UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Leonardo Azalim de Oliveira

User Equipment Traffic Classification in the 5G Core

Juiz de Fora

2025

Leonardo Azalim de Oliveira

User Equipment Traffic Classification in the 5G Core

Dissertacao apresentada ao Programa de Pos-
Graduacao em Ciéncia da Computacao da
Universidade Federal de Juiz de Fora como
requisito parcial a obtencao do titulo de Mes-
tre em Ciéncia da Computacio. Area de
concentracao: Redes de Computadores.

Orientador: Prof. Dr. Edelberto Franco Silva

Coorientador: Prof. Dr. Luciano Jerez Chaves

Juiz de Fora

2025

Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Oliveira, Leonardo Azalim de.

User Equipment Traffic Classification in the 5G Core / Leonardo Azalim
de Oliveira. — 2025.

217 f. : il

Orientador: Edelberto Franco Silva

Coorientador: Luciano Jerez Chaves

Dissertagdo (Mestrado) — Universidade Federal de Juiz de Fora, Instituto
de Ciéncias Exatas. Programa de Pés-Graduagdo em Ciéncia da Computa-
cao, 2025.

1. 5G. 2. Tréafego de rede. 3. Classificacao. 1. Silva, Edelberto Franco,
orient. II. Chaves, Luciano Jerez, coorient. III. Titulo.

Leonardo Azalim de Oliveira

User Equipment Traffic Classification in the 5G Core

Aprovada em 11 de junho de 2025.

BANCA EXAMINADORA

Prof. Dr. Edelberto Franco Silva - Orientador

Universidade Federal de Juiz de Fora

Prof. Dr. Luciano Jerez Chaves - Coorientador

Universidade Federal de Juiz de Fora

Prof. Dr. Alex Borges Vieira

Universidade Federal de Juiz de Fora

Prof. Dr. Michele Nogueira Lima

Universidade Federal de Minas Gerais

Prof. Dr. Diogo Menezes Ferrazani Mattos

Dissertacao
apresentada ao
Programa de Pods-
graduacao em Ciéncia
da Computacao
da Universidade
Federal de Juiz de Fora
como requisito parcial
a obtencdo do titulo de
Mestre em Ciéncia da
Computacdo. Area de
concentracao: Ciéncia
da Computacao.

Universidade Federal Fluminense

Juiz de Fora, 28/05/2025.

assmalura Lj
eletrénica

Documento assinado eletronicamente por Alex Borges Vieira, Coordenador(a), em 24/07/2025,
as 09:22, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n?
10.543, de 13 de novembro de 2020.

i
Sel o
assinatura

eletrdnica

Documento assinado eletronicamente por Edelberto Franco Silva, Professor(a), em 24/07/2025,
as 09:23, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n?
10.543, de 13 de novembro de 2020.

seil B

assinatura
eletrénica

Documento assinado eletronicamente por Luciano Jerez Chaves, Professor(a), em 28/07/2025, as
13:18, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n?
10.543, de 13 de novembro de 2020.

i
seil o
assinatura

eletrénica

Documento assinado eletronicamente por Diogo Menezes Ferrazani Mattos, Usuario Externo, em
29/07/2025, as 14:39, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do
Decreto n? 10.543, de 13 de novembro de 2020.

i
Sel o
assinatura
eletrénica

Documento assinado eletronicamente por Michele Nogueira Lima, Usudrio Externo, em
29/07/2025, as 15:04, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do
Decreto n2 10.543, de 13 de novembro de 2020.

~ A autenticidade deste documento pode ser conferida no Portal do SEI-Ufjf (www2.ufjf.br/SEl)

TS e
KT 'f;-.. % através do icone Conferéncia de Documentos, informando o cddigo verificador 2422797 e o cédigo

i3 CRC 69C1E830.
E .w.: ol .

To Ana Luce, whose support has always been with me

through the hardest moments of my life.

ACKNOWLEDGMENT

My work would have been impossible to accomplish without the help of countless

individuals, as achieving great things is rarely done alone.

During my Master’s course, my family provided unwavering encouragement, which
was vital to my success. I would like to express my gratitude to my parents Ana Luce and
José Geraldo for always supporting me in my endeavors; to my sister Cecilia for being the
greatest example of resilience I know and a source of inspiration; and to my aunt Anayse

for always believing in me and my work.

I also wish to thank my advisors, Professor Edelberto Franco Silva and Professor

Luciano Jerez Chaves, for their invaluable guidance and partnership throughout my course.

The time I spent at the university allowed me to cultivate many friendships. I extend
my thanks to Frederico Sales and Rodrigo Silva for everything they shared with me; to
Khalid Usman for the memorable moments we shared during the course; to Yago Pereira
for his assistance in revising the mathematical definitions used in this work; and to Romulo

Mello and his laboratory colleagues for their friendliness during our time in PGCC.

I am grateful to the professors of the Postgraduate program in Computer Science
for their shared knowledge and expertise. I specially thank Professor Alex Borges Vieira
for the invaluable lessons learned as a member of the Networks and Distributed Systems
Laboratory (NetLab); Professor Mario Antonio Ribeiro Dantas for the enjoyable experience
of working together while being his student; and Professor Marcelo Bernardes Vieira for

the insights gained during his research methodology course.

I also received support from various individuals and organizations that enabled my
research. I acknowledge the the Nicleo de Recursos Computacionais (NRC), coordinated
by Professor Eduardo Pagani Julio for the technical support and equipment utilized during
my research; the Centro de Gestao do Conhecimento Organizacional (CGCO), coordinated
by Mrs. Patricia Curvelo Rodrigues Stroele for the connectivity support during my defense;
and Coordenacao de Aperfeigoamento de Pessoal de Nivel Superior (CAPES), Rede
Nacional de Pesquisa (RNP), Fundagido de Apoio e Desenvolvimento ao Ensino, Pesquisa
e Extensao (Fadepe), and Fundag¢ao de Amparo a Pesquisa do Estado de Minas Gerais
(FAPEMIG) for funding my research. I also thank the freesGC development team from
National Yang Ming Chiao Tung University (NYCU) helpfulness during my collaboration
on their project; and Mr Ali Giingér and all the contributors of the UERANSIM project
for publicly releasing their state-of-the-art 5G UE simulator.

Finally, I would like to acknowledge the anonymous reviewers who evaluated the
papers I published during my course, as well as the members of my defense committee for
their insightful comments. 1 also extend my gratitude to every scientist who came before

me and, in some way, laid the foundations that enabled my work to reach its current state.

“Science is an attempt, largely successful, to understand the world, to get a grip on things,

to get hold of ourselves, to steer a safe course.” (Carl Sagan, 1997, p. 29)

RESUMO

A quinta geragdo de redes celulares (5G), que é especificada pelo 3" Generation
Partnership Program (3GPP), se distingue das geragdes anteriores de redes méveis princi-
palmente pela adogao de uma arquitetura baseada em servigos (do inglés, Service Based
Architecture (SBA)). Ao aproveitar da flexibilidade desse novo paradigma arquitetural,
este trabalho investiga a viabilidade da implementag¢ao de um mecanismo de Network
Data Analytics Function (NWDAF) para a classificacao de dispositivos 5G. Consoante
com a normatizagdo do 3GPP, o International Telecommunication Union (ITU) define
trés eixos de servigo 5G: Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low
Latency Communications (URLLC) e Massive Machine-Type Communications (mMTC).
Esses eixos concentram principalmente aplicagoes que necessitam de altas taxas de vazao,
baixa laténcia com alta disponibilidade e transmissoes de baixo gasto energético com
milhares de dispositivos de Internet of Things (IoT) conectados, respectivamente. Entao,
a classificagao de diferentes tipos de dispositivos é crucial, uma vez que cada eixo do 5G
estd associado a restrigoes distintas, que influenciam a alocacao de recursos no Nucleo 5G
(do inglés, 5G Core (5GC)). Definido pelo 3GPP na Release 15 como responsével pela
andlise de dados em redes 5G, o NWDAF permanece subexplorado na literatura. Entao,
para explorar essa lacuna, este trabalho utiliza um ambiente 5G simulado que emprega
Software Livre (SL). Este ambiente engloba o UERANSIM, que é um simulador de Radio
Access Network (RAN) e User Equipment (UE); o freebGC, que é uma implementagao de
5GC; e um gerador de trafego de rede customizavel. Dois conjuntos de dados 5G reais,
foram utilizados para treinar onze diferentes modelos de Machine Learning (ML) — Linear
Regression (LR), Histogram-based Gradient Boosting (HGB), Light Gradient Boosting
Machine (LGBM), Multilayer Perceptron (MLP), Random Forest (RF), Linear Support
Vector Classification (SVC), eXtreme Gradient Boosting (XGB), Decision Tree (DT),
AdaBoost, Stacking, e Voting — com o objetivo de classificar os UEs nos eixos a partir
do trafego de rede observado. No pipeline de ML implementado, os modelos alcancaram
até 99.91% de Fl-score para a classe eMBB ao utilizar RF, LGBM e XGB. Para a classe
URLLC, os melhores resultados foram de 99.99% de Fl-score com o SVC. Em contraste,
devido a natureza esparsa dos dados da classe mMTC, enquanto o AdaBoost alcangou
99.99% de Fl-score no cenério de burst, a performance ficou limitada em 2.74% no cenério
probabilistico. Mesmo apds empregar técnicas que incluiram o balanceamento dos dados
de treinamento, os modelos sofreram de overfitting. Inspirado pelo movimento de ciéncia
aberta, tanto o software utilizado quanto o conjunto de dados criado para a inferéncia
estao acessiveis publicamente. Essa abordagem garante a reprodutibilidade e estabelece

bases para investigagoes futuras sobre analise de dados conforme especificado pelo 3GPP.

Palavras-chave: 5G; trafego de rede; classificagao.

ABSTRACT

The fifth generation of cellular network (5G), specified by the 3¢ Generation
Partnership Program (3GPP), distinguishes itself from previous mobile network generations
primarily through the adoption of a Service Based Architecture (SBA). By leveraging
the flexibility of this new architectural paradigm, this work investigates the feasibility of
implementing a Network Data Analytics Function (NWDAF') mechanism for classifying 5G
devices. Following the 3GPP specifications, the International Telecommunication Union
(ITU) defines three 5G service axes: Enhanced Mobile Broadband (eMBB), Ultra Reliable
and Low Latency Communications (URLLC), and Massive Machine-Type Communications
(mMTC). These axes focus on applications that require high throughput, low latency with
high availability, and low-energy transmissions with thousands of connected Internet of
Things (IoT) devices, respectively. Therefore, the classification of different device types is
crucial, as each 5G axis is associated with distinct constraints, which influence resource
allocation in the 5G Core (5GC). Defined by the 3GPP in Release 15 as responsible
for data analysis in 5G networks, the NWDAF remains considerably underexplored in
existing literature. To address this gap, this work employs a simulated 5G environment
utilizing Free/Libre and Open Source Software (FLOSS). This environment incorporates
UERANSIM, a Radio Access Network (RAN) and User Equipment (UE) simulator;
freebGC, a 5GC implementation; and a custom network traffic generator. Two real-world
5G datasets were used to train eleven different Machine Learning (ML) models — Linear
Regression (LR), Histogram-based Gradient Boosting (HGB), Light Gradient Boosting
Machine (LGBM), Multilayer Perceptron (MLP), Random Forest (RF), Linear Support
Vector Classification (SVC), eXtreme Gradient Boosting (XGB), Decision Tree (DT),
Adaboost, Stacking, and Voting — to classify UEs in the axes based on their observed
network traffic. In the implemented ML pipeline the model inference performance results
achieved up to 99.91% F1-score for the eMBB class using RF, LGBM, and XGB. For the
URLLC class the best results were 99.99% F1-score with SVC. In contrast, due to the
sparse data points of the mMTC class, while Adaboost achieved a 99.99% F1-score in the
burst scenario, the performance was limited to 2.74% in the probabilistic scenario. Despite
using techniques that include balancing the training dataset, the models suffered from
overfitting. Inspired by the open science movement, both the software used and the dataset
created for inference are publicly accessible. This approach ensures reproducibility and

establishes a foundation for future investigations into data analysis as specified by 3GPP.

Keywords: 5G; network traffic; classification.

FIGURE LIST

Figure 1 — 5GS overview L 29
Figure 2 — 5G service axes and usage scenarios of IMT for 2020 and beyond 30
Figure 3 — 5GS CUPS overview 31
Figure 4 — Functional overview of the NWDAF 34
Figure 5 — Literature review main steps 39
Figure 6 — Extracted records per database 40
Figure 7 — Outline of the designed ML pipeline. 55
Figure 8 — Experimental setup overview 56
Figure 9 — Dataset sources and keywords 58
Figure 10 — Outline of the environment deployed by FAD 60
Figure 11 — Implemented functionality workflow 62
Figure 12 — Protocol label occurrence frequency in eMBB training dataset 67
Figure 13 — Protocol label occurrence frequency in eMBB inference dataset 67
Figure 14 — Protocol label occurrence frequency in URLLC training dataset 68
Figure 15 — Protocol label occurrence frequency in URLLC inference dataset 68

Figure 16 — Protocol label occurrence frequency in mMTC inference dataset (prob.) 70

Figure 17 — Protocol label occurrence frequency in mMTC inference dataset (burst) 70

Figure 18 — Frame length distribution in eMBB training dataset 71
Figure 19 — Frame length distribution in eMBB inference dataset 72
Figure 20 — Frame length distribution in URLLC training dataset 72
Figure 21 — Frame length distribution in URLLC inference dataset 73
Figure 22 — Variable measures L oL 75
Figure 23 — RF confusion matrix for the test phase 187
Figure 24 — LGBM confusion matrix for the test phase 187
Figure 25 — XGB confusion matrix for the test phase 188
Figure 26 — HGB confusion matrix for the test phase 188
Figure 27 — MLP confusion matrix for the test phase 188
Figure 28 — Stacking confusion matrix for the test phase 189
Figure 29 — AdaBoost confusion matrix for the test phase 189
Figure 30 — DT confusion matrix for the test phase 189
Figure 31 — Voting confusion matrix for the test phase 190
Figure 32 — Linear SVC confusion matrix for the test phase 190
Figure 33 — LR confusion matrix for the test phase 190
Figure 34 — RF confusion matrix for the inference phase 195
Figure 35 — LGBM confusion matrix for the inference phase 195
Figure 36 — XGB confusion matrix for the inference phase 196

Figure 37 — HGB confusion matrix for the inference phase 196

Figure 38 — MLP confusion matrix for the inference phase 196

Figure 39 — AdaBoost confusion matrix for the inference phase 197
Figure 40 — Stacking confusion matrix for the inference phase 197
Figure 41 — Voting confusion matrix for the inference phase 197
Figure 42 — DT confusion matrix for the inference phase 198
Figure 43 — Linear SVC confusion matrix for the inference phase 198
Figure 44 — LR confusion matrix for the inference phase 198
Figure 45 — Linear SVC confusion matrix for the URLLC inference phase 199
Figure 46 — LR confusion matrix for the URLLC inference phase 199
Figure 47 — DT confusion matrix for the URLLC inference phase 200
Figure 48 — Voting confusion matrix for the URLLC inference phase 200
Figure 49 — Stacking confusion matrix for the URLLC inference phase 200
Figure 50 — MLP confusion matrix for the URLLC inference phase 201
Figure 51 — LGBM confusion matrix for the URLLC inference phase 201
Figure 52 — HGB confusion matrix for the URLLC inference phase 201
Figure 53 — XGB confusion matrix for the URLLC inference phase 202
Figure 54 — RF confusion matrix for the URLLC inference phase 202
Figure 55 — AdaBoost confusion matrix for the URLLC inference phase 202
Figure 56 — AdaBoost confusion matrix for the mMTC burst inference phase 203
Figure 57 — LR confusion matrix for the mMTC burst inference phase 203
Figure 58 — Voting confusion matrix for the mMTC burst inference phase 204
Figure 59 — RF confusion matrix for the mMTC burst inference phase 204
Figure 60 — XGB confusion matrix for the mMTC burst inference phase 204
Figure 61 — DT confusion matrix for the mMTC burst inference phase 205
Figure 62 — HGB confusion matrix for the mMTC burst inference phase 205
Figure 63 — LGBM confusion matrix for the mMTC burst inference phase 205
Figure 64 — Linear SVC confusion matrix for the mMTC burst inference phase . . . 206
Figure 65 — MLP confusion matrix for the mMTC burst inference phase 206
Figure 66 — Stacking confusion matrix for the mMTC burst inference phase 206

Figure 67 — AdaBoost confusion matrix for the mMTC probabilistic inference phase 207
Figure 68 — Voting confusion matrix for the mMTC probabilistic inference phase . . 207
Figure 69 — DT confusion matrix for the mMTC probabilistic inference phase . . . 208
Figure 70 — HGB confusion matrix for the mMTC probabilistic inference phase . . 208
Figure 71 — LGBM confusion matrix for the mMTC probabilistic inference phase . 208
Figure 72 — RF confusion matrix for the mMTC probabilistic inference phase . . . 209
Figure 73 — XGB confusion matrix for the mMTC probabilistic inference phase . . 209
Figure 74 — MLP confusion matrix for the mMTC probabilistic inference phase . . 209
Figure 75 — Stacking confusion matrix for the mMTC probabilistic inference phase 210
Figure 76 — Linear SVC confusion matrix for the mMTC probabilistic inference phase210

Figure 77 — LR confusion matrix for the mMTC probabilistic inference phase . . . 210

TABLE LIST

Table 1 — Summary of the characteristics of mobile networks generations 27
Table 2 — Literature review criteria used on Parsifal 41
Table 3 — Comparison of classification techniques 48
Table 4 — Comparison of open science characteristics 53
Table 5 — Dataset capture description and service classification 59
Table 6 — Features removed prior to model training 62
Table 7 — Features utilized in model training 63
Table 8 — Feature measures e 75
Table 9 — Hypothesis tests p-value for each scenario 76
Table 10 — Average feature importance for DT 78
Table 11 — Average feature importance for RF 78
Table 12 — Training average F1-score performance results per class 80
Table 13 — Model average training time 81
Table 14 — eMBB inference performance results 82
Table 15 — URLLC inference performance results 82
Table 16 — mMTC probabilistic inference performance results 83
Table 17 — mMTC burst inference performance results 83
Table 18 — eMBB, URLLC, and mMTC burst average 3 runs inference time 84
Table 19 — mMTC probabilistic average 3 runs inference time 85
Table 20 — Cross validation average performance results of the test phase 86
Table 21 — Cross validation average time results of the test phase 87
Table 22 — Training RF performance results 191
Table 23 — Training LGBM performance results 191
Table 24 — Training XGB performance results 192
Table 25 — Training HGB performance results 192
Table 26 — Training MLP performance results 192
Table 27 — Training Stacking performance results 193
Table 28 — Training AdaBoost performance results 193
Table 29 — Training DT performance results 193
Table 30 — Training Voting performance results 194
Table 31 — Training Linear SVC performance results 194

Table 32 — Training LR performance results 194

ACRONYM LIST

1G first generation of mobile telecommunications standards
2G second generation of cellular network
3G third generation of cellular network
3GPP 37? Generation Partnership Program
4G fourth generation of cellular network
5G fifth generation of cellular network
5GC 5G Core

5GS 5G System

6G sixth generation of cellular network
ADRF Analytics Data Repository Function
AF Application Function

Al Artificial Intelligence

AMF Access and Mobility Function
AMPS Advanced Mobile Phone System

AN Access Network

AnLF Analytics Logical Function

ARP Address Resolution Protocol

AUC Area Under the Curve

AUSF Authentication Server Function
B5G Beyond 5G

BS Base Station

CAPES Coordenacgao de Aperfeigoamento de Pessoal de Nivel Superior
CDR Call Detail Record

CN Core Network

CNN Convolutional Neural Network
COTS Commercial off-the-shelf

CP Control Plane

CSV Comma Separated Values
CUPS Control and User Plane Separation
DAF Data Analytics Function

DoS Denial of Service

DN Data Network

DNS Domain Name System

DoH DNS over HTTPS

DOI Digital Object Identifier

DoT DNS over TLS

DP Data Plane

DT Decision Tree

EDA Exploratory Data Analysis

cMBB Enhanced Mobile Broadband
EPC Evolved Packet Core

FAD
FLOSS
FN

FP
FPR
GNS3
gNB
GPRS
GQUIC
GSM
GTP
GTP-C
GTP-U
GTP’
HAC
HD
HGB
HSPA
HTTP
HTTPS
ICMP
IEEE
iid
IMT
[oT

IP
ISSN
ITU
JSON
kB

KPI
KNN
LAN
LGBM
LR
LSTM
M2M
MANO
MB
MCDM
ML
MLP
MMS

freebGC Auto Deploy

Free/Libre and Open Source Software
False Negative

False Positive

False Positive Rate

Graphical Network Simulator 3

gNodeB

General Packet Radio Service

Google Quick UDP Internet Connections
Global System for Mobile Communications
General Packet Radio Service Tunneling Protocol
GTP Control Plane

GTP User Plane

GTP charging

Hierarchical Agglomerative Clustering
High-definition

Histogram-based Gradient Boosting
High Speed Packet Access

Hypertext Transport Protocol

Hypertext Transport Protocol Secure
Internet Control Message Protocol
Institute of Electrical and Electronics Engineers
independent and identically distributed
International Mobile Telecommunications
Internet of Things

Internet Protocol

International Standard Serial Number
International Telecommunication Union
JavaScript Object Notation

Kilobyte

Key Performance Indicator

K-Nearest Neighbors

Local Area Network

Light Gradient Boosting Machine

Linear Regression

Long Short Term Memory

Machine to Machine

Management and Orchestration
Megabyte

Multiple-Criteria Decision Making
Machine Learning

Multilayer Perceptron

Multimedia Messaging Service

mMTC
MNO

MTLF
MTU
NEF
NF
NFV
NGMN
NMT
NN
NR
NRF
NS-3
NSSF
NTN
NWDAF
OAM
OCSP
OS
OvO
PCAP
PCF
PDU
PLC
PNIO
PoP
PPS
QoE
QoS
QUIC
RAM
RAN
RAT
RF
RMSE
RNN
ROC
RTT
SA
SBA
SBI
SDN

Massive Machine-Type Communications
Mobile Network Operator
Millisecond

Model Training Logical Function
Maximum Transfer Unit

Network Exposure Function
Network Function

Network Function Virtualization
Next Generation Mobile Networks Alliance
Nordic Mobile Telephone

Neural Network

New Radio

Network Repository Function
Network Simulator 3

Network Slice Selection Function
Non-Terrestrial Network

Network Data Analytics Function
Operations, Administration, and Maintenance
Online Certificate Status Protocol
Operating System

One-vs-One

packet capture

Policy Control Function

Protocol Data Unit
Programmable Logic Controller
PROFINET IO

Publish or Perish

Packets per Second

Quality of Experience

Quality of Service

Quick UDP Internet Connections
Random Access Memory

Radio Access Network

Radio Access Technology
Random Forest

Root Mean Square Error
Recurrent Neural Network
Receiver Operating Characteristic
Round-Trip Time

Stand-Alone

Service Based Architecture
Service Based Interface
Software-Defined Networking

SLR
SMF
SMS
SSL
SVM
SVC
TCP
TEID
TLS
TN
TP
TPR
TR
TS
TSG
TTL
TV
UAV
UDM
UDP
UDR
UE
UMTS
UN
UP
UPF
URL
URLLC
VM
VoIP
WoS
XGB
XR
ZSM
ZTN

Systematic Literature Review
Session Management Function
Short Message Service

Secure Sockets Layer

Support Vector Machine
Support Vector Classification
Transmission Control Protocol
Tunnel Endpoint Identifier
Transport Layer Security

True Negative

True Positive

True Positive Rate

Technical Report

Technical Specification
Technical Specification Group
Time To Live

Television

Unmanned Aerial Vehicle
Unified Data Management
User Datagram Protocol
Unified Data Repository

User Equipment

Universal Mobile Telecommunications System
United Nations

User Plane

User Plane Function

Uniform Resource Locator
Ultra Reliable and Low Latency Communications
Virtual Machine

Voice over Internet Protocol
Web of Science

eXtreme Gradient Boosting
Extended Reality

Zero-touch network and Service Management
Zero-Touch Network

1.1
1.2
1.3
1.4
1.5

2.1
2.1.1
2.1.2
2.1.3
2.1.9.1
2.1.3.2
2.1.3.3
2.1.4
2.2
2.2.1
2.2.2
2.2.2.1
2.2.0.2
2.2.2.9
2.2.2.
2.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3

TABLE OF CONTENTS

INTRODUCTION e e e e e e e e e e e e 20
MOTIVATION e e 20
RESEARCH GOAL 21
MAIN CONTRIBUTIONS 21
RESEARCH OUTPUT 22
OUTLINE e 24
BACKGROUND et e e e e e e e e e o 25
MOBILE NETWORKS 25
Standards Organizations 25
Previous Generations 26
Fifth Generation of Cellular Network 28
5G Service Azes 29
5G Core 30
Data Storage and Analytics 32
Beyond 5G 34
MACHINE LEARNING 35
Model Life Cycle Terminology 35
Performance Metrics 36
Accuracyo 36
Preciston 36
Recall 37
Fl-score 37
SUMMARY 37
LITERATURE REVIEW 38
SYSTEMATIC LITERATURE REVIEW 38
RELATED WORK 42
COMPARISON e 47
SUMMARY e 54
METHODOLOGY it e e e e e e e e e e e e e 55
ML PIPELINE 55
5G SIMULATION ENVIRONMENT 56
5G NETWORKS TRAFFIC DATASETS 57
FREE5GC AUTO DEPLOY 59
NWDAF FUNCTIONALITY IMPLEMENTATION 61
Data Preparation L 61
Implementation Details and Execution 62
Traffic Generator 63

4.6

5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.5.1
5.2.3.2
5.2.3.3
5.3

5.4

6.1
6.2
6.3

SUMMARY . . . 64

RESULTS AND DISCUSSION 65
NETWORK DATASET 65
Packet Capture Dataset 65
Frequency Analysis Lo 66
Protocol Label 66
Frame Length 71
Hypothesis Tests, 74
MACHINE LEARNING MODELS FOR CLASSIFICATION 76
Model Tuning 7
Feature Importance 7
Model Performance 79
Training Lo 79
Inference 81
Cross Validation 86
DISCUSSION e 87
SUMMARY 89
CONCLUSION o e e et e e e e e e e 90
CONTRIBUTIONS 90
LIMITATIONS e 91
FUTURE WORK o . 91
REFERENCES it e e 93
APPENDIX A — Source of the install-go.sh script 105

APPENDIX B — Source of the deploy-free5gc.sh script 106
APPENDIX C — Source of the deploy-UERANSIM.sh script . 117

APPENDIX D — Source of the deploy-n3iwue.sh script 121
APPENDIX E — Source of the deploy-tngfue.sh script 126
APPENDIX F — Source of the pcap__extract.sh script 128
APPENDIX G — Source of the dataset_ CSV__characterization.py
SCript . . v o e e e e e e e e e e e e e 132
APPENDIX H — Source of the stat-plotter.py script 135
APPENDIX I — Source of the export_ JSON.py script 140
APPENDIX J — Source of the json2csv.py script 142
APPENDIX K — Source of the box-plotter.py script 150
APPENDIX L — Source of the add__label to_name.sh script 152
APPENDIX M — Source of the ml.py script 154
APPENDIX N — Source of the inference.py script 165

APPENDIX O — Source of the traffic generator scripts 170
APPENDIX P — Source of the model__tuning.py script 175

APPENDIX Q — Source of the dt_ visualization.py script . . . 184

APPENDIX R — Test phase confusion matrices 187
APPENDIX S — Test phase raw performance metrics 191
APPENDIX T — eMBB inference confusion matrices 195
APPENDIX U — URLLC inference confusion matrices 199

APPENDIX V — mMTC burst inference confusion matrices . 203
APPENDIX W — mMTC probabilistic inference confusion matri-
o 207
APPENDIX X — Weighted recall definition and example . . . 211
APPENDIX Y — Receiver Operating Characteristic Area Under the
Curve e 216

20
1 INTRODUCTION

In the context of fifth generation of cellular network (5G), Brazil has reached over
20.5 million 5G connections as of 2023, with a total 40 million 5G connections registered in
2024 (2), while worldwide 1.6 billion 5G connections were established in 2023 (3). As the
number of connected devices continues to rise, the efficiency and reliability of 5G networks
become increasingly crucial to ensure seamless user experiences, support emerging use

cases, and mitigate congestion and latency issues.

5G introduces a paradigm shift in mobile network architecture, leveraging a Service
Based Architecture (SBA) for the first time. This approach marks a significant shift
from previous generations, which were characterized by a more rigid and centralized

reference-based architecture.

A SBA is based on a service-oriented concept, where components are designed to be
coherent and loosely coupled. This enables the integration of diverse network elements and
services. Network Function Virtualization (NFV) principles are also applied, where multiple
entities from previous generations are virtualized as distinct Network Functions (NFs).
Each NF is exposed through a standardized Service Based Interface (SBI) bus (4). Key
benefits of the SBA include improved flexibility, scalability, and interoperability. The

service-oriented approach enables seamless communication among network components.

The SBI bus and interfaces are part of the SBA design of the 5G Core (5GC).
An 5GC is a conceptual element of the 5G network that contains most of the NFs and
the main SBI bus. The 5GC architecture also adopts the concepts of Software-Defined
Networking (SDN), which means that there is a separation between the Control Plane (CP)
and the User Plane (UP) — that could be also referred as Data Plane (DP). This Control
and User Plane Separation (CUPS) enables isolating the network traffic from the internal
5GC NF communication, thus allowing for the setup of multiple UPs controlled by the same
CP NFs. Key functionalities of the CP NF's include UP packet processing management,
policy configuration and enforcement, User Equipment (UE) charging, and general traffic
monitoring, while the UP NF's forward user traffic (5, 6).

1.1 MOTIVATION

Experimenting with real equipment remains a costly endeavor. Therefore, specially
when considering 5G and Beyond 5G (B5G) networks, simulated environments become
critical for increasing efficiency and reducing the costs of experimentation and planning (7),

even though these may have some limitations relative to real-world scenarios.

One approach to enhance the characteristics of 5G cellular networks is to leverage
their NFs’ flexibility and perform reconfigurations during run time. These reconfigurations

may be automated and based on data collected within the network. According to the 37

21

Generation Partnership Program (3GPP) specifications (8), a NF that is responsible for
collecting data and providing insights is the Network Data Analytics Function (NWDAF).

As defined by 3GPP (9), the NWDAF can utilize Machine Learning (ML) mo-
dels on data to automate analytics information generation, including NF load analytics.
Furthermore, 3GPP specifies that the NWDAF may be employed in ML-assisted ope-
rations within the 5G System (5GS), which includes tasks such as Base Station (BS)
frequency (10) or slice — an end-to-end logical network including network, computing,
and storage resources — reconfiguration (11, 12), or even User Plane Function (UPF)
selection as in (13). Consequently, evaluating model performance is essential for achieving

accurate classifications in use cases focused on the correct grouping of UEs.

In this context, the 5G services can be separated in axes or vertical groups (14).
According to (15), there are 3 main ways of classifying them: 3 axes by International
Telecommunication Union (ITU), 5 axes by 3GPP and 14 axes by Next Generation
Mobile Networks Alliance (NGMN). Considering the concepts and Key Performance
Indicators (KPIs) presented by (15) and (16) on the 5G services, it is possible to deduce
that the classification of each service to a given axis depends on the context and a given

use case may fit in more than one group.

Thereby, the methodology that utilizes the network traffic to classify UEs in
the service classes, presented in Chapter 4, was designed based on ITU’s (16) 3-type
classification: Enhanced Mobile Broadband (eMBB), Massive Machine-Type Communica-
tions (mMTC), and Ultra Reliable and Low Latency Communications (URLLC) defined
in Subsection 2.1.5.1. The classifier is intended to be integrated into an NWDAF instance,
enabling the NWDAF to share classification results with any consumer NF's, as detailed
in Subsection 2.1.3.3.

1.2 RESEARCH GOAL

The main research problem is device classification based on observed traffic. Given
the motivation presented in Subsection 1.1, the research goal is defined as follows: to
create and use an open-source simulated 5G network environment to experiment with and
assess the performance of employing ML models and data analysis techniques to classify
UEs in the 5G service axes based on their network traffic, providing useful information
for 5G Mobile Network Operators (MNOs) to support network operation decisions that

improve reliability and efficiency.
1.3 MAIN CONTRIBUTIONS
The main scientific and technical contributions of this work are summarized below:

o Implementation and evaluation of ensemble learning methods for UE classification

22

Based on the findings from the literature review in Section 3.2, there is a notable
absence of studies investigating the application of ensemble learning models for
UE classification. Therefore, as outlined in Section 3.3, in addition to training ML
models, the training of models based on ensemble methods was also conducted, with

the results evaluated in Section 5.2.

o Generation of a 5G simulated traffic capture dataset

Considering the absence of real world 5G publicly available datasets and some
similarities shared by cellular and Wi-Fi (17), quite frequently, the work found in the
literature utilizes Wi-Fi datasets for experimentation — e.g., as in (18, 19, 20, 21) —
while another alternative approach involves the use of simulated data — e.g., (22, 23).
This lack of 5G datasets is further supported by the literature mapping results
discussed in Section 3.3 and the dataset survey described in Section 4.3. Therefore,
the generation of new HG traffic capture datasets is required, especially in the packet
capture (PCAP) format. The created traffic dataset introduced in Subsection 5.1.1
was released in PCAP format, which is designed to store network traces (24, 25) and
provides detailed packet information (e.g., flags and payloads), allowing for in-depth

analysis, feature extraction, and traffic replay.

1.4 RESEARCH OUTPUT

Throughout the research conducted for this master’s thesis, several papers were
published at national and international conferences, a mini course was developed, and

contributions to Free/Libre and Open Source Software (FLOSS) were made.

The short paper titled “Estudo e Avaliacao de Métodos de Autenticacdo EAP na
Infraestrutura de Redes de Telecomunicagao 5G” (26) was presented at “XIIT Workshop
de Gestao de Identidades Digitais (WGID)” and published in September 2023 in the
conference proceedings of “XXIII Simpésio Brasileiro em Seguranca da Informacao e de
Sistemas Computacionais”. This paper includes a survey conducted to identify open-
source tools that facilitate the simulation of 5G networks, leading to valuable experience
with freebGC (27) and UERANSIM (28) — projects that would later contribute to the
development of the free5GC Auto Deploy (FAD) tool (29) presented in Section 4.4 and

integrate the environment presented in Section 4.2.

The paper titled “Anélise da Funcionalidade da NWDAF no Core 5G Sobre um
Conjunto de Dados” (30) was presented in the main track of “XLII Simpdsio Brasileiro de
Redes de Computadores e Sistemas Distribuidos (SBRC)” and published in May 2024 which
holds a Qualis A4 rating. The findings from this work laid the foundation for the design
and development of the ML pipeline detailed in Section 4.1, paving the way for practical

applications of models, while representing the initial outcomes of this master’s thesis.

