

2.1 INTRODUCTION

The development and analysis of models are some of the most important topics in
science. Models can be used for system analysis, providing a better understanding of the
system. Similarly, models allow one to predict or simulate the behavior of a system. In
engineering, models are necessary for designing new processes and analyzing existing ones.
Since the quality of the model typically sets an upper limit on the quality of the final
solution to the problem, modeling is often a constraint in the development of the entire
system. Consequently, there is a strong demand for advanced models and identification
schemes (Aguirre, 2007). Different models can be obtained for a specific study, and
the choice of model representation depends on the user’s knowledge, the system under
study, and the objectives of the modeling process. In this context, modeling dynamic
and steady-state behavior is fundamental for this type of analysis and is based on system

identification procedures.

According to Sjoberg et al. (1995), modeling techniques can be classified into
three groups known as white-box modeling, black-box modeling, and grey-box modeling.
White-box models are described by the physical laws of the process, and typically the
parameters have a physical meaning. Black-box models are obtained entirely from input
and output data, without requiring any prior knowledge of the system. Finally, grey-box
models are characterized by using auxiliary information that is not present in the dynamic

data set used for identification (Corréa and Aguirre, 2004).

System identification is an experimental approach aimed at identifying and adjusting
a mathematical model of a system based on experimental data that records the behavior
of the system’s inputs and outputs (Billings, 2013; Nelles, 2020). In particular, interest in
the identification of nonlinear systems has received considerable attention from researchers
since the 1950s, and many relevant results have been developed (Wiener, 1958; Lee and
Schetzen, 1965; Schetzen, 1980; Rugh, 1981; Haber and Keviczky, 1999; Billings and
Wei, 2005; Pintelon and Schoukens, 2012). A commonly employed model representation
is the Nonlinear AutoRegressive with eXogenous input (NARX) model, consisting of a

mathematical model based on differential equations. Due to the simplicity and versatility
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of NARX models, various systems can be modeled, understood, and controlled using this
family of models. One contribution of the present work is to present an efficient alternative

for a multiclass classifier by applying NARX models to power quality problems.

The typical stages of the identification process include dynamic testing and data
collection, selection of the mathematical representation, determination of the model
structure, parameter estimation, and model validation. This chapter provides a set of

definitions and preliminary concepts for understanding the field of system identification.

2.2  REPRESENTATION: NARX MODELS

Linear systems are defined as systems that satisfy the principle of superposition,
and calculating the relationship between models in a linear scenario is straightforward.
For instance, if a system is identified using a state-space model, other types of models
can be derived using transformations. However, for nonlinear models, there is no single
model to represent all classes of nonlinear systems, and transforming one model into
another is generally a challenging task. There are various types of formats and forms to
represent a dynamic system in the nonlinear system identification literature, so the choice
of representation should ensure the fulfillment of the main objective of the identification
process. Thus, a traditional choice is the NARX model, since a substantial portion of
nonlinear systems can be represented by this model in the discrete time domain (Billings,
2013).

Polynomial NARX representations are discrete-time models that explain the output

value y(k) in terms of previous values of the output and input signals:

y(k) = fl(y(k - 1)7 e 7y(k - ny)7u(k - 1)’ e 7u(k - nu)) + e(k)> (2'1)

given that f! represents a nonlinear function of the model with a degree of nonlinearity
l € N, y(k) € R™ is the system output, and u(k) € R™ is the system input at discrete
time k = 1,2,..., N; N is the number of observations. In this case, e(k) € R™ represents
uncertainties and possible noise in discrete time k, n, € N, and n, € N describe the

maximum delays in the output and input of the system, respectively.

Most approaches assume that the function f' can be approximated by a linear
combination of a predefined set of functions ¢;(p(k)), (2.1) can be expressed in the

following parametric linear form:

(k) = 3 0i6(4)) + e(h) 22)

where 6; are the coefficients to be estimated and ¢;(¢(k)) are the predefined functions

that depend on the regressor vector:
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(,O(IC) = [y(k - 1)7 s ’y(k - ny)»“(k - 1)’ T 7u(k - nu)]Tv (23)

assuming previous outputs and inputs, and m is the number of functions in the set. One
of the most commonly used NARX models is the polynomial representation, (2.2) can be

denoted in the following form:

n n

y(k) =00+ > Onwi (k) + > > i, (k)i (k) + - -
i1=1 i1=110=11

s i_ Oivig-iy®iy (k) iy (K) - - 23, (k) +e(k), (2.4)

i1=1 =1 1

considering n = n, + n,,

k—1), 1 <1< ny,
wihy = 4V v (2.5)
u(k —i+ny), n,+1<i<n,
assuming n = n, + n,, where n, is the number of outputs and n, is the number of inputs,
and [ is the degree of nonlinearity. The NARX model of order [ implies that the order of
each term in the model is not greater than [. The total number of potential terms in a

polynomial NARX model is given by:

(n+1)!
n!- 1l

NARX models can be used to describe a wide variety of nonlinear systems, providing

M= (2.6)

straightforward analytical insights into the model’s dynamics. Another advantage is
parsimony, meaning that a broad range of behaviors can be represented concisely using only
a few terms from the extensive search space formed by candidate regressors. Additionally,
a small dataset is required to estimate a model, which can be crucial in applications where
acquiring a large amount of data is challenging. There are other advantages of polynomial
NARX models (Billings, 2013):

 Polynomial functions are infinitely differentiable (smooth functions) in R;

o According to the Weierstrass theorem Weierstrass (1885), any given continuous
real-valued function defined on a closed and bounded interval [a, b] can be uniformly

approximated using a power-form polynomial on that interval;

o A wide variety of nonlinear dynamics can be characterized using polynomial NARX

models;

o Polynomial NARX models are a well-established topic in the field of system identifi-
cation, with various algorithms developed for structure determination and parameter

estimation,;
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o« NARX models can be employed for prediction and inference.

Example 2.2.1 Consider a NARX model (Aguirre, 2007) with a nonlinearity degree | = 2
and mazimum delays n, = 2 and n, = 1, then the following regressor vector is obtained by
(2.3):

pk)=[1 yk—1) y(k—2) ulk=1) yk—-1)" y(k—1y(k - 2)
y(k —2)% uwk—1)2 yk—Du(k—1) y(k—2)ulk—1]". (2.7)

In Example 2.2.1, the total number of potential terms corresponds to the value
M = 10, as per (2.6). The set of regressors that form the vector ¢(k) is complete in
the sense that it includes all possible regressors given the maximum delays (n,,n,) and
nonlinearity degree (I). Assuming a specific application with higher values of maximum
delays and nonlinearity degree, the number of possible regressors increases significantly.
The number of parameters grows exponentially with the polynomial order, and if all
corresponding terms of the regression vector are considered unnecessarily, the excessive
number of parameters will increase the estimation variance and compromise the model
quality. Therefore, a fundamental requirement in the structure determination phase of

these models is to identify an optimal subset of regressors.

2.3 MODEL STRUCTURE AND PARAMETER ESTIMATION

The determination of the model structure is crucial for developing models that
can accurately reproduce the system behavior. One of the key factors in the structure
determination phase is defining the number of candidate model terms that contribute
to the system’s output while maintaining an efficient system description (Haber and
Unbehauen, 1990). In general, most candidate model terms are redundant or spurious,
and their contribution to the system’s output is insignificant. Furthermore, a model
that includes a large number of terms tends to overgeneralize the problem. Among the
advantages of carefully conducting model structure detection are improved prediction or
classification accuracy, reduced time and storage costs, and a better understanding of the
studied process (Wei et al., 2004).

For nonlinear systems, there are numerous techniques for determining the model
structure, such as clustering algorithms (Aguirre and Jacome, 1998), the least absolute
shrinkage and selection operator (LASSO) (Kukreja et al., 2006), elastic nets (Zou and
Hastie, 2005), genetic programming (Sette and Boullart, 2001), bagging methodology
(Ayala Solares and Wei, 2015), and the Orthogonal Forward Regression (OFR) method
using the Error Reduction Ratio (ERR) approach (Wei et al., 2004). Once the structure of

the model is determined, the parameter estimation is performed, which can be accomplished
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using traditional methods such as Least Squares, Gradient Descent, and the Metropolis-
Hastings algorithm (Baldacchino et al., 2012).

2.3.1 Orthogonal Forward Regression

In general, determining the model structure and estimating the parameters are
carried out together. One of the most popular algorithms for performing both steps for
NARX modeling is the Orthogonal Forward Regression (OFR) algorithm (Billings, 2013).

The algorithm transforms a set of candidate terms into orthogonal vectors and ranks them
based on their contribution to the output data using the Error Reduction Ratio (ERR),
identifying and fitting a deterministic and parsimonious NARX model expressible in a
generalized linear regression form. The OFR algorithm consists of three main steps:

« Orthogonalize the regressors to remove correlations between variables;

o Select significant terms using ERR as the criterion;

o Estimate the corresponding parameters for the selected terms.

2.3.1.1 Matriz Form of Parameter Representation

In order to present algorithms for parameter estimation in NARX models, it will

be convenient to use the more compact representation given by (2.2) in matrix form:

Y =0 + ¢, (2.8)

the vectors and the matrix in (2.8) are represented by:

y(1) 0 &)
N L) R e L1 9
y(V) O (V)

P1(e(1))  2(e(1)) -+ dmlp(1))
& — [¢1 by - ¢m] _ ¢1(<P(2)) ¢2(§0(2>> ¢m<90(2)) 7 (2.10)
P1(p(N))  da(@(N)) - dm(p(N))

given Y € R as the vector of estimates, ® € RV*™ is the regressor matrix, § € RY is the

vector of estimated parameters, and ¢ € R¥ is the vector of residuals.

The parameters presented in (2.8) could be estimated as a result of an algorithm
based on Least Squares, but this would require the optimization of all parameters simulta-

neously, due to the correlation between the regressors and the non-orthogonality feature.
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Therefore, the computational cost would be impractical for a large number of regressors.
Thus, the problem is addressed by orthogonalizing the matrix ¢, making the regressors
uncorrelated and forming an orthogonal basis for the system’s solutions. The approach is
called Orthogonal Least Squares or OLS, which succinctly transforms a non-orthogonal

model into an orthogonal one.

2.3.1.2 FEstimador OLS

Assuming that the regressor matrix ® is of full rank, according to matrix theory,

there exists a matrix () such that ® can be orthogonally decomposed as:
O =QA, (2.11)

where A € R"™*"™ is an upper triangular matrix, as follows:

—1 a2 @13 - A1m ]
0 1 ags -+ agy
A=1o0 o 1 --- : , (2.12)
Pl i
_0 0 0 0 1 |

assuming ) € RV*™ is a matrix with orthogonal columns ¢;, represented by:

Q=|a @ @& ~ au], (2.13)

such that QTQ = D, where D is a positive definite diagonal matrix:

k=1
di=q ¢ = qrgr  1<i<m, (2.14)

thus, the entries a;; (1 <i < j <m) of the matrix A are defined in matrix form as:

Q'
arg =45, 1<r<s—1, 2<s<m. (2.15)
q.9.
The space spanned by the orthogonal basis @) (2.13) is equivalent to that spanned

by the basis set ® (2.10). Consequently, (2.8) can be rewritten in the auxiliary model:

Y = (®PA™) (A0) +€ = Qg + &, (2.16)
—_——— ——
Q g
where g € R™ is an auxiliary parameter vector. The parameters of the model (2.16) are

represented by:
9=Q'Q)'Q"Y =D'Q"Y, (2.17)
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which can also be expressed as:

g = 1<i<m. (2.18)

Once the parameters 6 and g satisfy the triangular system A6 = g, any orthogonali-
zation method such as Householder, classical Gram-Schmidt, and modified Gram-Schmidt
can be employed to solve the equation and estimate the original parameters (Aguirre,
2007). A more detailed discussion on these orthogonalization procedures can be found in
Chen et al. (1989).

2.8.1.3 Error Reduction Ratio

Assuming E[®T¢] = 0, the output variance can be defined by multiplying (2.16) by
itself and dividing by n, resulting in:

1 1 1=t T .
AP ST (2.19)
PPty outt™

The interpretation of (2.19) is that the sum of the squared values of Y can be
explained, using an orthogonal basis, as the sum of the squared values of each orthogonal
regressor, respectively multiplied by their parameters. The portion unexplained by the
regressors is equal to the sum of the squared values of the residual vector . Therefore,
(2.19) allows quantifying the importance of each individual regressor. In summary, the
Rate of Error Reduction (ERR) due to the inclusion of the i-th regressor, expressed as a

fraction of the sum of the squared values of the data, is given by:

9%q'q,

YTy’

ERR; = 1<i<m. (2.20)

There are several ways to establish the stopping criterion for structure determination
algorithms (Akaike, 1974). A commonly used approach is to terminate the algorithm when

the output variance of the model falls below a predetermined threshold e:

1-> ERR,; <e. (2.21)

i=1
2.8.1.4 Implementation of the OFR algorithm

One possible implementation of the orthogonalization procedure is to use the
classical Gram-Schmidt algorithm. The implementation can be carried out step by step,
and along with other definitions presented in this section, we can construct the following

sequence of steps for the classical OFR Algorithm 1:
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Algorithm 1: Orthogonal Forward Regression

Input: {(y(k)),k=1,... N}, M={¢i,i=1,...,m}, 1, ny ny, ¢
Olltpllt: o = {gbl,l = 1,...,m0}, 0= {0“2 = 1,...,m0}
® < General regressor matrix based on n,, n,, > Equation (2.10)
fori=1:mdo

) bi
51 Wit o,

YTw,
KA

N =

> Equation (2.18)

2, T
5 ERR; « gi;u%;u" > Equation (2.20)

J ¢ arg max {ERR;} > Equation (2.22)
q1 < w;

an < |95l

9 91 9j

10 | err[l] < ERR,;

11 W=y —gio

12 Remove ¢; from ®

13 s+ 1

14 end

15 repeat

16 s4—s+1

17 for:=1:mdo

18 Orthonomalize ¢; in relation [q,, q,, - .. aq<571>]

19 wlgs) — ¢ — ST d;’TT’“‘;: q., 0 €D — Dy > Equation (2.23)
20 if w/w; < 10710 then

21 Remove ¢; from ®

22 Next iteration

23 end

24 Calculate ERR;(w;, y©~Y)

25 end

26 | j < arglgénn%fsﬂ{ERRi}

27 q, — w,

28 Ups < Z;Z):, 1<r<s-—1 > Equation (2.15)
w | an e b - Sitanal,

30 | gs < ¢y

n

31 err[s| < ERR;

2 |y <yl — g

33 Remove ¢; from ®

34 ESR + 1 — >0 err(s) > Equation (2.21)
35 until FSR < ¢

36 Estimate the coefficients A0 = ¢

o Define a search space M = {¢;,i = 1,...,m} with all possible regressors and set a

tolerance value ¢;



29

 Construct a general regressor matrix ¢ (2.10) with candidates based on the maximum

delays (n,, n,) and nonlinearity degree [;

o Step (s = 1): Consider i =1,...,m, set ¢ = ¢;, and compute the auxiliary
parameter vector g; (2.18). Then, calculate the error reduction rate ERR; (2.20) for
each term in ®, and select the term with the highest ERR:

ji = arg max {ERR{"™"}, (2.22)

then insert ¢; as the first term of the model and remove it from ®. The first
associated orthogonal vector can be chosen as g, = ¢;, and the first term of the

auxiliary vector as g, = g](f‘”:l);

« Step (s > 2): Suppose a subset ®4_;, represented by (s — 1) significant terms of the
model (¢1, @2, ..., ¢s_1), is selected in step (s — 1). At each step, the selected terms
are transformed into a new set of orthogonal bases (q¢,,q,, . . ,q<871)) through the
Gram-Schmidt orthogonalization procedure. In the s-th step, orthogonalize each of

the remaining terms (i # ji1,? # Ja,...,1 # js—1) with the (s — 1)-th selected term:

s—1 /T
S qu
¢ =¢i = SRS e (2.23)
r=1 41, 1r

« Calculate g, and ERR, for the regressor ¢,. Compare the significance of ERR; for
each remaining term and select the one with the highest ERR;, denoted as j, (2.22),

among the remaining terms of the model;

o The significant regressor to compose the model can be chosen as a;, = ¢;,, and
the s-th associated orthogonal basis as ¢, = qj(_j). Define g, = g, and calculate the
entries a,s of the matrix A, as in (2.15). The subsequent significant bases o can be
selected in the same manner, step by step. At each step, the most significant terms

to represent the output y are selected:

y=0100 4+ Oy, + €. (2.24)

« Calculate the sum of ERR; as per (2.21). If the condition that the output variance of
the model falls below a predetermined limit € is met, the algorithm stops. Otherwise,

increment s by 1 and repeat the steps until the necessary condition is satisfied;

e The final model is the linear combination (2.2) of mg (usually my < m) significant

terms selected from m candidate terms:

§K) = 305,05, (6) + (), (2.29
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where the coefficient vector 8 = [0},,0,,,...,0; | is estimated by solving the

jmo

triangular system (2.16) A8 = g, with g = [g,,9,,...,9,,], and the matrix A (2.12)

calculated in the previous steps.