23

A second paper that contributes to the same line of inquiry titled “A NWDAF
Study Employing Machine Learning Models on a Simulated 5G Network Dataset” (31) was
presented at “IV International Workshop on Distributed Intelligent Systems (DistInSys)”
and published in June 2024 in the conference proceedings of “XXIX IEEE Symposium on
Computers and Communications (ISCC)”. This paper refined the techniques employed
in the previous work and highlighted the limitations of the previously created dataset,
particularly regarding the quantity of packets. Notably, the experience gained was
invaluable in implementing the NWDAF-based functionality detailed in Section 4.5 and

the traffic generator and dataset outlined in Subsection 5.1.1.

Another short paper titled “Eduroam e 5G: autenticagao integrada via redes moveis
e Wi-Fi no core 5G” (32) was presented at “XIV Workshop de Gestao de Identidades
Digitais (WGID)” and published in September 2024 in the conference proceedings of
“XXIV Simposio Brasileiro em Seguranca da Informacao e de Sistemas Computacionais”.
This paper built upon the previous work and was significant for refining the 5G simulation
environment, with the implementation of the FAD tool emerging as one of its outcomes,

achieving a production-ready development status.

Additionally, the knowledge acquired and the details of the simulation environ-
ment, including the 5G network concepts underlying the FAD tool and its application in
creating a testbed, were transformed into a mini course titled “Introdugdo a ambientes de
experimentagao 5G” (33), which was delivered during the “XXVI Semana da Computagao
do Departamento de Ciéncia da Computacdao da UFJF” in November 2024.

Part of the outputs of this work are related to supporting open science (34) in the
computer networks field. Consequently, as part of the implementation efforts described
in Sections 4.4 and 4.5, several code patches (35) and documentation enhancements (36)
were submitted to the official repositories of freebGC and UERANSIM tools, being
available to the community. Alongside the implemented patches, it was possible to actively
participate in issue (37) and forum discussions (38) contributing to the improvement of
the aforementioned tools. FAD, a tool to automate the deployment of the simulation
environment presented in Section 4.2, was released under a FLOSS compatible license,
being publicly available on GitHub (29).

Furthermore, the artifacts generated during the research are publicly available.
The literature review records and the raw results of the conducted experiments (including
model feature importance and model performance results — of the training, inference, and
cross validation) and directory structure listing examples were published on Zenodo (39).
The dataset utilized on the experimental phase was also published on Zenodo (40). The
source code of the traffic generator and the NWDAF-based functionality implemented,

including their documentation were also made available on GitHub (41).

24

After accumulating experience from the execution of the aforementioned works,
this master’s thesis refines the simulation environment and pipeline while contributing to

advancements in the state of the art in UE classification, as highlighted in Section 1.3.

1.5 OUTLINE

The remainder of this master’s thesis is organized into 5 chapters as follows: The
theoretical background, including main concepts and specifications involved, is presented in
Chapter 2. The literature review carried out during the investigation and the related work
are outlined in Chapter 3. Chapter 4 details the design and implementation methodology
of the 5G simulation environment and pipeline. Then, Chapter 5 contains analysis of the
created dataset and the results of the experimental phase. Finally, Chapter 6 holds the

conclusions and future work.

25

2 BACKGROUND

This chapter comprises the main concepts related to the research subject, including
the roles of telecommunication standards organizations such as 3GPP and ITU, the
evolving architectures of pre-5G and next-generation networks also including 5GC and
related elements like the 5GS, and NF's such as UPF, ADRF, and NWDAF, as well as the
GTP protocol and the 5G service axes. These concepts detailed in Section 2.1 are useful for
the literature review and proposal in the subsequent Chapters 3 and 4. Additionally, the
chapter presents in Section 2.2 the model life cycle terminology utilized and the evaluation
of ML models in terms of performance metrics, thereby providing the foundation for the

detailed analyses presented in Chapter 5.

2.1 MOBILE NETWORKS

The context of mobile networks encompasses various concepts. To clarify the essen-
tial definitions pertinent to this work, this section delineates the role of telecommunication
standards organizations in 5G in Subsection 2.1.1, provides an overview of the previous
generations in Subsection 2.1.2, discusses the 5G era in Subsection 2.1.3, and examines

the upcoming B5G networks in Subsection 2.1.4.

2.1.1 Standards Organizations

The 3" Generation Partnership Program (3GPP) is a collaborative project between
organizations that develop standards for cellular telecommunications. These “Organi-
zational Partners” work together to create specifications — in the form of Technical
Reports (TRs) and Technical Specifications (TSs) — that define 3GPP technologies en-
compassing radio access, core network, and service capabilities (42). A Release, the
resulting set of specifications, provides a complete system description for mobile telecom-
munications. Currently, the Technical Specification Groups (TSGs) are: Radio Access
Networks (RAN), Services & Systems Aspects (SA) and Core Network & Terminals (CT).
Each TSG contains working groups related to its main subject and the TSG is responsible

for coordinating and monitoring its working groups.

The 3GPP technologies are continually advancing through successive generations
of commercial cellular and mobile systems, with fourth generation of cellular network (4G)
and 5G marking significant milestones in this evolution. As the backbone for modern
mobile systems beyond third generation of cellular network (3G), the 3GPP has emerged
as the central hub for driving innovation and standardization in cellular technology, with

its 4G and 5G work serving as a catalyst for widespread adoption.

Another important organization in the context of mobile networks is the I'TU. The

International Telecommunication Union (ITU) is a United Nations (UN) specialized agency

26

that promotes the development and harmonization of telecommunications technologies
worldwide. With 194 member states, over 1,000 companies, universities, and international
organizations as members, I'TU facilitates global connectivity in communication networks
by allocating spectrum, developing technical standards, and improving access to digital te-
chnologies in underserved communities. Headquartered in Geneva, Switzerland, [TU works
to bring digital connectivity to everyone, providing a trusted platform for international
agreements, knowledge sharing, capacity building, and collaboration with members and

partners to promote universal connectivity and sustainable digital transformation (43).

While 3GPP focuses on developing technical specifications and standards for cellular
networks — e.g., 3G, 4G, 5G, etc. — I'TU comprises a broader range of telecommunication
networks — e.g., broadband Internet, optical communications, etc. — and its standards
include radio communication, satellite systems, network protocols, and multimedia coding.
Notably, the two bodies quite often collaborate in the standardization processes (44): ITU
sets the requirements and performance indicators for mobile networks — e.g., IMT-2020 (45)
for 5G — while 3GPP develops the technical specifications to meet these requirements.

Then, ITU reviews the respective 3GPP specifications to ensure global compatibility.

2.1.2 Previous Generations

Each generation of mobile network, which is surpassed at every decade or so (46),
introduced new requirements but also new capabilities to the cellular communications.

Table 1 outlines the main characteristics and example use cases of the different generations.

The first generation of mobile telecommunications standards (1G) was introduced
in the 1980s. Characterized by analog audio transmissions, this era differed significantly

from subsequent generations, which were fully digital.

During the 1G era, regional standards were developed and implemented in various
countries, rather than a single global system. Notable examples include the Nordic Mobile
Telephone (NMT) system and the Advanced Mobile Phone System (AMPS). The lack
of a unified global standard resulted in a fragmented landscape, with different countries
and regions utilizing distinct technologies for mobile communication. The limitations

of analog systems led to their eventual replacement by the second generation of cellular
network (2G) networks (47).

The 2G technology was launched globally in the early 1990s. A key difference
between 2G and previous systems, retrospectively designated as 1G, is that radio signals

are digital rather than analog for communication between mobile devices and BSs.

In addition to voice telephony, 2G enabled data services. The Global System for
Mobile Communications (GSM) standard became the first globally adopted framework
for mobile communications. The transition to digital technology enabled encryption

for voice calls and data transmission, improving security while increasing capacity and

27

Table 1 — Summary of the characteristics of mobile networks generations

. Reference Main Characteristics
Generation
Decade and Use Cases

Audio Signal
Wireless Phone Calls

Voice Calls
2G 1990 Multimedia Messaging Service (MMS)
Pictures Basic Texting

Video
3G 2000 Live Television (TV)
Fast Internet Browsing

1G 1980

100 MBps speeds
VoIP Calls
High-definition (HD) Streaming
Video Chat

100 x 4G speeds
4 GBps download speeds
Internet of Things (IoT)
Smart Cities

4G 2010

5G 2020

Autonomous Cars
Remote Robotics

B5G 2030+ Artificial Intelligence (Al) infus?d applications
TeraHertz frequencies

Source: Created by the author (2025). Based on (46).

efficiency. 2G networks were primarily designed to support voice calls and Short Message
Service (SMS). Later advancements, such as General Packet Radio Service (GPRS),
enabled packet data services including MMS and limited internet access. 2G was succeeded
by 3G technology, which provided higher data transfer rates and expanded mobile internet
capabilities (48).

The 3G technology was rolled out in the early 2000s. The Universal Mobile
Telecommunications System (UMTS) standard, created by the 3GPP, succeeded GSM.

When compared to the previous generation, 3G networks implemented significantly
higher-speed mobile internet and enhanced multimedia capabilities, as well as improved
voice quality. They provided moderate internet speeds suitable for general web browsing
and multimedia content, such as video streaming. Later 3G releases, such as High Speed
Packet Access (HSPA) and HSPA+, introduced improvements that enabled 3G networks
to offer mobile broadband access with speeds up to 42 Mbit/s. The 3G was succeeded

28

by the 4G technology, which provided even higher data transfer rates and introduced

advancements in network performance (49).

The fourth generation of cellular network (4G) was first adopted in the late 2000s
and early 2010s. Compared to its predecessors, 4G has been designed to support all-Internet
Protocol (IP) communications and broadband services, eliminating circuit switching in

voice telephony and other 3G limitations (46).

The networks from 4G are not backward compatible with 3G due to significant
differences in network architecture and technological advancements. It has enabled the
adoption of Voice over Internet Protocol (VoIP) calls, video chat and real-time data
exchange for the 10T, facilitating the growth of connected devices and smart systems.
This generation has also expanded the availability of mobile TV and supports high-
speeds up to 100 Mbit/s, and some low-latency applications that require Quality of
Service (QoS) (46, 50). The 5G technology succeeded 4G, offering faster speeds, lower

latency, and enhanced support for advanced use cases across multiple industries.

2.1.3 Fifth Generation of Cellular Network

The fifth generation of cellular network (5G) technology, first introduced in spe-
cifications in late 2017 (51), has been commercially deployed by MNOs worldwide since
2019 (52). There is one global unified standard for 5G: 5G New Radio (NR), which
has been developed by 3GPP based on specifications defined by the ITU under the
IMT-2020 (45) requirements. Compared to its predecessor, the 5G network significantly
outperforms, offering substantially higher download speeds (up to 4 Gbit/s) and lower
latency (e.g., achieving 1 ms Round-Trip Time (RTT) from the UE to the 5G BS, a

notable improvement over 4G’s 20 ms latency) (46).

The increased bandwidth of 5G allows it to connect more devices simultaneously
and improve the quality of cellular data services in crowded areas. This makes 5G well-
suited for applications requiring real-time data exchange (such as Extended Reality (XR),
autonomous vehicles, and remote surgery) (52) or big data applications (such as smart

city environments and Machine to Machine (M2M) IoT communications) (46).

This generation has the potential of handling millions of IoT connected devices
with stringent performance requirements and also extend beyond terrestrial infrastructure
to include satellites and high-altitude platforms for global coverage through the 5G Non-
Terrestrial Networks (NTNs). However, 5G deployment faces challenges such as significant
infrastructure investment, spectrum allocation, and concerns about energy efficiency and

environmental impact associated with the use of higher frequency bands (52).

From a computer networks perspective, the advent of 5G marked a significant
departure from traditional cellular network architectures, pioneering the adoption of a

service-oriented paradigm in its SBA, which diverged from the reference-based architecture

29

employed by 4G (52). The SBA is composed of multiple modular components (NF's) that
implement and provide services as specified by 3GPP, enabling them to be consumed
and integrated with other NFs through standardized SBIs, thereby facilitating greater
flexibility, scalability, and interoperability (14).

Figure 1 — 5GS overview

) Access and Mobility
Radio Access Network Function (AMF) /

User Equipment (UE) (NG-RAN) User Plane Function (UPF)

_____ | =1
= NR-Uu /é NG !

Mobile Station (MS) +
Universal Subscriber gNodeB 5G Core
Identity Module (USIM) (gNB) (5GC)

Source: Created by the author (2025). Adapted from (14).

As illustrated in Figure 1, a 5G System (5GS) is a 3GPP-defined architecture that
encompasses the 5G Access Network (AN), 5GC, and UE (53). It retains compatibility
with most functionalities of 4G, including mobility between a 5GC and a 4G Evolved
Packet Core (EPC), ensuring minimal impact on the user experience. The system employs
familiar elements from previous generations with new names — UE, the NG-RAN featuring
the gNodeB (gNB) as its primary node, and a 5GC — to deliver enhanced performance
and flexibility compared to 4G.

2.1.8.1 5G Service Axes

As 5G improves on the 4G services over several aspects (14), its services can be
separated in axes or vertical groups. Considering the ITU’s 3-type classification (16) for
International Mobile Telecommunications (IMT), Figure 2 illustrates the axes and some

usage scenarios.

The Enhanced Mobile Broadband (eMBB) axis is focused on providing high-capacity
mobile broadband services for human-centric multimedia access. It encompasses a range
of scenarios — from wide-area coverage with medium to high mobility and improved data
rates compared to current capabilities, to hotspot situations that prioritize very high traffic

capacity and elevated user data rates at the expense of mobility.

Then, Ultra Reliable and Low Latency Communications (URLLC) targets applica-
tions with stringent performance requirements. It is defined by its capabilities to deliver
very high throughput, extremely low latency, and high availability, making it suitable
for critical applications such as remote medical surgery, industrial control, smart grid

automation, and transportation safety.

Finally, Massive Machine-Type Communications (mMTC) refers to a usage scenario

involving a very large number of connected devices that typically transmit small volumes

30

Figure 2 — 5G service axes and usage scenarios of IMT for 2020 and beyond

Enhanced Mobile
Broadband (eMBB)

Gigabytes per second
(or Big Data)

3D video, UHD screens
Work and play in the cloud
Augmented Reality (AR)
Industry Automation

Smart home/building
Voice

Future IMT

Smart city Mission critical application
Self driving car
Massive Machine Type Ultra-reliable and Low Latency
Communications (mMTC) Communications (URLLC)

Source: Created by the author (2025). Based on (16).

of non-delay-sensitive data. It emphasizes low device cost and extended battery life to

support the proliferation of connected assets.

These axis definitions provided the foundation for selecting the applications utilized
in the environment described in Section 4.2, as well as the class labels employed in the

model performance evaluation presented in Subsection 5.2.3.

2.1.3.2 5G Core

The 5G Core (5GC) is a crucial component of 5G networks, comprising multiple
NFs that can be divided into two SDN planes, forming the CUPS: the UP and the CP.
This separation enables efficiency because, for instance, the network traffic from the UE
can be routed directly from the Radio Access Network (RAN) to the UPF (54). Figure 3
provides an overview of the 5GC architecture, according to the CUPS paradigm. The NFs
within the blue and green rectangles comprise the 5GC. It is designed using a SBA, wherein
network functions provide modular and reusable services through standardized interfaces

(depicted in blue), thereby enhancing agility and scalability in service provisioning (14).

From a logical perspective, the 5GC interfaces with the RAN via the N2 interface,
with the UE via the N1 interface, and with the UPF via the N4 interface (53). Further
details regarding the UPF interfaces will be provided in Subsection 2.1.3.3.

In a production environment, the RAN refers to a network infrastructure component
consisting of radio BSs equipped with large antennas (55). Its primary function is to
establish physical and logical connections between UEs and the 5GC (14). Conceptually
(53), it may also be defied as a generic 5G AN. In contrast, the Radio Access Technology

31

Figure 3 — 5GS CUPS overview

Control Plane

NSSF NRF UubMm PCF NEF
Service- Nnssf Nnrf Nudm Npcf Nnef
Based
Interface Nausf Namf Nsmf Naf Nudr
AUSF AMF SMF AF UDR

Reference-Point
Interface N1 N2

N6
UE RAN

DN

Source: CHAI; LIN (54) (2021).

(RAT) pertains specifically to the physical layer communication protocols and standards
employed in the RAN, which, in the context of 5G, corresponds to the NR standard.

A User Equipment (UE) can be defined as any equipment that allows a user to
access network services. In the context of 5G (56), the interface between the UE and the
network is the radio interface. Following the ITU definition in (57), a UE is a equipment
that provides the functions necessary for the operation of the access protocols by the user.
Examples of 5G UEs include smartphones, laptops, and any device capable of using a 5G

wireless network interface to connect to a NR/gNB BS.

The General Packet Radio Service Tunneling Protocol (GTP) is an indispensable
protocol of the 5G network architecture, enabling efficient communication between UE,
gNB, and other NFs. As a tunneling protocol, GTP facilitates the delivery of GPRS
packets within a mobile network, allowing for transmission over IP networks via User
Datagram Protocol (UDP) as path protocol (58, 59).

The GTP protocol consists of GTP Control Plane (GTP-C), GTP User Plane
(GTP-U), and GTP charging (GTP’) components, each responsible for specific functions.
The tunneling mechanism involves encapsulation of GPRS packets within a custom header
structure, enabling efficient transmission. Key parameters in the GTP-U header include
message type, packet length, sequence number, Tunnel Endpoint Identifier (TEID), and
next extension header type. In 5G networks, GTP-U tunnels are employed to transmit
user data between the gNB and the UPF (59).

The 3GPP specification (53) defines the role of User Plane Function (UPF) in

32

implementing the UP of the CUPS scheme, where it acts as a router for data traffic from
and to the UE. The arrangement of the N3, N4, and N6 interfaces, as depicted in Figure 3,
facilitates direct connectivity between UE data and the Data Network (DN) (5, 6).

In more detail, the UPF encompasses a wide range of functionalities, including intra-
and inter-RAT mobility anchoring, external Protocol Data Unit (PDU) session points of
interconnect to DNs, packet routing and forwarding, inspection, policy rule enforcement,
lawful intercept, traffic usage reporting, QoS handling, uplink traffic verification, transport-
level packet marking, downlink buffering and notification triggering, end marker sending
and forwarding, and response to Address Resolution Protocol (ARP) and IPv6 Neighbor

Solicitation requests.

These functionalities are designed to ensure efficient and secure management of UP
data traffic, while also supporting the requirements of various network slices and service
scenarios. Notably, not all functionalities are necessarily supported in a single instance of
the UPF, because the N9 interface enables the deployment of multiple customized UPF
instances within the same 5GC domain (14), allowing for flexibility and customization in

accordance with specific network slice requirements.

Apart from the UPF, the specified (53) NFs for the 5GC include the Session
Management Function (SMF), which oversees UPF selection, session management — e.g.,
between AN and UPF — IP address allocation, traffic steering, policy enforcement, and
QoS; the Access and Mobility Function (AMF), responsible for mobility management,
access authentication and authorization, security anchoring, and context management; the
Policy Control Function (PCF), which establishes the policy framework governing network
behavior and the CP NFs; the Authentication Server Function (AUSF) which provides
authentication and authorization for UEs via the AMF and informs the authentication
status to the Unified Data Management (UDM); the Network Repository Function (NRF),
which facilitates the discovery of network function instances for inter-function communi-
cation; the Network Exposure Function (NEF), which supports third party independent
functionalities — e.g., by exposing network function capabilities and events to Application
Functions (AFs); the Network Slice Selection Function (NSSF), which selects the appro-
priate network slice instances and the optimal AMF for the UE; and the Unified Data
Repository (UDR), which serves as the database for UE-related information — e.g., subs-
cription data — complemented by the UDM, which supports the subscription management

— e.g., the generation of authentication credentials — and acts as a front-end for the UDR.

2.1.3.3 Data Storage and Analytics

The Analytics Data Repository Function (ADRF) was introduced on Release 17 (60)
and is specifically designed to provide a centralized repository for data or analytics. The

ADREF enables consumer NF's to interact with its repository through functions that include

33

storing, retrieving, and removing data. These capabilities enable consumer NF's to leverage
the ADRF as a trusted repository for their data. For instance, the NWDAF is expected
to support the aforementioned key functionalities which means the ADRF can be used to
support NWDAF operations, in particular while analyzing network performance, traffic
patterns, and some relevant metrics, ultimately facilitating data-driven decision-making

and optimized network operations.

The Network Data Analytics Function (NWDAF) is a component of 5G networks
that collects, processes, and analyzes data from various sources to extract insights and
trends, enabling informed decision-making and optimized network performance. As
specified by 3GPP (61), it may gather data from UE, BS, or any other 5GC NF's; storing,
processing, and analyzing it to identify patterns, anomalies, and trends. The NWDAF
provides useful information on aspects such as NF load, network performance, observed
service experience (e.g., Quality of Experience (QoE)), and UE-related analytics. It also
typically integrates with other NF's like the UPF and the ADRF in a way that its analytics
provide intelligence that can be leveraged to optimize network performance, enhance

security, and increase operational efficiency.

The 3GPP Release 17 (9) specified that this NF could be functionally split in two
other logical functions: Analytics Logical Function (AnLF) and Model Training Logical
Function (MTLF) (62).

The AnLF is a component within the NWDAF tasked with processing and analyzing
network data to yield insights. Its primary responsibilities encompass inference on collected
data, statistical analysis of past events, and predictive analytics for future network behavior.
The AnLF serves as the primary analytics engine, providing a gateway for analytics
services through its service interfaces thereby facilitating the exchange of analytics and
insights between various NFs and stakeholders. Its capabilities may be extend to the
implementation with both statistical and ML models provided by the MTLF.

The MTLF is the other logical component of the NWDAF, which is specifically
designed to train ML models utilizing collected network data. In essence, MTLF’s primary
functions revolve around the development and management of ML models. It serves as a
enabler for other components within the 5GS by providing trained ML models to the AnLF
or other NFs. This enables the seamless integration of ML-based analytics with other
NFs of the 5GC (or even other NWDAF instances), thereby enhancing overall network
performance measurement and decision-making capabilities with the timely update and

provisioning of trained models.

Notably, the specification (63) allows analytics and collected data to be stored
and retrieved from ADRF. As of Release 18 (61), trained models can also be stored on
and retrieved from ADRF. Furthermore, UPF can serve as a data source for obtaining

or calculating various metrics, including packet delay, bit rate, number of transmitted

34

packets, and packet retransmission rate. As discussed in Subsection 5.1.1, the potential

to utilize the UPF as a data source significantly influenced the decision to collect network

traffic in this NF.

Figure 4 — Functional overview of the NWDAF

ADRF OR DCCF
T T
Analytical
Producer NF 1 data feed Consumer NF 1
- @@ - @@
NWDAF
ANLF Analytics
Producer NF 2 Data response > Consumer NF 2
transfer YT Analytics
request
00 00
Analytics Analytics
request regponse
Producer NF N Consumer NF N
OAM
5GC /5GS 5GC /5GS

Source: Created by the author (2025). Based on (64) and (65).

Figure 4 provides an overview of how a NWDAF, integrating both AnLF and MTLF
logical functions, interacts with other NFs. As specified in (61), a NWDAF integrated into
the 5GC SBI bus facilitates CP interactions as illustrated in Figure 4. Producer NF's, such
as the UPF, transfer data to the NWDAF, which can store and retrieve analytical data
from the ADRF (if implemented), thereby establishing an analytical data feed. Consumer
NFs, including the AMF and PCF, subscribe to receive information through analytics
requests, which are answered with analytics responses that can support slice selection (11).
Additionally, the Operations, Administration, and Maintenance (OAM) components,
designed to enhance the management and monitoring of 5G transport networks, may
utilize information from NWDAF to perform orchestration tasks, including BS frequency

reconfiguration (10).

2.1.4 Beyond 5G

Future cellular networks are classified as Beyond 5G (B5G), representing an evo-
lution built upon the foundation of 4G technologies (10). In addition, the definition of
B5G encompasses both the evolution of 5G (such as 5G Advanced) and the emerging
sixth generation of cellular network (6G) networks, which extend established 4G inno-
vations while integrating new technologies to address the evolving demands of wireless

communications (66, 67).

35

B5G/6G is expected to integrate Al at its core, enabling advanced air interfaces
and network functionalities such as optimized symbol detection, channel estimation,
and dynamic resource management (10). These networks will leverage on-demand and
distributed machine learning for automated, intelligent operation, ensuring real-time

responses with significantly reduced latency.

Furthermore, these systems will combine sensing and communication to enhance
overall performance, reduce costs, and lower power consumption. Enhanced edge com-
puting, efficient spectrum utilization, and novel security measures will support a diverse
range of applications and services, positioning B5G/6G as an accumulative evolution over
current technologies (68, 66, 67).

Although academia and standardization bodies such as 3GPP and ITU are already
working on research developments and standards for B5G networks, 6G is notably still in

its early stages (69).

2.2 MACHINE LEARNING

Machine Learning (ML) is a branch of the Al research field focused on the deve-
lopment and analysis of statistical algorithms that enable computer systems to learn from
data and generalize to previously unseen data, thereby performing tasks without requiring
explicit instructions (70). As explained in Subsection 2.1.3.3, ML models may be used by
5G networks to perform analytics-related tasks. Therefore, it is important to define the

pertinent terminology (Subsection 2.2.1) and evaluation metrics (Subsection 2.2.2).

2.2.1 Model Life Cycle Terminology

Machine Learning models undergo a structured life cycle that encompasses four
main stages: experimentation, training, testing, and inference. It is essential to delineate

these stages explicitly to ensure clarity and precision in the development and application
of ML models.

The experimentation phase involves testing different algorithms and choosing which
model architectures and training methods will be used within the life cycle. For instance,
this could involve testing various models like Linear Regression (LR) or Decision Tree (DT)

and exploring different hyperparameters to increase robustness (71).

Then, the supervised learning models training phase involves providing the selected
ML algorithms with labeled or categorized data so it can iteratively process large, feature-
rich datasets and recognize its patterns. Notably, the quality of the training dataset

significantly influences model’s performance (72).

It is crucial to evaluate an ML algorithm using a suitable dataset after training,

accessing its performance by exposing it to previously unseen test data. This evaluation

36

process, known as data testing, entails comparing the model’s output against actual results
(also referred to as ground truth) for each example within the test set, thereby assessing
the model’s accuracy and reliability (72). It is worth mentioning that the results from this

phase can be leveraged to improve model performance via hyperparameter optimization.

Following successful completion of the previous phases, models transition into the
inference phase, where they are deployed to perform tasks without human intervention (71),

such as classification tasks like object, image or packet classification.

2.2.2 Performance Metrics

In light of the potential variations in terminology and usage, which may lead to
differing performance metrics for evaluating a ML model, this section explicitly defines
each metric employed. The definitions displayed on Subsections 2.2.2.1 to 2.2.2./ are
based on (73) and (74). In classification problems, four key concepts are essential: True
Positive (TP), where a correct prediction is made for a sample that belongs to the positive
class; True Negative (TN), where a correct prediction is made for a sample that does not
belong to the positive class; False Positive (FP), where an incorrect prediction is made for
a sample that does not belong to the positive class; and False Negative (FN), where an

incorrect prediction is made for a sample that belongs to the positive class.

Consider the multivariate Bernoulli variable definition from (75) and that a given
n-th class C,, can be either positive/target (i.e., C,, = 1) or negative/background (i.e.,
C,, = 0). In multi-class classification problems, the target class is designated as the
positive class, while the remaining classes are collectively regarded as the negative class.
For example, let C'; be the positive class and Cy and C'5 the negative ones. Given a sample
that belongs to the positive class (e.g., C; = 1) input to the classifier, if the output vector
is C; = (1,0,0) then the result is correct and it will be considered as a TP, otherwise (e.g.,
C; =(0,1,0) or C; = (0,0,1)) the result is not correct and it will be considered as a FN.

2.2.2.1 Accuracy

Let ¢; be the predicted value of the i-th sample and y; the corresponding true value,
then the fraction of correct predictions over ngmpies is defined in Equation 2.1, where 1(z)

is called the indicator function.

1 nsamples_l

accuracy (y,) = 1(3: = vi) (2.1)

nsamples i=0

2.2.2.2 Precision

Intuitively, the precision of a classifier is the ratio of TPs to all positive samples,

i.e., it measures how well the classifier avoids labeling positive samples that are actually

37

negative. The precision can be calculated as defined in Equation 2.2.

TP
(TP + FP)

precision =

2.2.2.3 Recall

Recall, intuitively, refers to the proportion of actual positive samples that are
correctly identified by the classifier. In other words, it measures the classifier’s ability to
detect and retrieve all relevant instances of the positive class from the dataset. The recall
reaches its optimal value at 1, while its lowest score of 0 signifies the worst case scenario.

This value can be calculated using the formula defined in Equation 2.3.

TP
l = —————— 2.
reca TP+ FN) (2.3)

2.2.2.4 Fl-score

The F-measure can be interpreted as a weighted harmonic mean of the precision
and recall. A Fj3 measure reaches its best value at 1 and its worst score at 0. With 5 =1,
Fjs and [} are equivalent, and the recall and the precision are equally important as shown

on Equation 2.4.

B 2xTP _ 9 precision X recall
 2xTP+FP+FN precision + recall

Fl (2.4)

2.3 SUMMARY

This chapter provides a clear overview of the foundational concepts essential to
the research subject. It has defined the roles of key telecommunication organizations and
discussed the architectural evolution across different generations of mobile networks —
with an in-depth coverage of the 5G architecture. Furthermore, the chapter outlined the
life cycle terminology and the performance metrics applied for evaluating ML models.
This comprehensive background is important for the remainder of the master’s thesis,
providing the necessary context for the literature review in Chapter 3, the methodology

presented in Chapter 4, and the analyses and discussions that will follow in Chapter 5.

38
3 LITERATURE REVIEW

This chapter provides an overview of the literature review conducted before the
experimental phase of the research. Section 3.1 defines the literature review and delineates
the methodology employed during the review process. The findings of the literature review
were utilized in selecting the relevant works discussed in Section 3.2. The main points of
the reviewed work are recapitulated in Section 3.3, while Section 3.4 offers a brief outline

of the chapter’s contents.

3.1 SYSTEMATIC LITERATURE REVIEW

A Systematic Literature Review (SLR) is “a systematic way of collecting, critically
evaluating, integrating, and presenting findings from across multiple research studies on a
research question or topic of interest.” (78). Considering this definition, a literature review
concerning the research topic was conducted. Figure 5 illustrates the main activities invol-
ved in the literature review, which will be elaborated upon in the subsequent paragraphs.
Notably, it was not a complete secondary study or survey; rather, it was designed as a
literature mapping aimed at investigating the relevant literature concerning this research
topic. This approach serves to establish a theoretical foundation for this master’s thesis
and is structured to be reproducible, thereby facilitating its utility for other researchers

interested in conducting SLRs.

According to (79), the selection of the databases is essential for the review process
because the selection of a limited number of sources limits the literature explored. Following
the three stages — Input, Processing and Output — of a literature review by (79) and the
SLR methodology described on (80), the first two steps (present in the area I of Figure 5)

consisted of identifying source databases and determining the query to apply.

For the purposes of this study, the selected databases comprise Scopus, Web of
Science (WoS), Crossref, Google Scholar, Semantic Scholar, Springer Link, Science Direct
and IEEE Xplore. The first two databases are recognized as reliable sources (80), while
the next three are accessible via the Publish or Perish (PoP) software (81). The remaining
databases were accessed through an institutional subscription. To enhance the breadth of
literature reviewed, the search query utilized the keyword “NWDAF” and applied filters to
exclude citations and patents where applicable. This query yielded 1,180 results across the
selected databases, which were exported from the databases both manually or through the
built-in export function of PoP (first two steps of the area II of Figure 5). The distribution
of results from each database is illustrated in Figure 6. It is possible to observe that
more than 71% of the records came from Google Scholar, while the other databases share
between 5.5 and 1.4% of the records.

39

Figure 5 — Literature review main steps

(I, . P o)

Database Selection » Query Selection » Database Query » Save Results Locally
\ J/ N\ J N\ J . J
(I11), L N . L —

Update missing
— metadata <
(e.g., abstract)

Reject duplicates

. Convert to BIB format
automatically

A

Import to Parsifal

\ J \ J \ J
(= L N (A (A (A (IV)
Reject all with title or .
—>»| abstract in another > Rejec:uﬂllpt:s;;re ot > ACCESL;%";\US » Reject all surveys
Ianguage J \ J \ J . J
e A (; N e A e N\
. . Update preprints that .
_)R_eject all with content »| have been peer > Reject all not frgm > Reject QUALIS A4 |—
in another language reviewed QUALIS superior
1\ J N\ J N J (. J
A . B
Reject all that could Accept CiteScore 1st
g not be accessed [g Quartile —
\ y, N\ Y, ¢
s N
—> Reject all fmf” other || Reject all unclassified
research fields
N J |
. 4 \ p 7 L (V)
L?OK e the_ wor"d Export from Parsifal 2 Export from Parsifal 1
unsupervised
\ J \ J
v v

Look for the word | Reject based on title
"classification" I and abstract 2

Look for the word Reject based on title
"testbed" and abstract 1

Source: Created by the author (2025).

The final step of the area II of Figure 5 was to convert the results to the widely
used BibTeX (82) reference management format which is compatible with Parsifal (83), an
online tool that was designed to help managing the considerable amount of data created

during a SLR work more easily.

As represented in the area III of Figure 5, after loading the results to Parsifal, the
first action taken was to use its built-in function to remove all the duplicate entries, which
resulted in 834 entries left. Parsifal contains multiple metadata fields: title, abstract, year,
author, keywords, author keywords, BibTex key, journal, document type, pages, volume,
Digital Object Identifier (DOI), Uniform Resource Locator (URL), affiliation, publisher,
International Standard Serial Number (ISSN), language and note. After removing the
duplicates, all remaining entries were manually updated to add missing metadata (specially
the abstract). While updating the ISSN, for the publications that had multiple entries the
Electronic/Online ISSN had precedence over Print ISSN. After the metadata update, 10

new duplicate entries were removed, resulting in 824 entries left. One interesting finding

40

was that the majority of entries that required metadata update came from Springer. This

possibly happened because of an extraction and/or format conversion issue.
Figure 6 — Extracted records per database

Number of extracted records per database

17
Crossref (1.4%)
) 31
Web of Science (2.6%)
; ; 44
g Science Direct (3.7%)
e IEEE Xplore =
° P (4.7%)
£ 59
§ Springer Link (5.0%)
©
o) 63
Scopus (5.3%)
. 65
Semantic Scholar (5.5%)
Google Scholar

Q N ,\'00 ,\'C)Q ,LQQ ,Lc)() ,500 '56)0 &QQ b‘c)Q 600 6(.)0 600 1'050 ,‘00 ,‘c)Q %QQ %60
Number of records

Source: Created by the author (2025).

The next step (shown in area IV) was to analyze the entries and reject those:
with title or abstract in a language other than English or Portuguese; with content in a
language other than English or Portuguese; that could not be accessed — e.g., published in
databases not included in any subscription — and that belong to research fields other than
Computer Science. This resulted, respectively, in 43, 3, 15, and 5 entries being rejected
leaving 758 left.

Other steps performed were to update preprint records that have been already
peer-reviewed and published to reflect these changes and to reject all entries that are not
full peer-reviewed papers. This means rejecting books, book chapters, posters, citations,
newsletters, technical reports, technical specifications, thesis, dissertations, short papers

and preprints. These steps removed 222 entries.

The next steps included accepting some entries, which became candidates for
further reading. Two evaluation systems were used: Qualis and CiteScore. Qualis (84) is
the official scientific journal classification system maintained by CAPES (Coordenagao de
Aperfeicoamento de Pessoal de Nivel Superior), a Brazilian federal government agency.
Qualis ranks journals, proceedings, and annals according to a hierarchical strata, with
A1 being the highest category (ranked from A1l to C). CiteScore (85) is another scientific
evaluation system by Scopus/Elsevier which is based on impact factor metrics of journals

and proceedings.

The entries that belong to a Qualis superior strata (that ranges from Al to A4) or

CiteScore 1st quartile were included and those not from Qualis superior (B1, B2 and C)

41

were rejected. On this step, 327 entries were included (315 by Qualis and 12 by CiteScore)

and 38 were rejected.

Given the number of entries left — 327 — an extra exclusion step was performed. All
78 entries among the accepted ones containing a survey or review or proposal (theoretical
only) or opinion paper and those 13 that belong to Qualis A4 strata were rejected. On
this step (represented by the two blocks on the right side of area IV), Qualis had the least

precedence order when an entry matched more than one criteria.

At this point, 236 papers remained for processing. The first approach was to
reject all entries with “unclassified” status, and proceed to the result export (illustrated
in Figure 5 on the right side of area V). The red-highlighted boxes in area V represent
the subjective steps that rejected more entries based on the manual analysis of title and

abstract. Using the keyword “testbed” it was possible to find 14 records.

Focusing on the classification techniques, a second run (represented on the left side
of area V in Figure 5) utilized the keyword “classification” to find 9 papers. Given the low
number of results on the second run, the keyword was also searched among the results
rejected for the reason of not being included on any inclusion, then 4 extra papers could
be found. Another paper was added to the included results by looking for the keyword

“unsupervised” in this second export.

Table 2 — Literature review criteria used on Parsifal

Criteria Inclusion Exclusion

QUALIS superior Al
QUALIS superior A2
QUALIS superior A3
QUALIS superior A4
CiteScore 1st quartile

ANENENENEN

Is a survey

Language other than English or Portuguese

Not QUALIS superior

Not a paper

Not from Computer Science

Paper could not be found

QUALIS A4

Title and abstract analysis v

SN N N N N R

Source: Created by the author (2025).

The criteria used for the literature review were derived from examples of inclu-
sion/exclusion criteria provided by (80). Table 2 contains an overview of the criteria
used during the conducted review. It is essential to note that inclusion criteria “QUALIS

superior A4” and exclusion criteria “QUALIS A4” refer to the same set of criteria in

42

different contexts as it was easier to differentiate them while using Parsifal’s interface.
According to the steps represented in Figure 5, the former was used as the criterion for
record inclusion, while the latter was used as one criterion for exclusion on a later step.
It is also important to note that the distinction between “Not a paper” and “Is a survey”
is based on the fact that while surveys are a type of paper, it was decided to not include
any surveys on the review because, as commented earlier, this work is neither a survey

nor a complete secondary study.

Notably, after using Parsifal for processing the records throughout the literature
review, the 1,180 extracted records and its corresponding metadata were archived and
made publicly available on Zenodo (39) — a platform that supports the preservation of

research outputs in any size or format (86) — allowing for future reuse.

3.2 RELATED WORK

From the 28 papers that resulted from the literature review described in Section 3.1,

12 were subjectively selected as related work after further reading.

The work in (87) targets QoE analysis and estimation for video playback. The
authors propose a framework for automated data collection that incorporates user behavior
simulation. It focuses on data available at application level and provides a public dataset
of user interactions with the player, including abandonment, seeking, pausing, or no
interaction. Therefore, facilitating a detailed analysis of KPI estimation models when
evaluated on data derived from streaming sessions characterized by playback interactions.
The authors affirm that model performance may be increased by an average of 42% if
data with user interactions is added in the training of the models. Based on their findings,
they conclude that user interaction could considerably affect ML model performance and
that a small amount of data (e.g., if user early quits the playback) affects the model that

monitors the utilized bandwidth.

In (88) the authors used Convolutional Neural Networks (CNNs) to classify packets
collected from a 5G network RAN/gNB with the objective of detecting Denial of Service
(DoS) attacks. The packets from the 5G-NIDD dataset (89) are processed and 9 features
are extracted: Timestamp, Length, TTL, Highest layer, IP flags, Protocol, TCP features,
UDP length and ICMP type. An initial feature analysis was performed and the features
which are very similar or deterministic were removed. Windows of 10, 50 and 100 packets
were created for each traffic flow. This data was used to create the matrices that form the
images used as input to the CNNs. The proposed technique and a custom CNN achieved
F1-Score results above 99.5%. The authors say that, according to the prediction times
measured (below 50 ms), the technique could also be applied to real time classification
scenarios. They also note that the NWDAF will play a more significant role in 6G networks
particularly in intelligent threat mitigation. It is suggested that the NWDAF could be

43

instantiated on RANSs, if a converged RAN-CN takes place on 6G. The key takeaway from
the analysis is that, based on the results obtained, the proposed solution shows promise

for deployment in upcoming 6G networks.

The authors of (90) develop their proposed framework’s abstract data model
around UE predictive classification. A long list of KPIs that could be monitored on the
device, service and network is presented. The knowledge extracted through the framework
called PRIMATE, was applied on network and service resource prediction for Hierarchical
Agglomerative Clustering (HAC). This work used 4 different ML algorithms — Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine
(SVM) — to compose a weighted voting model that classifies contextual information
through predicting on which cluster those information would fit. After profiling the
behavior of the devices using their contextual information and the behavioral clusters, each
device is classified in one of the available profiles. The proposal, which was an extension
of the NWDAF proposed by the 3GPP, was implemented on Network Simulator 3 (NS-3).
As reported on the paper, the voting model performance achieved up to 96% of accuracy
and 92% on F1-Score. As future work, it is proposed the integration of the proposal with

some resource management system that may effectively use the output of the framework.

The work (91) performs anomaly classification using LR and eXtreme Gradient
Boosting (XGB) ML algorithms on 5G synthetic data. Its experiment consists of a fixed
network topology simulation that generates synthetic network traffic data that contain
some fields as specified by 3GPP. The simulation contained 5 antennas and 5 types of
devices (IoT device, vehicle, cell phone, smartwatch, and tablet computer) divided into
3 types of mobile data subscriptions (platinum, gold, and silver). The handover ratio
was fixed during the entire simulation. The synthetic data was labeled and used to train
the ML models in a supervised learning fashion. The ML mechanism was implemented
using Python, but the source code was not shared. It is reported that the data used for
feature extraction came from data rate, network area information, subscription categories
and personal equipment ID fields and resulted in nine features. Considering all the cells
and device categories, the average model performance for LR was 87% of Area Under the
Curve (AUC) Receiver Operating Characteristic (ROC), 55.6% of accuracy, and 76.9%
of precision. With slightly better results, XGB scored 90.7% of AUC ROC, 62.6% of
accuracy, and 77.3% of precision. The conclusions indicate that it was possible to create a
cell-based dataset for evaluating network data analytics in 5G, utilizing some information
fields as defined by 3GPP. The authors future work include executing an Exploratory Data
Analysis (EDA) in the created dataset to determine communication patterns, utilize the

data fields specified by 3GPP as features, and perform a multiclass anomaly classification.

Focusing on the configuration and selection of 5G slices via the NSSF', the authors
in (92) collected QoS and QoE-related data from UEs. Their proposal involved implemen-

ting an environment using the Graphical Network Simulator 3 (GNS3), which incorporated

44

a NWDAF to provide data to a proposed NSSF Data Analytics Function (DAF). The
proposed NF employed a K-means ML model to cluster UE traffic flows, enabling Multiple-
Criteria Decision Making (MCDM) methods to determine slice allocation weights on the
5GC. The authors concluded that the combined MCDM /ML approach is advantageous
due to its simplicity and efficiency, particularly as it does not require historical data — an

asset for newly created slices.

In (93), ML models were employed to classify cells and identify those with low
performance based on expert domain knowledge. Using a Call Detail Record (CDR) dataset
from an African MNO, the authors implemented a framework where K-means clustered
the cells and a SVM classifier categorized these clusters. From the results of K-means
clustering, four statistical measurements were calculated and visualized to facilitate expert
analysis and labeling. Specifically, the average duration of normally terminated calls and
the relative load of the maximum number of dropped calls were utilized to distinguish
between cells with good and poor performance. The SVM classifier achieved an average
accuracy of 97.69% in detecting cell anomalies. In summary, the proposed framework not
only classifies cells based on performance metrics derived from hourly aggregated CDR

data but also identifies performance-related issues within the network.

In (94), the authors implemented a network traffic classifier to detect voice and
video streams, utilizing the Fraunhofer FOKUS Open5GCore (95) as the 5GC. The
classifier processes data in 5-second windows to extract a packet length histogram, which
is then normalized using a logarithmic function. Feature extraction relied on IF-ELSE
structures, and five machine learning algorithms were evaluated and fine-tuned: SVM,
Multilayer Perceptron (MLP), CNN, Long Short Term Memory (LSTM) and Recurrent
Neural Network (RNN). The implemented function was integrated with a Management
and Orchestration (MANO) system that controlled the 5GC’s CP. The experimental setup
included the 5GC, a simulated UE, and a concurrent traffic generator. The experiment
involved capturing mixed traffic — including video playback from YouTube and Facebook
Videos, as well as voice and video calls on Skype — for one hour. Time series analysis
yielded an average accuracy of 94.9% for service classification. The results indicate that
web traffic from YouTube and Facebook Videos exhibited high similarity, and the authors
noted that the focus on voice and video streams is justified given their substantial resource

demands on a 5G network.

An implementation focused on detecting IoT botnet attacks on 5GC was presented
in (59). The experimental setup included a simulated UE and the Fraunhofer FOKUS
Open5GCore (95). The methodology involved replaying MedBloT dataset (96) packets
to generate 5G traffic, with PCAP files exported in raw format for subsequent feature
selection. Random sampling and feature encoding (a form of normalization) were applied to
the data, and K-fold cross-validation was used to mitigate overfitting. Four ML algorithms

were employed — KNN, SVM, RF, and a stacking ensemble meta-model — performing

45

both binary and multiclass classifications among benign traffic and three types of botnets.
Notably, the models heavily relied on IP address-related features, consistently ranking
among the top three most significant features. Performance was evaluated using metrics
such as accuracy, precision, recall, F1-score, and AUC ROC. In an environment with a 50%
benign-to-malicious packet ratio using approximately 40,000 packets, the stacking ensemble
algorithm achieved the best results, reaching 99.96% accuracy for binary classification and
98.72% for multiclass classification. The authors concluded that detecting IoT botnets in
the 5GC environment using only GTP-U packets is challenging, and that IP packet features
play a crucial role in accurate classification. They also suggest that the implemented

scheme could be valuable to future NWDAF deployments, specially in 6G networks.
Using the NWDAF architecture as a reference, the work presented in (97) imple-

mented a ML classifier to differentiate device types based on their network traffic. The
experiment was conducted in a simulated 5G environment employing free5GC as the 5GC
and UERANSIM as the RAN simulator. ML functionality was developed in MATLAB (98)
with parameter optimization performed; however, resource allocation was not addressed
and the source code remains unavailable. The features derived from a default Wireshark
(99) capture included traffic time, source and destination addresses, protocol name, packet
length, and packet information. Notably, protocol names were excluded during training
as they were used as the classification output. Fourteen ML models were evaluated,
including Fine, Medium, Coarse, and Optimizable Trees; Linear, Quadratic, and Boosted
Trees SVMs; Ensemble Bagged Trees; Ensemble RUSBoosted Trees; and Medium, Wide,
Bilayered, and Trilayered Neural Networks (NNs). The best accuracy, exceeding 95%, was
achieved by models such as Fine Tree, Medium Trees, Optimizable Trees, SVM Boosted
Trees, Ensemble Bagged Trees, Medium NN, and Wide NN. Medium Trees also registered
the fastest training time at 11.6 seconds. The authors conclude that it is feasible to
generate traffic and perform service classification solely from UE network traffic. However,
further investigation is needed on methods to assist the 5GC in correctly allocating users
to slices and adjusting these slices as user behavior evolves. It is also commented that
resource allocation, slice management, and mobility management in cellular networks

remain open research challenges.

The authors of the work (100) propose a method to classify device types by
analyzing encrypted traffic behavior through statistical analysis of packet header data
without relying on payload information or protocol-specific packets. A testbed consisting
of 39 IoT devices, 3 non-IoT devices, and a network router was utilized to generate data
that was mixed with another dataset. In the first stage of the method, a feature dataset
was generated by extracting the number of packets, total packet lengths, average packet
lengths, and the number of destination addresses per device over 10 minutes. In the
second stage, two datasets with 6,000 features were created: one containing the number

of packets sent per device every 100 ms over 10 minutes, and another with the sum of

46

packet lengths per device in the same interval. For the training phase of the first stage
(classifying ToT, non-IoT, and router), the performance metrics achieved up to 97.6%
accuracy and 92.4% Fl-score for RF. For the testing phase of the second stage (multiclass
classification per device type), the best result of accuracy was 82.6% and 86.8% for the
LSTM+CNN model on the two datasets tested. The dataset contained 141,654 total
packets with class imbalance. The authors conclude that the proposed method effectively
classifies IoT devices by analyzing packet header statistics in the first stage. In the second
stage, the system was able to classify a wider range of IoT device types, with the combined
LSTM+CNN model achieving 12% higher accuracy with a training time that was 40 times
shorter than ResNet 1D model. The method is expected to facilitate traffic classification
by device type for capacity planning in networks with a massive number of dynamically

connected devices.

In (101), a NWDAF prototype compatible with Open5GS (102) was implemented
to monitor NF traffic within the 5GC and assist MANO systems. Although the source
code is unavailable, the dataset — comprising 138 minutes of captured traffic and 171,821
packets — was shared. The environment used Open5GS as the 5GC and UERANSIM
as the UE simulator. To develop the models, seven features were extracted from each
packet: No., Time, Source IP, Destination IP, Protocol, Length, and Info; packets
not belonging to inter-NF traffic were excluded. A K-means clustering algorithm was
then applied to group NF's based on source and destination NF, average and maximum
packet length, standard deviation of packet length, and total number of transmitted
packets for each NF pair. Through clustering and unsupervised learning, the authors
demonstrate the ability to identify similarities in NF interactions and apply NWDAF
insights to Intelligent Networks and NFV MANO, highlighting NWDAF’s potential to
support efficient network management in B5G networks. The authors emphasize that
NWDAF is crucial for intelligent networks and MANO tasks, assisting in resource allocation

and anomaly detection.

Finally, a conditional packet classifier was implemented to classify 5G traffic by
service in (103). The traffic generation environment comprised free5GC as the 5GC and
three UERANSIM instances. Without relying on ML models, the author implemented three
conditional techniques: The first technique evaluates whether the protocol is Transmission
Control Protocol (TCP); if so, it analyzes the payload size, assigning small payloads
to mMTC and larger ones to eMBB, while UDP packets are classified as URLLC. The
second technique matches the source or destination port against a predefined service list
for classification; if no match is found, the first technique is applied. The third technique
assigns 18 weights (six per class) to various parameters, with the classification result
determined by the highest total score. As reported in the work, the best performance
was achieved with the third technique, which reported an average accuracy of 99.8% (per
class: 100% for eMBB, 79.15% for mMTC, and 99.84% for URLLC). The source code

47

was provided as code listings, and the approach offers a greater level of explainability
compared to black-box ML models. The packet dataset was heavily imbalanced (5.15%
eMBB, 0.45% mMTC, and 94.40% URLLC), likely due to the characteristics of the traffic
streams. On the one hand, URLLC traffic contained a capture of a remote-controlled
Unmanned Aerial Vehicle (UAV) coupled with a camera, thus generating a high number
of packets. On the other hand, eMBB and mMTC traffic were respectively generated by
a smartphone browsing web pages and an IoT sensor sending periodic data. This study
offers an analysis of traffic classification in 5G networks, demonstrating the effective use of
simulators such as freebGC and UERANSIM to emulate network topologies and behaviors.
It also discusses the advantages and limitations of using high-level languages such as
Python for packet classification, with particular emphasis on practical considerations
for QoS-critical applications. Future work includes applying ML models to enhance the

weighting approach used in the third technique.

3.3 COMPARISON

Research efforts are underway to explore how the NWDAF can be used on current
5G networks (62) and serve as an enabler for future closed-loop network architectures
without human intervention (104), including Zero-Touch Network (ZTN) and Zero-touch
network and Service Management (ZSM) networks (93, 105). These advancements represent
a crucial step towards the development of proactive networks driven by AI (88), which will
contribute to the emergence of the 6GG. Within this context, the investigation of the state

of the art is an important step that serves as a reference to direct the current research.

The 12 studies listed in this master’s thesis have contributed to the advancement
of 5G network traffic classification and related areas, frequently utilizing ML models.
For instance, in (87) the effect of user interaction in the classification performance of
models is investigated. Moreover, (59) and (88) focus on enhancing the security of 5G
networks by, detecting DoS and IoT botnet attacks, respectively. A prototype for the
NWDAF to monitor NFs traffic within the 5GC is proposed in (101), which can address
anomaly issues, alongside UE anomaly classification discussed in (91). The NWDAF
serves as a data source for the configuration and selection of 5G slices, as proposed by (92).
Additionally, (93) emphasizes the classification of cells and the identification of those
with low performance. The development of a network traffic classifier for detecting voice
and video streams is presented in (94), while (90) explores UE predictive classification
into profiles. Furthermore, (97) introduces a ML-based classifier designed to differentiate
device types based on their network traffic, and (100) examines the classification of device
types by analyzing encrypted traffic behavior through statistical analysis. Finally, (103)
presents a conditional packet classifier aimed at classifying 5G traffic by service without

relying on ML algorithms.

48

Table 3 delineates the key characteristics of each reference cited in this chapter,
with an emphasis on ML aspects. It should be noted that, with the exception of (103),
the references were obtained through the literature review described in Section 3.1. In
contrast to the available literature, (103) proposes a ML-independent and straightforward
yet efficient approach to traffic classification that utilizes only conditionals for classifying

network packets.

As elaborated in the following Chapter 4, the approach taken in this study aligns
with several existing studies in the literature. Similar to the work presented in (94), IF-
ELSE structures were employed for feature extraction, with YouTube utilized as a traffic
source. Features were extracted from PCAP files, in line with the methodology in (59).
Additionally, feature encoding and K-fold cross validation were implemented. Based on
the findings in (59) and prior experience (31), IP addresses were excluded from the feature
set during ML model training. In contrast to (97), resource allocation is not involved in
the current implementation. Similar to (100), the classification technique described in
Chapter 4 does not rely on payload data, and class imbalance within the dataset was
faced. Furthermore, protocol-specific packets were incorporated without aggregating them

into windows.

Table 3 — Comparison of classification techniques

ML
Numb f Extracted
Reference ML models performance tmber o xracte
. features features
metrics
pckt_ count
pckt_size
Accuracy
DT . throughput
(87) Precision 10)
RF iat
Recall .
pckt_size gt100
pckt__count_ gt100
Timestamp
Custom-CNN Length
ResNet-V2 TTL
MobileNet-V2 Highest layer
(88) EfficientNet-V2S Fl-score 9 IP flags
DenseNet-201 Protocol
Inception-V3 TCP features
Xception UDP length
ICMP type
DT
RF Accuracy Packet Size(b)

KNN Fl-score Downlink Delay(s)
SVM

Table 3 (continued) — Comparison of classification techniques

ML
Numb f Extracted
Reference ML models performance tmber o racte
. features features
metrics
last2 mean
last4 mean
last8 mean
LR Accuracy per__change_last2
(91) <GB Precision 9 per__change_ last3
AUC ROC per__change_ last4
change_last2
change_last3
change last4
Latency
Jitter
Loss
K-means .
Bandwidth (Mbps)
(to help RMSE
(92) o) 9 Transfer
multicriteria (clustering) UE
methods) . .
Experiment (id)
Distance
Reliability
Date
. Time
(93) Custom SVM Accuracy Traffic Volume
(cell related)
Call Count
Number of SMS
SVM
MLP Packet Length
(94) CNN Accuracy 6 (6 range
LSTM functions)

RNN

49

Table 3 (continued) — Comparison of classification techniques

ML
Reference ML models performance Number of Extracted
. features features
metrics
eth.src
eth.dst
arp.src.proto ipv4
arp.dst.proto ipv4
arp.src.hw mac
arp.dst.hw mac
arp.opcode
ip.src
ip.dst
KNN Accuracy 18 ipv6.src
SVM Precision 10 ipv6.dst
(59) RF Recall 28 icmp.type
meta-model F1-score (experiment icmp.code
(stacking ensemble) AUC ROC dependent) tep.sreport

tcp.dstport
udp.srcport
udp.dstport
frame.len
gtp.flags
gtp.message
gtp.length
gtp.teid
gtp.ext_ hdr.next

Table 3 (continued) — Comparison of classification techniques

ML
Reference ML models performance Number of Extracted
] features features
metrics
Tree-based:
Fine
Medium
Coarse
Optimizable
SVM-based:
Linear traffic time
Quadratic source IP
(97) Boosted Trees Accuracy 6 destination 1P
protocol name
Ensemble-based: packet length
Bagged Trees packet information
RUSBoosted Trees
NN-based:
Medium
Wide
Bilayered
Trilayered
1st stage:
LR
RF
SVM # packets
(100) Accuracy 4 sum packet lengths
F1-score avg packet lengths
2nd stage:
dst addresses
MLP
LSTM+CNN
ResNet 1D
No.
Time
K-means (to Source
(101) N/A 7 Destination
cluster traffic)
Protocol
Length
Info
(103) N/A N/A N/A N/A

o1

Table 3 (continued) — Comparison of classification techniques

ML
Reference ML models performance Number of Extracted
inetrics features features
Packet__no
Timestamp
Time delta
Source_IP
Destination 1P
Frame_ type
Frame_total length
Frame_ header_ length
Frame_ payload_ length
Source__port
Destination_ port
LR TCP__completeness
HGB TCP__compl_ reset
RF TCP__compl_ fin
DT Accuracy TCP__compl_data
MLP Precision TCP__compl_ack
Ours Linear SVM Recall 33 TCP__compl_syn_ ack
LGBM F1-score TCP__compl_syn
XGB AUC ROC Score TCP__compl_ str
AdaBoost TCP_ flags bin

Stacking Ensemble
Voting Ensemble

TCP_ flags_ str
TCP__ window _size
TCP__window_size scale
Frame_ protocols
IP_ protocols
IP_flag reserved_ bit
IP_flag dont_ fragment
IP_flag more_fragments
TTL
TCP__header_ length
Data_ length
QUIC__packet_ length
QUIC__length

Source: Created by the author (2025).

92

In the context of open science characteristics, Table 4 compares the works cited

in this chapter. Among the references examined, only five (59, 87, 91, 88, 101) utilized

or released public datasets, with just three available in PCAP format. Notably, only one

work (88) fully released the implemented source code.

93

Table 4 — Comparison of open science characteristics

Reference Year Dataset Source Code Aim
is Public is Public

(91) 2020 v (csv) Anomaly detection
(93) 2021 Pseudocode Cell classification
(94) 2021 Voice and video stream detection
(59) 2022 v Attack detection

(87) 2022 v (csv) User interaction detection
(90) 2022 UE classification

(92) 2022 Pseudocode Slice selection

(101) 2022 v Anomaly detection
(103) 2022 Listings UE classification

(97) 2023 UE classification

(88) 2024 v v Attack detection
(100) 2024 UE classification
Ours 2025 v v UE classification

Source: Created by the author (2025).

Consequently, a network traffic dataset was created following the method in (101),
as detailed in Subsection 5.1.1. In contrast to the references focused on classifying
UEs, this work not only released the utilized dataset but also provided full access to the
source code, as elaborated in Sections 4.4 and 4.5. Unlike reference (97), which employed
MATLARB, the code was published using the FLOSS programming languages Python and
Bash. Furthermore, consistent with (97), (101), and (103), the experimental setup utilized
the freesGC and UERANSIM open-source projects, as described in Subsection 5.1.1.

Building on the results found on the literature, which are characterized in Tables 3
and 4, the experiments conducted in this study, outlined in Chapter 4, include the
inference phase that tests the models on unseen data, as detailed in Section 4.1. The
5G simulated environment (discussed in Section 4.2) was implemented using FAD, a
FLOSS tool (described in Section 4.4) that automates the delivery of the software stack
necessary to execute the packet capture experiment executed to create the dataset presented
in Subsection 5.1.1. Additionally, as highlighted in Table 3, the evaluation of eleven
supervised learning models, including AdaBoost and two custom ensemble learning models
(Stacking and Voting) identified in the literature is performed, with results contained in
Subsection 5.2.3. Supporting the open science characteristics verified in Table 4, the
synthetic 5G network traffic capture dataset (40) created for this study was released in
PCAP format, facilitating further experimentation and analysis. The source code is also

available (29, 41) enabling future study and reuse.

o4

3.4 SUMMARY

This chapter delineated the methodology employed during the literature review
process, detailed the relevant work, and encapsulated the main points discussed in the
reviewed literature. To improve the reproducibility and reuse of the literature mapping
results, the extracted records and its corresponding metadata are accessible on Zenodo (39).
Following a comprehensive review, twelve papers were identified as pertinent to this study,
and a comparative analysis of these works and the current research is presented from two

distinct perspectives: ML and open science characteristics, as indicated in Tables 3 and 4.

95
4 METHODOLOGY

The methodology outlined in this chapter is organized into two primary components:
the ML pipeline, presented in Section 4.1, and the simulation environment, which will be
detailed in Section 4.2. The datasets utilized during the training phase of the pipeline are
introduced in Section 4.3. Section 4.4 introduces free5GC Auto Deploy, the FLOSS tool
that facilitates the installation and configuration of the 5G simulation environment. The

steps involved in implementing the NWDAF-based functionality are detailed in Section 4.5.

4.1 ML PIPELINE

In accordance with the NWDAF definition and specification outlined in Subsec-
tion 2.1.3.3, a ML pipeline was developed to facilitate the study and effective utilization
of ML techniques and network data within the context of 5G. This pipeline, illustrated in

Figure 7, is divided into three primary stages: dataset processing, training, and inference.

Figure 7 — Outline of the designed ML pipeline

T T \

| .

| Data preparation | Feature extraction Feature encoding Data labeling Data balgn_cmg

| | and splitting
/

(I1) o (V)
N I N - = = =
N = -
Data slicing —
Y (Preprocessin Stratified K-fold Load pretrained Inference dataset
I L P 9 Cross Validation model input
[]
Target files i
extraction Model
Model training performance Model inference
evaluation

Training dataset

selection Model
Save pretrained
[— model performance
(|||) (V) evaluation

Dataset processing
stage Training stage Inference stage

Data phase Machine Learning phase

Source: Created by the author (2025).

The first stage, dataset processing (depicted in area I), is initiated with the selection
of datasets that will be utilized for model training in the subsequent phase. It may be
performed manually by domain specialists to ensure relevance and alignment with the
training objectives. An example of datasets suitable for selection in this step is presented
in Section 4.3. Following this selection, relevant files that align with the training objectives
are extracted from the datasets. The data slicing step is then performed to identify packet

flows of interest and/or to reduce the volume of packets available for the next phase. If

26

the data requires additional formatting or processing for proper ingestion by the models
during the ML phase, an optional data preparation step (area II) may be performed. An

example of this implementation will be provided in Subsection 4.5.1.

Upon completion of dataset processing, the training phase (illustrated in area III)
initiates. This phase begins with data preprocessing (represented in area IV), which
encompasses feature extraction, encoding, data labeling, and data balancing and splitting
to create distinct training and test data splits, thereby preparing the data for model training.
Once preprocessing is complete, the actual model training takes place, accompanied by
cross validation to evaluate model robustness. The trained models are subsequently saved
for future use, and a performance evaluation is conducted to assess the results of the

training phase, which will be outlined in Subsection 5.2.5.1.

Finally, the inference phase (depicted in area V) involves loading the pretrained
models and the inference data to execute the inference step. The experiment conducted to
create the dataset for this phase during the execution of this master’s thesis is detailed
in Subsection 5.1.1. A performance evaluation is performed once again to assess the

inference results, which will be presented in Subsection 5.2.5.2.

4.2 5G SIMULATION ENVIRONMENT

Building on the findings in (7) and from the literature review in Section 3.2, on
the information and 5G specifications contained in Chapter 2, and on the motivation in
Section 1.1 which indicated that a simulated environment could effectively facilitate the
study of 5G networks, the simulation environment illustrated in Figure 8 was designed.
Its configuration comprises a simulated RAN, including a 5G UE and a gNB, alongside a
5GC and a network resource, exemplified by internet access. This setup accurately mimics

the interactions of a UE within a real-world 5G cellular network.

Figure 8 — Experimental setup overview

Equipment 5G Node B 5G Core Internet

Source: Created by the author (2025).

The simulation environment may incorporate a traffic generator, that transmits
packets through the virtual UE network interface. This generator operates in three distinct
modes: playback of stored videos, streaming of a live video feed, and transmission of UDP
packets. In the first mode, stored videos are played to simulate the behavior characteristic
of eMBB traffic. The live video feed mode streams a broadcast that represents URLLC

o7

traffic. The third mode facilitates the transmission of UDP packets emulating mMTC
traffic associated with the IoT. As detailed in (106), sparse UDP traffic effectively simulates
[oT traffic corresponding with industrial automation use cases. This approach is simpler
to implement than other widely used protocols, such as MQTT (107), and aligns with
the mMTC axis definition presented in Subsection 2.1.3.1 by transmitting small volumes
of non-delay-sensitive data. With the exception of the third mode, which also requires
the creation of a server on the 5GC, all actions are performed on the UE. An illustrative

implementation of the traffic generator is provided in Subsection 4.5.3.

A packet capture experiment based on the environment described and the tech-
niques from the reviewed work in Section 3.2 is also performed. The objective of this
experiment is to collect network traffic packets, specifically targeting different application
flows for subsequent analysis and potential reuse. To minimize the impact on NFs and
ensure the collection of high-fidelity network data, passive packet capture techniques are
recommended (108). This approach is essential to ensure that the capture process does not
interfere with the observed traffic. Drawing from prior experience with traffic captures and
the established file structure that facilitates the recording of detailed data and metadata,
as well as insights from the experiment conducted in (59), it is proposed that the captured
data should be stored in the PCAP file format. The implementation of this experiment is

comprehensively described in Subsection 5.1.1.

4.3 5G NETWORKS TRAFFIC DATASETS

Based on the findings presented in Section 3.3 and detailed in Table 4, no public
datasets specifically targeting UE classification were identified. Consequently, a survey
was conducted to identify 5G network traffic datasets, with particular emphasis on the
PCAP file format due to its capacity to provide detailed information essential for the
feature extraction phase in ML model training. In contrast, preprocessed formats such as
Comma Separated Values (CSV) often limit the granularity of data. Additionally, it was
imperative that the datasets encompass all three classes of 5G traffic: eMBB, URLLC,
and mMTC. The data should originate from a real network environment rather than a
fully simulated context, ensuring the representation of authentic network behavior and

avoiding reliance on synthetic traffic generators.

With these criteria established, the survey was conducted in January 2025 to locate
suitable 5G PCAP traffic datasets on IEEE DataPort (109). An overview of the survey
process, including the consulted databases and keywords used, is depicted in Figure 9.
The dataset titled “5G Traffic Datasets” (110) was initially selected; however, it was
subsequently deemed insufficient due to the absence of mMTC traffic, as shown in Table 5
presented in the following paragraph. Following this, as represented in Figure 9, additional

searches were performed across Google Scholar (111), Kaagle (112), and MDPI’s Data

o8

journal (113) but these efforts did not yield any datasets that met the specified criteria.
Ultimately, the “56G Campus Networks: Measurement Traces” (114) dataset emerged
as the closest match. The search utilized keywords such as 5g urllc pcap dataset on
Google Scholar, along with combinations of 5g and individual terms including pcap, iot,

urllc, and mmtc to explicitly target datasets containing mMTC traffic.

Figure 9 — Dataset sources and keywords

C] o]
... > 59 :—AND—)| pcap :
A / L /
P e
IEEE DataPort Google Scholar -1 9 peap 1 3y (none) '
| dataset | | I
B N J ol - - - - — - /
T |
Kaagle el —> iot !
T \ e)

B g 59 :—AND
Y\ : | — - - - - = = \
Datajournal | | :| ~------ 4 ']
(MDPI) —)ll urllc |
_______ /
1st round 2nd round ol \
Dataset survey —> mmtc |
R /

Keywords

Source: Created by the author (2025).

The dataset titled “5G Traffic Datasets” (110) comprises packet captures from
a Commercial off-the-shelf (COTS) UE — Samsung Galaxy A90 5G — operating on
the network of a major MNO in South Korea. The captures were conducted using the
PCAPdroid application while the device interacted with various services, as detailed in
Table 5. According to the authors, these interactions were performed sequentially and
without background traffic to isolate the unique characteristics of each traffic type. The
fourth column of Table 5 presents a classification based on the ITU recommendations (16)
and definitions outlined in Subsection 2.1.5.1, while the other columns are directly sourced

from the dataset description.

The dataset “56G Campus Networks: Measurement Traces” (114) includes packet
captures from an experimental 5G campus network, which features two Nokia ASiR
antennas (one for 4G and one for 5G), a Ruckus ICX 7850 switch, and two Core Network
(CN) instances (one Nokia NSA Core and one Open5GS SA Core). Additionally, two
devices represented the UEs (a Nokia FastMile 5G Gateway and a WNC SKM-5xE). The
5G Stand-Alone (SA) traffic was generated using the MoonGen (115) open source software.