A more detailed discussion of the OFR algorithm, including methods that address
any numerical ill-conditioning during the search process, can be found in Billings et al.
(1988); Chen et al. (1989). The OFR algorithm is widely applied in the identification of
nonlinear systems. Therefore, various variants of the algorithm have been developed to
meet specific requirements or enhance model performance (Wei and Billings, 2008; Wei
et al., 2004; Billings, 2013).
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3 LOGISTIC-NARX MULTINOMIAL MODEL

This chapter presents a novel approach that integrates logistic regression with the
NARX framework and the One-Versus-All (OVA) decomposition strategy, enabling its
application to multiclass classification problems. The Orthogonal Forward Regression
(OFR) algorithm is adapted to guide the selection of model terms, incorporating a k-fold
cross-validation-based accuracy metric. This metric is used both to assess the generalization
capability of the model and to rank the importance of candidate regressors. The proposed
method not only extends the use of NARX models beyond traditional regression and
binary classification but also introduces a transparent and interpretable structure for
multiclass scenarios. Its effectiveness is demonstrated through classical benchmark datasets,

highlighting the potential of the approach for accurate and explainable classification tasks.

3.1 INTRODUCTION

Classification in machine learning and statistics is a supervised learning approach
that recognizes, comprehends, and assigns observations to predefined categories using
labeled datasets (Bishop, 2006). This task is fundamental in various fields such as finance,
healthcare, and engineering, where the objective is to build models capable of categorizing
data into multiple classes. Common applications include medical diagnostics, credit
scoring, handwritten character recognition, speech recognition, and biological classification
(Theodoridis and Koutroumbas, 2006).

To address such problems, a wide range of algorithms has been developed, including
logistic regression (Hosmer et al., 2013), random forest (Breiman, 2001), support vector
machines (Cristianini and Shawe-Taylor, 2000), and k-nearest neighbors (Kuhn and
Johnson, 2013). Although these methods often achieve high accuracy, they generally
operate as black boxes, making it difficult to interpret how input variables influence the
classification decisions. In contrast, the logistic-NARX approach proposed by Ayala Solares
et al. (2019) offers a more transparent alternative, using a linear-in-the-parameters structure
that provides interpretability and facilitates the analysis of variable contributions in binary

classification problems.

This method has additional advantages, such as the direct inclusion of lag terms,
which allows for modeling dynamic behavior more naturally. Moreover, the approach
mitigates multicollinearity by orthogonalizing candidate terms during the model selection
process, enhancing the robustness and interpretability of the resulting models. However,
the original method is limited to binary classification, restricting its applicability to more

complex scenarios with multiple output categories.

To overcome this limitation, and inspired by the logistic-NARX model for binary

problems (Ayala Solares et al., 2019), this chapter proposes an extended formulation
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aimed at solving multiclass classification tasks. The proposed method integrates machine
learning techniques with system identification concepts, enabling the construction of
interpretable models for multinomial problems. Rather than emphasizing dimensionality
reduction or transformation of the input space, this approach focuses on understanding
the role and relevance of each input variable within the model structure (Cai et al.,
2018). This interpretative capability, often lacking in more complex classifiers, supports
decision-making in real-world applications where both accuracy and transparency are

essential.

3.2 LOGISTIC-NARX MULTINOMIAL MODEL APPROACH

This work proposes a hybrid multinomial classification framework that simultane-
ously performs feature extraction and selection. Unlike most NARX models applications,
which focus on regression problems with continuous outputs, our method adapts the NARX
paradigm to handle multiclass categorization. Specifically, we integrate the transparent
and parsimonious structure of NARX with the probabilistic outputs of logistic regression.
In doing so, we leverage the ability of NARX to mitigate multicollinearity and produce
interpretable nonlinear regressors, while logistic regression transforms these regressors into

class membership probabilities bounded in [0, 1].

In logistic regression, each predicted value is constrained to the unit interval by

the logistic (sigmoid) function:

1

fx) = 1 + exp(—x)

. zeR, f(z)e(0,1). (3.1)

An inherent challenge in logistic modeling is multicollinearity, where two or more
regressors are nearly linearly dependent. High correlation among predictors can make
parameter estimates unstable and reduce the reliability of inference. Within the classical
NARX identification pipeline, structure selection is based on computing the Error Reduc-
tion Ratio (ERR, see (2.20)) to rank candidate terms. However, when the target variable
is categorical (multinomial), ERR is no longer directly applicable, since it presumes a

continuous residual variance criterion.

To overcome this, we replace the ERR metric with a classification-accuracy cri-
terion calculated using logistic regression. Concretely, each candidate regressor w; (an
orthonormalized version of a NARX term ¢;(¢(k))) is tested as the sole predictor in a
logistic model. We measure the cross-validated accuracy r(w;,y) of that one-term logistic
model when predicting the class labels y. A high accuracy value indicates that w; is
strongly associated with the categorical outcome, analogous to the way in which a large
ERR reflects a strong linear association in regression analysis. Formally, at each selection

step, the variable is chosen according to:
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j = arg max {r(w;, y)}. (3:2)

and include the corresponding original regressor ¢,(¢(k)) in the NARX model. Here,
m is the total number of remaining candidate terms, and r(w;,y) denotes the k-fold

cross-validated accuracy of a logistic regression that uses only w; to predict y.

After selecting a subset of nm.x NARX terms {¢;,,...,#;, _}, we assemble the

final probability model by plugging their linear combination into the logistic function:

1
1+ eXp(— Ym0 04, (Sﬁ(k/’)»

p(k|z) = : (3.3)

here, (k) is the original NARX regressor vector formed from past outputs and inputs (as
in (2.2)), and {6}, } are the parameters estimated by maximizing the multinomial logistic

likelihood.

Since multiclass classification is more complex than a single binary split, we adopt
a One-Versus-All (OVA) decomposition: for each class v = 1,...,C, we fit a separate
logistic-NARX model that discriminates “class v versus all other classes”. Denote the
probability output of the v-th binary logistic-NARX as f,(z). Then an input x is assigned
to the class whose classifier yields the highest probability:

T € w, & v = arg max, fr(2). (3.4)

Thus, each of the C' binary logistic models selects its own most predictive NARX
terms (as in (3.2) and the Orthogonal Forward Regression Algorithm 1), and at test time
the final class label is determined by (3.4). In summary, our approach (Algorithm 2)

combines:

o NARX structure search: orthogonalize all candidate regressors {¢;((k))} to obtain
orthonormal bases {w;}, then rank them by cross-validated logistic regression accu-
racy 7(w;,y), which serves as a relevance score reflecting each term’s contribution to

classification performance;

o Logistic-NARX fitting: after selecting the top nn., regressors, estimate the parame-

ters 0, by fitting a logistic model on the combined linear predictor Y, 6;, ¢;, (¢(k));

e One-Versus-All decomposition: repeat the above for each class v to build C' separate

logistic-NARX classifiers, then use (3.4) to make a final multiclass decision.

By explicitly measuring accuracy at each term-selection step, the method both

mitigates multicollinearity (via orthogonalization) and maintains interpretability: each
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Algorithm 2: Logistic-NARX Multinomial Model
Input: {(y(k)),k=1,... N}, M={¢;,i=1,....,m} , 1, ny, ny, Nnaz
Output: a={a;,i=1,... . N}, @ ={0i,i=1,... Nppas}
1 fori=1:mdo
2 | we g
3 r; <— Logistic regression accuracy in w; and y
4 end
5 J arglrélizi)gl{r(wi,y)} > Equation (3.2)

q1 <— wW;

ay < @

Train logistic model with ay and y using One-Versus-All > Equation (3.4)
Compute cross-validation

10 Remove ¢; from M

11 for s =2:k do

© 0w N o

12 fori=1:m do

13 wz(s) < Orthogonalize ¢; in [q,,...,q,_,] > Equation (2.23)
14 if w]w; < 1071° then

15 Remove ¢; from M

16 Next iteration

17 end

18 r; <— Logistic regression accuracy in w; and y

19 end

20 | j max  {r0(w;,y)}

21 qs < W;

22 5 < @

23 Remove ¢; from M

24 | o< fag,.a )]

25 Train the logistics model with e and y using One- Versus-All

26 Compute cross-validation

27 end

28 oo, > matrix of selected terms
29 0 < [61,...,0 ] > vector of estimated coefficients

7 Y (nmax)

selected ¢;, enters the final logit as a transparent regressor, and its coefficient ¢;, directly
quantifies how that NARX term influences the log-odds of class membership. The
implementation of the method is presented in Algorithm 2, and its main steps are described

below:

o The inputs of Algorithm 2 include the vector y(k) containing the class labels, the
matrix M of candidate regressors ¢; (derived from combinations of input features),
the maximum number of terms to be selected 7,4, and the NARX model parameters
(I, ny,n,) defined in Equation (2.1);

« Lines (1-5) identify the candidate terms ¢; with the highest discriminatory power,
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based on the logistic regression accuracy using each normalized candidate regressor;

o In lines (6-9), the logistic regression model is trained using the selected term «; and
the label vector y(k), applying the One-Versus-All (OVA) strategy and evaluating

performance via cross-validation;

 From lines (12-27), the remaining candidate terms are orthogonalized with respect
to the already selected ones using the modified Gram-Schmidt procedure. Each
orthogonalized term is then evaluated using the logistic regression accuracy, and
the most informative term is selected at each iteration. This process continues until

Nmaz terms are selected;

 Lines (14-17) implement a filtering step based on the squared 2-norm (Euclidean
norm) of each orthogonalized term (Wei and Billings, 2008). Terms with negligible

norm are removed to avoid redundancy and prevent multicollinearity in the model;

 Finally, in lines (28-29), the matrix a containing the selected regressors and the
vector @ of estimated coefficients are computed. Since the optimal number of terms
is not known beforehand, the parameter n,,q, is usually chosen heuristically by

analyzing the evolution of the model accuracy.

This algorithm tackles multiclass classification tasks by combining the interpreta-
bility of NARX models with the classification power of logistic regression. The NARX
structure naturally incorporates lagged variables and their interactions, offering a trans-
parent model structure that facilitates understanding of how input variables influence
the classification decision. Figure 1 illustrates the main steps of the Logistic-NARX
Multinomial algorithm. The method iteratively selects the most relevant terms based on
logistic accuracy, applies orthogonalization to reduce redundancy, and builds a compact,

interpretable model until the limit n,,,, is reached.

The computational complexity of the Logistic-NARX Multinomial algorithm is
mainly determined by four components: (i) evaluation of feature relevance, (ii) training
of the logistic regression model, (iii) orthogonalization of candidate terms, and (iv) the
One-Versus-All (OVA) decomposition for multiclass problems. The feature relevance
evaluation has linear complexity, O(NM), where N is the number of samples and M
is the number of features (Ayala Solares et al., 2019). Training the logistic regression
model has a worst-case complexity of O(M?3 + NM) (Komarek, 2004). Orthogonalization
requires O(N (M — 1)) (Senawi et al., 2017). The use of OVA adds an extra factor K (the
number of classes), leading to an overall complexity of O(K(M? + NM)). By combining
the interpretability of linear models with the accuracy of more advanced methods, such as
Support Vector Machines (SVM), the proposed approach proves particularly valuable in
contexts where both explainability and predictive performance are important, as illustrated

in Figure 2.
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Figure 1 — Flowchart illustrating the main stages of the Logistic-NARX Multinomial
algorithm, including input processing, model structure identification, term selection, and
final classification output.
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Source: created by the author. (2024).

3.3 CASE STUDY SIMULATION

In this section, simulations are performed to evaluate the classification accuracy
and model compactness achieved by the proposed methodology. The assessment is
conducted using well-known benchmark datasets commonly employed in the machine
learning literature. The objective is to analyze the effectiveness of the proposed Logistic-
NARX Multinomial approach in comparison to widely used classification algorithms.
Specifically, the method is tested on four multivariate datasets sourced from the UCI

Machine Learning Repository', which represent diverse and realistic classification scenarios.

The datasets were selected to ensure a representative variety in terms of number of
features, sample size, number of classes, and the presence of imbalanced or noisy data.
The Iris dataset serves as a classic benchmark with relatively simple class boundaries. The
Wine dataset introduces a greater number of features and an imbalanced class distribution.
The Glass dataset includes six classes, with some minority classes and outliers, making

it more challenging. Lastly, the Wave dataset features a higher-dimensional input space

1 UCI Machine Learning Repository: https://archive.ics.uci.edu/ml.
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Figure 2 — Comparative analysis of different classification techniques, highlighting their
performance in terms of accuracy and model interpretability.
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Source: created by the author. (2023).

and noisy observations. A summary of the characteristics of these datasets is provided in
Table 1.

For each dataset, the performance of the proposed algorithm is compared against
standard classification techniques, including Random Forest (RF) (Breiman, 2001), Support
Vector Machines (SVM) (Cortes and Vapnik, 1995), and k-Nearest Neighbors (KNN) (Cover
and Hart, 1967). Evaluation is based on established performance metrics, enabling a

comprehensive comparison of accuracy and model behavior.

Table 1 — Summary of the main characteristics of the selected datasets, including size,
number of classes, and feature dimensionality.

Datasets Classes Features Samples
Iris 3 4 150
Wine 3 13 178
Glass 6 9 214
Wave 3 40 5000

The algorithms evaluated in this section were implemented using the MATLAB
programming environment and executed on a computer equipped with an Intel Core
i5 processor (2.5 GHz) and 8 GB of RAM. To ensure consistency and fairness in the
comparisons, all methods were evaluated using 5-fold cross-validation. The input features

of each dataset were normalized, and identical preprocessing procedures were applied
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across all classifiers.

The hyperparameters for each classifier were selected based on empirical testing with
each dataset, choosing configurations that yielded the best cross-validation performance.
The adopted settings for Random Forest (RF), Support Vector Machines (SVM), and
k-Nearest Neighbors (KNN) for each dataset are as follows:

e Iris — RF with Gini’s diversity index and a maximum of 5 splits; SVM with a
polynomial kernel of degree 2; KNN using Minkowski distance (exponent 3) and
k = 10 neighbors;

o Wine — RF with Gini’s index and up to 20 splits; SVM with a polynomial kernel of
degree 2; KNN with Euclidean distance and k = 10;

e Glass — RF with Gini’s index and up to 100 splits; SVM with a polynomial kernel of
degree 3; KNN with Euclidean distance and k£ = 10;

o Wave — RF with Gini’s index and up to 20 splits; SVM with Gaussian (RBF) kernel;
KNN with Euclidean distance and k = 10.

3.3.1 Model Selection with Cross-Validation and Statistical Tests

In the Logistic-NARX Multinomial framework, model complexity depends on the
number of terms in the final structure. To balance accuracy and interpretability, this
thesis adopts a clear and rigorous method to select the optimal number of terms, based on

the following criteria:

o (Cross-validated accuracy: The primary performance metric is the mean accuracy

from k-fold cross-validation, ensuring generalizability to unseen data;

o Statistical significance testing (paired t-tests): Differences in performance between
models with varying numbers of terms are assessed using paired t-tests on fold-wise
accuracy values. A significance level of o = 0.05 is used (Fisher, 1992; Wasserman,
2013), representing the maximum acceptable probability of incorrectly rejecting
the null hypothesis. P-values below this threshold indicate statistically significant

differences; otherwise, models are considered statistically equivalent;

o FError bar overlap: Accuracy plots with standard deviation error bars are used to
visually assess stability. Substantial overlap suggests non-significant performance

differences that should be interpreted cautiously;

e Model complexity: When multiple configurations are statistically equivalent, the

model with the fewest terms is preferred, following the principle of parsimony:;
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o Stability (low variance): Among statistically equivalent models, the one with the
smallest standard deviation across folds is favored, as it indicates more consistent

performance.
The evaluation procedure consists of:

1. For each candidate number of terms, compute the cross-validated mean accuracy
and standard deviation. A wide range of term counts is tested to ensure that adding
more terms does not yield statistically significant improvements. The results tables

in subsequent sections report only up to the optimal number of terms identified;
2. Visualize performance using accuracy curves with error bars;
3. Perform paired t-tests between the highest-performing configuration and all others;
4. In cases of statistical equivalence, select the model with:

» Fewer terms (lower complexity);

 Smaller standard deviation (greater stability).