Based on their descriptions and configurations, the “5G Traffic Datasets” served as
the eMBB and URLLC classes, while the “5G Campus Networks: Measurement Traces”

served as the source for the mMTC class. The files selected from the first dataset were

29

Table 5 — Dataset capture description and service classification

. L. Main Service
Type Application Protocol Axis
. YouTube Live GQUIC
pive URLLC
Streaming AfreecaTV TCP
Naver NOW TCP
Stored YouTube QUIC BE
Streaming Netflix TCP ¢
Amazon Prime Video TCP
Video Zoom UDP URLLC
Conferencing MS Teams UDP
Google Meet UDP
Metaverse Zepeto TCP eMBB
Roblox RakNet
8nhne Teamfight Tactics UDP URLLC
ame Battleground UDP
Sﬁame . GeForce Now UDP MBB
reanming KT GameBox UDP

Source: Created by the author (2025). Adapted from (110).

chosen according to our preliminary classification, the volume of available packets, and the
feasibility of reproducing the experimental tasks as stipulated by the authors. This led
to the selection of the Youtube_cellular and naverb5g3 files for the model training step.
Conversely, the files from the second dataset were sourced from the 5G SA segment of
the network, specifically located in the SAUpload and UDPPing folders. These data slices

constituted the training dataset employed in the experiments analyzed in Subsection 5.2.3.

44 FREE5SGC AUTO DEPLOY

Given that GitHub is the most utilized code version control platform (116) and
hosts free5GC’s source code, an open-source tool search was conducted on February, 2024.
As presented in (29) and (32), among the 301 results found, 23 were related to Kubernetes,
and 27 to Docker (representing automated container deployment), while 35 used Shell
Script (a programming language suitable for lightweight, task-oriented automation in
Bash environments); however, it was determined that no similar open-source tool capable
of deploying free5GC with UERANSIM (3GPP networks), N3IWUE, and TNGFUE

(non-3GPP networks) in a pre configured form existed at that time.

60

In the light of the simulation environment outlined in Section 4.2 and the afo-
rementioned tool survey, the free5GC Auto Deploy (FAD) tool was developed. FAD
comprises a collection of scripts (available in Appendices A to E), that automate the
installation of a 5G simulated environment. As illustrated in Figure 10, in addition to
the outlined environment, FAD allows for the installation and configuration of non-3GPP
NF's (highlighted in orange). It supports the advanced setup detailed in free5GC’s official
documentation (117), enabling deployment in the form of a software package stack. This
configuration is particularly beneficial for projects that require experimentation, modu-
larization, and the development of new NFs, while also offering enhanced flexibility for
customization and network configuration. Notably, given its potential to enhance the
reproducibility of research results, facilitate the study and future reuse of the source code,
and the fact that this work received external public funding, FAD was released as FLOSS
software in a GitHub repository (29).

Figure 10 — Outline of the environment deployed by FAD

g

Equipment 5G Node B
UERANSIM
il LS
=
Equipment non-3GPP Network [
N3IWUE 5G Core Internet
i l free5GC

M ~umn
User '

Equipment non-3GPP Network
TNGFUE

Source: Created by the author (2025).

During the implementation process, several challenges were encountered, as repor-
ted in (31). The identified limitations and proposed solutions were formally documented
and discussed in the free5GC official online repositories and forums (118). Code contribu-
tions focused on addressing minor issues, such as typos and execution flows, as well as
automating network configuration tasks, such as firewall rule setup and UE deployment
were made to the official repositories of free5GC (119) and TNGFUE (120), along with
significant enhancements to clarify their supporting documentation (121), thereby making

the solutions accessible to the community.

61

4.5 NWDAF FUNCTIONALITY IMPLEMENTATION

Based on the NWDAF definition and the 3GPP specifications summarized in Sub-
section 2.1.53.3, a NWDAF functionality has been developed. The implementation consists
of two primary Python scripts, which will be detailed in Subsection 4.5.2. Additionally,
four supporting scripts, described in Subsection 4.5.1, were created to facilitate data
processing steps necessary for preparing the data for the training stage of the pipeline
outlined in Section 4.1. Subsection 4.5.3 presents the traffic generator scripts designed for

integration into the environment to enable custom 5G traffic generation.

4.5.1 Data Preparation

The data preparation process involves several scripts, provided in Appendices F

to L, designed to extract and structure the necessary information for ML models.

The pcap_extract.sh script — archived in Appendix F — extracts relevant data
from the training and inference PCAP files and saves them in both JavaScript Object No-
tation (JSON) and CSV formats. Subsequently, the dataset_CSV_characterization.py
script — in Appendix G — processes the CSV files generated by pcap_extract.sh,
preparing five distinct subsets that include frame length, protocol label, a time series
(comprising frame number and capture time), and source and destination IP addresses.
These subsets are then utilized by the stat-plotter.py script — in Appendix H — for

statistical analysis.

The export_JSON.py script — available in Appendix I — further enhances the data
extraction process by preparing features from the JSON files created by pcap_extract.sh
using the open-source json2csv module accessible in (122) and Appendix J. This script was
designed based on prior experience (31) in PCAP data extraction and insights from relevant
literature (97, 101), ensuring an effective approach to feature preparation. It structures
the data in a manner compatible with the box-plotter.py — in Appendix K — script,
which generates box plots for visual analysis. The CSV files produced by export_JSON.py
contain a significantly greater level of detail compared to those generated by the original
extraction, allowing for the creation of additional features that will be available during
the training stage of the pipeline detailed in Section 4.1. As discussed in Section 3.3, the

preparation process is configured to extract the 33 features listed in Table 3.

Additionally, the add_label to_name.sh script — available in Appendix L —
implements a manual labeling process that prepares the files for the automated steps of
the training stage. Two visualization scripts, stat-plotter.py and box-plotter.py, are
also included. The former generates graphs depicting statistics related to protocol labels,
packet lengths, and the time series of captured packets, while the latter creates box plots

of capture attributes, facilitating visual comparison and analysis.

62

4.5.2 Implementation Details and Execution

As the primary programming language used for implementing the proposal is
Python, the scikit-learn (73) libraries were selected to ensure seamless integration and
efficient computation of performance metrics. In addition to the accuracy metric specified
by the 3GPP’s Release 18 (61), the implementation also evaluates precision, recall, F1-score,
and ROC AUC score, as defined in Subsection 2.2.2 and in Appendix Y, respectively.

The primary functionality based on the NWDAF specifications presented in Subsec-
tion 2.1.5.3 has been implemented in the ml.py and inference.py scripts. These scripts
— archived in Appendices M and N — incorporate, respectively, the MTLF and AnLF
logical functions detailed in Subsection 2.1.3.%. From the pipeline perspective, ml.py
and inference.py scripts implement the training and inference stages, as discussed in
Section 4.1. Figure 11 depicts the execution order of the aforementioned scripts. The solid
arrows indicate the relationships between the scripts, illustrating how the output of one
script serves as the input for the subsequent script, while the dashed lines denote optional

steps that produce the statistical graphs presented in Subsection 5.1.2.

Figure 11 — Implemented functionality workflow

[pcap_extract.sh]

L)[dataset_CSV_characterization.py]

- stat-plotter.py
4,[export_JSON.py]

- box-plotter.py
Legend —)[add_label_to_name.sh]

——>» Basic execution flow
L)‘ ml.
----- > Alternative flow Py]

L»[inference.py]

Source: Created by the author (2025).

Drawing on prior experience (30, 31), features with known low variability — due to
their close association with stream characteristics, such as Hypertext Transport Protocol
Secure (HTTPS) servers operating on port 443 by default — were excluded from the
ml.py preprocessing step, as detailed in Table 6.

Table 6 — Features removed prior to model training

Packet no Source IP Destination_IP Frame_protocols
IP_protocols Source port Destination port

Source: Created by the author (2025).

63

Table 7 — Features utilized in model training

Timestamp TCP__compl data IP_flag reserved bit
Time delta TCP__compl ack IP_flag dont_fragment
Frame type TCP__compl _syn_ack IP_flag more fragments
Frame total length TCP__compl_str Time To Live (TTL)
Frame header length TCP_flags bin TCP__header_length
Frame payload length TCP_window_size Data_ length
TCP__completeness TCP__compl syn QUIC_ packet length
TCP__compl_reset TCP_flags str QUIC_packet

TCP__compl fin TCP_window_size scale

Source: Created by the author (2025).

Furthermore, based on the literature review results presented in Section 3.2, the
impact of including not only features such as packet timestamp and its total length but
also window lengths and several flags on model performance was assessed in the evaluation
analyzed in Chapter 5. Consequently, the 27 features listed in Table 7 were employed in
the model training implemented in the ml.py script, which also includes a data balancing
function that utilizes SMOTE (141) to balance the training data.

Finally, it is important to note that the current implementation of the NWDAF
functionality is not fully integrated into the SBA as a NF. Therefore, the packet capture
to create the PCAP files must be performed prior to inputting the data into the pipeline,
and the classification results were not utilized by any other NFs. The source code for
the implemented functionality has been made available on GitHub (41) under a copyleft
license, allowing for study and reuse. Instructions for reproducing the implementation

with alternative datasets are also provided.

4.5.3 Traffic Generator

As part of the implementation detailed in Subsection 4.5.2 and the traffic generator
proposed in Section 4.2, a simple traffic generator has been implemented. This generator
consists of three scripts available in Appendix O: play-video.sh, udp-server.sh, and

udp-client.sh.

The play-video. sh script is capable of playing a playlist of stored YouTube videos
or streaming a live broadcast from a Korean news channel on Naver TV (formerly Naver
NOW), depending on the selected mode. The udp-client.sh script should be executed
on the UE, while the udp-server.sh can be executed on the 5GC or on another server
on the internet. The two UDP scripts facilitate the transmission of UDP packets in two
configurations: at a fixed rate or within a probability-based interval range. In the fixed
rate, it is possible to send packets in 100 Packets per Second (PPS) or a custom rate, as

suggested in (106). The interval range configuration is implemented based on the behavior

64

of IoT devices, as described in (123). Additional details, including the source code and

usage instructions for the traffic generator, are available in the GitHub repository (41).

Due to the necessity, as highlighted in Subsection 4.5.2, of generating the PCAP
files prior to pipeline execution, the traffic generator was run in an instance of the simulation
environment described in Section 4.2. The packet capture experiments, conducted using
the generator, to create the inference dataset presented in Subsection 5.1.1 were based on
the dataset descriptions provided in Section 4.3. Notably, the generator simulates network
behavior and enables not only creating PCAP datasets, but also using the traffic in tasks

such as network performance tests.

4.6 SUMMARY

This chapter presented the methodology containing a ML pipeline and a 5G
simulation environment, forming the basis for the experimental results in Chapter 5. The
dataset survey conducted to help selecting the datasets used in the model training was
outlined. The two datasets “5G Traffic Datasets” and “5G Campus Networks: Measurement
Traces” selected for the model training were presented. Finally, the implementation of the

environment, NWDAF-based functionality, and traffic generator were also detailed.

65

5 RESULTS AND DISCUSSION

This chapter presents the results obtained from the research and its corresponding
discussions. Initially, Section 5.1 provides an overview of the outcomes associated with the
created network dataset. Subsequently, Section 5.2 introduces the ML model experimental
results along with relevant analyses. Finally, Section 5.3 includes discussions focused on

the evaluation of model performance.

5.1 NETWORK DATASET

Based on the analyses that underscore the necessity of a PCAP dataset for UE
classification, as presented in Section 3.3, the pipeline requirements for training and
inference datasets outlined in Section 4.1, and the findings of the dataset survey presen-
ted in Section 4.3, a network packet capture dataset has been created, as detailed in
Subsection 5.1.1. Furthermore, Subsection 5.1.2 contains the frequency analyses of two
characteristics — Protocol Label and Frame Length — of both training and inference
datasets. Additionally, Section 5.1.3 presents the results of statistical hypothesis tests
executed to compare the training and inference datasets. These datasets correspond to
the dataset introduced in Section 4.3 and the newly created PCAP dataset detailed in

Subsection 5.1.1, respectively.

5.1.1 Packet Capture Dataset

The results in (59) indicate that using only GTP-U packets for multi-class classifi-
cation can reduce model performance by up to 36.7% compared to using actual IP packets.
In their work, the MedBIoT dataset (96), which contains captures of both Wi-Fi and
Ethernet traffic, was replayed in a simulated 5G network to generate new network traffic,
including the IP traffic captured in the UPF.

Consequently, by drawing on prior experience (30, 31), the convenience of having a
virtual network interface readily available for packet capture, and the capturing metho-
dology outlined in (59), the capture was conducted within the UPF. This UPF instance
operated within a 5GC instance deployed in a simulated setup using the FAD tool, as des-
cribed in Section 4.4. The simulated environment adhered to the configuration suggested
in Section 4.2, utilizing UERANSIM as the UE and RAN simulator, and free5GC for the
5GC, with internet access to execute the traffic generator presented in Subsection 4.5.3

for the packet capture experiment.

The packet capture was performed by executing Wireshark’s command-line utility,
tshark (124), on the UPF’s interface while the virtual UE executed tasks that replica-
ted the experimental conditions described by the creators of the training datasets (110)

and (114) regarding the data selected on the dataset processing stage for model trai-

66

ning. This process resulted in a PCAP dataset of simulated 5G traffic comprised by
four PCAP files: youtube-1M-1080p.pcap, naver-tv-1M.pcap, udp-100pps.pcap, and
udp-nc-traffic-1k.pcap.

The files youtube-1M-1080p.pcap and naver-tv-1M.pcap were created using the
play-video.sh script from the traffic generator, representing the eMBB and URLLC
service classes, respectively, with each containing approximately 1 million packets. The files
udp-100pps . pcap and udp-nc-traffic-1k.pcap were created using the udp-server.sh
and udp-client.sh scripts from the traffic generator presented in Subsection 4.5.3. The
server operated on the same Virtual Machine (VM) as free5GC, with the first file containing
approximately 1 million packets generated by simulating an UDP burst traffic of 100 PPS
— as described in (106) — and the second containing approximately 1 thousand UDP
packets generated by a probabilistic interval range — as detailed in (123).

The dataset described above, used in the experimental inference phase, along with
the data slices from the datasets (110) and (114) utilized to construct the training dataset,
are publicly accessible on Zenodo (40). Additional details and reproduction instructions

for the traffic generation experiment are available in the GitHub repository (41).

5.1.2 Frequency Analysis

To improve the understanding of the created inference dataset, facilitate compari-
sons with the training dataset, and establish a foundation for the discussion in Section 5.3,
a univariate analysis was conducted as part of the Exploratory Data Analysis (EDA)
process, as recommended in (75). This analysis focused on two features from the PCAP
files: Protocol Label (Section 5.1.2.1) and Frame Length (Section 5.1.2.2), which were

selected due to their significant capacity of describing network streams.

5.1.2.1 Protocol Label

One analyzed feature concerns the protocol labels (_ws.col.protocol) assigned
to each captured packet, which reflect the highest layer protocol detected by Wireshark.

Their frequency of occurrence is illustrated in Figures 12-17.

In the eMBB traffic, depicted in Figures 12 and 13, the QUIC protocol predominates,
comprising 98.8% of the training dataset and 86.4% of the inference dataset. This prevalence
is anticipated, as QUIC is the primary video transmission protocol utilized by YouTube,
the platform generating the traffic. The video content itself constitutes the majority of the
traffic due to its larger size compared to other web elements on a video-sharing platform.
Other protocols, such as TCP, TLSv1.3, TLSv1.2, Secure Sockets Layer (SSL), Hypertext
Transport Protocol (HTTP), and TLSv1, exhibit similar occurrence rates in both datasets.
Notably, the training dataset includes 0.1% of Domain Name System (DNS) packets, likely
due to the methodology employed by its authors in (110), which involved capturing packets

67

Figure 12 — Protocol label occurrence frequency in eMBB training dataset

Youtube_cellular_training._ws.col.protocol

10640048
(98.8%)

Juny

o
o
L

107363
(1.0%)

=

o
[
L

15004
11777
104] (01%) (0.1%)

=

o
W
L

Frequency (Logarithmic Scale)
=
o

4 4
(0.0%) (0.0%)

)

o
-
L

Qu\C CP 1\5@3 ONS 1\5\,12 oS\L wite vt

Protocol Label

Source: Created by the author (2025).

Figure 13 — Protocol label occurrence frequency in eMBB inference dataset

youtube-1M-1080p_inference._ws.col.protocol

867859
106 4 (86.4%)

132505
(13.2%)

105 _

104 4

103 4

Frequency (Logarithmic Scale)

101 4

Q\)\C pN\O 1CP 1_‘5\“'3 1_5\‘1'2 oSL OCSP \,\—ﬂ\’ 1_5\11
Protocol Label

Source: Created by the author (2025).

from the UE using PCAPdroid. This may have facilitated the capture of DNS queries
that were mostly aimed at resolving Google domains, consistent with the behavior of an

Android Operating System (OS) device streaming YouTube videos. The absence of this

68

Figure 14 — Protocol label occurrence frequency in URLLC training dataset

naver5g3-10M_training._ws.col.protocol

7775179

7] 75.9%
10 U222 5403018

(23.5%)

Juny

o
o
L

61043
(0.6%)

=

o
[
L

104 - 3970
(0.0%) 2071 1973
(0.0%)

103 _

102 4

Frequency (Logarithmic Scale)

101 4

T qet? qet? W e qepsOt oW sS gau

Protocol Label

Source: Created by the author (2025).

Figure 15 — Protocol label occurrence frequency in URLLC inference dataset

naver-tv-1M_inference._ws.col.protocol

589802

1059 (seevn 437222

(41.9%)

105 4

13400
(1.3%)
104 4

2167

103 4

Frequency (Logarithmic Scale)

1 1
(0.0%) (0.0%)

P 3 2 2 \ ¢ Wl ©
e vt vt sV * \,\'\Percof‘“ace " \CMPY
1CP,

Protocol Label

Source: Created by the author (2025).

traffic in the inference dataset may be attributed to differences in the capture environment,
as the inference capture was conducted in the 5GC with the UE being simulated in a

Ubuntu Linux OS VM. Consequently, this traffic may have been encapsulated by other

69

protocols (e.g., DNS over TLS (DoT) or DNS over HT'TPS (DoH)), leaked through the
VM’s other network interface, or not captured due to the relative limited capture duration
of approximately 32 minutes, which was sufficient to generate 1 million packets while
the video was played and the queries were cached. A combination of these factors is
also plausible. In the inference dataset, notable labels include Online Certificate Status
Protocol (OCSP) and PROFINET IO (PNIO). OCSP is utilized to verify the revocation
status of X.509 HTTPS-related certificates and is enabled by default in Mozilla Firefox,
the browser used for the eMBB experiment. PNIO facilitates data exchange between
Ethernet-based field devices in [P-based protocols designed for Programmable Logic
Controller (PLC) communication (125). The packets associated with this protocol were
likely encrypted and used for communication with a Google-owned IP address, suggesting

potential control synchronization, fingerprinting, or reporting activities.

As illustrated in Figures 14 and 15, the predominant protocol labels in the URLLC
traffic for both training and inference datasets were TCP (75.9%/56.6%), Transport Layer
Security (TLS)v1.3 (23.5%/41.9%), and TLSv1.2 (0.6%/1.3%). This distribution may be
attributed to the operational characteristics of the Naver TV live stream player, which
transmits its live video content via a combination of TCP and TLSv1.3. The absolute
number of SSL packets increased in the inference dataset compared to the training dataset
(323 vs. 160 packets), although it still accounted for less than 0.1% of the total share.
Conversely, SSLv2 was captured only 4 times in the training dataset but reached 2167
packets (0.2%) in the inference dataset. Comparing the counts of SSL and SSLv2 with
those of HTTP and HTTP/JSON in the training dataset suggests that some clear-text
HTTP traffic may have been encrypted using SSL/SSLv2, as one method of securing
HTTP payloads is through SSL. The higher proportions of TLSv1.3 and TLSv1.2 may also
relate to HT'TP protection. These patterns may have arisen from the capture environment
(in UE vs. in the 5GC), as capturing unencrypted traffic is generally more feasible on the
transmitting device. Similar to the eMBB experiment, the absence of DNS traffic in the
inference dataset is believed to be due to analogous factors. Lastly, the inference dataset
highlights three additional protocols: HiPerConTracer, H1, and ICMPv6. HiPerConTracer
is associated with a tool that analyzes and diagnoses network connectivity issues with high
precision and efficiency (126). H1 represents the SINEC H1 protocol, which is related to
PLC communication for controlling Siemens industrial devices (127). The three packets
corresponding to these protocols originated from a South Korean IP, likely linked to the
Naver TV service. The ICMPv6 packet was a router solicitation unicast transmission sent
to all routers within the Local Area Network (LAN), likely generated automatically by

network devices, as the environment included a switch connecting the host to the internet.

According to the description in (114) and the corresponding PCAPs, the predomi-
nant packet protocol label in the mMTC traffic was UDP, which accounted for 100% of the

share in the training dataset. In the inference dataset, as illustrated in Figures 16 and 17,

70

Figure 16 — Protocol label occurrence frequency in mMTC inference dataset (probabilistic)

udp-nc-traffic-1k_inference. ws.col.protocol
996
(98.9%)

103 -

102 -

Frequency (Logarithmic Scale)

11
(1.1%)
101 -

uoP \cMeve
Protocol Label

Source: Created by the author (2025).
Figure 17 — Protocol label occurrence frequency in mMTC inference dataset (burst)
udp-100pps_inference. ws.col.protocol

1069967
(100.0%)

106 4

105 4

104 4

103 4

102 4

Frequency (Logarithmic Scale)

6

14
10 (0.0%)

yoP \CMP\IG
Protocol Label

Source: Created by the author (2025).

besides the prevalence of UDP packets, a small number (11 packets in the probabilistic
capture and 6 packets in the 100 PPS capture) of ICMPv6 unicast packets were observed,

likely generated automatically by the network switch present in the capture environment.

71

The observed differences in label occurrence between the training and inference
datasets can be attributed to the distinct environments in which they were generated.
The training dataset, as detailed in Section 4.3, comprised captures from physical network
interfaces, whereas the inference dataset, outlined in Subsection 5.1.1, collected packets

from the UPF virtual network interface within a 5GC deployed in a simulated environment.

5.1.2.2 Frame Length

The second feature analyzed was packet length (frame.len). As indicated by the
varying protocol types identified in Subsection 5.1.2.1 and given that the PCAP files
contain various length measurements, including payload length, header length, and total
packet length, the total packet length was selected for analysis to facilitate comparisons

among the different captures. The results of this analysis are presented in Figures 18-21.

In the eMBB traffic, the majority of captured packets measured 1278 and 1280
bytes, accounting for approximately 87% of the training dataset and 96% of the inference
dataset. This observation is further corroborated by the mode, which is highlighted in
purple in both Figures 18 and 19. This pattern can be attributed to the video content
being transmitted via YouTube, which aligns with the predominance of the QUIC protocol
in both datasets (as discussed in Subsection 5.1.2.1). Only a small fraction of packets
exceeded 1280 bytes (0.8% in the training dataset and 0.1% in the inference dataset),
and none of these utilized QUIC. This limitation may stem from the nature of QUIC,
which cannot be fragmented (128) and thus adheres to a conservative Maximum Transfer
Unit (MTU) value, as suggested in (129). In the inference dataset, the global MTU was
1400 bytes due to constraints on the simulated 5G NR interface, explaining the absence
of larger packets in Figure 19, which contrasts with the training dataset. Additionally,

the overall distribution of packet lengths differs between the two sets. As illustrated in

Figure 18 — Frame length distribution in eMBB training dataset

Youtube_cellular_training.frame.len

7
10 Mean: 713.44

Median: 708.50
10° 4 Mode: 1278

10° |

1044 |

| |
\“ LU

‘\M’Hi] “

I | k |
(RERRREERRRRL b b bl u’ ,, ..h..u b HM\ LM L L mt T - ‘
1001 ‘ ,, MMH \ll lh

O 0 \QQ \60 ,LQQ 'L"Q ,506 3‘)6 0«00 &60 (900 (960 600 660 ,‘QQ ,‘60 %QD %(90 900 9"0\,0“0@"0\}90\}6’0\:)90\:1,60\,300\,’5"0\,B‘(’Q\}"Q\,‘PQ
Packet Length (bytes)

Source: Created by the author (2025).

Frequency (Logarithmic Scale)

72

Figure 19 — Frame length distribution in eMBB inference dataset

youtube-1M-1080p_inference.frame.len

6 |
10 Mean: 625.93

Median: 597.00

105 Mode: 1280

1034 ‘ 77777777777 ‘
o) M i | |
‘ H“\H”Im “”\H\ ‘ ‘|| i \||’ ” H\H‘ th MM\M i \\’ (ol] H\h\ L ‘

NN ,\90 ,\‘60 ,LQQ ,Lc)Q ,500 360 D«QB D‘c)Q (960 660 600 660 ,‘QQ ,‘60 %00 %60 ()QD q‘)g,\QQQ,\Q‘)Q,\:_Q0,\\,‘)0,\‘106,\150,\300,\3‘)0&5‘00,\5,66,\500
Packet Length (bytes)

Source: Created by the author (2025).

1024 | |

Frequency (Logarithmic Scale)

)

10° 4

Figure 18, the training dataset exhibits five distinct frequency peaks for packet lengths
exceeding 1,000 packets: (i) between 40 and 180 bytes; (ii) at 650 bytes; (iii) between 1174
and 1192 bytes; (iv) between 1270 and 1278 bytes; and (v) at 1500 bytes. Conversely,
the inference dataset, depicted in Figure 19, shows only three peaks with frequencies
exceeding 100 packets: (i) between 52 and 126 bytes; (ii) between 1272 and 1280 bytes;
and (iii) at 1400 bytes. The frequency distribution for packet lengths outside these
ranges exhibits a comparable pattern. Consequently, these observed distributions likely
influenced the behavior of the mean and median values (respectively highlighted in red
and green), as visually confirmed by Figures 18 and 19. Notably, the distance between
these values experienced a slight variation when comparing the training and inference
datasets, changing from 713.44 and 708.50 in the training dataset to 625.93 and 597.00 in

the inference dataset, probably due to how the frequency peaks varied across the datasets.

Figure 20 — Frame length distribution in URLLC training dataset

naver59g3-10M_training.frame.len

107
Mean: 770.00
Median: 770.00
1084 Mode: 1500

105 4

104 4

| || ‘\\“\“‘\\ w

“ Gl | \Mml‘ bt R L

T T —
Ll |

o) W L

‘

O 0 \QQ '\60 100 '1«60 ’560 '5‘)0 D«QQ D‘c)D ‘)00 660 600 6\30 ,‘QQ 1‘)0 %00 %(90 900 (560‘\000'\06Q'\'\«QQ'\\«G)D'\’LQD'\'L%D\’EQQ'\g’0\}\00\,5‘66\?)00
Packet Length (bytes)

Source: Created by the author (2025).

Frequency (Logarithmic Scale)

73

Figure 21 — Frame length distribution in URLLC inference dataset

naver-tv-1M_inference.frame.len

1064
Mean: 724.92

v Median: 725.50
E 105 4 ode: 1400
i
I 1044
el |
S 1031 \ ‘
Sl b L T
;102< {11 1 | | ‘ |
A0 O o e e W oY
31014 ‘ 11N M‘ d| M‘ H ‘\ HH l”\‘\\ N | | I \\“ \L ‘ \“‘x\“
El A

1004 T i ,,,.4 I ,,,,,«, ST LT EEEL RIS I TEEREEEY PR PR (TR PR SR « A EERE BERE | [11 R

O 0 ,\90 \»60 ,LQQ ,Lc)() ,500 3‘)0 D«QQ D‘c)Q 5“0 660 600 660 ,‘QQ ,‘c)ﬂ) %00 %‘)0 900 960—\QQQXQC)Q\:\,Q0\“\,60'\’),06\"1,60{500\"560&&00»\&6)0\‘600
Packet Length (bytes)

Source: Created by the author (2025).

In the URLLC traffic, the majority (and consequently the mode) of captured
packets measured 1500 bytes (approximately 75%) and 1400 bytes (approximately 68%),
corresponding to the respective MTUs for the training and inference datasets. This
behavior aligns with the characteristics of a video live stream application, as previously
noted in the eMBB traffic analysis. The use of TCP and TLS for video transmission can
also be inferred from the analysis in Subsection 5.1.2.1. Figure 20 highlights another
significant point in the training dataset at 40 bytes, representing approximately 24% of
the dataset. In the inference dataset (represented in Figure 21), other notable lengths
include 52 bytes (approximately 14%), 64 bytes (approximately 10%), and 237 bytes
(approximately 3%). These packets may correspond to data transmitted alongside or
prior to the actual video stream, such as live chat, recommended videos, and other video
elements (e.g., descriptions, comments). The mean and median (colored in red and green in
Figures 20 and 21) were consistent within the same dataset and their variation comparing
the training and inference datasets occurred mostly because of the variation on the MTU

that is directly related to the mode and the amplitude of the distributions.
In the mMTC traffic, the training dataset was generated using fixed lengths of

128 or 160 bytes. This caused the mean, median and mode to converge to the same
values of 128 or 160, depending on the analyzed capture. In the inference dataset,
due to the implementation of the traffic generator (which sent a status report message
within the payload), the 100 PPS traffic exhibited lengths of 75 (the mode) and 48 bytes
(with only 6 packets out of 1 million). The remaining 1,000 packets generated using
the probabilistic approach had lengths of 72 bytes (approximately 59%, representing the
mode), 71 bytes (approximately 40%), and 48 bytes (approximately 1%). The behavior of
the training dataset aligns with the authors’ description of generating a synthetic traffic
burst (114), while the variability in the inference dataset is attributed to the dynamic
payload implemented by the traffic generator. The frequency distribution of the 100

4

PPS capture exhibited a convergent mean and median of 61.50, whereas the probabilistic

capture had a mean of 63.67 and a median of 71.

5.1.3 Hypothesis Tests

Hypothesis tests serve as a statistical tool for comparing two datasets by assessing
the evidence against a null hypothesis (Hy). This null hypothesis typically asserts that
there is no significant difference between the two groups, or that the data follows the same
distribution. In conjunction, an alternative hypothesis (H;) is often formulated, positing
that a difference exists, indicating that the data follows a different distribution (130).

In the context of this work, hypothesis tests are employed to compare datasets. If
a difference is identified (as discussed in Subsection 5.1.2), it is essential to determine

whether the difference in central tendency (e.g., mean or median) is statistically significant.

As suggested by (131), Mann-Whitney U test, as defined in (132), is applicable for

hypothesis testing the distributions of two samples. The assumptions of this test are:

1. The samples are independent and identically distributed (iid)

2. The samples can be ranked
Within this test, the hypotheses are defined as:

e Hj: The distributions of all samples are equal

o H;i: The distributions of one or more samples are not equal

Additionally, as suggested by (130) and (133), Pearson’s chi-squared test, defined

in (134), is also suitable for hypothesis testing. Its assumptions include:

1. The samples used in the calculation of the contingency table are independent

2. Fach cell of the contingency table contains 25 or more observations.
The hypotheses for this test are defined as:

e Hy: There is no dependency between the samples (i.e., the samples are independent)

e H,: There is a dependency between the samples.

Failing to reject the null hypothesis (Hy) in Pearson’s chi-squared test indicates
insufficient evidence to demonstrate a dependent relationship between the features. Con-
sequently, a p-value exceeding the predetermined threshold suggests that any observed

differences may be attributable to random chance.

As illustrated in Figure 22, variable measures are categorized as follows (135):

1)

o Numerical continuous: An infinite number of values exist between two distinct points

within a given range

e Numerical discrete: A finite amount of whole numbers are available within a speci-

fied range
o C(Categorical ordinal: Nominal data that can be ranked or sorted

o (Categorical nominal: Nominal data that cannot be ranked or sorted

Figure 22 — Variable measures

[\/ariable Measures

Y Y

[Numerical] ‘ Categorical ’

| |
v !

v v
[Continuous] [Discrete] ‘ Ordinal] [Nominal]

Source: Created by the author (2025). Adapted from (136).

Table 8 illustrates the mapping of features utilized by the models (as detailed in

Subsection 5.2.2) based on these variable measures.

Table 8 — Feature measures

Measure Feature Name
Numerical Time delta
Continuous Timestamp

QUIC__packet_ length
TCP_window _size
Frame total length
TCP__completeness
TCP__header_length
Frame payload length
TCP_window size scale

Numerical
Discrete

Source: Created by the author (2025).

In this context, the Mann-Whitney U test was applied to the numerical continuous
features, while Pearson’s chi-squared test was employed for the numerical discrete features.
These tests were selected due to the non-normal distribution and unequal variance observed

in the training and inference datasets (as outlined in Subsection 5.1.2), and because

76

applying the Mann-Whitney U test to the discrete features yielded inconclusive results

given the sparse nature of the data.

Table 9 presents the p-values for each test executed comparing the training and
inference datasets of each class. In the statistical tests performed, a p-value below the
threshold («) indicates that the null hypothesis (Hp) is rejected, whereas a p-value above
this threshold signifies that the null hypothesis failed to be rejected. The raw test results

detailed below are archived on Zenodo (39).

Table 9 — Hypothesis tests p-value for each scenario

eMBB URLLC mMTC burst mMTC prob.
Feature Name

class class class class
Time delta 0 0 0 0
Timestamp 0 0 0.64554 0.3629
TCP_window_size 0 0 1 1
Frame total length 0 0 0 0
QUIC__packet_ length 0 1 1 1
TCP__completeness 0 0 1 1
TCP__header_length 0 0 1 1
Frame_payload length 0 0 0 0
TCP window_size scale 0 0 1 1

A common threshold value, corresponding to a 95% confidence level, is a = 0.05,
which is considered the minimum acceptable level for statistical tests involving numerical
variable measures (131, 135). Therefore, as seen on Table 9, the distribution of features in
the eMBB datasets was statistically significantly different in the training and inference
datasets, as all tests returned p-values of 0. In the URLLC class, the QUIC_packet_length
feature showed no significant difference with a p-value of 1, while all other features
indicated significant differences, suggesting that the distribution differences between the
training and inference datasets were still statistically relevant. In contrast, for the mMTC
scenarios, out of the nine features tested, only three (Time_delta, Frame_total_length,
and Frame_payload_length) had statistically significant differences on their distributions,
while the remaining features did not. Based on these results, it can be concluded that
the differences between the training and inference datasets used in the mMTC scenarios

were not statistically significant, while the differences in the datasets utilized in eMBB
and URLLC were.

5.2 MACHINE LEARNING MODELS FOR CLASSIFICATION

Considering the pipeline outlined in Section 4.1 and the 3GPP specifications detailed
in Subsection 2.1.3.3, which stipulate that ML models may be employed for data analytics

tasks in 5G networks, this section presents the results of a ML performance evaluation

7

experiment focused on UE classification within the 5G context. The models tested in this
section comprise: Linear Regression (LR), Histogram-based Gradient Boosting (HGB),
Light Gradient Boosting Machine (LGBM), Multilayer Perceptron (MLP), Random Forest
(RF), Linear Support Vector Classification (SVC), eXtreme Gradient Boosting (XGB),
Decision Tree (DT), AdaBoost, Stacking and Voting. Subsection 5.2.1 describes the model
tuning processes performed. Additionally, the model feature importance is analyzed in

Subsection 5.2.2. Then, the model performance results are detailed in Subsection 5.2.3.

5.2.1 Model Tuning

Initially, as suggested in (137), a model hyperparameter optimization was attempted
using the Differential Evolution (138) method. However, it could not converge with the
parameters listed in the model_tuning.py script — available in Appendix P — of the
NWDAF_ml module.

Given the higher level of explainability and ease of visualization of the DT model,
as well as the customization possibilities of the Stacking and Voting ensemble models,

manual parameter tuning was performed on these models.

The DT model was analyzed via the dt_visualization.py script — Appendix Q.
After the initial analysis, the three parameters min_samples_leaf (which controls the
minimum number of samples required at a tree leaf node), min_samples_split (the
minimum number of samples required to enable splitting an internal node), and max_depth
(the maximum depth of the tree branches) were adjusted to optimize the purity of the
tree nodes, avoid having node splits with a very low number of instances, and balance the

tree split decisions avoiding overfitting.

Considering that a Stacking model is suggested as a way to improve the model
performance of base classifiers using another layer of classifiers (75), and that, as shown
in (59) and (97), ensemble techniques may improve the classification performance, the
ensemble based classifiers were also calibrated. By leveraging the customization possibilities
of the Stacking and Voting ensemble models, the models with the best in class results
were used as the base classifiers of the Stacking model, additionally, the Voting model had

also the model vote weight calibrated aiming for avoid overfitting.

5.2.2 Feature Importance

To understand the weights assigned to the learned features by the models, average
feature importance was extracted during model training and is presented in Tables 10
and 11. Among the eleven models tested, only the DT and RF models provided the
feature_importances_ function in Scikit-learn. Notably, as discussed in Subsection 5.2.1,
the DT model exhibits a higher level of explainability. After three executions, on average,
both models consistently assigned the highest weight to Time delta, with 51.12% for DT

78

and 20.89% for RF. This prominence is supported by the fact that, among the available
features, Time delta exhibited the highest variability compared to the features with

statistically significant variations in their distribution, as seen in Subsection 5.1.3.

Table 10 — Average feature importance for DT

Feature Name Weight

Time delta 0.5111874
TCP__window__size 0.4868625
Frame total length 0.0009336

Frame payload_length 0.0005355
TCP__header_ length 0.0000103
TCP__completeness 0.0000050

Source: Created by the author (2025).

Table 10 indicates that the next significant feature for DT was TCP_window_size
with 48.69%. The remaining features — Frame_total_length, Frame_payload_length,
TCP_header_length, and TCP_completeness — accounted for just approximately 0.15%
of the weight, while 20 features were excluded by the model. This outcome is consistent
with the available features outlined in Subsection 4.5.1 and the hyperparameter tuning
discussed in Subsection 5.2.1. As noted in Subsection 5.2.1, the limited depth of the DT
directly affected the weight distribution, as each decision or node split relies on a feature,

and the number of splits correlates with the branch depth.

Table 11 — Average feature importance for RF

Feature Name Weight

Time_delta 0.2088668
QUIC__packet_ length 0.1620190
TCP_window_size 0.1387653
Frame total length 0.1321380
TCP__completeness 0.0986426
TCP__header_length 0.0903932

Frame payload_length 0.0834209
TCP_window_size scale 0.0808604
Timestamp 0.0048154

Source: Created by the author (2025).

As shown in Table 11, the RF model selected a greater number of features (9 compa-
red to 6 in DT). The top three features included Time_delta (20.89%), QUIC_packet_len
gth (16.20%) and TCP_window_size (13.88%), time and length-related packet features. Ad-
ditionally, Frame_total length (13.21%), TCP_completeness (9.86%), TCP_header_len
gth (9.04%), Frame_payload_length (8.34%), and TCP_window_size_scale (8.09%) re-

ceived a similar importance demonstrating the prevalence of length-related features.

79

Compared to the mentioned features, Timestamp (0.48%) received considerably less im-
portance, probably due to the weight assigned to Time_delta, with the other 17 features
discarded by the model. This more distributed weight allocation aligns with the RF
model algorithm, which employs multiple DTs and feature bagging to mitigate bias and
overfitting (139, 140).

5.2.3 Model Performance

The experimental step can be simplified by testing various ML algorithms through
their libraries, with the evaluation of the most suitable options left to domain specialists

or based on the results achieved during the experimentation.

Effective model performance evaluation is a crucial component of ML pipelines,
as it serves as a benchmarking mechanism and helps in determining the reliability and
generalization levels of developed models in real-world applications. The specification (61)
only requires model accuracy as a performance metric, which is measured by comparing
inference results against ground truth data. Following the pipeline of Section 4.1, accuracy
and the extra four metrics described in Subsection 2.2.2 were used to evaluate the
performance of the trained models in the training (Subsection 5.2.3.1) and inference
(Subsection 5.2.3.2) stages. The raw model performance results detailed on the following

sections are archived in Appendix S and on Zenodo (39).

5.2.53.1 Training

Out of a total of 22,023,650 samples in the training dataset outlined in Section 4.3,
70% (15,416,555 samples) were utilized for model training, while the remaining 30%
(6,607,095 samples) were reserved for testing. The results of the F1-score metric of the
testing are detailed in Table 12. The “average” metric refers to the average of all classes,
with classes 0, 1 and 2 representing eMBB, URLLC, and mMTC, respectively.

Considering the average performance of three executions, all models achieved
performance metrics exceeding 99%. These high performance results were anticipated due
to the substantial volume of training data available. LR is commonly used as a baseline
model, so it was included in the implementation. However, when compared to the other
linear model (Linear SVC), it exhibited the lowest performance results. Concerning the
average F'l-score displayed on Table 12, the manually calibrated and ensemble models
closely surpassed the linear models with Fl-scores between 99.61% (Voting and DT) and
approximately 99.8% (AdaBoost and Stacking). MLP and HGB exhibited 99.96% and
99.98% F1-score performance, while the remaining models (XGB, LGBM and RF') achieved
more than 99.99%. Based on these results, along with those derived from the Inference
presented in Section 5.2.5.2, it is evident that the models manifested signs of overfitting in

relation to the training data. The Appendix R contains the confusion matrices of the test

Table 12 — Training average F'1-score performance results per class

Model Class 0 Class 1 Class 2 Average

Fl-score Fl-score Fl-score Fl-score
RF 0.99999374 0.99999342 1.0 0.99999576
LGBM 0.99999337 0.99999287 0.99999985 0.99999541
XGB 0.99998299 0.99998203 0.99999993 0.99998842
HGB 0.99983398 0.99982529 0.99999985 0.99988738
MLP 0.99948346 0.99946733 0.99999035 0.99965001
Stacking 0.99707863 0.99694395 0.99999690 0.99802409
AdaBoost 0.99695374 0.99685454 0.99994667 0.99793582
DT 0.99424371 0.99402167 0.99999529 0.99612089
Voting 0.99421445 0.99403070 0.99995764 0.99610113
SVC 0.99419067 0.99399588 0.99996766 0.99608524
LR 0.99363267 0.99399833 0.99940700 0.99570696

30

Source: Created by the author (2025).

step and illustrate that the majority of FPs and FNs occur between eMBB and URLLC
samples. This phenomenon may be attributed to the similarities in the characteristics of
the network services generating these types of traffic, as described in Subsection 4.5.3,
and further discussed in Subsection 5.1.2. Additionally, the Appendix S contains the

tables with the all the results from the performance metrics detailed in Subsection 2.2.2.

Another evaluation perspective is the performance of various models based on their
training times, as presented in Table 13. The table includes three key measurements
for each of the eleven models: training time, disk write time, and total training time.
Training time refers to the duration required to train each model, while disk write time
indicates the time spent to save the trained model to disk. The total time is the sum of
these two measurements, providing insight into the overall efficiency of model deployment,

particularly concerning in dynamic environments that necessitate frequent retraining.

Among the models analyzed in three runs, DT exhibited the best training time at
approximately 23 seconds, and a disk write time of 0.28 Milliseconds (ms). LR followed with
the second-best training time of around 31 seconds and a disk write time of 0.49 ms. LGBM
ranked third, requiring approximately 40 seconds for training and 4.6 ms for disk writing.
Notably, SVC demonstrated the highest efficiency in disk write time, yet it ranked sixth in
training time. In contrast, DT, a more complex model than LR, exhibited superior training
efficiency due to the parameter tuning described in Subsection 5.2.1, which limited tree
depth and resulted in a smaller model occupying only 3.0 Kilobytes (kB) on disk. Linear
SVC and LR also had minimal disk space requirements, at 1.8 kB and 1.9 kB, respectively.
Conversely, RF required over 9 seconds for disk writing, consuming 9.5 Megabytes (MB).
The training time correlated with model complexity, with ensemble models being the

slowest; RF’s prolonged duration stemmed from insufficient hyperparameter tuning, based

81

Table 13 — Model average training time

Average Average Total Average

Model Training Disk Write Training
Time (ms) Time (ms) Time (ms)

DT 22984.7205 0.2799 22985.0003
LR 31293.6348 0.4580 31294.0927
LGBM 39541.0260 4.5923 39545.6183
XGB 89135.0785 3.4888 89138.5673
HGB 115260.8451 3.7594 115264.6045
SVC 128639.4635 0.2562 128639.7197
MLP 431639.5728 0.5431 431640.1159
AdaBoost 487523.4267 1.0677 487524.4944
Voting 523247.1393 1.1789 523248.3183
RF 719960.1841 9.2561 719969.4402
Stacking 3366891.2883 1.4558 3366892.7441

Source: Created by the author (2025).

on the tree visualizations available in (41), which revealed considerably deeper trees. This
contrast highlights the trade-offs between training efficiency and disk performance across

different models.

5.2.3.2 Inference

To further validate the trained models, the inference step was executed to assess
their performance in a real-world scenario using previously unseen data. The results of
the inference process, including accuracy, weighted recall (as defined in Appendix X),
and Fl-score, are presented in Tables 14-17. Precision was consistently 100% across all
inferences and is therefore omitted to conserve space. The number of samples used for
inference was 1,004,464 for eMBB, 1,042,918 for URLLC, 1,069,973 for mMTC (burst),
and 1,007 for mMTC (probabilistic) classes. The dataset used for this process was created

as described in Subsection 5.1.1.

In the eMBB class (results shown in Table 14), all models, as illustrated in the confu-
sion matrices in Appendix T, achieved accuracy, recall, and Fl-scores exceeding 99%. This
performance aligns with expectations based on the results presented in Subsection 5.2.5.1,

which indicated overfitting to the training data.

As shown in Table 15, the URLLC class, the SVC, LR, and DT models achieved
the highest Fl-scores in the URLLC class, exceeding 99%. The Voting model scored
approximately 98.87%), while the other models exhibited subpar performance due to the
overfitting. Despite this overfitting, the linear models effectively identified URLLC packets,
whereas DT and Voting models benefited from the tuning described in Subsection 5.2.1.

Given the experimental context outlined in Subsection 5.1.1 and the results in Subsec-

Table 14 — eMBB inference performance results

Model Accuracy Recall F1-score
RF 0.99839616 0.99839616 0.99919744
LGBM 0.99829660 0.99829660 0.99914758
XGB 0.99821497 0.99821497 0.99910669
HGB 0.99817614 0.99817614 0.99908724
MLP 0.99770027 0.99770027 0.99884881
AdaBoost 0.99750613 0.99750613 0.99875151
Stacking 0.99653845 0.99653845 0.99826623
Voting 0.99598891 0.99598891 0.99799042
DT 0.99598194 0.99598194 0.99798692
SVC 0.99591822 0.99591822 0.99795494
LR 0.99591723 0.99591723 0.99795444

Source: Created by the author (2025).

Table 15 — URLLC inference performance results

Model Accuracy Recall F1-score
SVC 0.99999041 0.99999041 0.99999521
LR 0.99524891 0.99524891 0.99761880
DT 0.99421335 0.99421335 0.99709828
Voting 0.97760035 0.97760035 0.98867332
Stacking 0.27436193 0.27436193 0.43058715
MLP 0.13418696 0.13418696 0.23662230
LGBM 0.13289731 0.13289731 0.23461493
HGB 0.13191449 0.13191449 0.23308208
XGB 0.11727768 0.11727768 0.20993470
RF 0.01483722 0.01483722 0.02924058
AdaBoost 0.00000096 0.00000096 0.00000192

Source: Created by the author (2025).

tion 5.2.5.1, it can be inferred that SVC, LR, DT, and Voting demonstrated superior
generalization of the features learned compared to the other models. The matrices in
Appendix U confirm that the majority of misclassifications were associated with the eMBB
class, which is attributed to the operational similarities in the services generating network

traffic for theses classes, as discussed in Subsections 5.1.2.2 and 5.2.2.

The results in Tables 16 and 17 indicate that even when the mMTC traffic similar
to the training data (i.e., burst UDP traffic) was applied during inference, most models still
failed to accurately classify packets. Notably, AdaBoost achieved an F1l-score exceeding
99.99% for classifying mMTC burst packets. However, due to its subpar performance
in the URLLC class (as shown in Table 15), it can be concluded that, compared to the
other models, AdaBoost overfitted on the eMBB and mMTC data rather than on the
eMBB and URLLC classes. As discussed in Subsection 5.1.3, this limitation arises from

Table 16 — mMTC probabilistic inference performance results

Model Accuracy Recall F1-score
AdaBoost 0.01390268 0.01390268 0.02742409
Voting 0.01290963 0.01290963 0.02549020
DT 0.01092354 0.01092354 0.02161100
HGB 0.01092354 0.01092354 0.02161100
LGBM 0.01092354 0.01092354 0.02161100
RF 0.01092354 0.01092354 0.02161100
XGB 0.01092354 0.01092354 0.02161100
MLP 0.01092354 0.01092354 0.02161100
Stacking 0.01092354 0.01092354 0.02161100
SVC 0.01092354 0.01092354 0.02161100
LR 0.00297915 0.00297915 0.00594059

Source: Created by the author (2025).

Table 17 — mMTC burst inference performance results

Model Accuracy Recall F1-score
AdaBoost 0.99998878 0.99998878 0.99999439
LR 0.00003830 0.00003830 0.00007660
Voting 0.00002990 0.00002990 0.00005980
RF 0.00000561 0.00000561 0.00001120
XGB 0.00000561 0.00000561 0.00001120
DT 0.00000561 0.00000561 0.00001120
HGB 0.00000561 0.00000561 0.00001120
LGBM 0.00000561 0.00000561 0.00001120
SVC 0.00000561 0.00000561 0.00001120
MLP 0.00000561 0.00000561 0.00001120
Stacking 0.00000561 0.00000561 0.00001120

33

Source: Created by the author (2025).

significant differences between the mMTC data in the training and inference datasets. The
confusion matrices in Appendices V and W reveal that, with the exception of the Linear
SVC and Stacking models — both of which misclassified a substantial number of mMTC
packets as URLLC — other models incorrectly classified mMTC packets as eMBB traffic
in both burst and probabilistic scenarios. This misclassification persisted despite findings
in Subsection 4.1.2.2, which demonstrated that mMTC traffic substantially differentiated
itself based on packet length variation, and Subsection 5.2.2, which highlights the models’
focus on the length-related features. Additionally, Appendix X complements the definitions
in Subsection 2.2.2 and validates the results in this subsection by comparing not only
different metrics of a given model but also the metrics of different models, explaining how

they might converge to similar values.

84

Another aspect of the inference process is the time required for classification.
Measuring this metric is crucial in environments with a high number of devices, where
numerous classifications must be performed. The inference time was measured, with
the average results from three runs displayed in Tables 18 and 19. These tables include
classification time, which refers to the duration needed to classify the inference data, and
total inference time, which encompasses the entire process of generating an inference
response (loading the model from disk, preparing the data for classification — such as
storing and then removing labels from the actual data — executing the classification, and

calculating performance results).

Table 18 — eMBB, URLLC, and mMTC burst average 3 runs inference time

Average Total Average

Model Classification Model Inference

Time (ms) Time (ms)
DT 29.1556 DT 382.5519
LR 43.7871 SVC 421.5565
SVC 45.9439 LR 443.8588
XGB 262.5967 MLP 844.9059
MLP 470.9609 XGB 1085.5019
LGBM 751.0224 LGBM 1212.5192
RF 1148.6976 RF 1528.0171
AdaBoost 1666.1416 AdaBoost 2020.9529
Stacking 1803.3771 Stacking 2180.9692
Voting 1850.9546 Voting 2208.9829
HGB 2003.1748 HGB 2376.4723

Source: Created by the author (2025).

Table 18 contains the inference time results for the classes with approximately
1 million packets. These classes were grouped due to their similar scale. On average,
DT was the fastest model, achieving approximately 29 ms for classification and 383
ms for total inference time. It was followed by the linear models, LR and SVC, with
classification times of approximately 44/444 ms and 46/422 ms, respectively. Other models
required significantly more time for packet classification: XGB took approximately 263
ms for classification and 1,086 ms in total; MLP required about 471/845 ms; LGBM
approximately 751/1,213 ms; RF approximately 1,148/1,528 ms; AdaBoost approximately
1,666/2,021 ms; Stacking approximately 1,803/2,181 ms; Voting approximately 1,850/2,209
ms; and HGB approximately 2,003/2,376 ms. These results align with the ones observed
during model training (Section 5.2.5.1), indicating that more complex models require
more time for classification and related tasks. The custom ensemble models (Stacking and
Voting), exhibited poorer time performance due to the combination of multiple models.
DT outperformed the linear models (SVC and LR) due to the parameter tuning described

in Subsection 5.2.1, which limited tree size.

85

Table 19 — mMTC probabilistic average 3 runs inference time

Average Total Average

Model Classification Model Inference

Time (ms) Time (ms)
DT 0.7357 DT 1.7479
LR 0.7566 SVC 1.8929
SVC 0.7627 LR 2.0565
MLP 1.0639 MLP 3.1155
LGBM 1.9073 LGBM 5.1222
HGB 4.5908 HGB 7.9354
XGB 5.2582 AdaBoost 8.8221
RF 5.8492 XGB 10.1210
AdaBoost 7.0638 Voting 10.4994
Stacking 8.5395 Stacking 10.5768
Voting 8.6442 RF 11.3975

Source: Created by the author (2025).

In the mMTC class with probabilistic traffic, Table 19 indicates that as the number
of packets to be classified decreased, the performance ranking shifted, and the time
differences among the models were significantly reduced. The fastest model in this scenario
was DT, with approximately 0.74 ms for classification and 1.75 ms in total, closely followed
by LR at approximately 0.76 ms for classification and 2.06 ms in total. Linear SVC
ranked third with approximately 0.76 ms for classification and 1.89 ms in total. The other
models performed as follows: MLP (approximately 1.06/3.12 ms), LGBM (approximately
1.90/5.12 ms), HGB (approximately 4.59/7.94 ms), XGB (approximately 5.26/10.12 ms),
RF (approximately 5.85/11.40 ms), AdaBoost (approximately 7.06/8.82 ms), Stacking
(approximately 8.54/10.58 ms), and Voting (approximately 8.64/10.50 ms). Despite the
changes in ranking, the trend of DT being followed by the linear models, with ensemble

models occupying the last positions, remained consistent.

Notably, total inference time was influenced by the implementation of statistical
measurements, as detailed in Appendix N. In terms of measured times, DT consistently
emerged as the fastest model for classification, outperforming the linear models (LR
and SVC), which ranked among the top three classification models. XGB maintained a
consistent fourth place in classification time during the inferences with a larger number of
packets. In contrast, HGB exhibited the poorest classification and total inference times
across all inferences with 1 million packets, while the ensemble models (AdaBoost, Stacking

and Voting) ranked last due to the added complexity of combining multiple models.

36

5.2.8.3 Cross Validation

To deeply evaluate the results from the test phase displayed in Subsection 5.2.3.1
and create extra data to compare with the inference results in Subsection 5.2.5.2, a cross
validation was performed. The cross validation was implemented using the Stratified
K-fold method. Table 20 contains the average performance (including precision, recall,
and Fl-score) and standard deviation results obtained using 10 folds (i.e., K = 10 with
90/10% train/test splits).

Table 20 — Cross validation average performance results of the test phase

Model Precision Recall F1-score

LGBM 0.99892292 (£0.00148) 0.99893171 (£0.00146) 0.99845948 (+0.00212)
RF 0.99855035 (40.00228) 0.99852330 (£0.00239) 0.99789003 (£0.00337)
XGB 0.99754671 (40.00442) 0.99753637 (£0.00442) 0.99642809 (£0.00646)
AdaBoost 0.99698574 (4+0.00429) 0.99664981 (£0.00461) 0.99631914 (£0.00632)
HGB 0.99704642 (4+0.00449) 0.99707358 (£0.00450) 0.99577591 (£0.00659)
MLP 0.99621339 (40.00634) 0.99628071 (£0.00636) 0.99455854 (£0.00935)
DT 0.99613499 (40.00493) 0.99617142 (£+0.00490) 0.99444911 (£0.00720)
SVC 0.99596533 (40.00658) 0.99594951 (40.00653) 0.99433717 (£0.00968)
LR 0.99554671 (£0.00645) 0.99358971 (£0.00669) 0.99402424 (£0.00954)
Voting 0.99568200 (40.00641) 0.99558635 (£0.00633) 0.99389705 (£0.00945)
Stacking 0.99544737 (£0.00629) 0.99527674 (£0.00619) 0.99341005 (£0.00923)

Source: Created by the author (2025).

Contrasting the results from the test phase (outlined in Subsection 5.2.5.1), the
Voting and Stacking models exhibited the lowest performance, achieving F1l-scores of
approximately 99.34% and 99.39%, respectively. Consistent with the test phase results,
the linear models (LR and SVC) achieved Fl-scores of approximately 99.40% and 99.44%,
respectively. Furthermore, LGBM, RF and XGB maintained their position as the top
three best models, attaining Fl-scores of approximately 99.85%, 99.79%, and 99.64%,
respectively. It is noteworthy that all models consistently demonstrated performance levels
exceeding 99% across cross validation, with with standard deviations below 1%. This
behavior along with the results previously analyzed in Subsections 5.2.5.1 (Training) and

5.2.8.2 (Inference), indicates a model overfitting to the training data.

To further elaborate on the results of the training phase presented in Subsec-
tion 5.2.3.1, the training and classification times of each model were also measured during
the cross validation, with their average and standard deviation summarized in Table 21.
The ranking remained fairly consistent with the training results, with DT and LR identified
as the fastest models, while Stacking was the slowest. In comparison to the inference
results discussed in Subsection 5.2.5.2, the classifier ranking also remained consistent,
with DT again recognized as the fastest model, followed by the linear models, while Voting

was the slowest. Thus, even though the amount of data used to train and test the models

87

Table 21 — Cross validation average time results of the test phase

. Average
Model Aver.a ge Train Model Classification
Time (s) .
Time (s)
DT 41.7879 (+4.1971) DT 0.5090 (40.4237)
LR 125.7473 (£7.2257) LR 0.5838 (£0.3461)
SVC 340.4176 (£57.1157) SVC 0.5946 (£0.4041)
XGB 616.3800 (+22.4426) MLP 1.7114 (£18.1521)
HGB 752.7511 (£80.6718) XGB 5.4557 (4£4.9903)
MLP 885.5553 (+183.9418) RF 5.9906 (44.7568)
LGBM 1310.9774 (£13.6833) Stacking 12.7450 (£10.2109)
AdaBoost 1335.3539 (+109.4027) LGBM 14.2706 (£12.1558)
Voting 1462.3592 (+71.7484) HGB 18.7169 (+24.1268)
RF 1719.6241 (£85.3389) AdaBoost 23.5223 (40.9397)
Stacking 9078.8962 (+361.6314) Voting 24.6726 (£25.0216)

Source: Created by the author (2025).

has changed (90%/10% in the cross validation compared to 70%/30% in the training), the
results from the cross validation are relatively consistent with those obtained from both

the training and inference phases, corroborating that the models suffered overfitting.

5.3 DISCUSSION

The literature review presented in Section 3.2 indicates that classification techniques
are prevalent in the context of 5G networks. However, as noted in (103) and the reviewed
literature, the application of classifiers to categorize devices across various 5G service axes
remains an unresolved issue. Furthermore, as demonstrated in (90) and (100), classification
tasks — such as identifying the appropriate service axis for a given UE — may be too
complex for a single ML model to handle effectively. In this context, following the suggestion
of the authors of (90) to employ four models in a HAC and a voting system could enhance
classification performance, and the supervised learning models found on the literature
review, the ensemble models AdaBoost, Stacking and Voting were implemented and tested.
The findings in Subsection 5.2.3, particularly those from Subsection 5.2.3.2, support
the notion that a model may excel in detecting one class while struggling with others.
Despite the application of multiple models, the mMTC class could not be accurately
detected. This highlights the necessity for further exploration of feature selection methods
that specifically target the identification of sparse data patterns in mMTC scenarios.
This necessity is reinforced by the results in Subsections 5.1.3 and 5.2.3, which indicate
that the eMBB and URLLC datasets exhibit statistically different distributions, while
the mMTC dataset does not; nevertheless, the models successfully identified eMBB and
URLLC packets. Additionally, (100) suggests investigating time series data generated

38

by packet traffic, a suggestion supported by the feature importance results presented in
Subsection 5.2.2, while (101) recommends utilizing unsupervised learning methods as a

means to differentiate among service axes in UE classification.

Another perspective that may elucidate the results in Subsection 5.2.3 is the
impact of user interactions on model inference performance, as discussed in (87) and (100).
These interactions can disrupt transmission frequencies, complicating the model’s ability
to extract patterns or generalize effectively. The study (100) illustrates the challenges in
generalizing patterns from datasets that include traffic from smart temperature sensors
and smartwatches, where user behavior significantly influences traffic patterns. The results
indicate that the accuracy of detecting smartwatches was nearly 0%, regardless of the
dataset utilized. Consequently, the authors assert that device classification remains an
open problem within the field of Computer Networks and recommend future investigations

into service-aware scenarios, where devices are classified based on the services they utilize.

As detailed in Section 4.3, the training dataset was heavily unbalanced, comprising
10 million samples for eMBB and URLLC classes compared to only 1 million for mMTC.
The results presented in Subsection 5.2.3 were obtained, as outlined in Section 4.5.2, after
balancing the data through SMOTE. Despite this balancing, the models demonstrated signs
of overfitting. Therefore, conducting a detailed feature analysis (e.g., using the Pearson
Correlation Coefficient (142), as in (143)) may reveal relationships between features,
facilitating feature reduction or the addition of new features to benefit model learning. As
suggested in (133), automated hyperparameter tuning (e.g., via Grid Search, as in (137))

could be beneficial, either individually or in combination with the aforementioned methods.

It is important to note that, as described in Subsection 5.1.1, traffic captures
occurred at the UPF, which differs from the data collection methods used to create the
training datasets (110) and (114). This discrepancy likely influenced model inference
performance, as evidenced by the results in Subsection 5.2.3.2. Furthermore, the occurrence
frequency of protocols varies significantly between the training and inference datasets, as
shown in Subsection 5.1.2.1. For instance, the eMBB class includes PNIO in the inference
dataset, which was absent in the training data. This variation can be attributed to both
the locations of the captures (e.g., in the UE or in the 5GC’s UPF) and the evolution
of services generating the traffic over time (e.g., newer protocols being adopted), as the
inference dataset was created in 2025, while the training datasets (110) and (114) were
compiled in 2022 and 2021, respectively. The results in Subsection 5.1.3 also corroborate
that the difference between the distributions of the training and inference data in the eMBB
and URLLC were statistically significant. Given the findings in Subsection 5.2.2, which
highlight the importance of the inter packet arrival time (Time_delta), it is plausible that
model performance was adversely affected due to the differences in the traffic generator
implementation in the mMTC scenario. Additionally, these results suggest that model

retraining is essential to maintain high levels of classification performance, due to the

89

expected changes in the services transmitting packets through the 5GC.

Regarding the training and classification times discussed in Subsection 5.2.3, DT
consistently emerged as the fastest model for these tasks. While DT demonstrated superior
performance during training and cross validation, it was significantly outperformed by
AdaBoost in mMTC burst classification (0% vs. approximately 99.9% F1-score). Therefore,
if training and classification times are prioritized — such as in dynamic environments
requiring frequent model retraining and high inference rates due to numerous devices —
DT might be the preferred model. However, besides achieving commendable classification
performance in eMBB and URLLC classes, DT, like the other models, failed to correctly
classify packets in the mMTC capture scenarios. Notably, the model raw performance

results are publicly available on Zenodo (39).

Finally, it is crucial to emphasize that integrating the NWDAF with the SBI of the
5GC, rather than operating in offline mode, would facilitate automatic data acquisition
from network packets. This integration would streamline the processing steps outlined in
Section 4.1, enable the generation of classification results as presented in Subsection 5.2.3,
and support decision-making processes that influence the operation of the 5GS, such
as RAN transmission frequency adaptation as in (10), slicing reconfiguration as in (11)
and (12), and UPF selection as in (13).

5.4 SUMMARY

This chapter presented the experimental research results. The packet capture
executed to generate the 5G inference dataset was also presented. A statistical frequency
analysis of two features (Protocol Labels and Frame Length) along with hypothesis tests
on the features identified as significant by DT and RF, was conducted to compare the
training dataset with the inference dataset, thereby supporting the discussion on model
performance results. The performance of the models was evaluated across three distinct
stages: training, inference, and cross validation, with accompanying discussions on the

obtained evaluation results.

Notably, the DT model demonstrated exceptional classification time performance,
achieving approximately 23 seconds of model training time and an average of 42 ms
during cross validation. It recorded around 29 ms for inference (excluding the mMTC
probabilistic capture, where it achieved approximately 0.7 ms), making it the fastest model
while maintaining F1-scores exceeding 99% in both the test and cross validation phases,
and, respectively, 99.80% and 99.71% in eMBB and URLLC inferences, thus exhibiting
commendable classification performance. In contrast, AdaBoost was the only model
capable of detecting the mMTC packets in the burst scenario. Besides also achieving over
99.8% F1-score in the eMBB inference, it completely failed to detect the URLLC packets.

90

6 CONCLUSION

Following the selection of two real-world 5G traffic datasets, experiments were
conducted with eleven distinct ML models within an implemented NWDAF-based functi-
onality, demonstrating the classification of UEs based on network traffic observed in the
environment, while also conducting a model performance evaluation. Additionally, this
work successfully achieved the development of a 5G simulated experimental environment
utilizing the FAD tool, alongside the creation of a 5G simulated traffic dataset generated

by a custom traffic generator.

The experimental results indicated that while the DT model was the fastest classifier
in terms of training, cross validation, and inference, its performance during inference was
significantly influenced by the the training data used, making it incapable of accurately
classifying mMTC packets in the inference dataset. In contrast, AdaBoost successfully
detected eMBB and mMTC packets in the burst inference scenario; however it failed to do
so in the URLLC and mMTC probabilistic scenarios. Notably, the mMTC class presented
the greatest challenge for the models to learn under the current conditions. As discussed
through the Chapter 5, this difficulty arose from differences in the capture environments,
the implementation of the traffic generator in the mMTC probabilistic capture, and the
differences in the distributions of mMTC captures for the analyzed features. Despite these
challenges, which may necessitate retraining, the use of the models remains promising due

to the performance results presented in Subsection 5.2.3.

6.1 CONTRIBUTIONS

This work has made scientific and technical contributions to the Computer Networks
field focusing on data analytics for UE classification within 5G networks. Through a
comprehensive literature review, the current state of the art in UE classification was
investigated focusing on open science aspects, thereby identifying the need to evaluate
using ensemble learning models. Moreover, a publicly available 5G simulated traffic
capture dataset comprising three different types of traffic was generated, facilitating

further experimentation and validation in the domain.

Furthermore, it was possible to support the open science technical landscape by
implementing a 5G simulated testing environment using the FLOSS FAD tool, alongside
the development of network traffic generation prototypes, implementing of NWDAF-like
functionality in the form of a ML pipeline to classify UEs according to their network
traffic. The release of the source code, dataset (in the mode detailed PCAP format), and
supporting documentation not only improves the reproducibility of the obtained results

but also serves as a valuable resource for researchers and practitioners in the field.

91

6.2 LIMITATIONS

The results achieved by the machine learning models indicate that accurate detec-
tion of the mMTC class necessitates specific data augmentation or feature engineering

techniques, along with more comprehensive model tuning.

Additionally, the designed pipeline operates solely in an offline mode, requiring
prior capture of the packets utilized for training. The NWDAF functionality remains to
be implemented as a 5G NF integrated into the 5GC, which is essential for enabling the

use of inference results by other consumer NFs.

Moreover, the file preprocessing functions utilized by pcap_extract.sh and export_
JSON. py exhibit high RAM usage, which limits task parallelization and necessitates subs-

tantial memory resources for execution.

Furthermore, the implemented solutions have not been validated in environments
with a higher number of devices, which may affect the volume of data available for
classification. This limitation also necessitates the inclusion of additional applications
in the training dataset to encompass a broader range of use cases. In a production
environment, as discussed in (87) and (100), user interactions are likely to influence the
level of noise present in the data. The variability and volume of data are expected to
increase due to a greater number of connected devices and the execution of multiple

applications by user equipment, particularly in networks with higher transmission speeds.

It is worth noting that the inference dataset was created using simulated UEs
due to the availability of realistic simulators and the challenges involved in configuring a
physical 5G test environment. Thus, the performance results of the model inference are

expected to change depending on the dataset utilized.

6.3 FUTURE WORK

This work establishes a foundation for multiple future research directions, which
can be categorized into three primary areas: computer networks experimentation focusing
on advancements in the field of computer networks; Machine Learning performance aimed
at enhancing model performance; and 5G data analytics, which seeks to improve technical

contributions in alignment with 3GPP specifications and recommendations.

Future experiments should focus on deploying a 5GC instance in a cloud envi-
ronment or a geographically distant network from the UE to better reflect real-world
conditions influenced by Internet traffic. It is also advisable to incorporate COTS devices
alongside simulated ones and to conduct packet captures in various elements of the envi-
ronment, such as the UE, gNB, or DN, to assess their impact on classification outcomes.
Additionally, including non-3GPP networks like Wi-Fi in the experimental setup would

allow for an examination of the proposed pipeline’s ability to identify these networks.

92

Moreover, extending the experiments to utilize a training dataset with real mMTC
traffic, rather than arbitrarily generated data, is crucial. Creating a dataset with PCAP for-
matted traffic from a larger number of devices across the three classes (eMBB, URLLC, and
mMTC) would strengthen the findings. A more in-depth analysis of additional characteris-
tics, along with redesigning the box-plotter.py script to incorporate scale adjustments
and feature comparisons across different captures, would enhance the understanding of
model learning processes and improve result explainability. Finally, it is recommended to
implement the traffic generator as a separate module, expanding its capabilities to simulate
background traffic and, as suggested in (144), generate 5G traffic based on stochastic
processes and mathematical functions. To enhance model performance during inference,
as discussed in Section 5.3, it is recommended to implement automated hyperparameter
optimization, apply undersampling techniques, consider including additional features or

feature reduction methods, and explore unsupervised learning approaches.