This analysis framework is applied to all case studies in the following chapters.
Each application includes a dedicated section presenting the accuracy results, statistical

test outcomes, and the rationale for selecting the optimal number of terms for that dataset.

3.3.2 Static Multiclass System

In this first example, the objective is to evaluate the algorithm’s ability to correctly
identify all model terms that define the decision boundary in a regression-like NARX
framework. Consider the following input—output system: a latent score is computed from
the inputs, and the class label is then obtained by applying a threshold to this common

score:

s[k] = w3 [k] + 2 ud[k] — 0.8 ul[k] us[k] + e[|,
1, s[k] <,

ylk] =92, m < s[k] < 7,
3, slk] = m,

(3.5)

inputs are independently and identically distributed (i.i.d.) following a uniform distribution
over [—1,1], i.e., u;[k] ~U(—1,1) for i = 1,...,4, and the measurement noise follows
e[k] ~ N(0,,0.3%). Only u; and uy are relevant to the data-generating process, while wuz
and u4 act as distractor variables. To obtain approximately balanced classes, (71, 72) are

set to the empirical quantiles (Q1/3,Q2/3) of s[k] computed from the training set.
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A total of 1,000 input—output samples are generated, as illustrated in Figure 3.
Since this is a static problem, no time lags are considered, and the nonlinearity degree is
fixed at [ = 3, so that the candidate dictionary includes a constant term and all polynomial
combinations of the four inputs at time £ up to degree 3. The maximum model size is set
t0 Nmax = 10, and performance is assessed using 5-fold cross-validation during the term

selection phase.

Figure 3 — Scatter plot of the relevant input variables u; and wus for the generated static
multiclass system dataset.

W N =

-0.8  -0.6

Source: created by the author. (2025).

Figure 4 shows that the mean cross-validation accuracy increased up to the 5-term
model, which achieved the highest average performance (0.7620 + 0.0193). Paired t-tests,
reported in Table 2, comparing the 5-term model with the others revealed that only the
I-term (p = 0.0025) and 2-term (p = 0.0014) models exhibited statistically significant
differences. All other configurations (3—10 terms) yielded p-values above 0.05, indicating
statistical equivalence in performance. Considering parsimony and stability criteria, the
5-term model was selected as the optimal configuration, as it offers a balanced trade-off

between high accuracy, low variability, and moderate complexity.

Table 3 presents the identified NARX model (k) for the selected configuration,
including the chosen terms, their estimated parameters, and relevance scores derived
from cross-validated logistic regression accuracy. These scores quantify the individual
contribution of each term to the overall model performance during the selection process.
The results indicate that the algorithm correctly identified all model terms involved in the

decision boundary of Equation (3.5). The estimated parameters correspond to log-odds
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ratios and, therefore, are not expected to match the coefficients of the original decision

boundary function directly.

Figure 4 — Average accuracy observed during the model term selection phase (static
multiclass system).

0.85
)
Q —_
g 0.76 £ 0.05
3 0.8 _
5] 0.76 = 0.02
=
2 0.75 £ 0.01
= 075+001 | & | T Lo o
D075 e T [T g )|
<
a 0.75 + 0.02
a 0.75 £0.02
o 4
=
O 0.7 , 0.75 = 0.04
0.75 £ 0.07
_______ 0.66 + 0.02
| I I I I I I I I 1
1 2 3 4 5 6 7 8 9 10 11

Number of terms

Source: created by the author. (2023).

Table 2 — Cross-validation mean accuracy, standard deviation, and p-values from paired
t-tests comparing each configuration to the 5-term model (static multiclass system).

# Terms  Mean STD p-value | # Terms  Mean STD p-value
1 0.6671  0.0189  0.0025 6 0.7530  0.0162  0.4866
2 0.6640  0.0233  0.0014 7 0.7530  0.0123  0.5555
3 0.7490 0.0074  0.2873 8 0.7550  0.0426  0.5914
4 0.7520  0.0243  0.5817 9 0.7581  0.0472  0.8837
5 0.7620  0.0193 — 10 0.7521  0.0672  0.7831

A comparative analysis was conducted to benchmark the proposed method against
traditional classifiers. As shown in Figure 5, the Logistic-NARX Multinomial model
achieved the highest average accuracy of 76.20 %, demonstrating superior cross-validation
performance compared to standard techniques. To provide a more comprehensive evalu-
ation, multiple metrics were considered. The results in Table 4 show that the proposed

method consistently outperformed the compared techniques across all evaluated metrics.
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Table 3 — Identified NARX model (k) showing the top 5 selected terms, their estimated
parameters, and corresponding relevance scores (correlation values) used during model
construction (static multiclass system).

Model Terms Parameter Score Model Terms Parameter Score
uz(k)uz(k) 0.2383  0.8134 | constant 0.1690  0.6630
uy (k)uq (k) 0.0954 0.4550 uy (k)uq (k)uz (k) -0.0260 0.4491
ug (k)ua(k)ua(k) 0.0205  0.4290

Figure 5 — Comparative analysis of classification accuracy for the static multiclass system
using different methods. Accuracy was evaluated through cross-validation with interval
measurements and average performance indicated.
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Source: created by the author. (2023).

Table 4 — Performance comparison of various classification methods based on multiple
evaluation metrics (static multiclass system).

L-NARX M RF SVM KNN
Average Accuracy 0.7620 0.7050 0.7040 0.6850
Sensitivity 0.7575 0.7079 0.7109 0.6748
Specificity 0.8883 0.8537 0.8510 0.8494
Precision 0.7623 0.7052 0.7041 0.6853

F1 Score 0.7514 0.7043 0.7065 0.6738
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3.3.3 Iris Dataset

The Fisher’s Iris dataset, introduced by Ronald Fisher in 1936 (Fisher, 1936), is
a classic multivariate dataset widely used for testing classification algorithms (Soni and
Patel, 2017). It contains 150 balanced samples from three iris species (Setosa, Versicolor,
and Virginica), with four numeric features per sample: sepal length, sepal width, petal
length, and petal width, all measured in centimeters. Fisher originally used these variables
to construct a linear discriminant model. The dataset is publicly available through the

UCI Machine Learning Repository? and is summarized in Table 5.

Table 5 — Description of Fisher’s Iris dataset, detailing the features (in centimeters) and
class labels for each sample.

Features (cm) Classes
Samples Sepal Sepal Petal Petal Species
Length Width Length Width
1 5.1 3.5 14 0.2 Setosa
2 4.9 3.0 14 0.2 Setosa
50 6.4 3.5 4.5 1.2 Versicolor
150 5.9 3.0 5.0 1.8 Virginica

To evaluate the performance of the proposed classification method, experiments
were conducted using Fisher’s Iris dataset. This benchmark dataset allows for the analysis
of model behavior in a controlled and well-understood setting. Figure 6 presents a bivariate
comparison of petal and sepal lengths across the three iris species. From this visual analysis,
it is evident that Iris setosa presents shorter petal and sepal lengths, versicolor shows

intermediate values, and wvirginica is characterized by longer measurements.

The proposed algorithm was applied using a nonlinearity degree of [ = 2 and a
maximum of n,,,, = 10 selected terms, as defined in Equation (2.2). Since this dataset
represents a static classification problem without temporal dependencies, time delays
were not included in the NARX formulation. Consequently, the resulting search space

comprised 15 candidate terms based solely on the original features.

Performance was evaluated using 5-fold cross-validation, ensuring consistent and
robust estimation of the classifier’s generalization capability. Figure 7 illustrates the

accuracy obtained during the iterative term selection process. This step is essential

2 Fisher’s Iris dataset (UCI Machine Learning Repository): https://archive.ics.uci.edu/

ml/datasets/iris
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Figure 6 — Bivariate analysis comparing petal length and sepal length across the three Iris

species, highlighting inter-class separability.
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for identifying the most relevant terms and determining an appropriate model size that

balances accuracy and interpretability.

Figure 7 — Average accuracy observed during the model term selection phase for the

Fisher’s Iris dataset, indicating the optimal number of terms.
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The average accuracy curve (Figure 7) shows that adding terms beyond a certain
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point provides negligible improvements in predictive performance. The configuration with
five terms achieved the highest mean cross-validation accuracy (0.9734 £+ 0.0149) and the
lowest variance among all tested models, indicating both strong performance and stability.
To confirm these findings, paired t-tests were performed between the 5-term model and
each alternative configuration (2-10 terms). As shown in Table 6, all p-values were greater
than 0.05, confirming that the observed performance differences were not statistically

significant.

Given the statistical equivalence among configurations, the final selection followed
the principles of parsimony and performance stability. The 5-term model was chosen as
the optimal configuration, offering a balance of high accuracy, low variance, and reduced
complexity. Notably, even the more compact 2-term model (0.9600 4 0.0279) delivered
competitive results, underscoring the robustness and generalization capability of the

modeling approach.

Table 7 presents the identified NARX model (k) for the selected configuration,
including the chosen terms, their estimated parameters, and relevance scores derived from
cross-validated logistic regression accuracy as defined in Equation (3.2). These scores
quantify the individual contribution of each term to the overall model performance during

the selection process.

Table 6 — Cross-validation mean accuracy, standard deviation, and p-values from paired
t-tests comparing each configuration to the 5-term model.

# Terms  Mean STD p-value | # Terms  Mean STD p-value
2 0.9600  0.0279  0.4759 7 0.9667  0.0365  0.6574
3 0.9534  0.0298  0.2081 8 0.9600 0.0279  0.4759
4 0.9600 0.0365  0.4764 9 0.9667 0.0279  0.6574
5 0.9734  0.0149 - 10 0.9533  0.0298  0.2081
6 0.9733  0.0279  0.9986

Table 7 — Identified NARX model §(k) for the static multiclass system, showing the
selected terms, their estimated parameters, and corresponding relevance scores.

Model Terms Parameter Score Model Terms Parameter Score
us(k) 0.1322 0.9533 Constant 0.4386 0.7714
ug(k)ug(k) 0.0218 0.5933 us(k)us(k) 0.0572 0.5067
uz(k)ug(k) -0.0368 0.4667 up(k)ug(k) 0.0035 0.4200

A comparative analysis was also conducted to benchmark the proposed method

against traditional classifiers. As shown in Figure 8, the Logistic-NARX Multinomial model
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achieved the highest average accuracy of 97.33 %, demonstrating superior performance

under cross-validation when compared to standard techniques.

Figure 8 — Comparative analysis of classification accuracy for the Fisher’s Iris dataset
using different methods. Accuracy was evaluated through cross-validation with interval
measurements and average performance indicated.
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Source: created by the author. (2023).

Table 8 — The confusion matrix displays the performance of classification methods by
aggregating partitions from validation sets created through cross-validation. It includes
three classes: Iris Setosa (C1), Iris Virginica (C2), and Iris Versicolor (C3).

C1 C2 C3 C1 C2 C3
C1 50 C1 50
C2 48 2 C2 45 3
C3 2 48 C3 5 47
(a) Logist-NARX Multiclass. (b) Random Forests.
C1 C2 C3 C1 C2 C3
C1 50 C1 50
C2 47 2 C2 48 6
C3 3 48 C3 2 44
(¢) Support Vector Machine. (d) K-Nearest Neighbors.

An effective way to visualize and assess classification performance is through the

confusion matrix, which summarizes the number of correct and incorrect predictions by
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comparing predicted and actual class labels. Based on the confusion matrix (see Table 8),
several evaluation metrics can be derived, as presented in Table 9. Although accuracy is a
commonly used metric, it may be insufficient in scenarios with imbalanced classes. For this
reason, multiple metrics are considered to provide a more comprehensive evaluation. The
results in Table 9 show that the proposed method consistently outperforms the compared

techniques across all evaluated metrics.

Table 9 — Performance comparison of various classification methods applied to the Fisher’s
Iris dataset, based on multiple evaluation metrics derived from the respective confusion
madtrices.

L-NARX M RF SVM KNN
Average Accuracy 0.9733 0.9467 0.9667 0.9467
Sensitivity 0.9735 0.9471 0.9668 0.9485
Specificity 0.9867 0.9735 0.9834 0.9738
Precision 0.9732 0.9467 0.9665 0.9467

F1 Score 0.9731 0.9466 0.9661 0.9466
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3.3.4 Wine Dataset

The Wine dataset, originally compiled by Forina et al. (1990), contains chemical
measurements of 178 wine samples from three different cultivars grown in the same region
of Italy. It includes 13 features such as alcohol content and color intensity, which serve to
classify the wines by cultivar. The objective is to predict the wine class based on these
physicochemical attributes. This benchmark dataset is widely used in classification studies

and is publicly available in the UCI Machine Learning Repository®.

Figure 9 — Class frequency distribution of the Wine dataset, illustrating the number of
samples per class.
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The class distribution of the Wine dataset (see Figure 9) shows a moderate
imbalance among categories. In this experiment, the proposed method was configured with
a nonlinearity degree of [ = 2 and a maximum of ny., = 10 selected terms, producing a
search space of 105 candidates. Since the dataset represents a static classification problem,
where each sample is described by fixed chemical descriptors, no time delays were included
in the NARX formulation.

Results of cross-validation for models containing 1 to 10 terms are presented in
Figure 10. The highest mean accuracy (0.9205 £ 0.0456) was obtained with 9 terms (see
table 10). Statistical analysis using paired two-sided t-tests (o = 0.05) indicated significant
differences for most simpler configurations (p < 0.05 for 2 and 3 terms), while models with

4,5, and 6 terms performed similarly to the 9-term model (p > 0.05).

Overall, although the 9-term configuration achieved the best accuracy, some lower-

complexity models also delivered competitive results. For instance, the 6-term model

3 Wine dataset in the UCI Machine Learning Repository: https://archive.ics.uci.edu/ml
/datasets/wine.
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(0.8598 £+ 0.0676) provides comparable performance with advantages in interpretability

and computational efficiency.

Figure 10 — Average accuracy computed during the model’s term selection phase for the
Wine dataset, used to determine the optimal number of terms for constructing the final
model with maximum classification performance.
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Table 10 — Cross-validation mean accuracy, standard deviation, and p-values from paired
t-tests comparing each configuration to the 9-term model.

# Terms  Mean STD p-value | # Terms  Mean STD p-value
2 0.7821  0.0551  0.0020 7 0.8716  0.0565  0.3568
3 0.8386  0.0673  0.0004 8 0.8892 0.0456  0.6059
4 0.8252  0.0566  0.0807 9 0.9205  0.0456 —
5 0.8305 0.0547  0.1091 10 0.8738  0.0747  0.4923
6 0.8598 0.0676  0.2268

Figure 11 displays the classification accuracy of the proposed method in comparison
to traditional techniques. The Logistic-NARX Multinomial approach achieved an average
accuracy of 92 %, outperforming competing models. The narrow confidence intervals
suggest strong generalization capabilities, even under class imbalance conditions. The
confusion matrix analysis (see Table 12) further confirms the competitive performance of
the proposed method, with Support Vector Machines (SVM) yielding similar results but

slightly more classification errors.
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Table 11 — Identified NARX model g(k) for the Wine dataset, presenting the selected
terms, their estimated parameters, and corresponding relevance scores used during the
model selection process.

Model Terms Parameter Score Model Terms Parameter Score
Constant 0.5333  0.7759 | w7 (k) -0.1446  0.7754
u1o(k)uis(k) 0.7491 0.6630 1(k)uio(k) 0.2371 0.6458
up(k)u (k) -0.6990 0.6569 ug(k)uz(k) -0.5193 0.4948
us(k)uy (k) 0.5661 0.4492 ur(k)u11 (k) 0.3936 0.4652
ue(k)u13(k) 0.2870 0.4436

Figure 11 — Accuracy outcomes for various classification methods applied to the Wine
dataset, evaluated through cross-validation. Results are presented at regular intervals
along with their respective average accuracy values.
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Table 13 offers a comprehensive overview of overall performance using various
metrics. Both the L-NARX M and SVM methods produced favorable results, particularly
in terms of the F'1 Score, which represents the harmonic mean of precision and recall. This
highlights the effectiveness of these methods in achieving a balanced performance across

different evaluation criteria.
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Table 12 — Confusion matrix illustrating the performance of the classification methods,
obtained by aggregating the validation set predictions from cross-validation partitions.
The classes represent the three distinct cultivars present in the Wine dataset.