Integrating the NWDAF functionality implementing an event-based publish-sub-
scribe scheme (145) as a 5GC NF, would enhance data acquisition from other NFs; allowing
the ML pipeline to operate alongside normal 5GC execution. It would also facilitate the
transmission of classification results for decision-making, and support the development of
a data analytics consumer NF. Future work might also focus on implementing abnormal
UE detection and incorporating additional KPIs or features in line with 3GPP Release 18
specifications (61).

10

11

93

REFERENCES

SAGAN, Carl. The Demon-Haunted World: science as a candle in the dark.
London: Headline Book Publishing, 1997. 438 p.

TELECO. In: Teleco. Market Share das Operadoras de Celular 5G no Brasil.
Teleco: Inteligéncia em Telecomunicagoes, 2025. Available from:
https://www.teleco.com.br/5g_brasil.asp. Accessed on: 14 feb. 2025.

GSMA. In: GSMA Newsroom. 5G Momentum Continues with 1.6 Billion
Connections Worldwide, Rising to 5.5 Billion by 2030, According to GSMA
Intelligence. GSMA, 2024. Available from: https://www.gsma.com/newsroom /press-
release/5g-momentum-continues-with-1-6-billion-connections-worldwide-rising-to-5-5-
billion-by-2030-according-to-gsma-intelligence /. Accessed on: 21 nov. 2024.

BROWN, Gabriel. Service-Based Architecture for 5G Core Networks. Heavy
Reading, 2017. Available from: https://www.3g4g.co.uk/5G/. Accessed on: 19 dec.
2024.

GHADIALY, Zahid. Control and User Plane Separation of EPC nodes
(CUPS) in 3GPP Release-14. 2017. Available from:
https://blog.3g4g.co.uk/2017/12/control-and-user-plane-separation-of.html. Accessed
on: 06 feb. 2025.

SCHIMITT, Peter; LANDAIS, Bruno; YANG, Frank Yong. Control and User
Plane Separation of EPC nodes (CUPS). 2017. Available from:
https://www.3gpp.org/news-events/3gpp-news/cups. Accessed on: 06 feb. 2025.

SHAKYA, Joshua; GHRIBI, Chaima; MERGHEM-BOULAHIA, Leila. Agent-based
modeling and simulation for 5G and beyond networks: a comprehensive survey.
Simulation Modelling Practice And Theory, [S.L.], v. 130, p. 102855-102887,
jan. 2024

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 29.520 version
15.11.0 Release 15: 5G System — Network Data Analytics Services — Stage 3.
Sophia Antipolis: Etsi, 2023. 41 p.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 23.288 version
17.12.0 Release 17: Architecture enhancements for 5G System (5GS) to support
network data analytics services. Sophia Antipolis: Etsi, 2024. 211 p.

BARTSIOKAS, Ioannis A.; GKONIS, Panagiotis K.; KAKLAMANI, Dimitra I.;
VENIERIS, Takovos S.. ML-Based Radio Resource Management in 5G and Beyond
Networks: a survey. Ieee Access, [S.L.], v. 10, p. 83507-83528, 2022. Institute of
Electrical and Electronics Engineers (IEEE).
http://dx.doi.org/10.1109/access.2022.3196657.

RAFIQUE, Wajid; BARAI, Joyeeta Rani; FAPOJUWO, Abraham O.;
KRISHNAMURTHY, Diwakar. A Survey on Beyond 5G Network Slicing for Smart
Cities Applications. Ieee Communications Surveys & Tutorials, [S.L.], v. 27, n.
1, p. 595-628, feb. 2025. Institute of Electrical and Electronics Engineers (IEEE).
http://dx.doi.org/10.1109/comst.2024.3410295.

12

13

14

15

16

17

18

19

20

21

22

23

94

LIMANI, Xhulio; TROCH, Arno; CHEN, Chieh-Chun; CHANG, Chia-Yu;
GAVRIELIDES, Andreas; CAMELO, Miguel; MARQUEZ-BARJA, Johann M.;
SLAMNIK-KRIJELTORAC, Nina. Optimizing 5G Network Slicing: an end-to-end
approach with isolation principles. 2024 Ieee Conference On Network Function
Virtualization And Software Defined Networks (Nfv-Sdn), Natal, p. 1-6, 5
nov. 2024.

FREE5GC. Influence Traffic Routing. 2025. Available from:
https://freebgc.org/guide/8-traffic-influence/. Accessed on: 08 may 2025.

SULTAN, Alain. In: 3GPP Technologies. 5G System Overview. 3GPP, 2022.
Available from: https://www.3gpp.org/technologies/5g-system-overview. Accessed on:
19 dec. 2024.

YU, Heejung; LEE, Howon; JEON, Hongbeom. What is 5G? Emerging 5G
Mobile Services and Network Requirements. Sustainability v. 9, n. 10, p. 1848 |
15 oct. 2017.

SERIES, M. IMT Vision — Framework and overall objectives of the future
development of IMT for 2020 and beyond. Recommendation ITU v. 2083, n. 0,
p. 1-22, 2015.

ROSIC, Adem. Evaluating Machine Learning Classifier Approaches, and their
Accuracy for the Detection of Cyberattacks on 5G IoT Systems. [S.1.]: arXiv,
2023. Available from: https://arxiv.org/abs/2311.02317. Accessed on: 13 jan. 2025.

THULASIRAMAN, Preetha; HACKETT, Michael; MUSGRAVE, Preston; EDMOND,
Ashley; SEVILLE, Jared. Anomaly Detection in a Smart Microgrid System Using
Cyber-Analytics: a case study. Energies, [S.L.], v. 16, n. 20, p. 7151, 19 oct. 2023.

ALQURA’N, Rabee; ALJAMAL, Mahmoud; AL-ATASH, Issa; ALSARHAN, Ayoub;
KHASSAWNEH, Bashar; ALJAIDI, Mohammad; ALANAZI, Rakan. Advancing XSS
Detection in [oT over 5G: a cutting-edge artificial neural network approach. Iot, [S.L.],
v. 5, n. 3, p. 478-508, 25 jul. 2024.

KIM, Ye-Eun; KIM, Yea-Sul; KIM, Hwankuk. Effective Feature Selection Methods to
Detect IoT DDoS Attack in 5G Core Network. Sensors, [S.L.], v. 22, n. 10, p. 3819,
18 may 2022.

BORGESEN, Michael. Evaluating Variant Deep Learning and Machine Learning
Approaches for the Detection of Cyberattacks on the Next Generation 5G Systems.
2020. 49 f. Dissertagao (Mestrado) - Curso de Network And Computer Security,
College Of Engineering, Suny Polytechnic Institute, New York, 2020.

FARRERAS, Miquel; PAILLISSE, Jordi; FABREGA, Lluis; VILA, Pere. Generation
of a network slicing dataset: the foundations for ai-based b5g resource management.
Data In Brief, [S.L.], v. 55, p. 110738, ago. 2024.

RADOGLOU-GRAMMATIKIS, Panagiotis; NAKAS, George; AMPONIS, George;
GIANNAKIDOU, Sofia; LAGKAS, Thomas; ARGYRIOU, Vasileios; GOUDOS,
Sotirios; SARIGIANNIDIS, Panagiotis. 5GCIDS: an intrusion detection system for 5g
core with ai and explainability mechanisms. 2023 Ieee Globecom Workshops (Ge
Wkshps), [S.L.], p. 353-358, 4 dez. 2023

24

25

26

27

28

29

30

31

32

33

34

95

INTERNET ENGINEERING TASK FORCE.
DRAFT-IETF-OPSAWG-PCAP-05: PCAP Capture File Format. 5 ed. [S. L.J:
letf, 2025. 5 p. Available from:
https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/05/. Accessed on: 22 may
2025.

WIRESHARK. Libpcap File Format. 2020. Available from:
https://wiki.wireshark.org/Development /LibpcapFileFormat. Accessed on: 22 may
2025.

OLIVEIRA, Leonardo Azalim de; SILVA, Edelberto Franco. Estudo e Avaliacao de
Métodos de Autenticacdio EAP na Infraestrutura de Redes de Telecomunicacao 5G.
Anais Estendidos do XXIII Simpésio Brasileiro de Seguranca da
Informacao e de Sistemas Computacionais (Sbseg Estendido 2023), [Juiz de
Foral, p. 97-100, 18 sep. 2023.

FREE5GC (Taiwan). free5GC: open source 5g core network based on 3gpp rl5 .
Open source 5G core network based on 3GPP R15. 2025. Available from:
https://freebgc.org/. Accessed on: 19 mar. 2025.

GUNGOR, Ali. UERANSIM: open source 5g ue and ran (gnodeb) implementation.
Open source 5G UE and RAN (gNodeB) implementation. 2025. Available from:
https://github.com/aligungr/UERANSIM. Accessed on: 17 mar. 2025.

OLIVEIRA, Leonardo Azalim de. FAD: freebgc auto deploy. free5GC Auto Deploy.
2024. Available from: https://github.com/oliveiraleo/free5gc-auto-deploy. Accessed on:
02 apr. 2025.

OLIVEIRA, Leonardo Azalim de; SILVA, Rodrigo Oliveira; LIMA, Pedro Campos;
PEREIRA, Antonio Marcos Souza; VALADARES, Julia Almeida; SILVA, Edelberto
Franco; DANTAS, Mario Antonio Ribeiro. Andlise da Funcionalidade da NWDAF no
Core 5G Sobre um Conjunto de Dados. Anais do Xlii Simpésio Brasileiro de
Redes de Computadores e Sistemas Distribuidos (Sbrc 2024), [Niteroi], p.
798-811, 20 may 2024.

OLIVEIRA, Leonardo Azalim de; SILVA, Edelberto Franco; DANTAS, Mario Antonio
Ribeiro. A NWDAF Study Employing Machine Learning Models on a Simulated 5G
Network Dataset. 2024 Ieee Symposium On Computers And Communications
(Iscc), [Paris], p. 1-6, 26 jun. 2024

OLIVEIRA, Leonardo Azalim de; SILVA, Edelberto Franco. Eduroam e 5G:
autenticacao integrada via redes moveis e wi-fi no core 5g. Anais Estendidos do
XXIV Simpoésio Brasileiro de Seguranca da Informacao e de Sistemas
Computacionais (Sbseg Estendido 2024), [S.L.], p. 189-192, 16 sep. 2024.

OLIVEIRA, Leonardo Azalim de; SILVA JUNIOR, Antonio Marcos da; PINTO,
Mariana Siano. Introdugao a ambientes de experimentacao 5G. 2024. XXVI
Semana da Computagdo DCC/UFJF. Available from:

https:/ /netlab.ice.ufjf.br/courses/5g-practical /. Accessed on: 20 jan. 2025.

UNESCO. UNESCO Recommendation on Open Science. Paris: United Nations
Educational, Scientific And Cultural Organization, 2021. Available from:
https://doi.org/10.54677/MNMH8546. Accessed on: 19 jun. 2025.

35

36

37

38

39

40

41

42

43

44

45

46

47

48

96

OLIVEIRA, Leonardo. Free5gc/free5gc - Contributions by oliveiraleo. 2025.
Available from: https://github.com/freebge/freebge/issues?q=author:oliveiraleo.
Accessed on: 10 jul. 2025.

OLIVEIRA, Leonardo. Pull requests by oliveiraleo - free5gc/freebgc.github.io.
2025. Available from:
https://github.com/freebgc/freebge.github.io/pulls?’q=author:oliveiraleo. Accessed on:
10 jul. 2025.

ZHENG, Kaiyuan. Order of the EAP AKA’ attributes. 2022. Available from:
https://github.com/aligungr/UERANSIM /issues/592. Accessed on: 01 jul. 2025.

OLIVEIRA, Leonardo. Running TNGFUE on another subnet. 2024. Available
from: https://forum.freebge.org/t/running-tngfue-on-another-subnet /2571. Accessed
on: 01 jul. 2025.

OLIVEIRA, Leonardo. Archive of Master Thesis Artifacts: user equipment
classification in the 5G core. Traffic Characterization for User Equipment
(Classification in the 5G Core. 2025. Zenodo. Available from:
https://doi.org/10.5281/zenodo.15473395. Accessed on: 20 may 2025.

OLIVEIRA, Leonardo Azalim de; SILVA, Edelberto Franco; CHAVES, Luciano Jerez.
5G Traffic Capture Dataset: user equipment classification in the 5G core. Traffic

Characterization for User Equipment Classification in the 5G Core. 2025. Zenodo.
Available from: https://doi.org/10.5281/zenodo.15064129. Accessed on: 20 may 2025.

OLIVEIRA, Leonardo Azalim de. NWDAF ML. 2025. Available from:
https://github.com/netlabufjf/nwdaf ml. Accessed on: 02 apr. 2025.

3GPP. In: 3GPP Technologies. Introducing 3GPP. 3GPP, 2024. Available from:
https://www.3gpp.org/about-us/introducing-3gpp. Accessed on: 06 mar. 2025.

ITU. About International Telecommunication Union (ITU). ITU, 2025.
Available from: https://www.itu.int/en/about/Pages/default.aspx. Accessed on: 10
mar. 2025.

ROMANO, Giovanni. In: 3GPP Technologies. 3GPP meets IMT-2020. 3GPP,
2020. Available from: https://www.3gpp.org/technologies/3gpp-meets-imt-2020.
Accessed on: 10 mar. 2025.

ITU. IMT-2020. ITU, 2025. Available from: https://www.itu.int/en/ITU-R /study-
groups/rsgh/rwpbd/imt-2020/Pages/default.aspx. Accessed on: 06 mar. 2025.

AL-DUJAILI, Mohammed Jawad; AL-DULAIMI, Mohammed Abdulzahra.
Fifth-Generation Telecommunications Technologies: Features, Architecture,
Challenges and Solutions. Wireless Personal Communications v. 128, n. 1, p.
447469 , jan. 2023.

WIKIPEDIA. 1G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/1G.
Accessed on: 06 mar. 2025.

WIKIPEDIA. 2G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/2G.
Accessed on: 06 mar. 2025.

49

50

51

52

93

o4

95

56

o7

o8

59

60

61

62

97

WIKIPEDIA. 3G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/3G.
Accessed on: 06 mar. 2025.

WIKIPEDIA. 4G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/4G.
Accessed on: 06 mar. 2025.

3GPP. In: 3GPP Specifications & Technologies. Release 15. 3GPP, 2019. Available
from: https://www.3gpp.org/specifications-technologies/releases /release-15. Accessed
on: 06 mar. 2025.

WIKIPEDIA. 5G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/5G.
Accessed on: 06 mar. 2025.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 23.501 version
15.13.0 Release 15: System architecture for the 5G System (5GS). Sophia Antipolis:
Etsi, 2022. 253 p.

CHAI, Yu-Herng; LIN, Fuchun Joseph. Evaluating Dedicated Slices of Different
Configurations in 5G Core. Journal Of Computer And Communications, [S.L.],
v. 09, n. 07, p. 55-72, 2021.

SDXCENTRAL STUDIOS. What Is the Radio Access Network (RAN)?.
SDxCentral Studios, 2025. Available from:
https://www.sdxcentral.com/5g/ran/definitions/radio-access-network /. Accessed on:
07 mar. 2025.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TR 21.905 version
18.0.0 Release 18: Vocabulary for 3GPP Specifications. Sophia Antipolis: Etsi, 2024.
69 p.

SERIES, I. Integrated Services Digital Network (ISDN) — General
Structure — Vocabulary of terms for ISDNs. Recommendation I'TU v. 112, p.
1-20, 1993.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 29.060 version
17.4.0 Release 17: GPRS Tunnelling Protocol (GTP) across the Gn and Gp
interface. Sophia Antipolis: Etsi, 2022. 199 p.

KIM, Ye-Eun; KIM, Min-Gyu; KIM, Hwankuk. Detecting IoT Botnet in 5G Core
Network Using Machine Learning. Computers, Materials & Continua v. 72, n. 3,
p. 44674488 , 2022.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 29.575 version
17.3.0 Release 17: Analytics Data Repository Services — Stage 3. Sophia Antipolis:
Etsi, 2023. 51 p.

3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 23.288 version
18.9.0 Release 18: Architecture enhancements for 5G System (5GS) to support
network data analytics services. Sophia Antipolis: Etsi, 2025. 329 p.

NIU, Yuxia; ZHAO, Song; SHE, Xiaoming; CHEN, Peng. A Survey of 3GPP Release
18 on Network Data Analytics Function Management. In: IEEE/CIC
INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC

63

64

65

66

67

68

69

70

71

72

73

74

75

98

WORKSHOPS), 2022., 2022, Sanshui. Proceedings [...] . Sanshui: Ieee, 2022. p.
146-151.
3RD GENERATION PARTNERSHIP PROGRAM. 3GPP TS 23.502 version

17.13.0 Release 17: Procedures for the 5G System (5GS). Sophia Antipolis: Etsi,
2024. 755 p.

RUPANAGUNTA, Sriram. NWDAF Rel 17 Explained — Architecture,
Features and Use Cases. Aarna, 2021. Available from:
https://www.aarna.ml/post/nwdaf-rel-17-explained-architecture-features-and-use-
cases. Accessed on: 10 mar. 2025.

KUAN, Liu H. NWDATF introduction. Free5GC, 2024. Available from:
https://freebgc.org/blog/20241127/20241127/. Accessed on: 10 mar. 2025.

5G AMERICAS. Becoming 5G-Advanced: the 3gpp 2025 roadmap. the 3GPP 2025
Roadmap. 2022. Available from:

https:/ /www.5gamericas.org/becoming-5g-advanced-the-3gpp-roadmap/. Accessed on:
18 mar. 2025

ERICSSON. 5G Advanced: evolution towards 6g. Evolution towards 6G. 2023.
Available from: https://www.ericsson.com/en/reports-and-papers/white-papers/5bg-
advanced-evolution-towards-6g. Accessed on: 18 mar. 2025.

SERIES, M. Framework and overall objectives of the future development of
IMT for 2030 and beyond. Recommendation ITU v. 2160, n. 0, p. 1-21, 2023.

WIKIPEDIA. 6G. Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/6G.
Accessed on: 18 mar. 2025.

WIKIPEDIA. Machine learning. Wikipedia, 2025. Available from:
https://en.wikipedia.org/wiki/Machine learning. Accessed on: 20 may 2025.

MAVROMATIS, Ioannis; KATSAROS, Kostas; KHAN, Aftab. Computing Within
Limits: an empirical study of energy consumption in ml training and inference. Arxiv
Preprint Arxiv:2406.14328, [S.L.], p. 1-15, 20 jun. 2024. ArXiv.
http://dx.doi.org/10.48550 / ARXIV.2406.14328.

MAAYAN, Gilad David. A Practical Guide to Working with Testing and
Training Data in ML Projects. 2023. Available from:
https://www.computer.org/publications/tech-news/trends/machine-learning-
projects-training-testing. Accessed on: 20 mar. 2025.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research v. 12, p. 2825-2830 , 2011.

LEARN, Scikit. Metrics and scoring: quantifying the quality of predictions.
Website, 2024. Available from:

https://scikit-learn.org/stable/modules/model _evaluation.html#accuracy-score.
Accessed on: 06 mar. 2025

ZAKI, Mohammed J.; MEIRA JUNIOR, Wagner. Data Mining and Machine
Learning: fundamental concepts and algorithms. 2. ed. Cambridge: Cambridge
University Press, 2020. 777 p.

76

77

78

79

80

81

82

33

84

85

86

87

88

39

99

WIKIPEDIA. Receiver operating characteristic. Wikipedia, 2025. Available from:
https://en.wikipedia.org/wiki/Receiver operating characteristic. Accessed on: 20
mar. 2025.

SCIKIT-LEARN. Multiclass Receiver Operating Characteristic (ROC):
one-vs-one multiclass roc. One-vs-One multiclass ROC. 2007. Available from:
https://scikit-learn.org/stable/auto examples/model selection/plot roc.html#one-
vs-one-multiclass-roc. Accessed on: 20 mar. 2025.

PATI, D.; LORUSSO, L. N. How to Write a Systematic Review of the
Literature. HERD: Health Environments Research & Design Journal, v. 11, n. 1, p.
15-30, 28 dec. 2018.

LEVY, Yair; J. ELLIS, Timothy. A Systems Approach to Conduct an Effective
Literature Review in Support of Information Systems Research. Informing

Science: The International Journal of an Emerging Transdiscipline v. 9, p. 181-212 ,
2006.

CARRERA-RIVERA, Angela et al. How-to conduct a systematic literature
review: A quick guide for computer science research. MethodsX v. 9, p. 101895 , 2022.

HARZING, Anne-Wil. Publish or Perish. Software, 2007. Available from:
https://harzing.com /resources/publish-or-perish. Accessed on: 29 oct. 2024

FEDER, Alexander. BibTeX. Software, 2006. Available from:
https://www.bibtex.org/. Accessed on: 26 feb. 2025

FREITAS, V.; SEGATTO, W. Parsifal. Software, 2018. Available from:
https://parsif.al. Accessed on: 29 oct. 2024

Wikipedia. Qualis (CAPES). Website, 2024. Available from:
https://en.wikipedia.org/wiki/Qualis_ (CAPES). Accessed on: 08 nov. 2024

Elsevier. CiteScore metrics you can verify and trust. Website, 2024. Available

from: https://www.elsevier.com/products/scopus/metrics/citescore. Accessed on: 08
nov. 2024

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ([Switzerland]). Cern
(org.). Zenodo. 2013. Available from: https://www.zenodo.org/. Accessed on: 07 apr.
2025.

BARTOLEC, Ivan; ORSOLIC, Irena; SKORIN-KAPOV, Lea. Impact of User
Playback Interactions on In-Network Estimation of Video Streaming
Performance. IEEE Transactions on Network and Service Management v. 19, n. 3, p.
3547-3561 , set. 2022.

PAOLINI, Emilio et al. Real-Time Network Packet Classification Exploiting
Computer Vision Architectures. IEEE Open Journal of the Communications
Society v. 5, p. 1155-1166 , 2024.

SAMARAKOON, Sehan et al. 5G-NIDD: A Comprehensive Network Intrusion
Detection Dataset Generated over 5G Wireless Network. IEEE DataPort,
2022. DOI:10.21227 /xtep-hv36.

90

91

92

93

94

95

96

97

98

99

100

KOURSIOUMPAS, Nikolaos et al. AI-driven, Context- Aware Profiling for 5G
and Beyond Networks. IEEE Transactions on Network and Service Management v.
19, n. 2, p. 1036-1048 , jun. 2022.

SEVGICAN, Salih et al. Intelligent network data analytics function in 5G
cellular networks using machine learning. Journal of Communications and
Networks v. 22, n. 3, p. 269-280 , jun. 2020.

DA SILVA, Douglas Chagas et al. A Novel Approach to Multi-Provider
Network Slice Selector for 5G and Future Communication Systems. Sensors
v. 22, n. 16, p. 6066 , 13 ago. 2022.

RIZWAN, Ali et al. A Zero-Touch Network Service Management Approach
Using Al-Enabled CDR Analysis. IEEE Access v. 9, p. 157699-157714 , 2021.

ANFAR, Mohamad Rimas Mohamad; MWANGAMA, Joyce. Machine
Learning-Based Service Differentiation in the 5G Core Network. In: 2021
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN
INFORMATION AND COMMUNICATION (ICAIIC), 13 abr. 2021, Jeju Island,
Korea (South). IEEE, 13 abr. 2021. p.144-149. 978-1-72817-638-3. .

FRAUNHOFER FOKUS (Germany). Open5GCore. Available from:
https://www.openbgcore.org/. Accessed on: 15 mar. 2025.

GUERRA-MANZANARES, Alejandro; MEDINA-GALINDO, Jorge; BAHSI,
Hayretdin; NOMM, Sven. MedBIoT: generation of an iot botnet dataset in a
medium-sized iot network. Proceedings Of The 6th International Conference
On Information Systems Security And Privacy, Valletta, v. 1, p. 207-218, 2020.

MOHAMMEDALI, Noor Abdalkarem et al. Enhancing Service Classification for
Network Slicing in 5G Using Machine Learning Algorithms. In: AL-BAKRY,
Abbas M. et al. (Orgs.). . New Trends in Information and Communications

Technology Applications. Communications in Computer and Information Science.
Cham: Springer Nature Switzerland, 2023. 1764 v. p. 25-37. 978-3-031-35441-0.

MATHWORKS (United States). MATLAB. 2025. Available from:
https://www.mathworks.com/products/matlab.html. Accessed on: 19 mar. 2025.

WIRESHARK FOUNDATION (United States). Wireshark: the world’s most popular
network protocol analyzer. The world’s most popular network protocol analyzer. 1998.
Available from: https://www.wireshark.org/. Accessed on: 19 mar. 2025.

100 TAKASAKI, Chikako et al. Device Type Classification Based on Two-Stage

Traffic Behavior Analysis. IEICE Transactions on Communications v. E107.B, n. 1,
p. 117-125 , 1 jan. 2024.

101 MANIAS, Dimitrios Michael; CHOUMAN, Ali; SHAMI, Abdallah. An NWDAF

Approach to 5G Core Network Signaling Traffic: Analysis and
Characterization. In:. GLOBECOM 2022 - 2022 IEEE GLOBAL
COMMUNICATIONS CONFERENCE, 4 dez. 2022, Rio de Janeiro, Brazil. IEEE, 4
dec. 2022. p.6001-6006. 978-1-66543-540-6. .

101

102 SUKCHAN LEE (South Korea). Open5GS: open source implementation for 5g core
and epc. Open Source implementation for 5G Core and EPC. 2024. Available from:
https://openbgs.org/. Accessed on: 17 mar. 2025.

103 SILVA, Gabriel Henrique Davango. Classificagao de trafego por classes de
servigo no nicleo 5G. 2022.

104 DAHMEN-LHUISSIER, Sabine. Zero touch network & Service Management
(ZSM). 2025. Available from:
https://www.etsi.org/technologies /zero-touch-network-service-management. Accessed
on: 15 jul. 2025.

105 SOUZA NETO, Natal V. et al. Evolved NWDAF Towards a Fully Distributed
Artificial Intelligence in the 6G Network Architecture. Anais do IV Workshop
de Redes 6G, p. 15-25 , 2024.

106 RISCHKE, Justus; SOSSALLA, Peter; ITTING, Sebastian; FITZEK, Frank H. P.;
REISSLEIN, Martin. 5G Campus Networks: a first measurement study. Ieee Access,
[S.L], v. 9, p. 121786-121803, 2021.

107 MQTT. MQTT: the standard for iot messaging. The Standard for IoT Messaging.
2024. Available from: https://mqtt.org/. Accessed on: 01 jul. 2025.

108 ENGLISH, John. Service Assurance Questions in the Time of 5G Standalone:
how does service assurance change with the movement to 5g standalone?. How does
service assurance change with the movement to 5G standalone?. 2023. Available from:
https://www.netscout.com/blog/service-assurance-questions-time-5g-standalone.

Accessed on: 02 apr. 2025.

109 IEEE (United States Of America). IEEE DataPort: dataset storage and dataset
search platform. Dataset Storage and Dataset Search Platform. 2025. Available from:
https://ieee-dataport.org/. Accessed on: 28 mar. 2025.

110 CHOI, Yong-Hoon; KIM, Daegyeom; KO, Myeongjin. 5G traffic datasets. IEEE
DataPort, 2023. DOI:10.21227/ewhk-n061.

111 GOOGLE (United States Of America). Google Scholar. 2025. Available from:
https://scholar.google.com/. Accessed on: 28 may. 2025.

112 KAGGLE (United States Of America). Kaggle: your machine learning and data
science community. Your Machine Learning and Data Science Community. 2025.
Available from: https://www.kaggle.com/. Accessed on: 28 mar. 2025.

113 DATA. [Basel], 2016. Available from: https://www.mdpi.com/journal/data. Accessed
on: 28 mar. 2025.

114 RISCHKE, Justus. 5G campus networks: measurement traces. IEEE DataPort,
2021. DOI:10.21227 /xe3c-e968.

115 EMMERICH, Paul; GALLENMULLER, Sebastian; RAUMER, Daniel; WOHLFART,
Florian; CARLE, Georg. MoonGen. Proceedings Of The 2015 Internet
Measurement Conference, [Tokyo|, p. 275-287, 28 oct. 2015.

102

116 STACK OVERFLOW (United States). Stack Overflow Developer Survey 2022.
2022. Available from: https://survey.stackoverflow.co/2022/#section-version-control-
version-control-platforms. Accessed on: 01 jul. 2025.

117 FREE5GC (Taiwan). User Guide. [2020]. Available from: https://freebgc.org/guide/.
Accessed on: 02 apr. 2024.

118 OLIVEIRA, Leonardo. Running TNGFUE on another subnet. 2024. Available
from: https://forum.freebge.org/t/running-tngfue-on-another-subnet/2571. Accessed
on: 01 jul. 2025.

119 OLIVEIRA, Leonardo. Free5gc/free5gc: contributions by oliveiraleo. Contributions
by oliveiraleo. 2024. Available from:
https://github.com/freebgc/freebge /issues?’q=author:oliveiraleo. Accessed on: 01 jul.
2025.

120 OLIVEIRA, Leonardo. Feat: Improve TNGFUE execution flow by oliveiraleo
- Pull Request #2 - freebgc/tngfue. 2024. Available from:
https://github.com/freebge/tngfue/pull/2. Accessed on: 01 jul. 2025.

121 OLIVEIRA, Leonardo. Pull requests by oliveiraleo - freeb5gc/free5gc.github.io.
2024. Available from:
https://github.com/freebgc/freebgce.github.io /pulls?q=is:pr-+author:oliveiraleo.
Accessed on: 01 jul. 2025.

122 OLIVEIRA, Leonardo Azalim de. PCAP-dataExtractor: Python code to parse
JSON network traffic data to CSV file. 2025. Available from:
https://github.com/oliveiraleo/PCAP-dataExtractor. Accessed on: 02 apr. 2025.

123 SIVANATHAN, Arunan et al. Characterizing and classifying IoT traffic in
smart cities and campuses. In: 2017 IEEE CONFERENCE ON COMPUTER
COMMUNICATIONS: WORKSHOPS (INFOCOM WKSHPS), maio 2017, Atlanta,
GA. Anais... Atlanta, GA: IEEE, maio 2017. p.559-564. 978-1-5386-2784-6. 2017.

124 WIRESHARK. Tshark: dump and analyze network traffic. Dump and analyze
network traffic. [2025]. Available from:
https://www.wireshark.org/docs/man-pages/tshark.html. Accessed on: 02 apr. 2025.

125 WIRESHARK. PROFINET IO (PN-IO). 2020. Available from:
https://wiki.wireshark.org/PROFINET /IO. Accessed on: 09 apr. 2025.

126 DREIBHOLZ, Thomas. High-Precision Round-Trip Time Measurements in the
Internet with HiPerConTracer. 2023 International Conference On Software,
Telecommunications And Computer Networks (Softcom), [S.L.], p. 1-7, 21 sep.
2023.

127 WIRESHARK. SINEC H1 (H1). 2020. Available from:
https://wiki.wireshark.org/H1. Accessed on: 09 apr. 2025.

128 INTERNET ENGINEERING TASK FORCE. RFC 9000: QUIC: A UDP-Based
Multiplexed and Secure Transport. [S. L.|, 2021. Available from:
https://datatracker.ietf.org/doc/html/rfc9000. Accessed on: 10 apr. 2025.

103

129 RIKITAKE, Kenji. Do not enable QUIC on 1280-byte MTU IPv6 networks. 2024.
Available from: https://gist.github.com/jjlbdx/ladac3e305d0fb6dee90dd5b909513ed.
Accessed on: 10 apr. 2025.

130 BROWNLEE, Jason. A Gentle Introduction to the Chi-Squared Test for
Machine Learning. 2019. Available from:

https://machinelearningmastery.com/chi-squared-test-for-machine-learning/. Accessed
on: 01 jul. 2025.

131 CORDER, Gregory W.; FOREMAN, Dale I.. Nonparametric statistics: a
step-by-step approach. 2. ed. Nashville: John Wiley & Sons, 2014. 283 p. ISBN:
978-1-118-84031-3.

132 MANN, H. B.; WHITNEY, D. R.. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals Of Mathematical
Statistics, [S.L.], v. 18, n. 1, p. 50-60, mar. 1947.

133 BROWNLEE, Jason. Machine learning mastery with Python: understand your
data, create accurate models, and work projects end-to-end. 1.4 [S. L.]: Machine
Learning Mastery, 2016. 179 p.

134 PEARSON, Karl. X. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. The London,
Edinburgh, And Dublin Philosophical Magazine And Journal Of Science,
[S.L.], v. 50, n. 302, p. 157-175, jul. 1900.

135 KALIYADAN, Feroze; KULKARNI, Vinay. Types of variables, descriptive statistics,
and sample size. Indian Dermatology Online Journal, [S.L.], v. 10, n. 1, p. 82,
2019.

136 SUKUMAR, Hamsini. Continuous vs. discrete vs. categorical axis: what is the
difference?. What is the difference?. 2025. Available from:
https:/ /inforiver.com /insights/continuous-discrete-categorical-axis-difference//.
Accessed on: 01 jul. 2025

137 HOSSAIN, Md. Riyad; TIMMER, Douglas. Machine Learning Model Optimization
with Hyper Parameter Tuning Approach. Global Journal Of Computer Science And
Technology: D, [S.L.], v. 21, n. 2, p. 31, 2021. Monthly.

138 STORN, Rainer; PRICE, Kenneth. Differential Evolution: a simple and efficient
heuristic for global optimization over continuous spaces. Journal Of Global
Optimization, [S.L.], v. 11, n. 4, p. 341-359, dez. 1997.

139 IBM ([United States Of America]). What is random forest? 2025. Available from:
https://www.ibm.com/think/topics/random-forest. Accessed on: 16 apr. 2025.

140 WIKIPEDIA. Random forest. Wikipedia, 2025. Available from:
https://en.wikipedia.org/wiki/Random_ forest. Accessed on: 16 abr. 2025.

141 CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P..
SMOTE: synthetic minority over-sampling technique. Journal Of Artificial
Intelligence Research, [S.L.], v. 16, p. 321-357, 1 jun. 2002.

104

142 PEARSON, Karl. Determination of the Coeflicient of Correlation. Science, [S.L.], v.
30, n. 757, p. 23-25, 2 jul. 1909.

143 OLIVEIRA, Junia Maisa; MORAIS, César; MACEDO, Daniel; NOGUEIRA, José
Marcos. A Comparative Analysis of Feature Selection and Machine Learning
Algorithms for Enhanced Anomaly Detection in 5G Core Networks. 2025 Global

Information Infrastructure And Networking Symposium (Giis), [Dubai], p.
1-6, 25 feb. 2025.

144 LEE, Tan W.C.; FAPOJUWO, Abraham O.. Stochastic processes for computer
network traffic modeling. Computer Communications, [S.L.], v. 29, n. 1, p. 1-23, dez.
2005.

145 BRADBURY, Richard. UE Data Collection, Reporting and Exposure. 2022. Updated
on 13 May 2023. Available from: https://www.3gpp.org/technologies/ue-data-sa4.
Accessed on: 14 may 2025.

146 EVIDENTLY AIl. Accuracy, precision, and recall in multi-class classification.
2025. Available from:
https://www.evidentlyai.com/classification-metrics/multi-class-metrics. Accessed on:
08 aug. 2025.

147 LEARN, Scikit. Metrics and scoring: quantifying the quality of predictions.
Website, 2024. Available from:
https://scikit-learn.org/stable/modules/generated /sklearn.metrics.recall_score.html.
Accessed on: 06 mar. 2025

148 TIM. Accuracy always equal to recall. 2021. Cross Validated. Available from:
https:/ /stats.stackexchange.com /questions /523695 /accuracy-always-equal-to-
recall /523715#523715. Accessed on: 08 aug. 2025.

APPENDIX A — Source of the install-go.sh script

105

As indicated in Section 4.4, this script is part of the FAD tool. The ready-to-use

source code and documentation are available in a public GitHub repository (29).

#!/usr/bin/env bash
echo "Welcome to the Go installer script"

Control variables
GO_LANG_VERSION=1.21.8

HHHHHHAH SRR RS

Install Go

HHHHHAHAHBAH RS

echo "[INFO] Installing Go $GO_LANG_VERSION"

echo "[INFO] Downloading the package from source"

Install Go

wget -nc https://dl.google.com/go/go$GO_LANG_VERSION.linux-amd64.tar
echo "[INFO] Extracting and installing package contents"

j sudo tar -C /usr/local -zxf go$GO_LANG_VERSION.linux-amd64.tar.gz

7 echo "[INFO] Updating envitonment vars"

echo ’export PATH=$PATH:/usr/local/go/bin’ >> ~/.bashrc
echo "[INFO] Don’t forget to reload the bash env using"
echo "source ~/.bashrc"

sleep 0.1 # wait for the file to be writen

echo "[INFO] Go installation finished"

Source: Created by the author (2025).

.82

6

-3

9
10
11
12

14

16
17

18

29
30
31

33

106
APPENDIX B — Source of the deploy-freebgc.sh script

As indicated in Section 4.4, this script is part of the FAD tool. The ready-to-use

source code and documentation are available in a public GitHub repository (29).

#!/usr/bin/env bash
echo "Welcome to the free5GC auto deploy script"

sudo -v # cache credentials
if [$7 == 1] # check if credentials were successfully cached
then
echo "[ERROR] Without root permission, you cannot change the
hostname nor install packages"
exit 1
fi

Control variables (1 = true, 0 = false)
FREES5GC_STABLE_BRANCH_CONTROL=1 # switch between using the freebGC
stable branch or latest nightly
FREES5GC_VERSION=v3.4.4 # select the stable branch tag that will be used
by the script
FREESGC_NIGHTLY_COMMIT=a39de62 # select which commit hash will be used
by the script
N3IWF_CONFIGURATION_CONTROL=0 # prepare N3IWF configuration if 1 is set
N3IWF_STABLE_BRANCH_CONTROL=1 # switch between using the N3IWF stable or
nightly branch
N3IWF_NIGHTLY_COMMIT=9felb55e # select which commit hash will be used by
the script
TNGF_CONFIGURATION_CONTROL=0 # prepare TNGF configuration if 1 is set
FIREWALL_RULES_CONTROL=0 # deletes all firewall rules if 1 is set
UBUNTU_VERSION=20 # Ubuntu version where the script is running
GTP5G_VERSION=v0.9.5 # select the version tag that will be used to clone
the GTP-U module

function ver { printf "’03d%03d%03d" $(echo "$1" | tr >.’ > ’); } # util

to compare versions

5 # check the number of parameters

if [$# -gt 3]; then
echo "[ERROR] Too many parameters given! Check your input and try
again"
exit 2
fi
check the parameters and set the control vars accordingly
if [$# -ne 0 1; then
while [$# -gt 0 1; do

A7
48
49
50

60

107

case $1 in
-nightly)
FREESGC_STABLE_BRANCH_CONTROL=0
echo "[INFO] The nightly branch of freeb5GC will be
cloned"
-n3iwf)
N3IWF_CONFIGURATION_CONTROL=1
echo "[INFO] N3IWF will be configured during the
execution"
-n3iwf-nightly)
N3IWF_CONFIGURATION_CONTROL=1
N3IWF_STABLE_BRANCH_CONTROL=0
echo "[INFO] N3IWF will be configured during the
execution"
echo "[INFO] The nightly branch of N3IWF will be cloned"
-tngf)
verify if the stable version is set to be deployed and
if FREES5GC_VERSION >= v3.4.3, else deploy nightly version
FREES5GC_VERSION_FLOAT=${FREE5GC_VERSION#?7} # stripping
leading ’v’ to compare only digits
if [$FREE5GC_STABLE_BRANCH_CONTROL -eq 1]; then
if [$(ver $FREES5GC_VERSION_FLOAT) -gt $(ver 3.4.2)
]; then
TNGF_CONFIGURATION_CONTROL=1
echo "[INFO] TNGF will be configured during the
execution"
else
echo "[ERROR] freeb5GC $FREESGC_VERSION was
selected, however it doesn’t contain TNGF"
echo "[INFO] Please, select any version >= v3
.4.3 or drop the TNGF parameter"
echo "[INFO] If using nightly version, please,
put the TNGF parameter after the nightly one"
exit 1
fi
elif [$FREE5GC_STABLE_BRANCH_CONTROL -eq O]; then
TNGF_CONFIGURATION_CONTROL=1
echo "[INFO] TNGF will be configured during the
execution"
fi
-reset-firewall)
FIREWALL_RULES_CONTROL=1
echo "[INFO] Firewall rules will be cleaned during the

79
80
81
82
83

84
85
86

88

89
90
91
92
93

94

96
97
98
99
100
101
102
103
104
105

106

108

execution"

-only-setup-n3iwf)
55
*)
echo "[ERROR] Some input parameter wasn’t found. Check
your input and try again"
exit 1
esac
shift
done
else
echo "[INFO] N3IWF will NOT be configured during the execution"
echo "[INFO] TNGF will NOT be configured during the execution"
echo "[INFO] Firewall rules will NOT be cleaned during the execution
"
fi
confirm if conflicting NFs (N3IWF and TNGF) will be configured at the

same time
if [[$N3IWF_CONFIGURATION_CONTROL -eq 1 && $TNGF_CONFIGURATION_CONTROL
-eq 1 1]; then

echo "[WARN] Running N3IWF and TNGF at the same time is not yet
supported by this tool"
read -p "Press ENTER to continue or Ctrl+C to abort now"

fi

check for incompatible versions between 5GC and GTP-U module

GTP5G_VERSION_FLOAT=${GTP5G_VERSION#7} # stripping leading ’v’ to
compare only digits

if [[$FREESGC_VERSION = "v3.4.4" 1] && [$(ver $GTP5G_VERSION_FLOAT) -
1t $(ver 0.9.3) 1; then
echo "[ERROR] Running UPF from free5GC v3.4.4 requires gtpbg v0.9.3
o
echo "[INFO] Please, set GTP5G_VERSION to v0.9.3 or higher"
echo "[INFO] Version currently set: $GTP5G_VERSION"
exit 3

fi

echo "[INFO] Execution started"

check your go installation

go version

echo "[INFO] Go should have been previously installed, if not abort the
execution"

echo "[INFO] The message above must not show a \"command not found\"

116
117
118
119

128
129
130
131

141
142
143
144
145
146
147

109

error"

/ read -p "Press ENTER to continue or Ctrl+C to abort now"

Hostname update

echo "[INFO] Updating the hostname"

sudo sed -i "1s/.*x/freebgc/" /etc/hostname

HOSTS_LINE=$(grep -n ’127.0.1.1° /etc/hosts | awk -F: ’{print $1}’ -)
sudo sed -i ""$HOSTS_LINE"s/.*/127.0.1.1 freebgc/" /etc/hosts

echo "[INFO] Updating the package database and installing system updates

sudo apt update && sudo apt upgrade -y

check Ubuntu version

lsb_release -sr | grep "~22" >/dev/null 2>&1

if [[$? -eq 0 1]; then
echo "[INFO] Ubuntu 22.04 LTS detected. Adjusting the database
installation accordingly"
UBUNTU_VERSION=22

elif [[$7? -eq 1 11; then
echo "[INFO] Ubuntu 20.04 LTS detected, continuing..."
UBUNTU_VERSION=20

chlisie
echo "[ERROR] Script failed to set UBUNTU_VERSION variable or a
unsuported version is being used"
exit 1

fi

Install CP supporting packages
echo "[INFO] Installing DB"
if [[$UBUNTU_VERSION -eq 20]]; then
sudo apt -y install mongodb wget git
sudo systemctl start mongodb
elif [[$UBUNTU_VERSION -eq 22]]; then
sudo apt -y install gnupg curl
curl -fsSL https://pgp.mongodb.com/server-7.0.asc | \
sudo gpg -o /usr/share/keyrings/mongodb-server-7.0.gpg --dearmor
echo "deb [arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb -
server -7.0.gpg] https://repo.mongodb.org/apt/ubuntu jammy/mongodb -
org/7.0 multiverse" | \
sudo tee /etc/apt/sources.list.d/mongodb-org-7.0.1list
sudo apt update
sudo apt install -y mongodb-org
sudo systemctl start mongod
ellisie
echo "[ERROR] Script failed to setup the data base"

exit 1

183
184
185
186
187
188
189
190
191

fi

Install UPF supporting packages

echo "[INFO] Installing UPF prerequisites"

sudo apt -y install gcc g++ cmake autoconf libtool
libyaml -dev

echo "[INFO] Done"

HEHHHSHAS SRR R AR TS

Configure host 0S
HAEHHSHHHAHHHHSH B RS HHH

echo "[INFO] Configuring host 0S"
ip a
echo ""

echo "Please, enter the 5GC’s DN interface name (e

has internet access)"

echo -n ">
read IFACENAME

echo "[INFO] Using $IFACENAME as interface name"
warn the user before deleting the rules

if [$FIREWALL_RULES_CONTROL -eq 1]; then
start to delete old rules

echo -n "[INFO] Removing all iptables rules, if any...

sudo iptables -P INPUT ACCEPT

sudo iptables -P FORWARD ACCEPT

sudo iptables -P OUTPUT ACCEPT

sudo iptables -t nat -F

sudo iptables -t mangle -F

sudo iptables -F

sudo iptables -X

echo "[OK]"
fi
echo -n "[INFO] Applying freebGC iptables rules...
sudo iptables -t nat -A POSTROUTING -o $IFACENAME

110

pkg-config libmnl-dev

.g. the

interface that

-j MASQUERADE

sudo iptables -A FORWARD -p tcp -m tcp --tcp-flags SYN,RST SYN -j

--set-mss 1400
sudo iptables -I FORWARD 1 -j ACCEPT
echo "[OKI"
echo -n "[INFO] Setting kernel net.ipv4.ip_forward
sudo sysctl -w net.ipv4.ip_forward=1 >/dev/null
echo "[OK]"

echo -n "[INFO] Stopping and disabling the ufw firewall...

sudo systemctl stop ufw
sudo systemctl disable ufw >/dev/null 2>&1
echo "[OK]"

flag...

TCPMSS

111

192

193 #H#AHHABAHHARAHFABAHFHBHH

194 # Install freebGC’s CP #

195 #H#HH#SHARFAEHARFREHSHBRHEH

196 echo "[INFO] Installing the 5GC"

197 if [$FREE5GC_STABLE_BRANCH_CONTROL -eq 1]; then

198 echo "[INFO] Cloning free5GC stable branch"

199 echo "[INFO] Tag/release: $FREE5SGC_VERSION"

200 if [[$FREE5GC_VERSION = "v3.3.0"]]; then

201 echo "[WARN] Using an older release should be avoided"
202 # v3.3.0

203 git clone -c advice.detachedHead=false --recursive -b

$FREESGC_VERSION -j ‘nproc‘ https://github.com/freebgc/freebgc.git #

clones the previous stable build

204 cd freebgc

205 sudo corepack enable # necessary to build webconsole on freeb5GC
v3.3.0

206 # Useful script

207 echo "[INFO] Downloading reload_host_config script from source"

208 curl -L0OSs https://raw.githubusercontent.com/freebgc/freebgc/

main/reload_host_config.sh

209

210 elif [[$FREES5GC_VERSION = "v3.4.1" || $FREE5GC_VERSION = "v3.4.2"
|| $FREE5GC_VERSION = "v3.4.3" || $FREES5GC_VERSION = "v3.4.4"]];
then

211 # v3.4.x

212 git clone -c advice.detachedHead=false --recursive -b
$FREESGC_VERSION -j ‘nproc‘ https://github.com/freebgc/freebgc.git #
clones the stable build

213 cd freebgc

214 else

215 echo "[ERROR] Script failed to set FREE5GC_VERSION variable" #
check your spelling, you must keep the "v" (e.g. v.3.4.1 and up)

216 exit 1

217 fi

218 elif [$FREESGC_STABLE_BRANCH_CONTROL -eq O]; then

219 echo "[INFO] Cloning freeb5GC nightly branch"

220 echo "[INFO] Commit: $FREES5GC_NIGHTLY_COMMIT"

221 echo "[WARN] Unless you know what you are doing, using the nightly
branch should be avoided"

222 git clone --recursive -j ‘nproc‘ https://github.com/freebgc/freebgc.
git # clomnes the nightly build

223 cd freebgc

224 git -c advice.detachedHead=false checkout $FREE5GC_NIGHTLY_COMMIT #

commit with the webconsole build and kill script fixes (among other
updates)

225 else

112

226 echo "[ERROR] Script failed to set FREE5GC_STABLE_BRANCH_CONTROL
variable"

227 exit 1

228 fi

230 if [$N3IWF_STABLE_BRANCH_CONTROL -eq O]; then

231 echo "[INFO] Installing N3IWF nightly"

232 echo "[INFO] Cloning N3IWF nightly branch"
233 echo "[INFO] Commit: $N3IWF_NIGHTLY_COMMIT"
234 cd NFs/n3iwf/

235 git -c advice.detachedHead=false checkout $N3IWF_NIGHTLY_COMMIT
236 cd ../../

237 fi

238

239 make # builds all the NFs

240 cd

241

242 HHHAHAHAHHHHAHAHAHHAHAHAHHHHAHAHAH SR HAHA

243 # Install UPF / GTP-U 5G kernel module #

24 HHBHAHHARHHAHBBAHHARHHARHBAHH AR S RARHRAHHH

245 echo "[INFO] Configuring the GTP kernel module"

246 echo "[INFO] Removing GTP’s previous versions, if any"

247 rm -rf gtpbg #removes previous versions

248 echo "[INFO] Installing the GTP kernel module"

249 echo "[INFO] Release: $GTP5G_VERSION"

250 git clone -c advice.detachedHead=false -b $GTP5G_VERSION https://github.
com/freebgc/gtpbg.git

51 cd gtpbg

52 make

253 sudo make install

254 cd

256 # Install the WebConsole
257 curl -fsSL https://deb.nodesource.com/setup_20.x | sudo -E bash -
258 sudo apt update

259 sudo apt install -y nodejs

261 cd freebgc
262 make webconsole
263 cd

265 HHHHAHAHAHBHHAHAHBHHAHAHAHHHHAHS

266 # Update the 5GC config files #

207 HHHAHAHAHHHHAHAH AR B HAHAHHHHAHH

268 echo "[INFO] Updating configuration files"
269 ip address show $IFACENAME | grep "\binet\b"
270 # Reads the data network interface IP

113

271 echo "Please, type the 5GC’s DN interface IP address"

272 echo -n "> "

273 read IP

274

275 # Prepare the IPSec inner tunnel IP address for N3IWF or TNGF

276 if [$N3IWF_CONFIGURATION_CONTROL -eq 1 1 || [
$TNGF_CONFIGURATION_CONTROL -eq 1]; then

277 # Get the first octet of the freeb5GC machine IP

278 IP_FIRST_OCTET=${IP%%.*}

279 echo "[DEBUG] freeb5GC machine DN interface IP 1st octet:

$IP_FIRST_OCTET"

280

281 IP_IPSEC_INNER="10.0.0.1" # default IP is 10.0.0.1 (Check it here:
https://github.com/freebgc/freebgc/blob/main/config/n3iwfcfg.yaml#L36

or https://github.com/freebgc/freebgc/blob/main/config/tngfcfg.yaml#

L36)

282 IP_IPSEC_INNER_NET_ADDR="10.0.0.0/24"

283

284 # If the UE IP belongs to the 10.x.x.x range, it will conflict with
the IPSec tunnel address that will be added as the default route

285 if [${IP_FIRST_OCTET} -eq 10]; then

286 echo "[WARN] A conflicting IP address range for Nwu interface
was detected"

287 echo "[INFO] Using 172.16.x.x as IPSec tunnel address space
instead of 10.x.x.x"

288

289 IP_IPSEC_INNER="172.16.0.1" # update the IP address

290

291 IP_NET_OCTETS=‘echo "$IP_IPSEC_INNER" | cut -d . -f 1-3°¢

292 IP_IPSEC_INNER_NET_ADDR="$IP_NET_OCTETS"".0/24" # update the
network address

293

294 echo "[DEBUG] New IPSec tunnel inner IP address: $IP_IPSEC_INNER

295 echo "[DEBUG] New IPSec tunnel IP addresses pool:
$IP_IPSEC_INNER_NET_ADDR"

296 else

297 echo "[DEBUG] No conflicting IP address found"

298 fi

299 fi

300

301 CONFIG_FOLDER="./freebgc/config/"

302

303 # The vars below aim to find the correct line to replace the IP address.
The commands get the line right above the one where the IP must be
changed

304 AMF_LINE=$(grep -n ’ngapIplList: # the IP list of N2 interfaces on this

306

307

308
309
310
311
312
313

316
317
318
319

329

330

331

332
333

114

AMF’> ${CONFIG_FOLDER}amfcfg.yaml | awk -F: ’{print $1}’° -)
SMF_LINE=$(grep -n ’endpoints: # the IP address of this N3/N9 interface
on this UPF’ ${CONFIG_FOLDER}smfcfg.yaml | awk -F: ’{print $1}’ -)
UPF_LINE=$(grep -n ’ifList:’ ${CONFIG_FOLDER}upfcfg.yaml | awk -F: ’{
print $1}° -)

Increment the counters to point to the next line (where the IP is
located)

AMF_LINE=$ ((AMF_LINE+1))

SMF_LINE=$ ((SMF_LINE+1))

UPF_LINE=$ ((UPF_LINE+1))

Update the IP on the config files

sed -i ""$AMF_LINE"s/.*/ - $IP/" ${CONFIG_FOLDER}amfcfg.yaml

sed -i ""$SMF_LINE"s/.x*/ - $IP/" ${CONFIG_FOLDER}smfcfg.
yaml

sed -i ""$UPF_LINE"s/.x*/ - addr: $IP/" ${CONFIG_FOLDER}upfcfg.yaml

N3IWF config

if [$N3IWF_CONFIGURATION_CONTROL -eq 1]; then
N3IWF_LINE=$(grep -n ’# --- N2 Interfaces ---’ ${CONFIG_FOLDER}
n3iwfcfg.yaml | awk -F: ’{print $1}’ -)
N3IWF_LINE=$ ((N3IWF_LINE+3))

sed -i ""$N3IWF_LINE"s/.x*/ - $IP/" ${CONFIG_FOLDER}n3iwfcfg.
yaml

N3IWF_LINE=$((N3IWF_LINE+5))

if [[$FREE5GC_VERSION = "v3.4.4"]]; then # if new N3IWF version is

being used
sed -i ""$N3IWF_LINE"s/.*/ ikeBindAddress: $IP # Nwu interface
IP address (IKE) on this N3IWF/" ${CONFIG_FOLDER}n3iwfcfg.yaml

N3IWF_LINE=$ ((N3IWF_LINE+1))

sed -i ""$N3IWF_LINE"s/.*/ ipSecTunnelAddress: $IP_IPSEC_INNER
Tunnel IP address of XFRM interface on this N3IWF/" ${CONFIG_FOLDER
}n3iwfcfg.yaml

N3IWF_LINE=$ ((N3IWF_LINE+1))

using @ as the delimiter on the line below as
$IP_IPSEC_INNER_NET_ADDR contains a slash that will break sed
functionality

sed -i ""$N3IWF_LINE"s@.*@ uelIpAddressRange:
$IP_IPSEC_INNER_NET_ADDR # IP address pool allocated to UE in IPSec
tunnel@" ${CONFIG_FOLDER}n3iwfcfg.yaml
else # or continue using old writing style

sed -i ""$N3IWF_LINE"s/.*/ IKEBindAddress: $IP # Nwu interface

IP address (IKE) on this N3IWF/" ${CONFIG_FOLDER}n3iwfcfg.yaml

N3IWF_LINE=$((N3IWF_LINE+1))

sed -i ""$N3IWF_LINE"s/.*/ IPSecTunnelAddress: $IP_IPSEC_INNER
Tunnel IP address of XFRM interface on this N3IWF/" ${CONFIG_FOLDER
}n3iwfcfg.yaml

336

338
339
340
341
342
343

344
345

346

347
348

349
350

356

358
359
360
361
362
363

fi

115

N3IWF_LINE=$((N3IWF_LINE+1))

using @ as the delimiter on the line below as
$IP_IPSEC_INNER_NET_ADDR contains a slash that will break sed
functionality

sed -i ""$N3IWF_LINE"s@.*@ UEIPAddressRange:
$IP_IPSEC_INNER_NET_ADDR # IP address pool allocated to UE in IPSec
tunnel@" ${CONFIG_FOLDER}n3iwfcfg.yaml

echo "[INFO] N3IWF configuration applied"
fi

TNGF config

if

fi

[$TNGF_CONFIGURATION_CONTROL -eq 1]; then

TNGF_LINE=$(grep -n ’AMFSCTPAddresses:’ ${CONFIG_FOLDER}tngfcfg.yaml
| awk -F: ’{print $1}°’> -)

TNGF_LINE=$ ((TNGF_LINE+2))

sed -i ""$TNGF_LINE"s/.x*/ - $IP/" ${CONFIG_FOLDER}tngfcfg.
yaml
TNGF_LINE=$(grep -n ’# --- Bind Interfaces ---’ ${CONFIG_FOLDER}

tngfcfg.yaml | awk -F: ’{print $1}’ -)

TNGF_LINE=$ ((TNGF_LINE+5))

sed -i ""$TNGF_LINE"s/.*/ IKEBindAddress: $IP # IP address of Nwu
interface (IKE) on this TNGF/" ${CONFIG_FOLDER}tngfcfg.yaml
TNGF_LINE=$ ((TNGF_LINE+1))

sed -i ""$TNGF_LINE"s/.*/ RadiusBindAddress: $IP # IP address of
Nwu interface (IKE) on this TNGF/" ${CONFIG_FOLDER}tngfcfg.yaml
TNGF_LINE=$ ((TNGF_LINE+1))

sed -i ""$TNGF_LINE"s/.x/ 1IPSecInterfaceAddress: $IP_IPSEC_INNER #
IP address of IPSec virtual interface (IPsec tunnel enpoint on this
TNGF)/" ${CONFIG_FOLDER}tngfcfg.yaml

TNGF_LINE=$ ((TNGF_LINE+1))

sed -i ""$TNGF_LINE"s/.*x/ IPSecTunnelAddress: $IP_IPSEC_INNER #
Tunnel IP address of XFRM interface on this TNGF/" ${CONFIG_FOLDER}
tngfcfg.yaml

TNGF_LINE=$ ((TNGF_LINE+1))

using @ as the delimiter on the line below as
$IP_IPSEC_INNER_NET_ADDR contains a slash that will break sed
functionality

sed -i ""$TNGF_LINE"s@.*@ UEIPAddressRange:
$IP_IPSEC_INNER_NET_ADDR # IP address allocated to UE in IPSec
tunnel@" ${CONFIG_FOLDER}tngfcfg.yaml

echo "[INFO] TNGF configuration applied"

echo "[INFO] Reboot the machine to apply the new hostname"

if

[$FREESGC_STABLE_BRANCH_CONTROL -eq 1]; then
echo "[INFO] Don’t forget to configure UERANSIM using the stable

116

flag"

364 elif [$FREESGC_STABLE_BRANCH_CONTROL -eq O]; then

365 echo "[INFO] Don’t forget to configure UERANSIM using the nightly
flag"

366 f£i
367 echo "[INFO] Auto deploy script done"

Source: Created by the author (2025).

16

18
19
20
21

30
31
32
33
34

36

117
APPENDIX C — Source of the deploy-UERANSIM.sh script

As indicated in Section 4.4, this script is part of the FAD tool. The ready-to-use

source code and documentation are available in a public GitHub repository (29).

#!/usr/bin/env bash
echo "Welcome to the UERANSIM auto deploy script"

sudo -v # caches credentials

if [$7 == 1]

then
echo "[ERROR] Without root permission, you cannot install the tools
and the updates"
exit 1

fi

echo "[INFO] Execution started"

Control variables (1 = true, 0 = false)

CONTROL_HOSTNAME=1 # switch between updating of not the hostname

CONTROL_STABLE=0 # switch between using the free5GC stable branch or
latest nightly

UERANSIM_VERSION=v3.2.6 # select the stable branch tag that will be used
by the script

UERANSIM_NIGHTLY_COMMIT=’’ # to be used to select which commit hash will
be used by the script

check the number of parameters
if [$# -gt 2]; then
echo "[ERROR] Too many parameters given! Check your input and try
again"
exit 2
fi
if [$# -1t 1]; then
echo "[ERROR] No parameter was given! Check your input and try again
exit 2
fi
check the parameters and set the control vars accordingly
if [$# -ne 0 1; then
while [$# -gt 0]; do
case $1 in
-stable)
CONTROL_STABLE=1
echo "[INFO] The stable branch will be cloned"

-nightly33)

38

39

40
41
42
43

44

46

47
48
49

61
62
63
64

66
67
68
69

118

CONTROL_STABLE=0

UERANSIM_NIGHTLY_COMMIT=392b714 # last commit before new
SUPI/IMSI fix one (useful to be used with freeb5GC v3.3.0)

echo "[INFO] The nightly branch to be used with freeb5GC

v3.3.0 or below will be cloned"

-nightly)
CONTROL_STABLE=0
UERANSIM_NIGHTLY_COMMIT=e4c492d # commit with the new
SUPI/IMSI fix (useful to be used with free5GC v3.4.0 or later)
UERANSIM_NIGHTLY_COMMIT=2134f6b # commit with the EAP-
AKA® fix
UERANSIM_NIGHTLY_COMMIT=01e3785 # commit with the Rel-17
ASN and NGAP files
echo "[INFO] The nightly branch to be used with freeb5GC
v3.4.0 or later will be cloned"
-keep-hostname)
echo "[INFO] The script will not change the machine’s
hostname"
CONTROL_HOSTNAME=0
esac
shift
done
fi

Hostname update
if [$CONTROL_HOSTNAME -eq 1]; then
echo "[INFO] Updating the hostname"
sudo sed -i "1s/.x/ueransim/" /etc/hostname
HOSTS_LINE=$(grep -n °127.0.1.1° /etc/hosts | awk -F: ’{print $13}°
-)
sudo sed -i ""$HOSTS _LINE"s/.*/127.0.1.1 ueransim/" /etc/hosts
elif [$CONTROL_HOSTNAME -eq O]; then
echo "[INFO] Hostname update skipped this time"
else
echo "[ERROR] Script failed to set CONTROL_HOSTNAME variable"
exit 1
fi

HAEHHAHH AR HBAAHBARHHH

Download UERANSIM

HHAHHHHAHAH B HAHRHHEH

echo "[INFO] Downloading UERANSIM"

if [$CONTROL_STABLE -eq 1]; then
echo "[INFO] Cloning UERANSIM stable branch"
echo "[INFO] Tag/release: $UERANSIM_VERSION"

76

89
90

114

116

118

119

git clone -c advice.detachedHead=false -b $UERANSIM_VERSION https://

github.com/aligungr/UERANSIM # clones the stable build
cd UERANSIM
elif [$CONTROL_STABLE -eq O]; then
first check if commit was correctly set
if [-z "$UERANSIM_NIGHTLY_COMMIT"]1; then
echo "[ERROR] Script failed to set UERANSIM_NIGHTLY_COMMIT
variable"
exit 1
fi
echo "[INFO] Cloning UERANSIM nightly branch"
echo "[INFO] Commit: $UERANSIM_NIGHTLY_COMMIT"
git clone https://github.com/aligungr/UERANSIM
cd UERANSIM

git -c advice.detachedHead=false checkout $UERANSIM_NIGHTLY_COMMIT #

clones the nightly build

else
echo "[ERROR] Script failed to set CONTROL_STABLE variable"
exit 1

fi

HU#HHHHARAASHABRBHAHAHRA RS

Install required tools

HHHHHAFAFAAHH AR BB HAASHAAAH

echo "[INFO] Downloading and installing UERANSIM prerequisites"
sudo apt update && sudo apt upgrade -y

sudo apt install -y make g++ libsctp-dev lksctp-tools iproute2

sudo snap install cmake --classic

HAHHAAHBARHBAAHBEH

Build UERANSIM
HHEAHHAHAH BB AR RAHH

echo "[INFO] Building UERANSIM"
make

cd

HAAAHHHHH AR AR R AR B R B R AR AR AR HHHHH

Update UERANSIM config files

HA##HHH B R AR AR R AR B BB R AR HHHHRHH

echo "[INFO] Updating configuration files"

Reads the data network interface IP

echo "Please, type the 5GC’s DN interface IP address"
echo -n "> "

read IP_5GC

ip a

echo "Please, now enter the UERANSIM’s N2/N3 interface IP address (e.g.

IP that communicates with 5GC)"

126

141

120

echo -n "> "
read IP_UE

CONFIG_FOLDER="./UERANSIM/config/"

The var below aim to find the correct line to replace the IP address

5 GNB_LINE=$(grep -n ’ngapIp:’ ${CONFIG_FOLDER}freebgc-gnb.yaml | awk -F:

’{print $1}’ -)
GNB_LINE_AMF=$(grep -n ’amfConfigs:’ ${CONFIG_FOLDER}freebgc-gnb.yaml |
awk -F: ’{print $13}’ -)

3 # Increment the counter to point to the next line (where the IP is

located)
GNB_LINE_AMF=$ ((GNB_LINE_AMF+1))

sed -i ""$GNB_LINE"s/.*/ngaplp: $IP_UE # gNB’s local IP address for N2
Interface (Usually same with local IP)/" ${CONFIG_FOLDER}freebgc-gnb

.yaml

GNB_LINE=$ ((GNB_LINE+1)) # go to the next line

sed -i ""$GNB_LINE"s/.*/gtpIp: $IP_UE # gNB’s local IP address for N3
Interface (Usually same with local IP)/" ${CONFIG_FOLDER}freebgc-gnb.
yaml

sed -i ""$GNB_LINE_AMF"s/.*/ - address: $IP_5GC/" ${CONFIG_FOLDER}
freebgc-gnb.yaml

; if [$CONTROL_HOSTNAME -eq 1]; then

echo "[INFO] Reboot the machine to apply the new hostname"
fi
echo "[INFO] Don’t forget to add the UE to the freebgc via WebConsole"
echo "[INFO] See: https://freebgc.org/guide/5-install ~ueransim/#4-use-
webconsole-to-add-an-ue"

echo "[INFO] Auto deploy script done"

Source: Created by the author (2025).

wt

6

16

17
18
19
20

121
APPENDIX D — Source of the deploy-n3iwue.sh script

As indicated in Section 4.4, this script is part of the FAD tool. The ready-to-use

source code and documentation are available in a public GitHub repository (29).