C1 C2 C3 C1 C2 C3
C1 o7 4 C1 52 3
C2 2 65 3 C2 2 60 7
C3 2 45 C3 ) 8 38
(a) Logist-NARX Multiclass. (b) Random Forests.
C1 C2 C3 C1 C2 C3
C1 55 4 C1 o4 8 1
C2 2 63 2 C2 4 62 9
C3 2 4 46 C3 1 1 38
(¢) Support Vector Machine. (d) K-Nearest Neighbors.

Table 13 — Performance comparison among different classification methods applied to the
Wine dataset, using multiple evaluation metrics derived from the corresponding confusion
matrices.

L-NARX M RF SVM KNN
Average Accuracy 0.9225 0.8991 0.8992 0.8876
Sensitivity 0.9246 0.8962  0.8998  0.8900
Specificity 0.9603 0.9483  0.9477  0.9435
Precision 0.9192 0.9027  0.9030  0.8875

F1 Score 0.9215 0.8987 0.9013 0.8873
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3.3.5 Glass Dataset

The Glass dataset was developed by the Centre for Forensic Science Research to
support forensic investigations involving the classification of glass types (Zhong and Fu-
kushima, 2007; Denoeux, 2000). It is publicly available through the UCI Machine Learning
Repository*. The dataset contains 214 instances and includes chemical composition data
(e.g., Na, Fe, K oxides) used to classify samples into seven distinct glass categories. Each

sample is described by nine numerical features derived from chemical analysis.

Figure 12 presents the class distribution, revealing a significant imbalance across
categories. Although some classes are underrepresented, all categories are considered
equally important in this classification task. The dataset is considered challenging due to

the presence of minority classes and potential outliers.

Figure 12 — Class frequency distribution in the Glass dataset, highlighting the presence of
significant class imbalance due to the uneven number of samples across categories.
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For the application of the proposed method (2.2), the parameters were set to a
nonlinearity degree of [ = 2 and a maximum of n,,,, = 10 selected terms, yielding a
search space of 55 candidate terms. As this is a static classification problem—where each
instance represents an independent chemical analysis of a glass sample—mno time delays

were incorporated into the NARX structure.

The cross-validation results for this case study (see Figure 13), summarized in
Table 14, reveal a gradual increase in accuracy as the number of terms grows, with the
best average performance achieved for the 14-term model (0.6943 4+ 0.1072). Paired t-tests

4 Creator: B. German — Central Research Establishment Science Service Aldermaston, Berkshire.
Donor: Vina Spiehler, Diagnostic Products Corporation (213) 776-0180, 1987. Glass dataset
(UCI Machine Learning Repository): https://archive.ics.uci.edu/ml/datasets/glass+
identification.
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comparing each configuration to the 14-term model show that most models with fewer
terms present statistically lower accuracy (p < 0.05), particularly for the configurations
with 2, 4, 7, and 11 terms. However, models with 13 terms (p = 0.6847) and 12 terms
(p = 0.3543) exhibit no statistically significant difference in accuracy when compared
to the 14-term model, suggesting potential for complexity reduction without significant
performance loss. Nevertheless, considering the higher variance observed in some simpler
configurations and the more consistent accuracy at higher complexities, the 14-term model

is retained as the preferred configuration for this case study.

Figure 13 — Average accuracy calculated during the model term selection phase for the
Glass dataset, used to identify the optimal number of terms for constructing the final
classification model with maximum performance.
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Table 15 presents the identified NARX model g(k), listing the selected terms,
their estimated parameters, and relevance scores. Due to the inherent complexity of the
dataset, including class imbalance and outliers, all classification methods yielded modest
performance levels. Nevertheless, the Logistic-NARX model achieved results comparable to
the best-performing technique, reinforcing its potential as a competitive and interpretable

alternative, as illustrated in Figure 14.

Table 16 presents a comparative evaluation of the tested classification methods
using standard performance metrics derived from confusion matrices. The proposed NARX
model outperformed all other methods in terms of overall accuracy (71.1 %), F1 Score
(70.0 %), and precision (63.6 %). Although Support Vector Machines (SVM) and k-Nearest

Neighbors (KNN) also demonstrated competitive results, especially in sensitivity and
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Table 14 — Cross-validation mean accuracy, standard deviation, and p-values from paired
t-tests comparing each configuration to the 14-term model.

# Terms  Mean STD p-value | # Terms  Mean STD p-value
2 0.5017  0.0684  0.0054 9 0.6448  0.0455  0.1907
3 0.6217  0.0505  0.0549 10 0.6640  0.0571  0.3080
4 0.6309 0.0542  0.0222 11 0.6400 0.0490 0.1108
5 0.6126  0.0686  0.0702 12 0.6663  0.0563  0.3543
6 0.6269  0.0900  0.1655 13 0.7094 0.0419  0.6847
7 0.6309  0.0505  0.0465 14 0.6943  0.1072 —
8 0.6537 0.0784  0.4388

Table 15 — Identified NARX model (k) for the Glass dataset, presenting the selected
model terms along with their estimated parameters and associated relevance scores.

Model Terms Parameter Score Model Terms Parameter Score
Constant 0.4211  0.7287 | wus(k)ur(k) 0.0151  0.5198
ug(k) 0.2210 0.5403 ug(k)ug(k) 0.0336 0.4754
ug(k)ug (k) —0.0682 0.4808 ug(k)us (k) —0.0344 0.4398
ug(k) 0.0993 0.4530 us(k)ug(k) 0.0353 0.4375
ug(k)ug(k) —0.0147  0.4727 ug (k) —0.0174 0.4257
ug (k)uq (k) —0.0496 0.4254 ug(k)uz (k) —0.0475 0.4171
ur(k) 0.0660 0.4075 ug(k)ug(k) —0.0031 0.3887
uy (k)ug (k) 0.0579 0.3888

specificity, they fell slightly behind in balanced performance metrics.

Given the class imbalance inherent in the Glass dataset, these results may still be
improved through techniques designed to address data imbalance. Common approaches
include undersampling, which removes instances from majority classes, and oversampling,
which synthetically augments minority class instances. Such strategies could further

enhance classifier robustness across all classes.
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Figure 14 — A comparative analysis of accuracy results for various classification methods
applied to the Glass dataset is showcased. The accuracy, evaluated through cross-validation,
is depicted at intervals, accompanied by their respective average values.
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Table 16 — Performance comparison among different classification methods applied to
the Glass dataset, based on multiple evaluation metrics derived from the corresponding
confusion matrices.

NARX RF SVM KNN
Accuracy 0.7110 0.6628 0.6856 0.6945
Sensitivity 0.6600 0.6488 0.6751 0.6633
Specificity 0.9342 0.9229 0.9281 0.9316
Precision 0.6356 0.5933 0.6385 0.6370

F1 Score 0.7005 0.6164 0.6529 0.6484
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3.3.6 Wave Dataset

To examine the effectiveness of the parameter extraction and dimensionality
reduction-based method, several experiments were conducted by applying the method to
the Wave dataset (Valentini, 2004). The samples are generated by the waveform database
generator presented in Breiman et al. (1984), which is available on the UCI Machine
Learning Repository”. The dataset comprises 5000 samples and 40 attributes (features)

describing 3 classes as waveforms, all of which include noise.

Each class in the Wave dataset is generated by combining two of three basic
waveforms: hy(t), ho(t), and hs(t). To create an instance x;, a uniformly distributed
random variable u ~ U(0,1) and a noise vector e = [e;]T, where ¢, ~ N(0,0?) for

=1,...,40, are used. The input vector is then defined as:

X; = Uhl -+ (]_ — U)hg + e, (36)

where the waveform pairs vary by class: class 1 uses (hy, hg), class 2 uses (hy, h3), and
class 3 uses (hg, h3). Due to the synthetic nature of the dataset, nearly half of the 40
features are irrelevant. Thus, identifying the most informative variables is crucial not
only to enhance classification accuracy but also to reduce computational cost and improve

model generalization.

The Wave dataset exhibits a temporal structure, as its attributes represent sequen-
tial values with correlations across time steps. Given that waveforms evolve over time, past
observations carry useful information for distinguishing between classes. By incorporating
delays, the NARX model captures these temporal dependencies, improving classification

performance by leveraging the underlying dynamics of the data.

In applying the proposed method (2.2) to the Wave dataset, the following parameters
were adopted: nonlinearity degree [ = 2, maximum number of selected terms n,,,, = 10,
and input delay n, = 10, resulting in a search space of 80601 candidate terms. This large
number of features and temporal dependencies contributes to the increased complexity of

the problem.

The cross-validation results for this case study, shown in Figure 15, indicate a
gradual improvement in model performance as the number of terms increases, reaching a
maximum mean accuracy of 0.8422 (+ standard deviation) for the configuration with 15
terms. This configuration was identified as the best-performing model among all those
tested.

Table 17 shows that, when comparing each configuration to the 15-term model

5 Creator: Wadsworth International: California. Donor: David Aha. Waveform Database

Generator (Version 2) (UCI Machine Learning Repository): http://archive.ics.uci.edu/
ml/datasets/waveform+database+generator+(version+2).
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Figure 15 — Average accuracy calculated during the term selection phase of the model for
the Wave dataset, used to determine the optimal number of terms for constructing the
final model with maximum classification performance.
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using paired t-tests, models with fewer terms (e.g., 2 to 6) exhibit statistically significant
performance differences, with very low p-values close to zero. This confirms that these

simpler configurations underperform relative to the best model.

From approximately 10 terms onward, the mean accuracy approaches the maximum
value and the standard deviations remain relatively small, indicating greater stability.
Nonetheless, the statistical results reveal that some models with slightly fewer terms,
such as those with 12 or 13, achieve accuracy statistically equivalent to the 15-term
configuration. This suggests the possibility of selecting more parsimonious models when
the aim is to reduce complexity without compromising predictive performance (see Table
18).

The classification performance for the Wave dataset is summarized in Figure 16
and Table 19. The proposed method outperformed Random Forest (RF) and k-Nearest
Neighbors (KNN), achieving an average accuracy of 82.9 % and F1 score of 82.9 %. Although
Support Vector Machines (SVM) showed slightly higher metrics overall, the Logistic-NARX
model demonstrated competitive performance with the added advantage of interpretability
and dimensionality reduction. These results confirm the method’s ability to effectively

address complex, high-dimensional classification tasks.



Table 17 — Cross-validation mean accuracy,
t-tests comparing each configuration to the 15-term model.
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standard deviation, and p-values from paired

# Terms  Mean STD p-value | # Terms  Mean STD p-value
2 0.5636  0.0084  0.0000 9 0.7944  0.0088  0.0003
3 0.7112  0.0087  0.0000 10 0.8022 0.0122  0.0010
4 0.7133  0.0193  0.0000 11 0.8138  0.0095  0.0168
5 0.7206  0.0212  0.0000 12 0.8232 0.0118  0.0861
6 0.7616  0.0054  0.0000 13 0.8226  0.0118  0.0699
7 0.7776 ~ 0.0054  0.0000 14 0.8266  0.0118  0.1465
8 0.7962  0.0090  0.0005 15 0.8292  0.0103 -

Table 18 — Identified NARX model (k) for the Wave dataset, including the selected
terms along with their estimated parameters and associated relevance scores.

model

Model Terms Parameter Score Model Terms Parameter Score
Constant 4.4978 0.7690 ur (k) —0.8246 0.5638
u11(k) 0.9394  0.5388 | wus(k)uii(k) —0.2979  0.4542
w12 (k)u16(k) 0.4512  0.4278 | wyo(k) 0.5870  0.4278
uys(k)uie(k) 0.1612 0.4300 ug(k) —0.2781 0.4164
ug(k)uio(k) —0.2658 0.4116 ug(k)ur(k) 0.3556 0.4028
u13(k) 0.7814  0.4032 | wug(k)uir(k) —0.2372  0.4026
wr(k)ug(k) 0.2290 0.3964 ug(k) 0.2863 0.3982
w11 (k)uis(k) —0.0849 0.3978

Table 19 — Performance comparison among different classification methods applied to
the Wave dataset, based on multiple evaluation metrics derived from the corresponding

confusion matrices.

NARX RF SVM KNN
Accuracy 0.8292 0.7500 0.8604 0.7986
Sensitivity 0.8292 0.7531 0.8619 0.7986
Specificity 0.9146 0.8777 0.9310 0.8993
Precision 0.8294 0.7510 0.8609 0.7989
F1 Score 0.8292 0.7474 0.8600 0.7986
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Figure 16 — Examination of accuracy results for different classification methods applied to
the Wave dataset. Cross-validated accuracy is presented at regular intervals, accompanied
by their corresponding average values.
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3.4 MODEL EVALUATION AND INTERPRETABILITY

This section discusses the key findings from applying the Logistic-NARX Multi-
nomial model to four benchmark datasets, emphasizing classification accuracy, variable
importance, and interpretability of the resulting models. To better illustrate the concept
of variable importance and model interpretability, let us first consider a simplified version

of the model built using the Fisher’s Iris dataset, composed of only two terms:

9(k) =0.4386 + 0.1322 uz (k) + 0.0218 uy (k)ua(k), (3.7)

here, us(k) corresponds to Petal Length and u4(k) to Petal Width. The coefficient of
ug(k) is positive, indicating that an increase in Petal Length is associated with a higher
probability of classifying a sample into a specific class. Meanwhile, the quadratic term
uy(k)? (Petal Width squared) introduces a nonlinear effect, reflecting how larger petal
widths influence the classification in a non-proportional way. Even with only two terms,
the model can already provide interpretable insights into how individual and nonlinear
effects of variables contribute to decision-making. Expanding to the complete identified

model for the Iris dataset, we have:

§(k) =0.4386 + 0.1322 us(k) + 0.0218 ug(k)ug(k) + 0.0572 us(k)us (k)
— 0.0368 s (k)ua (k) + 0.0035 uy (k)us(k), (3.8)

with input variables corresponding to: u;(k): Sepal Length, us(k): Sepal Width, ug(k):
Petal Length, uy(k): Petal Width. This equation makes clear:

o Petal Length (ug(k)) is strongly positively associated with the output class, both

linearly and quadratically;

o Petal Width contributes nonlinearly via its squared term and in combination with
Sepal Width;

o Interaction terms such as us(k)uy(k) introduce complex dependencies, which are still

fully interpretable due to the explicit form of the equation.

Thus, each term’s coefficient quantifies its relative influence on the classification
decision, offering a transparent framework for variable importance analysis. The Logistic-
NARX Multinomial model demonstrated strong classification performance across the
datasets tested. Table 20 shows the accuracy comparison with classical classifiers like

Random Forest, Support Vector Machines, and K-Nearest Neighbors. For instance, in



Table 20 — Comparison of average accuracy obtained through cross-validation.
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Iris

Wine

Glass

Wave

NARX
RF
SVM
KNN

0.9733 £ 0.026
0.9467 + 0.020
0.9667 = 0.033
0.9467 £ 0.053

0.9225 £+ 0.048
0.8991 £ 0.017
0.8992 £+ 0.043
0.8876 + 0.084

0.7110 £ 0.033
0.6628 £ 0.122
0.6856 = 0.123
0.6945 £ 0.078

0.8292 £ 0.013
0.7500 £ 0.013
0.8604 £ 0.006
0.7986 £ 0.005

the Iris dataset, the proposed model achieved 97.33% accuracy, outperforming the other

models while maintaining an interpretable and compact representation.

In terms of variable relevance, Table 21 summarizes how many variables and
corresponding model terms were retained. For the Iris dataset, from four original variables,
only one was necessary to derive two meaningful model terms, achieving a 75% reduction.
This underscores the model’s efficiency in isolating the most relevant variables and their

interactions without sacrificing performance.

Table 21 — Performance of the proposed method in feature extraction, leading to the
selection of a reduced-dimensionality model while preserving classification effectiveness.

Model Select Reduction Accuracy
Datasets Total

Terms Features (%) T max
Iris 4 2 1 75.00 0.9667 0.9997
Wine 13 9 8 38.46 0.9225 0.9706
Glass 9 14 8 11.11 0.7110 0.7441
Wave 40 14 11 72.50 0.8292 0.8422

3.5 DISCUSSION

The analysis of the Logistic-NARX Multinomial model reveals several key findings
and areas for future development. A notable observation is the consistent inclusion of the
constant term across all experiments, underscoring its importance in capturing baseline
behavior and supporting decision threshold calibration, particularly under normalized

conditions.

Despite demonstrating competitive accuracy and interpretability in various ben-
chmark datasets, the model presents limitations that merit consideration. One primary
constraint lies in its reliance on polynomial basis functions. While these offer simplicity and
analytical clarity, they may fall short in capturing intricate nonlinearities inherent in more

complex classification tasks. Future research could explore alternative basis expansions,
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such as radial basis functions or wavelets, to enhance model flexibility and approximation

capability.

Another technical challenge involves the selection of lag values for input and output
variables (n, and n,). This step remains an open issue in the literature, as increasing these
values significantly enlarges the search space of possible terms. This exponential growth
can render the term selection phase computationally intensive, both in processing time
and memory usage (Wei et al., 2004). Efficient strategies for lag estimation or adaptive

selection methods could address this bottleneck.

The presence of multicollinearity among input features also poses a concern. Highly
correlated variables can distort coefficient estimation and reduce model robustness. Ap-
proaches such as iterative Orthogonal Forward Regression (OFR) (Guo et al., 2015) or
ultra-OFR, (Guo et al., 2016) offer promising avenues to mitigate this issue by ensuring

orthogonalization during the selection of regressors.

Moreover, class imbalance remains a significant obstacle. As is typical in real-
world classification tasks, especially in safety-critical applications, some categories are
underrepresented. This imbalance can hinder the model’s ability to correctly classify rare
but important cases. To overcome this, strategies like data resampling, cost-sensitive
learning, or ensemble methods could be employed to improve minority class detection

without compromising overall accuracy (Kubat and Matwin, 1997; Batista et al., 2000).

3.6 SUMMARY

This chapter provided an evaluation of the proposed Logistic-NARX Multinomial
model using four benchmark datasets: Iris, Wine, Glass, and Wave—selected for their
varying levels of dimensionality, noise, and class imbalance. Results showed that the
proposed model consistently achieved competitive or superior classification accuracy when
compared to traditional methods like Random Forests, Support Vector Machines, and
k-Nearest Neighbors. Additionally, the model demonstrated effective dimensionality
reduction, maintaining interpretability through explicit functional expressions. Notably,
high performance was achieved even in imbalanced and noisy scenarios, reinforcing the
method’s applicability to complex classification tasks with enhanced transparency and

reduced computational burden.
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4  CLASSIFICATION OF PQ DISTURBANCE

The next chapter presents the application of the NARX classification method to
Power Quality Event Classification. It covers key steps, including event simulation, signal
preprocessing, and parameter extraction using Higher Order Statistics (HOS), followed by
selection via the Fisher Criterion. The chapter also demonstrates the discriminative power
of the extracted features and compares the proposed approach with traditional methods,

highlighting its effectiveness in this specific domain.

4.1 INTRODUCTION

Power Quality has become a prominent area of research in recent years, attracting
growing interest from both academia and industry. This trend is largely driven by the
increasing presence of non-linear loads, the evolution of power electronics, the widespread
adoption of microprocessed systems in the electrical grid, and the expansion of renewable
and distributed generation sources (Bollen et al., 2017). Non-linear loads contribute to
distortions in voltage and current waveforms, while microprocessed equipment tends to
be highly sensitive to such disturbances (Mishra, 2019). Any deviation from the nominal
characteristics of electrical signals is classified as a power quality disturbance, which
can cause equipment malfunctions and disrupt industrial processes—often leading to
substantial financial losses (Figure 17). In this context, the following section explores the
development and improvement of monitoring systems for Power Quality, with particular

emphasis on the classification and detection of disturbances (Nagata et al., 2018).

Figure 17 — Infographic illustrating the impact of different events and conditions on Power
Quality, highlighting key sources of disturbance and their effects on electrical systems.
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Source: created by the author. (2023).
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In general, the classification and detection of Power Quality disturbances involve pre-
processing steps that include parameter extraction and dimensionality reduction. Among
the parameter extraction techniques, Higher Order Statistics (HOS) have been widely
investigated as a promising approach for this application (Mendel, 1991; Ferreira et al.,
2009). HOS is favored due to its robustness to Gaussian noise, efficiency in capturing signal
characteristics from voltage waveforms, and relatively low computational cost. To reduce
the dimensionality of the extracted parameter space, the Fisher linear discriminant is
commonly applied. This technique selects the most representative features that maximize
class separability (Duda et al., 2012).

Several classification algorithms have been proposed for addressing the Power
Quality problem, including Support Vector Machines (Nagata et al., 2020), Neural Networks
(Naik and Kundu, 2014), Random Forests (Zhang et al., 2003), and k-Nearest Neighbors
(Pan et al., 2017). Although these methods often achieve high accuracy, they typically
suffer from limited interpretability, making it difficult to understand the relationships

between input variables and model predictions.

To overcome this limitation, the present work applies the Logistic-NARX Multi-
nomial model to the Power Quality classification task. This approach aims to combine

competitive predictive performance with a transparent and interpretable model structure.

4.2 PQ EVENT MODELING AND FEATURE ENGINEERING

4.2.1 Simulation of Power Quality Events

A system developed for the detection and classification of electrical disturbances
in Power Quality (PQ) should correctly identify the occurrence of each abnormality in
a discrete-time power system voltage signal v[n] composed of N samples, which can be
expressed as a sum of contributions from various types of phenomena (Diego Ferreira,
2010; Ribeiro and Pereira, 2007):

v[n] = v(t) = f[n] + h[n| + i[n] + t[n] + r[n], 0<n<N-1, (4.1)

t=10

Ts
where f, is the sampling frequency, and the sequences f[n], h[n], i[n], t[n], and r[n]
represent the fundamental component, harmonics, interharmonics, transients, and noise,
respectively. Each of these signals can be defined as:

foln]

s

fln] = Ao[n] cos (27r n+ 90[77,]) , (4.2)

n (4.2), the term Ag[n] represents the amplitude of the voltage signal, fo[n] is the

fundamental frequency, and 6y[n] is the phase of the voltage signal.

hln] == z_:l hm[n], (4.3)



65

J
=>_ilnl, (4.4)
j=1
where h,,[n| and i;[n] are the m-th harmonic and the j-th interharmonic, respectively.
t[n] = timp[n] + tnot[n] + tosc[nl, (4.5)

where 7[n] is noise with normal distribution N(0,0?) and independent of f[n], h[n], i[n],
and t[n]. In Equations (4.3) and (4.4), the terms h,[n] and i;[n] can be defined as:

hm[n] = A,[n] cos [27rm Jo [:L] n+ 0, [n]] [u {n - nhm,i:| —u [n - nhmfo ,  (4.6)
ol = Arglrleos 2250 )| [u = oo ]] )

where u[n] denotes the unit step sequence, ny,, , and ny,,  represent the start and end

samples of the harmonics, respectively. Slmﬂarly, n;;, and n;, . represent the start and end
samples of the interharmonics, respectively. In Equatlon (4.6), Ap[n] is the amplitude,
and 6,,[n] is the phase of the m-th harmonic. Similarly, in (4.7), Ay ;[n|, fr;[n], and 6; ;[n]
are the amplitude, frequency, and phase of the j-th interharmonic, respectively. Then, in
(4.5), timp[n], tuot[n], and fesc[n] represent impulsive transients, notches, and oscillatory
transients, respectively, and are expressed as Ribeiro and Pereira (2007):

Nimp

timp[1] = Z timp.i 1] [u {n — ntimp,i] —u [n — ”timp,fH , (4.8)

=1

Nnot

tnot |1 Z tnot i [ [n — ntnot,i] —u [n — ”tnot,f” , (4.9)

Losc| % Aosci[n] exp [—osc.i (N — Nose.i)] {u n—ng..i —u [n — ntosc,fH . (4.10)

where timpi[n] and ¢, ;[n] are the n-th samples of the i-th impulsive transient and the i-th
notch, respectively. ny, ., N, ., and ng,, represent the start samples of each impulsive

transient, and n; and ny represent the samples marking the end. Finally,

imp, £ TWtnot, f 7

(4.10) defines the exponential decay components, as well as the direct current components

osc, f

(v = 0) generated by geomagnetic disturbances.

The Power Quality events (PQ) addressed are isolated disturbances reflected in the
voltage waveform. The disturbances were synthetically generated following the standards
in the IEEE-1159 standard (IEEE, 2019), belonging to five different classes: Harmonic
(C1), Sags/Swells (C2), Spikes (C3), Notches (C4), and Pure (C5), detailed in Table 22.
The events were simulated with a sampling frequency f, = 15.36 kHz, i.e., 256 samples
per cycle of the fundamental component of 60 Hz. A total of 250 events or signal windows
were generated for each class, where the size of each event is equal to 4 cycles of the

fundamental component with N = 1024 samples. Additionally, a Signal-to-Noise Ratio



66

Table 22 — A brief description of Power Quality events, representing the different classes
considered in the proposed classification problem.

Event Description

Harmonics Sinusoidal voltages or currents with frequencies that are integer
multiples of the fundamental frequency, caused by rectified inputs
and power supplies used in electronic systems.

Sag Decrease in RMS voltage, associated with faults, load switching,
and motor starting.

Swell Increase in RMS voltage, caused by faults in the power system.
Spike Sudden change in the nominal voltage condition, caused by electri-
cal discharges, load switching, and short circuits.

Notch Periodic voltage disturbance caused by the operation of power

devices during the switching from one phase to another.

(SNR) of 30 dB was considered. The modeling of events is represented in Table 23,

where the parameters adopted in the simulation were randomly chosen within predefined

intervals. The parameters have a uniform statistical distribution, achieving a high level of

generalization in the classification process. The power quality events were generated using

the MATLAB programming language, resulting in the waveforms depicted in Figure 18.

Table 23 — Mathematical models and associated parameters representing the main types
of Power Quality events considered in this study.

Classes Event Equation Parameters
C1 Harmonic sen(wt) + i apsen(nwt) 0.01 <ay, <0.2
n=3
C2 Sag/Swell (1 —a(u(t—t1)— 0.1<a<038
u(t — ta)))sen(wt) T < (ta—t1) <9T
C3 Spike sen(wt) + aexp(— 01<a<038
(t—t1)/T)u(t —t1) 8ms < 7 < 40ms
C4 Notch sen(wt) — sign(sen(wt)) 0.1<K<04
24: K(u(t — (t1 + 0.02n))— 017 < (ta —t1)
n=0
u(t — (t2 +0.02n))) (t2 —t1) < 0.05T
C5 Pure Asen(wt), A=1(p.u.) w = 2760 rad/s




67

Figure 18 — Power Quality events isolated and reflected in synthetically generated voltage
waveforms: (a) Pure, (b) Sag, (c¢) Swell, (d) Harmonics, (e) Notch, and (f) Spike.
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Source: created by the author. (2023).

4.2.2 Parameter Extraction: Higher Order Statistics

Parameter extraction is a fundamental step for ensuring reliable signal processing

and for developing effective disturbance classifiers. In the context of Power Quality analysis,
this process typically involves preprocessing stages that include the extraction and selection

of representative features. Among the various techniques explored in the literature, Higher

Order Statistics (HOS) has emerged as a promising approach for parameter extraction in
Power Quality classification tasks (Mendel, 1991; Ferreira et al., 2009).

HOS involves the computation of statistical measures known as cumulants, which

can effectively capture non-linear and non-Gaussian properties of signals. These cumulants
have been widely used in signal analysis due to their robustness to Gaussian noise and

their ability to reveal hidden structures within the signal (Nikias and Mendel, 1993; Nikias

and Petropulu, 1993). Several studies have successfully applied cumulant-based feature
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extraction to Power Quality disturbance classification, including the works of (Ferreira
et al., 2009; Gerek and Ece, 2006; Ribeiro et al., 2006), demonstrating notable effectiveness

in distinguishing different types of disturbances.

Conceptually, HOS extends the idea of correlation by introducing higher-order
dependencies in the data (Mendel, 1991). One of its key advantages is the ability to project
the signal into a new parameter space where the separability of different classes is often
enhanced compared to the original domain (Nagata et al., 2020; Ferreira et al., 2009).
HOS is particularly suited for analyzing non-Gaussian processes and non-linear systems,

making it well-suited for the characteristics typically found in Power Quality disturbances.

Higher Order Statistics can be expressed through moments or cumulants. While
moments are more suitable for analyzing deterministic signals, cumulants are preferred for
stochastic signal modeling, which is generally the case in Power Quality analysis. Given the
inherent non-linearity of many power disturbances, cumulant-based parameter extraction

stands out as a powerful tool for enhancing classification performance.

The vectors extracted from the voltage signal using HOS-based techniques are capa-
ble of providing very well-defined information for each voltage event class (w;,i = 1,...,C).
The expressions for the second and fourth-order cumulants of a random signal z[n|, when

E{x[n]} = 0, are represented as:

co.[t] = E{z[n]z[n + i}, (4.11)

caxli) = E {a[n)2’[n + i)} — 3ca.alilea[0], (4.12)

assuming i is the i-th lag, and x[n] is the n-th element of the vector x. Higher Order
Statistics can be defined in terms of cumulants, assuming a periodic and finite-length
vector of length N and a signal x[n] with zero mean E{z[n]|} = 0. The calculations for

second and fourth-order cumulants can be expressed as:

o N/2-1
Gogli] == > znjzln+ 1, (4.13)
N n=0
9 N/2-1 N/j2-1 N/2-1
— Z ‘In+il—— > znjzln+id] Y 2*[n], (4.14)

n=0 n=0

where i =0,1,--- , N/2—1, Equations (4.13) and (4.14) cannot be used if i > N/2+1 since
n + ¢ will be greater than N, thus losing some information in the cumulant calculations.
In Ribeiro et al. (2006), the author proposes an alternative approach where each cumulant
is calculated using all available N signal samples. Essentially, a circular buffer is formed

in the signals, such that if the value of n 4+ 1 exceeds N by k units, this value is replaced
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by k, thereby considering the preceding samples to the value ¢ that were previously not
used. In fact, it is as if there is a continuity from the last sample to the first, making the

signal virtually circular. Thus, the replacement of n + 1 when n 4+ 1 > N can be given by:
mod(n +14,N) = [n+1i] — bN, (4.15)

assuming b is the integer obtained when disregarding the decimal places of the division of
n + 1 by N, which actually results in the remainder of the division of n + 4 by N. Thus,
(4.11) and (4.12) can be estimated, for finite N, as:

1N
eonli] = — > z[n]z[mod[n + i, N, (4.16)
Nn:(]
N— 1 N-1 N-
by i) := Z *lmod[n + i, N]| Z z[mod[n + i, N] Z ], (4.17)

where mod[n + i, N] is the integer remainder of the division of n 4+ ¢ by N. The ap-
proximations presented in (4.16) and (4.17) lead to a good simplification for problems
where a finite-length vector is used. The approximations are more suitable when the
signal is periodic. Therefore, considering the periodic nature of voltage signals in power
systems, this is a good approximation of the HOS. It can be observed that for a signal
with N samples, there are N cumulants for each order of HOS. For classification and
detection purposes, the combination of a few of these cumulants is sufficient to achieve
good performance. In summary, the equations can be used to extract parameters from

voltage signals for power quality analysis.

4.2.3 Feature Selection using Fisher Criterion

Fisher’s Discriminant Analysis (FDA), also known as Fisher’s Linear Discriminant,
is a statistical technique used to find a linear combination of variables that best separates
two or more data classes (Theodoridis and Koutroumbas, 2006). While FDA is primarily
used for classification, its underlying mathematical formulation provides an effective
criterion to evaluate the discriminative power of individual features. This criterion, known
as the Fisher Score, is widely used in filter-based feature selection methods, especially in
high-dimensional datasets where selecting the most relevant attributes can significantly

improve classification performance.

The goal of FDA is to find a projection vector that maximizes the separation
between classes, by maximizing the ratio of variance between classes to the variance
within classes. Considering a dataset with N training examples, each with d attributes
and two distinct classes, let X be a data vector with dimension (d x 1), and Y a binary
class variable taking values —1 or 1. FDA seeks a vector w with dimension (d x 1) that

maximizes the class separation criterion J(w):
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(wT Spw)

J(w) = W Sww)’ (4.18)

where Sg is the between-class scatter matrix, and Sy is the within-class scatter matrix.

The between-class scatter matrix Sg is defined as:

Sp = (p1 — p2) (i — p2)7, (4.19)

where 1 and ps are the means of the training examples in class 1 and 2, respectively. The
matrix Sp measures the spread between the class means. The within-class scatter matrix

Sy is defined as:

Sw =Y (Xi — py)(Xi — py,) " (4.20)

i=1
where X is the i-th training example, py, is the mean of the training examples in the class
of X;, and the sum is over all training examples. The matrix Sy measures the spread
within each class. The solution for the vector w is obtained by maximizing the criterion

J(w) shown in (4.18), which can be rewritten as:

J(w) = w’ Spw _ w (1 — p2) (g1 — pi2)"w (4.21)
wT Syrw wl Syw ’

To find the vector w that maximizes J(w), we can use the method of Lagrange

multipliers. The solution is given by:

w = Sy (a1 — pi2), (4.22)

Once the vector w is determined, the classification of a new test example is
performed by projecting it onto the direction of w and checking on which side of the
threshold wg the projection lies. The threshold wy can be chosen to maximize the

classification accuracy on a validation set.

Beyond classification, the Fisher criterion can also be extended to evaluate the
relevance of individual features for feature selection. In this context, the separability of

classes for each feature can be computed using the following criterion:

9 1

JC: (ml_mZ) Om’

(4.23)

where J. = [J;...Jg,]T, L; is the total number of features, m; and my are the mean
vectors of each class, and D? and D? are the corresponding within-class variance vectors.

The symbol (o) denotes the Hadamard (element-wise) product. This score ranks each
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feature according to how well it separates the two classes: features with higher J. values

provide greater discriminative power.

In summary, although Fisher’s Linear Discriminant is traditionally employed for
classification, its mathematical foundation supports its use as a powerful criterion for
feature selection. This approach, commonly known as the Fisher Score, allows the selection
of the most relevant features by quantifying class separability for each attribute individually,

making it especially useful in preprocessing steps for high-dimensional datasets.

4.3 NARX-BASED PQ CLASSIFICATION

One of the main objectives in Power Quality monitoring is the accurate analysis of
electrical disturbances. To achieve this, the voltage signals from the monitored system
must first be recorded. However, continuously storing raw voltage waveforms leads to
the generation of large data volumes. As a result, it is essential to implement detection
mechanisms that selectively store only those signal segments containing relevant disturban-
ces. Once these significant events are captured, classification techniques can be applied to
analyze the stored data, allowing for the identification and localization of the disturbance
sources. It is important to note that this analysis is typically performed offline, using

previously recorded signals.

The classification of Power Quality (PQ) disturbances involves three main stages:
application of a notch filter, parameter extraction through signal processing, and event
classification using the Multinomial Logistic-NARX model (Section 3). These components
are integrated into the system illustrated in Figure 19. The process begins with the
simulation of voltage disturbances, modeled according to the procedures described in
earlier sections. The resulting signals, denoted as v[n|, undergo preprocessing using a
second-order Infinite Impulse Response (IIR) notch filter. This filter is centered at the
fundamental frequency of 60 Hz and employs a notch factor of py = 0.97. The filtered
output, e[n], effectively isolates the disturbance components by removing the fundamental

frequency, thus enhancing the visibility of events superimposed on the original waveform.

Figure 19 — Proposed system architecture for the classification of Power Quality events,
detailing the processing flow from signal input to final classification output.

e[n] Parameter Parameter Multiclass Classification
v[n] = Notch Filter extraction —> selection ] Logistic-NARX > result
(HOS) (FDA) s

Source: created by the author. (2023).

In the parameter extraction step, the voltage signal e[n]|, composed of events or
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windows of N = 1024 samples (equivalent to 4 cycles of the fundamental component), is
processed by applying (4.16) and (4.17), extracting vectors or cumulants using Higher
Order Statistics (HOS). The second and fourth-order cumulants provide a parameter vector
D = [C4.4[7], C2.]7]], totaling 2 x N parameters obtained for each signal window. The next
step involves parameter selection through Fisher Discriminant Analysis, aiming to choose
a reduced set of data composed of the most representative parameters obtained during
extraction. The method reduces the dimensionality of the parameter space and maximizes
separability between disturbance classes, thereby reducing computational complexity and
processing time. The implemented Fisher Discriminant Analysis selects 2 parameters for
each class by considering the highest values of J. (4.23) related to each cumulant, resulting
in 10 parameters per event. Thus, the original dimension of each event has been reduced

from 1024 to 10 samples.

The final stage consists of event classification using the Multinomial Logistic-NARX
model. In this step, selected cumulant samples serve as input features for training the
predictor. The dataset comprises 250 samples per class, totaling 1,250 balanced samples.
To evaluate the model’s performance, k-fold cross-validation with k = 5 was applied. The
method parameters include a nonlinearity degree of [ = 2, a maximum of n,,,, = 10
selected terms (as detailed in Algorithm 2), and a search space comprising 66 candidate

model terms.

The inclusion of delayed inputs in the NARX structure is particularly relevant
given the transient nature of Power Quality Disturbances (PQDs), which often occur over
short time spans—typically within one or a few cycles of the 60 Hz fundamental frequency.
To effectively capture these temporal dependencies, delays ranging from 1 to 10 samples
were considered (input delay n, = 10). This range reflects a practical compromise: it
enables the model to retain short-term memory of the signal while avoiding unnecessary
complexity. The use of delays is consistent with principles from system identification, where
incorporating past information improves dynamic modeling and classification performance.
Although alternative delay selection strategies exist—such as data-driven optimization
and heuristic methods—the approach adopted here proved adequate for characterizing

common PQDs, including sags, swells, spikes, and notches.

4.4 RESULTS

This section presents the results obtained using the proposed classification system
for identifying power quality disturbances. The evaluation focuses on the model’s accuracy
and robustness, comparing its performance against several widely adopted classification
algorithms. This comparative analysis allows for a comprehensive assessment of the

proposed approach’s effectiveness in real-world scenarios.

A key step in the classification process involves feature selection based on the
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Fisher Discriminant criterion, which prioritizes variables with the highest discriminative
power. Beyond numerical validation, the discriminative capability of the selected features
can also be visually interpreted. Figure 20 highlights the separability achieved among
the different classes, illustrating how the extracted features—particularly the second- and

fourth-order cumulants—contribute significantly to distinguishing between event types.

Figure 20 — Selection of parameters in Power Quality event classification using second-
and fourth-order cumulants within the parameter space.
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Figure 21 shows the cross-validation accuracy as a function of the number of terms.
A marked improvement is observed when moving from two to three terms (from 0.860+0.020
to 0.995 £ 0.009). Paired t-tests, shown in Table 24, using the three-term configuration as
the reference, confirmed that this gain is statistically significant (p = 3.68 x 10~%). For
configurations with 4-10 terms, mean accuracies lie in the narrow range 0.995-0.997 with
standard deviations of approximately 0.01. Paired comparisons against the three-term
model yielded no statistically significant differences e.g., p &~ 0.374 for 4, 7, and 9 terms),
indicating statistical equivalence. Considering parsimony and stability, the three-term
model was selected as the preferred configuration, since adding further terms does not

provide statistically reliable performance gains while increasing model complexity.

Table 25 summarizes the selected terms of the identified NARX model §(k), along
with their estimated parameters and relevance scores, following the methodology described
in Section 3.2 and implemented via Algorithm 2. These terms represent the most influential
regressors selected for the final model, whose output is given by Equation 4.24. The model’s
structure reflects a sparse and interpretable representation, where each term captures

essential nonlinear interactions among delayed input signals:
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Figure 21 — Average accuracy calculated during the model’s term selection phase for the
Wave dataset, enabling the identification of the optimal number of terms for constructing

the final model with maximum performance.
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Table 24 — Cross-validation mean accuracy, standard deviation, and p-values from paired
t-tests comparing each configuration to the 3-term model.

# Terms  Mean STD p-value | # Terms  Mean STD p-value

2 0.8600  0.0200 3.68e-4 7 0.9960 0.0067  0.3739

3 0.9950  0.0089 — 8 0.9950 0.0089  1.0000

4 0.9970 0.0045  0.3739 9 0.9970 0.0045  0.3739

5 0.9950  0.0089  1.0000 10 0.9950 0.0089  1.0000

6 0.9950 0.0089  1.0000

9(k) =0.3529 — 0.2652 us(k—7) + 0.2781 uy (k—2)us(k—4)
+ 0.1412 ug(k—5)ug(k—6). (4.24)

To better interpret these terms, Table 26 maps each component of the model to its

corresponding cumulant order and delay. This relationship reinforces the contribution of

higher-order statistics, particularly second and fourth-order cumulants, in distinguishing

power quality events. The identified delays also suggest that both short-term and long-

range dependencies play a role in shaping the model’s decision function.
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Table 25 — Identified NARX model §(k), including the selected model terms, their estimated
parameters, and corresponding relevance scores based on correlation analysis.

Model Terms  Parameter Score | Model Terms Parameter Score
constant 0.3529  0.8501 | uq(k—2)ug(k—4) 0.2781  0.8658
us(k—"7) -0.2652  0.8314 | u4(k—5)ug(k—06) 0.1412 0.5854

Table 26 — Mapping of selected model terms to their corresponding cumulant orders and
time delays, providing insight into the temporal structure and statistical characteristics of
the input features.

Model Term Cumulant Type(s) Cumulant Delay(s)
us(k—T7) Second-order 4

up(k—2) - ug(k—4)  Second-order x Second-order 3 and 40

ug(k—>5) -ug(k—6)  Second-order x Fourth-order 40 and 33

The effectiveness of the proposed algorithm was assessed through a comparative
analysis using 5-fold cross-validation on a validation dataset of k = 1250 samples. The
benchmark models include Random Forest (RF) with 500 trees and the Gini index, Support
Vector Machines (SVM) with a radial basis function kernel, and K-Nearest Neighbors
(KNN).

Table 27 presents the performance metrics for each method. The proposed model
achieves results comparable to SVM, particularly in terms of accuracy, sensitivity, and
F'1 score, while outperforming RF and KNN across all evaluated metrics. Although SVM
slightly surpasses the proposed method in some measures, the Logistic-NARX model offers
the added benefit of interpretability, allowing insights into the influence of individual

regressors, a distinct advantage in applications requiring model transparency.

Table 27 — Performance comparison among different classification methods, based on
evaluation metrics derived from confusion matrices.

Proposed RF SVM KNN
Accuracy 0.9976 0.9936 0.9984 0.9944
Sensitivity 0.9976 0.9936 0.9984 0.9944
Specificity 0.9994 0.9984 0.9996 0.9986
Precision 0.9976 0.9936 0.9984 0.9944

F1 Score 0.9976 0.9936 0.9984 0.9944
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4.5 DISCUSSION

The application of the Logistic-NARX Multinomial model to the Power Quality (PQ)
event classification problem confirmed the method’s capacity to achieve high classification
accuracy while maintaining a transparent and parsimonious model structure. The method
effectively leveraged nonlinear and time-delayed interactions among selected input features,

with only a small number of terms required to reach competitive performance.

The integration of Higher-Order Statistics (HOS) for feature extraction, followed by
Fisher-based feature selection, proved essential in reducing dimensionality and enhancing
class separability. As visualized in Figure 20, the selected second and fourth-order
cumulants allowed for clear discrimination between different PQ events, supporting the

construction of a model that balances accuracy and interpretability.

The comparative results presented in Table 27 indicate that while the SVM slightly
outperformed the proposed model in some metrics, the Logistic-NARX method remained
highly competitive and offered the added benefit of interpretability. The sparse model
structure presented in Equation 4.24 enables domain experts to understand which signal
characteristics and delays contribute most significantly to classification decisions—an

essential feature in power system diagnostics.

Despite the favorable results, it is important to recognize the controlled nature of
the study. The dataset was balanced, noise-free, and based on simulated events, which
simplifies the classification task. Real-world applications may introduce challenges such as
overlapping disturbances, noisy signals, and class imbalance (Chawla et al., 2002; Kuhn
and Johnson, 2013). Therefore, future work should consider expanding the method’s
application to more complex and imbalanced scenarios, possibly integrating cost-sensitive

learning or ensemble techniques to enhance robustness.

4.6 SUMMARY

This chapter presented the application of the Logistic-NARX Multinomial model to
the classification of Power Quality (PQ) disturbances. By combining signal preprocessing,
higher-order statistical feature extraction, and term selection via the Fisher criterion,
the model was able to achieve high accuracy with minimal complexity. The results
demonstrated that the proposed approach not only competes with established classifiers
such as SVM and Random Forest but also provides the advantage of interpretability,
essential for engineering applications where understanding model decisions is crucial.
The findings reinforce the suitability of the NARX-based framework for dynamic signal

classification tasks in power systems.
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5 RAILWAY TRACK RISK ASSESSMENT

This section applies the proposed Logistic-NARX Multinomial method to assess
operational risks in railway tracks by classifying critical conditions using dynamic data
from rail vehicles. The approach integrates multibody dynamic simulation, feature extrac-
tion, and machine learning to detect track defects indirectly, offering a novel interpretable
alternative to traditional inspection methods. The results highlight the model’s predic-
tive accuracy and potential to enhance georeferenced maintenance planning in railway

infrastructure.

5.1 INTRODUCTION

Railways remain a critical component of modern transportation infrastructure,
offering resilience and efficiency over long distances. Despite their inherent reliability, rail
networks face increasing operational demands that accelerate track degradation, especially
under higher speeds and axle loads. Track geometry faults, which contribute to a significant
share of rail accidents, necessitate frequent and accurate monitoring to ensure safety and
performance (Lasisi and Attoh-Okine, 2018; Koohmishi et al., 2024).

Traditional inspection methods rely heavily on specialized track geometry vehicles,
which are costly, require trained personnel, and limit inspection frequency, particularly
for privately operated or low-budget railways (Wang et al., 2021). In response to these
constraints, recent research has explored the use of onboard sensors and inverse dynamic
models to infer track conditions indirectly. These techniques leverage vehicle-mounted
accelerometers and numerical models to estimate critical interaction forces between wheels
and rails, as outlined by Sun et al. (2015); Barbosa (2016); Karis et al. (2018).

Machine learning has emerged as a powerful ally in this context, enabling the extrac-
tion of meaningful insights from high-frequency sensor data. Studies have demonstrated
the effectiveness of data-driven methods, such as regression models, neural networks, and
deep learning, for estimating wheel-rail forces and detecting track defects (Malekjafarian
et al., 2023; Mosleh et al., 2023; Bhat et al., 2023; Sun et al., 2024; Marasco et al., 2024).
When combined with multibody simulations, these techniques can generate synthetic

datasets that mirror realistic track-vehicle interactions under diverse scenarios.

This chapter contributes to the thesis by presenting an integrated methodology
that combines dynamic multibody simulation with machine learning to assess track
quality. Introduces a novel classification-based approach for estimating operational risks
using acceleration data from instrumented rail vehicles (IRVs). Beyond showcasing
the effectiveness of the Logistic-NARX model in this application, this section offers an
innovative framework for the railway sector, supporting indirect georeferenced monitoring

and enabling more proactive infrastructure management.
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5.2 RAILWAY TRACK SAFETY AND STABILITY

5.2.1 Track Geometry Safety Standards

Track geometry refers to the spatial configuration and alignment of railroad tracks,
serving as a fundamental parameter for ensuring safe and efficient train operations. For
decades, it has been the primary indicator used to monitor infrastructure condition and
maintain operational reliability. Over time, however, track geometry deteriorates due to
environmental factors, cyclic loading from train passages, and substructure settlement. As
the severity of geometric deviations increases, so does the risk of operational issues such

as derailments, excessive vibrations, and uneven wear of vehicle components.

Track irregularities emerge as physical manifestations of substructure and supers-
tructure degradation, leading to measurable deviations in parameters such as alignment,
longitudinal level, gauge, and cross-level. These irregularities can negatively impact vehicle

stability and ride quality. Figure 22 illustrates typical examples of such defects.

Vehicle dynamics, being highly sensitive to track condition, offer an indirect yet
informative means of evaluating infrastructure integrity. Two key indicators frequently
used in this context are wheel unloading and the lateral-to-vertical force ratio (L/V).
Monitoring these dynamic responses enables the identification of critical zones where
elevated accelerations suggest structural weaknesses, guiding targeted inspections and

preventive maintenance actions to mitigate safety risks and ensure operational continuity.

Figure 22 — Illustration of track irregularities, including: (a) alignment, (b) longitudinal
level, (¢) gauge, and (d) cross-level.
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Source: created by the author. (2024).
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5.2.2 Lateral-to-Vertical Force Ratio (L/V)

One of the most critical parameters for ensuring rail vehicle safety and preventing
derailments is the ratio between lateral and vertical forces at the wheel-rail contact interface.
This ratio is commonly assessed through the contact plane angle, which delineates the

stability threshold of the interface forces, as illustrated in Figure 23.

Figure 23 — Representation of the forces acting on the wheel-rail interface, illustrating the
geometric relationships of force components projected onto the contact plane.

rail

Source: created by the author. (2023).

This stability boundary is defined by the geometric relationship between the forces
projected onto the wheel-rail contact plane, as formulated by Nadal (1908):
L tan(a) —pu

i P T = uN 5.1
V 1+ ptan(p)’ . (5.1)

where L and V represent the lateral and vertical forces at the contact interface, « is the
angle of the contact plane, p is the friction coefficient between the contacting surfaces, T
denotes the tangential force, and N is the normal force. This expression is one of the most
widely adopted in the railway sector, serving as a reference for defining safety thresholds

and critical values of the derailment coefficient.

Another common derailment mechanism, particularly on straight track sections—is
associated with vertical force reduction, known as wheel unloading. In such cases, a
drop in vertical load V can cause the L/V ratio to rise sharply, even if lateral forces
remain constant. Wheel unloading is typically caused by rigid body dynamics, which alter
the distribution of vertical loads across the wagon. When the unloading rate becomes
significant, the wheel may lift off the rail, leading to an immediate loss of contact and an

increased risk of derailment.
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5.3 CLASSIFICATION-BASED TRACK CONDITION

This study proposes a data-driven methodology for assessing railway track con-
ditions using acceleration and angular velocity measurements. An overview of the track
condition monitoring framework is presented in Figure 24. The core of the approach lies
in the development of a classification model, trained to distinguish between predefined
safety-critical classes based on established operational limits. The dataset used to train
and validate the model was constructed by integrating dynamic multibody simulations
with real-world measurements collected from an instrumented rail vehicle (IRV), enabling

the generation of realistic and representative scenarios for model learning.

Figure 24 — Overview of the track condition monitoring system, illustrating the structure
and workflow of the data-driven classification model.
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Source: created by the author. (2023).

5.3.1 Multibody Dynamic Simulation

The raw dataset was generated using VAMPIRE, a widely adopted software in the
railway industry for dynamic multibody simulations. Accurate modeling of vehicle-track
interaction requires several parameters, including wheel and rail profiles, speed profiles,
vehicle dynamics, and geometric track irregularities. In this study, real track geometry data
was integrated into the simulation to replicate the dynamic behavior of an Instrumented
Railway Vehicle (IRV).

Table 28 summarizes the generated dataset, which includes input features such as
accelerations and carbody modes computed at key vehicle components: the carbody, leading
bogie, and trailing bogie. The output variables correspond to normalized amplitudes of
the Lateral-to-Vertical Force Ratio (L/V) and wheel unloading, both critical indicators of
operational risk. The simulated responses were validated against real-world measurements,
confirming the model’s accuracy. This digital twin of the IRV is well-established and

currently utilized in industry for condition monitoring and predictive maintenance planning.

Table 29 describes the parameters considered in the creation of the dynamic
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Table 28 — Dataset generated by the model, comprising input features and corresponding

target response values.

Input Features

Timestamp

Data time in seconds (s).

Distance km

Distance kilometers (Km).

Type_ load Wagon empty or loaded.

Section Locations railway network.

Speed Speed scales in (Km/h).

Acel lat_cbd, Acel vert cbhd, Lateral e Vertical acceleration; roll, pitch, yaw
Roll__cbd, Yaw_ cbd, Pitch_ cbd motion; positioned in the carbody.

Acel lat_lead, Acel vert_ lead, Lateral e vertical acceleration; roll, pitch, yaw
Roll_lead, Yaw_ lead, Pitch_ lead motion in leading bogies.

Acel lat_ trail, Acel vert_ trail, Lateral e Vertical acceleration; roll, pitch, yaw
Roll_trail, Yaw__ trail, Pitch_ trail motion in trailing bogies.

Target(labels)

unloading_ ratio, lv_ ratio

Unloading and lateral-to-vertical force Ratio.

multibody model, with the current methodology applied to HPD vehicle!. The generated

model is calibrated using real data obtained from an instrumented HPD vehicle (see figure

25).

Table 29 — Parameters considered in the creation of the dynamic multibody model.

Parameter

Description

Track gauge

1000 mm

Speed range

25 km/h to 70 km/h

Train composition

90 wagons, distributed power: (2 locomotives, 45 wagons, 2
locomotives, 45 wagons, 1 locomotive)

Gross tonnage per train

7000 gross tons

Curve radius

Ranging from 75 meters (23.5 degrees) to 2000 meters (0.89
degrees). Predominantly sharp curves with radius less than 150
meters (11.7 degrees) in 35% of the corridor length

Load per axle

25 tons per axle (metric gauge)

Vehicle

HPD modeled and instrumented. Load per axle of 20 tons.
Old Ride Control bogie with constant damping. Lateral block
bearings. Center of gravity at 2000 mm. Wheel profile type
(AAR 1B NF)

1

other commodities.

HPD vehicle are recognized worldwide for the transport of grain, sugar, corn, soybeans and
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Figure 25 — Railcar of the HPD (Hoppers) type.

o Q)
=N

MITSUI = Ao
= Rl Coptal Ferrovia Centro-Atlantica
L - =] B

Source: created by (Smit, 2023).

5.3.2 Instrumented Railway Vehicle

The dataset used in this study was acquired from the instrumentation of the
HPD rail vehicle, which is equipped with accelerometers and gyroscopes to measure linear
acceleration and angular velocity (see Figure 26). The system also records GPS coordinates,
vehicle speed, and timestamps. Sensor modules were strategically installed on three key

locations of the vehicle: the carbody, the leading bogie, and the trailing bogie.

Figure 26 — Inertial sensor modules installed on the railway vehicle, including placements
on the carbody, leading bogie, and trailing bogie.
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Source: Created by the author (2023).

Sensor placement was determined based on dynamic principles to ensure com-
prehensive capture of the vehicle’s operational behavior. The carbody provides integrated

responses from both primary and secondary suspensions, enabling global analysis of ride
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quality and structural dynamics. The bogies, on the other hand, are essential for detec-
ting localized effects such as lateral dynamics during curve negotiation and identifying
asymmetries caused by wheel or suspension defects. Figure 27 illustrates the sensor layout
across the vehicle structure.

Figure 27 — Sensor module placement on the rail vehicle, capturing dynamic responses
from the carbody and bogies.
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Source: created by the author. (2024).

Data acquisition and processing followed the standards defined by the Federal
Railroad Administration (FRA) (Transportation Research Board, 2020), which recommend
a minimum sampling rate of 100 Hz for acceleration data. In this study, a sampling rate of
200 Hz was adopted for both simulated and real measurements to ensure accurate frequency

resolution.

To enhance signal integrity and suppress noise, a preprocessing stage was applied.
Moving average filters were used on angular motion data (roll, pitch, and yaw), as well
as on critical output indicators such as wheel unloading and Lateral-to-Vertical Force
Ratio (L./V), improving the quality of criticality mapping. Furthermore, because vibration
components in the 2 Hz to 10 Hz range are closely associated with instability phenomena,
a second-order Butterworth low-pass filter with a 10 Hz cutoff frequency was applied to
acceleration signals. Forward-backward filtering was used to minimize phase distortion

and temporal lag (Gustafsson, 1996).

5.3.3 Analysis of Critical Safety Limits

Railway safety standards rely on key indicators such as the Lateral-to-Vertical Force
Ratio (L/V) and wheel unloading to assess operational risk and track condition. These
metrics are fundamental for identifying dynamic instabilities and ensuring compliance with
established safety protocols, including those set by the Federal Railroad Administration
(FRA) (Transportation Research Board, 2020).

In this study, safety criteria defined by engineers from a Brazilian railway operator
were adopted. While the critical thresholds match those established by the FRA, additional

risk bands were introduced to enhance predictive capabilities. These extended classifications
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incorporate more conservative thresholds for L./V and wheel unloading, enabling the early

identification of potentially hazardous track sections.

Based on these criteria, the dataset was labeled according to four severity levels:
Normal (no risk), P2 (low risk), P1 (moderate risk), and PO (high risk). Table 30
details these thresholds, illustrating how this classification framework supports proactive

maintenance planning and a more granular evaluation of track health.

Table 30 — Analysis of critical safety limits. This table categorizes track conditions
into ascending levels of severity based on predefined safety standards, relating to wheel
unloading and the lateral-to-vertical force ratio (L/V) amplitude (%) for both empty and
loaded vehicle conditions.

L/V
Unloading loaded empty
N z <0.5 z < 0.6 z <0.6
P2 0.5<x<0.6 — 0.6 <z<0.8
P1 0.6 <x<0.85 0.6 <z<08 0.8<z<1.0
PO x> 0.85 0.8<z<1.0 x>1.0

The analysis incorporates distance-based windows to evaluate safety-critical th-
resholds more conservatively. Specifically, a sliding window of 1.5m is applied, and when
multiple criticality levels are detected within this span, the most severe class is assigned,

provided it occupies at least 25 % of the window length.

Figure 28 illustrates the amplitude signals of the Lateral-to-Vertical Force Ratio
(L/V) and wheel unloading, which serve as target labels. It also highlights how critical
events are detected within the specified spatial window. This strategy ensures that
transient peaks or brief threshold crossings are not overlooked, reinforcing the reliability
of class labeling for the supervised learning framework. Ultimately, these parameters
enable accurate annotation of track conditions across the four severity classes used in the

classification model.

5.3.4 Feature Selection and Subsampling

This study employed a structured feature selection strategy to enhance both the
interpretability and performance of the classification model by reducing dimensionality
and eliminating irrelevant or redundant variables. The following methods were applied to

identify the most informative features while minimizing noise and redundancy:

o Pearson correlation matrix: used to detect and eliminate highly correlated features,

reducing redundancy without significant information loss (Guyon and Elisseeff, 2003);

« Constant feature removal: features with low variance were excluded, as they contri-

bute minimally to predictive performance;
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Figure 28 — Amplitude of the Lateral to Vertical Force Ratio (L/V) and Wheel Unloading
Signals. The figure displays the amplitudes of the L/V force ratio and wheel unloading
signals, which serve as targets or labels. It also highlights critical situations occurring
within the specified windows at a distance of 1.5m.
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Source: created by the author. (2024).

o Boruta algorithm: a robust wrapper method that compares real features to randomi-

zed shadow features, ensuring the selection of truly relevant variables (Kursa and
Rudnicki, 2010);

» Recursive Feature Elimination (RFE): iteratively removes less important features
and uses cross-validation to determine the optimal subset that balances accuracy
and model simplicity (Guyon et al., 2002).

Table 31 summarizes the features retained and discarded during this process. Nota-
bly, due to strong correlations among dynamic signals, only acceleration features measured
on the carbody and bogies of the trailing vehicle were retained. This outcome highlights

the importance of sensor placement in capturing representative dynamic responses for
effective classification.

Table 31 — Selected and removed features during the feature selection process.

Removed Features Selected Features

Roll_lead, Roll_ trail, Roll_cbd, Yaw_ lead, Acel lat_chd, Acel lat trail,
Yaw__ trail, Acel lat_lead, Acel vert_ lead, Acel_vert_ cbd, Acel_vert_ trail,
Pitch_ lead, Pitch_ trail, Pitch_ cbd Yaw_ cbd, Type_load, Section, Speed

Due to the nature of railway track monitoring, the collected dataset exhibits a

significant class imbalance: normal track conditions (majority class) are substantially
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overrepresented compared to samples indicating track geometry defects (minority class).
This imbalance can negatively impact model performance, as standard machine learning
algorithms tend to favor the majority class, often resulting in poor detection of rare but

critical defect instances.

To mitigate this issue, we applied the One-Sided Selection (OSS) technique (Kubat
and Matwin, 2000), a data-level undersampling method that reduces the size of the majority
class by removing redundant or non-informative instances. Crucially, OSS preserves
minority class samples, which are essential for learning to recognize rare fault conditions.
This method is particularly suited to the application at hand, as it improves the classifier’s
ability to detect significant anomalies while minimizing bias toward normal operating
conditions. Table 32 presents the post-processing class distribution, demonstrating a
more balanced dataset that maintains representativeness without excessively reducing the

majority class.

Table 32 — Class distribution before and after applying the One-Sided Selection undersam-
pling technique, showing the frequency (%) and number of samples per class.

Before After
(%) Samples (%) Samples
N 97.2 5.96 x 106 54.3 198953
P2 1.44 88427 23.9 88427
P1 1.05 64478 17.4 64478
PO 0.25 15352 4.19 15352

5.4 LOGISTIC-NARX MULTINOMIAL MODEL APPROACH

To evaluate the applicability and effectiveness of the proposed Logistic-NARX
Multinomial classification method in a real-world engineering context, the model is applied
to the problem of railway track condition assessment based on dynamic responses from
rail vehicles. This case study not only tests the model’s predictive performance but
also highlights its capacity to produce interpretable results in a complex operational

environment.

The NARX-based method is benchmarked against conventional classification algo-
rithms, with all models implemented in MATLAB to ensure consistency. Differing from the
earlier Power Quality application, the current implementation adopts parameters tailored
to the railway domain, including a nonlinearity degree of [ = 2 and a large candidate pool
of 13041 regressors (2.2). Model evaluation is conducted using 5-fold cross-validation to
ensure reliable and generalizable performance estimates. This analysis provides a robust
validation of the proposed method’s potential for supporting data-driven decision-making

in railway maintenance and safety management.
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The cross-validation accuracy curve for this case study (see Figure 29) shows a
steep improvement from one to two terms, followed by relatively stable performance across
subsequent model complexities. The maximum average accuracy was obtained with eight
terms (0.574640.0084), although several configurations achieved comparable results within

the margin of error.

Paired t-tests were conducted to compare each configuration against the six-term
model (see Table 33). The results indicate that most differences were not statistically
significant at the 5% threshold, suggesting that increasing the number of terms beyond six
yields only marginal benefits in predictive performance. Furthermore, configurations with

fewer than six terms, while simpler, generally displayed slightly reduced accuracy.

Considering the trade-off between model complexity, statistical equivalence, and
predictive accuracy, the six-term model was selected as the preferred configuration for this
case study. This choice balances parsimony with robust performance, avoiding unnecessary
complexity while maintaining accuracy within the range of the best-performing models.
The details of the identified NARX model, represented by ¢(k), including the terms,
correlation values, and corresponding parameters, are comprehensively presented in Table
34.

Figure 29 — The average accuracy calculated during the term selection phase of the model

for the railway dataset classification, enabling identification of the optimal number of
terms for constructing the final model with the highest performance.
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Table 35 presents the selected model terms alongside their corresponding input

features, highlighting key interactions identified by the Logistic-NARX Multinomial
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Table 33 — Cross-validation mean accuracy, standard deviation, and p-values from paired

t-tests comparing each configuration to the 6-term model.

# Terms  Mean STD p-value # Terms  Mean STD p-value
1 0.3989 0.0044 2x 1076 6 0.5645  0.0095 -
2 0.5600  0.0077 0.1873 7 0.5558  0.0155  0.0935
3 0.5605  0.0057 0.1715 8 0.5746  0.0084  0.1621
4 0.5603  0.0041 0.0369 9 0.5215 0.0507  0.1517
5 0.5645  0.0095 0.4017 10 0.5485  0.0501  0.3627

model. This mapping reinforces the interpretability of the model by showing how specific

variables—such as lateral accelerations, yaw, and track sections—interact to influence the

output classification.

Table 34 — Identified NARX model §(k), including the selected model terms, their estimated
parameters, and corresponding correlation coefficients.

Model Terms Parameter Score | Model Terms Parameter Score
ug(k—1)ug(k—1) 0.6082  0.8043 | us(k—8)us(k—9) -0.1219  0.4560

ug(k—>5)u11(k—2) -0.0025  0.4010 6(k—2)u15(k—5) -0.0028  0.4035
ur(k—9)ui2(k—6) 0.0334  0.3835 | ug(k—4)uiz(k—1) -0.0179  0.3805
u1(k—5)ug(k—17) -0.0014  0.3956 | ua(k—9)us(k—9) 0.0263  0.3750

Table 35 — Identified NARX model §(k), including the selected model terms along with
the corresponding input feature names for interpretability.

Model Terms

Feature

uﬁ(k—l)uﬁ(k—l

Type_load x Type_load
Yaw_cbd x Yaw_cbd
Type_load x Section

Type_load x Section

Section X Section

Type_load x Section

Accel lat_cbd x Accel lat_trail
Accel lat_trail x Yaw_chd

The performance of the proposed method was benchmarked against other commonly

used classification techniques. Figure 30 displays the accuracy results as intervals obtained

through cross-validation. While the proposed Logistic-NARX Multinomial model achieved
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an average accuracy of 57 %, outperforming the SVM approach, it remained below the

performance of the Random Forest (RF) model, which reached an accuracy of 75 %.

Figure 30 — An examination of accuracy results for different classification methods applied
to the railway dataset. Cross-validated accuracy is presented at regular intervals, along
with their corresponding average values.
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Source: created by the author. (2023).

The classification performance of the proposed Logistic-NARX Multinomial method
was compared against Random Forest (RF), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN), as summarized in the confusion matrices (Table 36) and
performance metrics (Table 37). Among the evaluated methods, Random Forest con-
sistently outperformed the others across all key metrics, achieving the highest accuracy
(74.98%), sensitivity (75.29%), precision (74.98%), and F1 score (75.08%). In contrast,
the proposed NARX-based model showed limited effectiveness in this application, with
lower performance particularly in distinguishing between intermediate classes. Given
these results, Random Forest was selected for further refinement through hyperparameter
optimization, as it demonstrated the best overall balance between predictive power and

class discrimination in the railway track condition assessment task.

5.5 MODEL SEARCH AND OPTIMIZATION

In this section, a machine learning model is developed to classify safety-critical
railway track conditions using features derived from Multibody Dynamic Simulations
and data from an Instrumented Railway Vehicle (IRV). The objective is to estimate the
probability of exceeding operational safety thresholds.
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Table 36 — Confusion matrix representing the performance of the classification methods.
The matrices were generated by summing each partition of the validation sets generated
in cross-validation. The indicated classes are PO (C1), P1 (C2), P2 (C3), Normal (C4).

C1 C2 C3 C4

Cl  49.6% 14.4% 30.6%  5.4%
C2 298% 499% 159%  4.4%
C3 221% 10.0% 61.2%  6.7%
C4 14.0% 11.7%  88%  65.5%

(a) Logist-NARX Multiclass.

C1 C2 C3 C4

Cl1 821% 8.1% 5.7% 4.1%
C2 441% 36.7% 152%  4.1%
C3  285% 308% 36.8% 3.9%
C4 65% 10.8% 164%  66.3%

(¢) Support Vector Machine.

C1 C2 C3 C4
Cl  735% 14.3% 8.9% 3.3%
C2  132% 69.1% 14.5% 3.2%
c3  85% 14.2%  68.5% 8.8%
C4 2.0% 3.9% 4.1% 90.0%

(b) Random Forests.

C1 C2 C3 C4
Cl  69.8% 14.0% 10.8% 5.4%
C2  20.6% 582% 16.2% 5.0%
C3  19.0% 12.8%  56.8% 11.4%
C4 5.8% 11.5% 9.0% 73.7%

(d) K-Nearest Neighbors.

Table 37 — A performance comparison among different classification methods using various
evaluation metrics derived from confusion matrices for the railway dataset.

NARX RF SVM KNN
Accuracy 0.5746 0.7498 0.4728 0.6397
Sensitivity 0.5656 0.7529 0.5546 0.6465
Specificity 0.8653 0.9165 0.8354 0.8808
Precision 0.5746 0.7498 0.4728 0.6397
F1 Score 0.5468 0.7508 0.4105 0.6378

To identify the most effective approach, Random Forest, XGBoost, and Light GBM
(Hastie et al., 2009) were evaluated using 5-fold Stratified Cross-Validation. XGBoost and

Light GBM were included for their strong performance in scenarios with class imbalance

and structured inputs, such as time-series signals and categorical features representing

sensor positions or event types. The top-performing model was further optimized using the
GridSearchCV method (Pedregosa et al., 2011), which systematically searches for the best

combination of hyperparameters to enhance classification accuracy and generalization.
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5.5.1 Model Evaluation

This section presents the performance evaluation of classification models based
on multiple metrics. As shown in Table 38, the results demonstrate that Random Forest
(RF) outperforms the other models across all evaluation criteria. Specifically, it achieved
the highest accuracy (0.9311), precision (0.9428), recall (0.9012), and F1-score (0.9231),
indicating superior performance in predicting the likelihood of exceeding critical safety
thresholds. Based on these results, Random Forest was selected as the optimal model for

hyperparameter tuning.

Table 38 — Comparison of classification methods based on average metrics and standard
deviations obtained using Stratified K-Fold Cross-Validation.

Accuracy Precision Recall F1-Score
KNN 0.8331+ 0.0007 0.8461+ 0.0006 0.8442+ 0.0007 0.8140+ 0.0007
RF 0.9311+ 0.0008 0.94284 0.0007 0.90124 0.0008 0.9231+ 0.0008
XGBoost 0.8063+ 0.0010 0.8263+ 0.0012 0.8563+ 0.0010 0.8132+ 0.0010
LightGBM  0.7595+ 0.0008 0.7788+ 0.0008 0.7295+ 0.0008 0.7957+ 0.0008

5.5.2 Random Forest with Hyperparameter Tuning

The Random Forest (RF) algorithm was selected not only for its superior per-
formance in initial evaluations but also for its robustness in handling high-dimensional,
heterogeneous datasets, characteristics typical in railway track quality assessment. Its
ability to model non-linear relationships and effectively process both numerical and ca-
tegorical inputs makes it well-suited for integrating multisensor data and operational

conditions in this domain.

To further enhance its performance, hyperparameter optimization was conducted
using the GridSearchCV method. This technique systematically evaluates combinations
of key parameters, such as the number of estimators (trees), maximum tree depth, and
minimum samples required to split a node, to identify the configuration that maximizes

model accuracy and generalization.

5.5.3 Results

Table 39 presents the performance metrics, precision, recall (sensitivity), and
F1-score, for each class in the track condition classification. The classes are ordered
by increasing severity, from Normal (non-critical) to PO (most critical). In this context,
sensitivity is the most relevant metric, as the primary objective is to detect all critical
conditions. From a conservative safety standpoint, it is preferable to identify as many

critical cases (PO, P1, P2) as possible, even if this leads to some false positives.



92

The model demonstrates high sensitivity for the critical classes: 0.7428 for PO,
0.9074 for P1, and 0.9317 for P2. In particular, correctly detecting PO conditions, those
representing the highest risk, is essential, and a sensitivity near 75% indicates the model
captures most severe faults. However, approximately 12% of PO cases are still misclassified

as less severe, which may underestimate the risk in some instances.

Table 39 — General report of performance metrics for the validation of different classes,
highlighting classification effectiveness across categories.

Precision Recall F1-Score
PO 0.9281 0.7428 0.8251
P1 0.6097 0.9074 0.7293
P2 0.2471 0.9317 0.3906
Normal 0.9985 0.9525 0.9750
Accuracy - - 0.9512

Despite the model’s high sensitivity, the precision for the intermediate classes
P1 and P2 remains relatively low, 0.6097 and 0.2471, respectively, indicating a notable
incidence of false positives. This suggests a tendency to overestimate the severity of certain
track segments, potentially leading to unnecessary maintenance interventions. However,
in safety-critical contexts like railway infrastructure, such conservatism may be preferable
to the risk of undetected defects.

The F1l-score, which harmonizes precision and recall, is highest for the PO class
(0.8251), reinforcing the model’s reliability in identifying the most hazardous scenarios.
The Normal class also performs exceptionally well across all evaluated metrics, effectively

minimizing false alarms in healthy track segments.

As illustrated by the confusion matrices in Table 40, the model shows strong
classification capability, with high values along the diagonal indicating accurate predictions.
Misclassifications primarily occur between P1 and P2, highlighting potential ambiguity
between these intermediate conditions. This suggests that further refinement in feature

selection or threshold calibration could enhance class separation.

Complementing this analysis, the feature importance results shown in Figure 31,
derived from the Random Forest model, reveal the most relevant variables contributing to
the prediction of critical track states. These insights provide valuable guidance for future

model enhancements and targeted monitoring strategies.

5.5.4 Data App Track Condition with Georeferencing

The interactive application developed in this study provides a practical decision-
support tool for railroad specialists engaged in assessing track conditions and operational

safety. As illustrated in Figure 32, the application enables dynamic visualization of geo-



93

Table 40 — Confusion matrix based on the metrics of sensitivity and precision using
validation data. The indicated classes are PO (C1), P1 (C2), P2 (C3), Normal (C4).

Recall Precision

PO P1 P2 N PO P1 P2 N
PO 0.75 0.085  0.043 0.12 PO 0.93 0.014  0.002 —
P1 0.0031 0.91 0.053  0.035 P1 0.016 0.61 0.01 —
P2 0.001 0.024 0.93 0.042 P2 0.007  0.023 0.25 —
N — 0.005  0.042 0.95 N 0.047 0.35 0.74 0.99

Prediction label Prediction label
(a) Sensitivity. (b) Precision.

Figure 31 — Feature importance analysis illustrating the relative significance of each feature
in the model’s prediction process.
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referenced safety indices, allowing users to identify and monitor critical points along the

railway network through an intuitive map interface.

Users can apply distance-based filters to focus on specific track segments and
analyze detailed information through frequency charts, which reveal temporal trends
in quality indicators. Additionally, the platform provides tabular summaries with the
predicted probability of each criticality class and enables data export in CSV format for
further offline analysis. This tool enhances the usability of the classification results derived
from the methodology presented in this thesis, supporting proactive maintenance planning

and informed decision-making in railway infrastructure management.
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Figure 32 — Interactive map interface of the application, displaying georeferenced safety
indices alongside filtering options for user-defined distance ranges.
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5.6 DISCUSSION

The application of the Logistic-NARX Multinomial model to the railway track
condition assessment task highlighted both the potential and the limitations of interpretable
nonlinear modeling in complex operational scenarios. Despite achieving only moderate
predictive accuracy in its initial implementation, outperformed by more established
classifiers such as Random Forest, the NARX-based method provided valuable insights
into the dynamics of critical variables, reinforcing its suitability for exploratory modeling

and feature interaction analysis.

Among these, lateral acceleration stands out due to its direct link with wheel
unloading, a key factor in derailment scenarios. Given the vehicle’s geometry, with a center
of gravity approximately 2 meters above the rail and a nominal gauge of 1 meter, it is
particularly prone to generating large overturning moments during curve negotiation. This
effect is exacerbated under abrupt lateral accelerations, which can destabilize the vehicle.
In such cases, the lateral-to-vertical force ratio (L/V) becomes critical. When this ratio
nears or surpasses established safety limits (typically in the range of 0.8 to 1.0, depending
on the standard), the risk of derailment increases significantly. This is especially true on
curves with small radii, such as 100 meters, where lateral forces are inherently higher.
The model’s emphasis on lateral acceleration corroborates these dynamics, reinforcing its

relevance as a primary indicator of operational safety in railway applications.

From an engineering perspective, the integration of multibody simulations and



95

machine learning represents a methodological advancement with tangible implications.
The use of simulation-generated data allows for a realistic representation of operational
dynamics without requiring direct measurements of wheel-rail forces, which are typically
inaccessible in regular operation. This approach not only enhances the interpretability of
the model but also facilitates risk assessment in contexts where direct instrumentation is

impractical or cost-prohibitive.

5.7 SUMMARY

This chapter introduced a novel methodology for railway track condition assessment
by integrating multibody dynamic simulations with machine learning models, specifically
focusing on interpretable classification using acceleration and angular motion data. The
proposed approach enables the estimation of critical operational risks, such as wheel
unloading and L/V thresholds, through indirect measurements obtained from onboard
sensors. While the Logistic-NARX model demonstrated limited accuracy compared
to ensemble methods like Random Forest, it contributed valuable interpretability and
insight into feature relevance. The methodology also culminated in the development of
a geo-referenced application, providing real-time visualization and decision support for
maintenance planning. Together, these contributions reinforce the practical viability and
strategic benefits of combining physical modeling with data-driven approaches in railway

infrastructure monitoring.
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6 CONCLUSIONS

6.1 SUMMARY AND CONCLUSIONS

This thesis introduced a novel classification framework that integrates system
identification principles with machine learning techniques, culminating in the development
of the Logistic-NARX Multinomial model. This approach expands the classical use of
NARX models beyond regression and binary classification by enabling their application to

multiclass problems, while maintaining a sparse, interpretable, and transparent structure.

The proposed methodology combines the flexibility of logistic regression with the
structural rigor of NARX modeling, incorporating an accuracy-driven term selection
mechanism based on cross-validation. The result is a classification model capable of
capturing nonlinear dependencies, highlighting meaningful variable interactions, and
offering interpretable mathematical expressions that aid in understanding the underlying

processes.

Experimental results on benchmark datasets confirmed that the model achieves
competitive classification performance with significantly fewer terms, demonstrating its
efficiency in dimensionality reduction and robustness in scenarios involving noise and class
imbalance. In particular, the method excelled in providing interpretability and model

transparency, features often lacking in black-box classifiers.

The methodology was also validated in two real-world engineering applications.
In the case of power quality disturbance classification, the model successfully identified
discriminative descriptors derived from higher-order statistics, effectively categorizing
electrical events. This demonstrated the model’s capacity to extract and prioritize relevant

features even in highly nonlinear and transient contexts.

The second and more comprehensive application addressed railway track condition
assessment. In this domain, the Logistic-NARX Multinomial model was embedded in a
broader methodological pipeline involving multibody dynamics simulations, sensor-based
data collection, feature selection, and georeferenced safety visualization. This application
not only served as a validation case for the proposed model but also represented an
innovative contribution to railway engineering: enabling the indirect estimation of critical
safety indicators, such as lateral-to-vertical force ratio and wheel unloading, through an
interpretable and scalable classification system. The methodology demonstrated potential
for integration into intelligent maintenance strategies and decision-support tools for railway

infrastructure monitoring.

Nonetheless, the research also revealed important limitations and opportunities for
future improvement. Challenges such as basis function flexibility, lag selection, multicolli-

nearity, and class imbalance emerged as critical factors influencing model performance. Ad-
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dressing these issues—through alternative function bases, adaptive lag optimization, robust
orthogonalization procedures, and advanced imbalance mitigation techniques—constitutes

a promising direction for further refinement of the approach.

In conclusion, this work makes both methodological and applied contributions.
It advances the field of interpretable classification by proposing a hybrid, sparse, and
transparent model applicable to a wide range of engineering challenges. Simultaneously, it
introduces an innovative methodology for railway safety assessment, bridging theoretical
modeling with practical deployment in critical infrastructure. The proposed framework lays
the groundwork for future applications where clarity, trust, and domain-aligned reasoning

are essential to support real-time, data-driven decision-making.

6.2 FUTURE WORKS

This work opens several avenues for future research aimed at enhancing the perfor-
mance, scalability, and applicability of the Logistic-NARX Multinomial model, both from

a methodological and application-driven perspective.

One key direction concerns the refinement of the model’s functional basis. The
current use of polynomial basis functions, while offering analytical clarity and ease of
interpretation, may limit the ability to capture more intricate nonlinearities present in
complex classification tasks. Future research could explore the incorporation of alternative
basis expansions—such as radial basis functions, wavelets, or kernel-based approaches—to
increase the flexibility and representational power of the model without compromising its

interpretability.

Another technical challenge involves the selection of input and output lags (n,
and n,). This step significantly influences the search space of candidate terms. As lag
values increase, the number of possible combinations grows exponentially, leading to a
sharp increase in computational complexity (Wei et al., 2004). Developing adaptive or
automated strategies for lag selection, possibly guided by relevance measures or mutual
information, would enhance the scalability of the method, especially in high-dimensional

scenarios.

The issue of multicollinearity among regressors also remains critical. Highly
correlated variables can adversely affect coefficient estimation and compromise model
robustness. Future work may investigate the adoption of enhanced orthogonalization
techniques, such as iterative Orthogonal Forward Regression (OFR) (Guo et al., 2015) or
ultra-OFR, (Guo et al., 2016), to mitigate redundancy during term selection and improve

model stability.

From an application standpoint, Power Quality scenarios could benefit from exten-

ding the model to handle concurrent disturbances and more realistic operational conditions,
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including imbalanced and overlapping classes. Further, integrating higher-order feature
engineering and resampling techniques may improve the robustness and generalization of

the model in practical environments.

In the railway track monitoring context, future work could focus on improving clas-
sification accuracy for critical safety-related classes, such as Class P2, by refining labeling
strategies and exploring data segmentation methods. Expanding the validation framework
to include diverse operational conditions, such as varying train configurations, speeds,
and track geometries, would increase the model’s robustness and reliability. Additionally,
incorporating geometric descriptors like curvature, cross-level, gauge, and alignment into

the feature space may provide deeper insights into degradation mechanisms.

A promising direction also involves the use of frequency-domain analysis, such as
Wavelet Transforms, to extract features that capture localized changes in acceleration and
vibration patterns (Lupea and Lupea, 2025). These frequency-sensitive features may reveal
subtle anomalies or degradation levels not visible in the time domain alone, improving

both detection accuracy and interpretability.

Finally, the Data App Track Condition platform developed in this work demons-
trates the potential for real-time, interactive visualization of predictive safety indices.
Future enhancements could integrate the methodological improvements described above,
transforming the tool into a powerful decision-support system for railway operators engaged

in preventive maintenance and infrastructure risk management.
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