#!/usr/bin/env bash

echo "Welcome to the N3IWUE auto deploy script"

sudo -v # caches credentials

if [$7 == 1]

then
echo "[ERROR] Without root permission, you cannot install the tools
and the updates"
exit 1

fi

echo "[INFO] Execution started"

Control variables (1 = true, 0 = false)

HOSTNAME_CONTROL=1 # switch between updating of not the hostname

N3IWUE_VERSION=v1.0.1 # select the stable branch tag that will be used
by the script

N3IWUE_STABLE_BRANCH_CONTROL=1 # switch between using the N3IWUE stable
or nightly branch

N3IWUE_NIGHTLY_COMMIT=’’ # to be used to select which commit hash will
be used by the script

check the number of parameters
if [$# -gt 2 1; then
echo "[ERROR] Too many parameters given! Check your input and try
again"
exit 2
fi
if [$# -1t 1 1; then
echo "[ERROR] No parameter was given! Check your input and try again

exit 2

; £1

check the parameters and set the control vars accordingly
if [$# -ne 0]; then
while [$# -gt 0]; do
case $1 in
-stable)
echo "[INFO] The stable branch of N3IWUE will be cloned"
-stable341)
N3IWUE_VERSION=v1.0.0
echo "[INFO] The script will clone N3IWUE’s version

40

41

42

43
44

46

64

66
67
68
69

122

compatible with free5GC v3.4.1"

)

-nightly)
N3IWUE_STABLE_BRANCH_CONTROL=0
N3IWUE_NIGHTLY_COMMIT=c2662c7 # commit with signaling
fixes (for more info: https://github.com/freebgc/freebgc/issues/584)
N3IWUE_NIGHTLY_COMMIT=578edc9 # latest commit as of (30
th sep)
echo "[INFO] The nightly branch of N3IWUE will be cloned
-keep-hostname)
HOSTNAME_CONTROL=0
echo "[INFO] The script will not change the machine’s
hostname"
esac
shift
done
fi

check your go installation

go version

echo "[INFO] Go should have been previously installed, if not abort the
execution"

echo "[INFO] The message above must not show a \"command not found\"
error"

read -p "Press ENTER to continue or Ctrl+C to abort now"

Hostname update
if [$HOSTNAME_CONTROL -eq 1]1; then
echo "[INFO] Updating the hostname"
sudo sed -i "1s/.x/n3iwue/" /etc/hostname
HOSTS_LINE=$(grep -n ’127.0.1.1° /etc/hosts | awk -F: ’{print $1}’
-)
sudo sed -i ""$HOSTS _LINE"s/.*/127.0.1.1 n3iwue/" /etc/hosts
elif [$HOSTNAME_CONTROL -eq O]; then
echo "[INFO] Hostname update skipped this time"
eilisie
echo "[ERROR] Script failed to set HOSTNAME_CONTROL variable"
exit 1
fi
HHEHAHAHFRHSHH R B HAH
Download N3IWUE
HHEHAHAHFABARAABHHHH
echo "[INFO] Downloading N3IWUE"
if [$N3IWUE_STABLE_BRANCH_CONTROL -eq 1]; then

86
87

88
89
90

123

echo "[INFO] Cloning N3IWUE stable branch"
echo "[INFO] Tag/release: $N3IWUE_VERSION"
git clone -c advice.detachedHead=false -b $N3IWUE_VERSION https://
github.com/freebgc/n3iwue.git # clones the stable version
cd n3iwue
elif [$N3IWUE_STABLE_BRANCH_CONTROL -eq O]; then
echo "[INFO] Cloning N3IWUE nightly branch"
echo "[INFO] Commit: $N3IWUE_VERSION"
git clone https://github.com/freebgc/n3iwue.git # clones the nightly
build
cd n3iwue
git -c advice.detachedHead=false checkout $N3IWUE_NIGHTLY_COMMIT
else
echo "[ERROR] Script failed to set N3IWUE_STABLE_BRANCH_CONTROL
variable"
exit 1
fi
HHAHAHHAHAH RS HAHAH B HAHBHH
Install required tools
HHHHABHBHAHARARHB AR BHABH RS
echo "[INFO] Downloading and installing N3IWUE prerequisites"
sudo apt update && sudo apt upgrade -y
sudo apt install -y make libsctp-dev lksctp-tools iproute2
HHEAHHBHAH U HAHHSH
Build N3IWUE

HHEAHHHHAH B HAHBHS

echo "[INFO] Building N3IWUE"
make

cd

HHEHHHHHHAAAAH AR AR R BRBHAHAHHHHHH

Update N3IWUE config files

HUdHHHHHHAHSHA AR SRR HH AR SRS RH

echo "[INFO] Reading information required to update configuration files"

Reads the 5GC data network interface IP

echo "Please, type the 5GC’s DN interface IP address"

echo -n "> "

read IP_5GC

ip a

echo ""

echo "Please, enter the N3IWUE’s Nwu interface name (e.g. the interface
that communicates with 5GC)"

echo -n "> "

read IFACENAME

ip address show $IFACENAME | grep "\binet\b"

echo ""

Reads the Nwu interface IP

echo "Please, now enter the N3IWUE’s Nwu interface IP address (e.g. IP

124

that communicates with 5GC)"

119 echo -n "> "

120 read IP_UE

121 # Reads the N3IWUE DN interface IP

122 echo "Please, now enter the N3IWUE’s DN interface IP address (e.g. IP
that N3WIUE will get from the 5GC)"

123 echo "TIP: If deploying only one N3IWUE to connect to the 5GC and unsure
, then the IP should be 10.60.0.1"

124 echo -n "> "

125 read IP_DN_UE

127 # Get the first octet of the UE machine IP
128 IP_FIRST_OCTET=${IP_UEY%%.*}
120 echo "[DEBUG] UE machine interface IP 1st octet: $IP_FIRST_OCTET"

131 IP_IPSEC_INNER="10.0.0.1" # default IP is 10.0.0.1 (Check it here: https
://github.com/freebgc/n3iwue/blob/main/config/n3ue.yaml)

132

133 # If the UE IP belongs to the 10.x.x.x range, it will conflict with the
IPSec tunnel address that will be added as the default route

134 if [${IP_FIRST_OCTET} -eq 10]; then

135 echo "[WARN] A conflicting IP address range for Nwu interface was
dleitielcitieldi

136 echo "[INFO] Using 172.16.x.x as IPSec tunnel address space instead
of 10.x.x.x"

137

138 # To use the same host part from UE Nwu interface IP the on the
IPSec tunnel, uncomment the lines below

139 # IP_THIRD_FOURTH_OCTETS=‘echo "$IP_UE" | cut -d . -f 3-4°

140 # echo "[DEBUG] UE machine interface IP 3rd and 4th octets:
$IP_THIRD_FOURTH_OCTETS"

141

142 # Concatenates the new range with the host part of the IP address

143 # IP_IPSEC_INNER="172.16.""$IP_THIRD_FOURTH_OCTETS" # update the IP
address

144

145 IP_IPSEC_INNER="172.16.0.1" # update the IP address

146

147 echo "[DEBUG] New IPSec tunnel inner IP address: $IP_IPSEC_INNER"

148 fi

149

150 echo "[INFO] Updating configuration files"

152 CONFIG_FOLDER="./n3iwue/config/"
153 BASE_FOLDER="./n3iwue/"

155 # The var below aim to find the correct line to replace the IP address

156

158

159
160

161
162
163
164

171
172
173

176

180
181
182
183

184

125

N3IWF_LINE=$(grep -n ’N3IWFInformation:’ ${CONFIG_FOLDER}n3ue.yaml | awk
-F: ’{print $1}’ -)
N3UE_LINE=$(grep -n ’IPSecIfaceName: ens38 # Name of Nwu interface (IKE)
on this N3UE’ ${CONFIG_FOLDER}n3ue.yaml | awk -F: ’{print $13}’> -)
N3UE_RUN_SCRIPT_IPSEC_LINE=$(grep -n ’N3UE_IPSec_iface_addr=’ ${
BASE_FOLDER}run.sh | awk -F: ’{print $1}’ -)

Increment the counter to point to the next line (where the IP is
located)
N3IWF_LINE=$ ((N3IWF_LINE+1))

Update the IP on the config files

sed -i ""$N3IWF_LINE"s/.*/ IPSecIfaceAddr: $IP_5GC # IP address
of Nwu interface (IKE) on N3IWF/" ${CONFIG_FOLDER}n3ue.yaml

N3IWF_LINE=$((N3IWF_LINE+1)) # go to the next line

sed -i ""$N3IWF_LINE"s/.*/ IPsecInnerAddr: $IP_IPSEC_INNER # IP
address of IPsec tunnel enpoint on N3IWF/" ${CONFIG_FOLDER}n3ue.yaml

sed -i ""$N3UE_LINE"s/.x/ IPSecIfaceName: $IFACENAME # Name of
Nwu interface (IKE) on this N3UE/" ${CONFIG_FOLDER}n3ue.yaml

N3UE_LINE=$ ((N3UE_LINE+1)) # go to the next line

sed -i ""$N3UE_LINE"s/.*x/ IPSecIfaceAddr: $IP_UE # IP address of
Nwu interface (IKE) on this N3UE/" ${CONFIG_FOLDER}n3ue.yaml

Update the IP on the run script file

sed -i ""$N3UE_RUN_SCRIPT_IPSEC_LINE"s/.x*/ N3UE_IPSec_iface_addr=
$IP_5GC/" ${BASE_FOLDER}run.sh

N3UE_RUN_SCRIPT_IPSEC_LINE=$ ((N3UE_RUN_SCRIPT_IPSEC_LINE+1)) # go to the
next line

sed -i ""$N3UE_RUN_SCRIPT_IPSEC_LINE"s/.x*/ N3IWF_IPsec_inner_addr=
$IP_IPSEC_INNER/" ${BASE_FOLDER}run.sh

N3UE_RUN_SCRIPT_IPSEC_LINE=$ ((N3UE_RUN_SCRIPT_IPSEC_LINE+1)) # go to the

next line

7 sed -i ""$N3UE_RUN_SCRIPT_IPSEC_LINE"s/.*/ UE_DN_addr=$IP_DN_UE/" ${

BASE_FOLDER}run.sh

if [$HOSTNAME_CONTROL -eq 1]; then
echo "[INFO] Reboot the machine to apply the new hostname"
fi
echo "[INFO] Don’t forget to add the N3IWUE to freebGC via WebConsole"
echo "[INFO] See: https://freebgc.org/guide/n3iwue-installation/#3-use-
webconsole-to-add-ue"

echo "[INFO] Auto deploy script done"

Source: Created by the author (2025).

6

-3

16

18
19
20
21

126
APPENDIX E — Source of the deploy-tngfue.sh script

As indicated in Section 4.4, this script is part of the FAD tool. The ready-to-use

source code and documentation are available in a public GitHub repository (29).

#!/usr/bin/env bash
WLAN_IFACE_NAME="wlp3s0"

echo "Welcome to the TNGFUE auto deploy script"

sudo -v # caches credentials

if [$7 == 1]

then
echo "[ERROR] Without root permission, you cannot install the tools
and the updates"
exit 1

fi

echo "[INFO] Execution started"

Control variables (1 = true, 0 = false)

CONTROL_HOSTNAME=1 # switch between updating or not the hostname

CONTROL_STABLE=0 # switch between using the TNGFUE stable branch or
latest nightly

TNGFUE_VERSION=TODO # select the stable branch tag that will be used
by the script

TNGFUE_NIGHTLY_COMMIT=’’ # to be used to select which commit hash will
be used by the script

check the number of parameters
if [$# -gt 2]; then
echo "[ERROR] Too many parameters given! Check your input and try
again"
exit 2
elif [$# -1t 1]; then
echo "[ERROR] No parameter was given! Check your input and try again

exit 2

; £1

check the parameters and set the control vars accordingly
if [$# -ne 0]; then
while [$# -gt 0]; do
case $1 in
-stable)
CONTROL_STABLE=1
echo "[INFO] The stable branch will be cloned"
echo "[ERROR] No stable branch/tag available!"

-nightly)

127

37 CONTROL_STABLE=0

38 TNGFUE_NIGHTLY_COMMIT=63823f7 # commit with the new
execution flow (automated scripts)

39 echo "[INFO] The nightly branch will be cloned"

40 s

41 -keep-hostname)

42 echo "[INFO] The script will not change the machine’s
hostname"

43 CONTROL_HOSTNAME=0

44 esac

45 shift

46 done

a7 i

48

49 # Hostname update
50 if [$CONTROL_HOSTNAME -eq 1]; then

51 echo "[INFO] Updating the hostname"

52 sudo sed -i "1s/.*/ueransim/" /etc/hostname

53 HOSTS_LINE=$(grep -n ’127.0.1.1° /etc/hosts | awk -F: ’{print $13}°
)

54 sudo sed -i ""$HOSTS_LINE"s/.*/127.0.1.1 ueransim/" /etc/hosts

55 elif [$CONTROL_HOSTNAME -eq O]; then

56 echo "[INFO] Hostname update skipped this time"

57 else

58 echo "[ERROR] Script failed to set CONTROL_HOSTNAME variable"

59 exit 1

60 fi

61 HHEHAHAHFAHAHFAHAHHRHAHS

62 # TNGFUE Installation #

63 HHHAFHBAFHBAAHRAHHRARSH

64 echo "[INFO] Downloading TNGFUE"

65 git clone https://github.com/freebgc/tngfue.git

66 cd tngfue

67 git -c advice.detachedHead=false checkout $TNGFUE_NIGHTLY_COMMIT #
clones the nightly build

68 echo "[INFO] Running the prepare.sh script"

69 ./prepare.sh

71 if [$CONTROL_HOSTNAME -eq 1]; then

72 echo "[INFO] Reboot the machine to apply the new hostname"

73 fi

74 echo "[INFO] Don’t forget to add the TNGFUE to freeb5GC via WebConsole"

75 echo "[INFO] See: https://freebgc.org/guide/TNGF/tngfue-installation/#2-
use-webconsole -to-add-ue"

76 echo "[INFO] Auto deploy script done"

Source: Created by the author (2025).

ot

~

128
APPENDIX F — Source of the pcap__extract.sh script

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

#!/usr/bin/env bash

TRAINING_PCAP_FOLDER=./pcap/input/training_data/ # read training raw
PCAP files from here

INFERENCE_PCAP_FOLDER=./pcap/input/inference_data/ # read inference raw
PCAP files from here

OUT_FOLDER=./pcap/output/1-PCAP-export/ # save the output there

set IFS to break only on new line (so the input files can have white
space on their names)

for more info: https://www.linuxquestions.org/questions/programming -9/
bash-put-output-from-%601s%60-into-an-array -346719/#post1765355

IFS="

J

TRAINING_PCAP_LIST=("$TRAINING_PCAP_FOLDER"*.pcap)
INFERENCE_PCAP_LIST=("$INFERENCE_PCAP_FOLDER"*.pcap)

Check if folder is empty, if yes, delete the related var to avoid "
file not found" errors

if [["$TRAINING_PCAP_LIST"
TRAINING_PCAP_LIST=""
unset TRAINING_PCAP_LIST

elif [["$INFERENCE_PCAP_LIST"
INFERENCE_PCAP_LIST=""
unset INFERENCE_PCAP_LIST

*"x"%]1; then

* 1k M x]], then

fi

Then calculate these sizes after that
TRAINING_PCAP_LIST_SIZE=${#TRAINING_PCAP_LIST[@]}
INFERENCE_PCAP_LIST_SIZE=${#INFERENCE_PCAP_LIST[@]}
TOTAL_LIST_SIZE=$((TRAINING_PCAP_LIST_SIZE + INFERENCE_PCAP_LIST_SIZE))

TIME_START=$(date +%s) # record start time

PCAP to JSON and CSV
extract_JSON_and CSV () {
local FILE_NAME=$1

local PCAP_FOLDER=$2
local OUT_FOLDER=$3
local SET_SPLIT_TAG=$4

129

38 echo "[INFO] Extracting data from $FILE_NAME"

39

40 tshark -r $PCAP_FOLDER$FILE_NAME -T json > $0UT_FOLDER/"${FILE_NAME
%.*x}_$SET_SPLIT_TAG.json" && \

41 tshark -r $PCAP_FOLDER$FILE_NAME -T fields \

42 -e frame.number -e frame.time_relative -e ip.src -e ip.dst -e _ws.

col.protocol -e frame.len -e _ws.col.info \

43 -E header=y -E separator=, -E quote=d -E occurrence=f \
44 > $0UT_FOLDER/"${FILE_NAMEY.*} $SET_SPLIT_TAG.csv"
45 # To customize the "-e flags" (display filters), see https://www.

wireshark.org/docs/dfref/

46 # For more information: https://manpages.ubuntu.com/manpages/jammy/
manl/tshark.1.html

47 }

48

49 # JSON field remover

50 field remover () {

51 local FILE_NAME=$1

52 local OUT_FOLDER=$2

53

54 echo "[INFO] Removing unused fields from $FILE_NAME"

55 # GNU AWK (gawk) was used instead of AWK because of this regex
support

56 gawk -i dinplace */\[/ ||l /\1/ Il /\{/ |1 /\}/ |l /" _source":/ ||

57 /" frame.number":/ || /"frame.time_delta":/ || /"frame.time_relative
"/ |

58 /"ip.src":/ || /"ip.dst":/ || /"frame.encap_type":/ || /"frame.len
"/

59 /"ip.hdr_len":/ || /"udp.length":/ || /"tcp.len":/ || /"udp.srcport
"/ |

60 /"tcp.srcport":/ || /"udp.dstport":/ || /"tcp.dstport":/ ||

61 /"tcp.completenessx"/ || /"tcp.flags":/ || /"tcp.str":/ ||

62 /"tcp.window_size":/ || /"tcp.window_size_scalefactor":/ ||

63 /" frame.protocols":/ || /"ip.proto":/ || /"ip.flags...":/ || /"ip.
ttl":/ ||

64 /"tcp.hdr_len":/ || /"data.len":/ || /"quic.packet_length":/ []| /"
quic.length":/

65 ’ $0UT_FOLDER$FILE_ NAME

66 # Some regex pattern explanation

67 # first line of the pattern matches the JSON structure header that

must be kept

68 # all the other pattern lines match lines that contain data to be
used on next steps

69 # everything else that is not matched, will be deleted to free disk
space

70 }

~
[\

I~
w

79

80

81

82

88
89
90

130

JSON parser to reconstruct its structure
json_parser () {

local FILE_NAME=$1

local OUT_FOLDER=%$2

FILE_NAME_TMP=$FILE_NAME" _tmp"
echo "[INFO] Parsing fields from $FILE_NAME"
Parses the JSON using the Perl module to remove illegal trailing
commas and to reformat it
perl -MJSON -e ’Qtext=(<>);print to_json(from_json("Qtext", {relaxed
=>1}), {pretty=>1})’ $0UT_FOLDER$FILE_NAME >
$0UT_FOLDER$FILE_NAME_TMP
the Perl source code above was based on this StackOverflow answer:
https://unix.stackexchange.com/a/485011
As I couldn’t find an easy way to process the file in place, I’ve
added a tem file to save the result then used mv to overwrite the
original
mv $0UT_FOLDER$FILE_NAME_TMP $0UT_FOLDER$FILE_NAME
}
; time { # track execution time

echo "[INFO] Exporting $TRAINING_PCAP_LIST_SIZE training and
$INFERENCE_PCAP_LIST_SIZE inference PCAP files"
if [$TRAINING_PCAP_LIST_SIZE -ne O]; then
for i in "${TRAINING_PCAP LIST[@]}"; do
extract JSON_and CSV "${i##x/}" $TRAINING PCAP_FOLDER
$0UT_FOLDER "training" &
done
fi
if [$INFERENCE_PCAP_LIST_SIZE -ne O]; then
for j in "${INFERENCE_PCAP_LIST[@]}"; do
extract_JSON_and_CSV "${j##x*/}" $INFERENCE_PCAP_FOLDER
$0UT_FOLDER "inference" &
done
fi
wait
unset TRAINING_PCAP_LIST # clean up after usage
unset INFERENCE_PCAP_LIST_SIZE # clean up after usage
echo "[INFO] A1l $TOTAL_LIST_SIZE files have been successfully exported"

JSON_LIST=("$0UT_FOLDER"*. json)
JSON_LIST_SIZE=${#JSON_LIST[@]}

Drop duplicated fields on JSON

7 echo "[INFO] Preprocessing entries from $JSON_LIST_SIZE JSON files"

if [$JSON_LIST_SIZE -ne O]; then
for i in "${JSON_LIST[@]}"; do

110
111
112
113
114

116
117
118
119
120
121
122
123
124
125
126
127
128

131

field_remover "${i##x*/}" $0OUT_FOLDER &

done
wait
for i in "${JSON_LIST([@]}"; do
this step uses a lot of RAM, that’s why it ins’t run in
parallel
json_parser "${i##x/}" $0UT_FOLDER
done
else
echo "[ERRO] No JSON files found in the directory: $0UT_FOLDER"
exit 1
fi
unset JSON_LIST # clean up after usage
echo "[INFO] A1l $TOTAL_LIST_SIZE files have been processed"
echo "[DEBU] Execution time:"
}

TIME_END=$(date +%s) # record end time
echo "[DEBU] Execution time: $((TIME_END-TIME_START)) seconds"

Source: Created by the author (2025).

21

36

132

APPENDIX G — Source of the dataset_ CSV__characterization.py script

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import
import
import
import
import
import

import

csv
traceback
sys

pandas as pd
0s

glob

time

from util import read_csv

def extract_frequency_info(data_frames, column_names):

freq_data_list = []

for df in data_frames:

try:

Use value_counts to get the frequency of each unique value

in the specified columns

frequency_info = {column: df [column].value_counts () for

column in column_names}

freq_data_list.append(frequency_info)
except KeyError as ke:

missing_columns = [col for col in column_names if col not in

df . columns]

print (f"Error: Columns {missing_columns} not found in the

DataFrame.")

exit ()

except Exception as e:
printing stack trace
traceback.print_exception (*sys.exc_info())
print ("[ERROR]", type(e).__name__, e)
exit ()

return freq_data_list

def print_and_save_frequency_data(freq_data_list):

for counter, item in enumerate(freq_data_list, start=1):

"
>

print (" [DEBU] Frequency data extracted from data frame number

counter) # DEBUG

for column_name, freq_series in item.items():

file_name_without_format = os.path.splitext(

input_files_names [counter - 1]) [0] # remove ’.csv’ from old file name

freq_series.to_csv(os.path. join(output_files_path,

40
41
42
43
44

46

47
48
19

59

60

70

72

133

file_name_without_format + + column_name + ".csv"))
print (£"[DEBU] Frequency information for {column_namel} of
{file_name_without_formatl}:\n {freq_series}") # DEBUG

print ("[DEBU] Finished printing data frame", counter) # DEBUG

def save_time_data(df_list):
Extract the two columns related to time from each DataFrame
for counter, time_df in enumerate(df_list):

extracted_cols = pd.DataFrame ()

extracted_cols (time_df [["frame.number", "frame.time_relative"

1
file name_without_format = os.path.splitext(input_files_names/|[
counter - 1]) [0] # remove ’.csv’ from old file name
extracted_cols.to_csv(os.path. join(output_files_path,

file_name_without_format + ".time_series.csv"), index=False)

File paths

input_files_path = "./pcap/output/1-PCAP-export/" # read CSV files from
here
output_files_path = "./pcap/output/2-stats/" # save the output there

print ("[INFO] Creating statistical data")

start_time = time.time() # record the start of execution

get the list of all CSV files in the input directory

input_files_names = [f for f in os.listdir(input_files_path) if f.
endswith(’.csv’)]

input_files_names = [f for f in os.listdir (input_files_path) if f.
endswith(’test.csv’) | f.endswith(’5gl.csv’)] # initial tests

create a list of file paths by joining the input directory path with
each file name

input_file_paths = [os.path.join(input_files_path, f) for f in

input_files_names]

Read CSV files
input_dfs = [read_csv(path) for path in input_file_paths]

check if at least one file was found

if len(input_dfs) == 0:
print (£" [ERROR] No CSV file found on {input_files_pathl}")
exit ()

Extract frequency information

as the features are the same on all files, no need to do that for all
of them

column_names = input_dfs [0].columns.tolist ()

removes some columns from the frequency calculation because they

134

almost always have only unique values

columns_to_remove = ["frame.number", "frame.time_relative", " _ws.col.
info"]

for col in columns_to_remove:
column_names.remove (col)

input_freq_data_list = extract_frequency_info (input_dfs, column_names)

Print frequency information
print_and_save_frequency_data(input_freq_data_list)
save_time_data (input_dfs)

print ("[INFO] Creating statistical data successfully finished")
end_time = time.time() # record the end of execution
print (£" [DEBU] Execution time: {(end_time - start_time)l} s")

Source: Created by the author (2025).

o

28

29

APPENDIX H — Source of the stat-plotter.py script

135

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import csv

import pandas as pd

import numpy as np

import os

import matplotlib.pyplot as plt

import time
from util import read_csv
def update_font_size(f_size):

font_size = f_size # base font size

Update rcParams to make fonts larger

plt.rcParams[’font.size’] = font_size
plt.rcParams[’axes.labelsize’] = font_size + 2
plt.rcParams[’axes.titlesize’] = font_size + 4
plt.rcParams[’xtick.labelsize’] = font_size

plt.rcParams[’ytick.labelsize’] font_size

Create chart for each DataFrame

def plot_graph(df_to_plot, input_file_name, column_label, x_label,
y_label, plt_type):
for i, df in enumerate(df_to_plot):

Adjust plot parameters according to each plot type
if (plt_type == ’dozens-of-bars’):
plt.figure(figsize=(15, 6)) # Set figure size
update_font_size (15)
sorted_df = df.sort_values(by=column_label) # sort data
before plotting
plt.plot(sorted_df [column_label], sorted_df[’count’],

marker=’.’, linestyle=’:’) # line plot

plt.bar(sorted_df [column_label], sorted_df[’count’]) # bar

plot

Calculate mean, median and mode
mean_value = df[’frame.len’].mean ()
median_value = df[’frame.len’].median ()

mode_value = df [’frame.len’] [0]

Statistical bars configuration

bar_max_height = sorted_df[’count’].max() # get the highest

height value on the plot

136

text_x_pos = 0.05 # x axis text anchor
text_y_pos = 0.95 # y axis text anchor

set the colors

mean_color = ’red’
median_color = ’green’
mode_color = ’purple’

Plot mean, median and mode as colored bars

plt.bar (mean_value, bar_max_height, color=mean_color, alpha
=0.5, width=3)

plt.bar (median_value, bar_max_height, color=median_color,
alpha=0.5, width=3)

plt.bar (mode_value, bar_max_height, color=mode_color, alpha
=0.5, width=3)

Annotate the plot with mean, median and mode values

plt.text (text_x_pos, text_y_pos, f’Mean: {mean_value:.2f}’,
transform=plt.gca().transAxes, ha=’left’, va=’top’, color=mean_color)

plt.text (text_x_pos, (text_y_pos - 0.05), f’Median: {
median_value:.2f}’, transform=plt.gca().transAxes, ha=’left’, va=’top
>, color=median_color)

plt.text (text_x_pos, (text_y_pos - 0.10), f’Mode: {
mode_valuel}’, transform=plt.gca().transAxes, ha=’left’, va=’top’,

color=mode_color)

Adjust the grid and x axis labels
plt.xticks (np.arange (0, 1505, 50), rotation=30)

plt.grid(visible=True, axis=’y’, linestyle = ’--’, zorder=0)

elif (plt_type == ’a-few-bars’):
plt.figure(figsize=(10, 6)) # Set figure size
update_font_size (12)
x = df [column_label]
y = df[’count’] # get the count column data
labels = [str(x) for x in df[column_label]] # convert all
labels to strings (required by plt.barh())

total_count = y.sum()

Map each xlabel to a specific color

protocol_labels_list = ["UDP",

"ICMPv6",

"TCP", "TCP, HiPerConTracer",
"TLSv1.3", "TLSvi.2", "TLSvi",
"SSLv2", "SSL",

"HiM,

"HTTP", "HTTP/JSON",

n DNS n s

87
88
89
90

91
92
93

106
107
108

109

110

111

112

116

137

"QUIC",
"PNIO",
"0CSP"]
color_labels = [’blue’,
’purple’,

’green’, ’green’,
’orange’, ’orange’, ’orange’,
’black’, ’black’,
’magenta’,
’brown’, ’brown’,
’pink’,
’grey’,
’teal’,
>cyan’]
label_to_color = {label: color for label, color in zip(
protocol_labels_list, color_labels)}
bar_colors = [label_to_color[label] for label in labels]

plt.bar(x, y, align=’center’, color=bar_colors, label=labels
plt.xticks(x, labels, rotation=15)

Offsets tailored for the used dataset

they were obtained via trial and error

if (y.max() > 1000):

lim_upper_offset

I
RS
o

else:

lim_upper_offset 1.5

lim_bottom_offset = 1.4

plt.ylim(y.min() / lim_bottom_offset, lim_upper_offset * y.
max ()) # adjust the bars to avoid plotting text out of bounds

Add the counts and percentages as labels above each bar

for j in range(len(y)):
round ((y[jl/total_count)*100, 1)
f"{y[jl}\n({percentagel}%)" # format the
label text with both count and percentage

percentage
label_text

plt.text(j, y[j]l, label_text, ha=’center’, va=’bottom’)
cHiSIcE:
print (" [ERROR] Could not set plt_type correctly, currently
it is:", plt_type)
exit ()

plt.yscale(’log’)
file_name_without_format = os.path.splitext(input_file_name[i])
[0] # remove ’.csv’ from old file name

plt.title(file_name_without_format)

118
119
120
121

123
124

148
149
150

154

155

138

plt.xlabel (x_label)
plt.ylabel(y_label + " (Logarithmic Scale)")
plt.tight_layout ()

Save plot
output_file_path = os.path.join(output_files_path, f"{
file name_without_formatl}.pdf")
plt.savefig(output_file_path, dpi=600, bbox_inches="tight")
print (£"[INFO] Plots of {x_labell} for {input_file_name[i]} have

been saved") # TODO improve messages on screen

plt.show() # DEBUG
plt.clf () # clear the figure to create a new plot
plt.close() # close each figure after finishing to free RAM

def plot_time_series(dfs_to_plot, input_file_name, x_column_label,

y_column_label, x_label, y_label):
for i, df in enumerate(dfs_to_plot):

plt.figure(figsize=(15, 6)) # Set figure size

plt.plot(df [x_column_label], df[y_column_label], marker=’.’,
linestyle=’:")

file_name_without_format = os.path.splitext(input_file_name[i])
[0] # remove ’.csv’ from old file name

plt.title(file_name_without_format)

plt.xlabel(x_label + " (seconds)")

plt.ylabel (y_label)

plt.tight_layout ()

Save plot

output_file_path = os.path.join(output_files_path, f"{
file_name_without_formatl}.pdf")

plt.savefig(output_file_path, dpi=120, bbox_inches="tight")

print (£"[INFO] Plots of {x_label} for {input_file_name[i]} have

been saved") # TODO improve messages on screen

plt.show() # DEBUG
plt.clf () # clear the figure to create a new plot
plt.close() # close each figure after finishing to free RAM

File paths

input_files_path = "./pcap/output/2-stats/" # read CSV files from here

output_files_path = "./pcap/output/2-stats/graphs/" # save the output
there

start_time = time.time() # record the start of execution

Get file names and paths for protocol and length data

input_file_names_protocol = [f for f in os.listdir(input_files_path) if

139

f.endswith(’protocol.csv’)]

156 input_file_paths_protocol = [os.path.join(input_files_path, f) for f in
input_file_names_protocol]

157 input_file_names_length = [f for f in os.listdir (input_files_path) if f.
endswith(’len.csv’)]

158 input_file_paths_length = [os.path.join(input_files_path, f) for f in
input_file_names_length]

159 input_file_names_frame_time_number = [f for f in os.listdir(
input_files_path) if f.endswith(’time_series.csv’)]

160 input_file_paths_frame_time_number = [os.path.join(input_files_path, f)
for f in input_file_names_frame_time_number]

161

162 # Read CSV files

163 input_dfs_protocol = [read_csv(path) for path in
input_file_paths_protocoll]

164 input_dfs_length = [read_csv(path) for path in input_file_paths_length]

165 input_dfs_time_series = [read_csv(path) for path in
input_file_paths_frame_time_number]

166

167 # Check if at least one file was found for each type

168 # TODO improve this check to filter per type

169 if (not input_dfs_protocol and not input_dfs_length and not
input_dfs_time_series):

170 print (£" [ERROR] No CSV files found on {input_files_pathl}")

171 exit ()

173 # Create plots for both protocol and length data

174 plot_graph (input_dfs_protocol, input_file_names_protocol, ’_ws.col.
protocol’, ’Protocol Label’, ’Frequency’, ’a-few-bars’)

175 plot_graph (input_dfs_length, input_file_names_length, ’frame.len’, °’
Packet Length (bytes)’, ’Frequency’, ’dozens-of-bars’)

176 plot_time_series (input_dfs_time_series,
input_file_names_frame_time_number , ’frame.time_relative’, ’frame.

number’, ’Packet Capture Time’, ’Packet Number’)

178 print (" [INFO] All plots have been finished")
179 end_time = time.time() # record the end of execution
180 print (£"[DEBU] Execution time: {end_time - start_timel} s")

Source: Created by the author (2025).

16

140
APPENDIX I — Source of the export_ JSON.py script

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import os

import time

from joblib import Parallel, delayed

from pcap_json2csv.json2csv import parse

start_time = time.time() # record the start of execution

number_of_parallel_jobs=int (os.cpu_count () /2) # take half of reported
CPU threads

File paths

input_files_path = "./pcap/output/1-PCAP-export/" # read JSON files from
here

output_files_path = "./pcap/output/3-JSON-export/" # save the output
there

get the list of all JSON files in the input directory

input_files_names = [f for f in os.listdir (input_files_path) if f.
endswith(’.json’)]

input_files_names = [f for f in os.listdir (input_files_path) if f.
endswith(’test.json’) | f.endswith(’5gl.json’)] # initial tests

create a list of file paths by joining the input directory path with
each file name

input_file_paths = [os.path. join(input_files_path, f) for f in

input_files_names]

check if at least one file was found

if not input_file_paths:
print (£" [ERRO] No JSON file found on {input_files_pathl}")
exit ()

parse all JSON files read
def export_json(file, progress_bar_slow_print):
try:
parse(file, output_files_path, progress_bar_slow_print)
except KeyboardInterrupt:
print ("\n[ERRO] Operation interrupted by the user")
exit ()
print (£"\n[INFO] Export of {file} done")

try:
slowdown_print=True

print (£" [INFO] Running in parallel using {number_of_parallel_jobs}

36

38
39
40

41
42
43
44

141

threads")
Parallel(n_jobs=number_of_parallel_jobs) (delayed(export_json) (i,

slowdown_print) for i in input_file_paths)

" except KeyboardInterrupt:

print ("[ERRO] User asked to quit")
exit ()

swap the lines on the block above with these below to disable the
parallel execution

for 1 in input_file_paths:

slowdown_print=False

export_json(i, slowdown_print)

end_time = time.time() # record the end of execution

print ("[DEBU] Execution time:", end_time - start_time, "s")

Source: Created by the author (2025).

10

27
28
29
30
31
32

33
34

142

APPENDIX J — Source of the json2csv.py script

As indicated in Subsection 4.5.1, this script is part of the PCAP-dataExtractor

module. The ready-to-use source code is available in a GitHub repository (122).

import json

import pandas as pd

import os

import sys

def

def

swap_special_chars_to_underscore (input_string):

result = ’’ # to store the output

Check if the character is alphanumeric
If alphanumeric, add the character to the result string
If not alphanumeric, add an underscore to the result string
for char in input_string:
if char.isalnum():
result += char
else:

result += ’_~’

return result

progressBar (count_value, total, slow_print, suffix=’’):

A simple and tidy progress bar to track status

Adapted from: https://www.geeksforgeeks.org/progress-bars-in-

python/

bar_length = 25

filled_up_Length = int(round(bar_length* count_value / float(total))
)

percentage = round (100.0 * count_value/float(total) ,1)

bar = ’=’ % filled_up_Length + ’ ’ * (bar_length - filled_up_Length)

This new way of printing improves when using parallelization
if on slow mode and file is large, update for each 1k packets

if on slow mode and file is medium sized, update for each 100

packets

else if on slow mode and file is small, update for each 10 packets

else if not on slow mode, update at every packet (the original way

)

else don’t do anything (i.e. skip)

if (slow_print and total >= 10000 and count_value % 1000 == 0):
sys.stdout .write(’ [%s] %s%s: %s\n’ %(bar, percentage, ’%’,

suffix))

39

40

41

43

44

45
46

68
69

143

elif (slow_print and total > 1000 and total < 10000 and count_value

% 100 == 0):
sys.stdout .write(’ [%s] %s%s: %s\n’ % (bar, percentage, ’%’,
suffix))
elif (slow_print and total <= 1000 and count_value % 10 == 0):
sys.stdout.write(’ [%s] %s%s: %s\n’ Y% (bar, percentage, ’%’,
suffix))
elif (not slow_print):
sys.stdout .write(’ [%s] %s%s: %s\r’ %(bar, percentage, ’%’,
suffix))

def parse(input_file_path, output_folder, print_control=False):

A function to parse JSON PCAP-style files to a CSV format
check if path is empty then ask user to provide it
if (not input_file_path):
print ("[ERRO] The file path was not provided!")
print ("[INFO] Please, provide the file path below")
input_file_path = input ("> ")

file_path_without_format = os.path.splitext(input_file_path) [0]
remove ’.json’ from old file name

file _name_without_format = file_path_without_format.split("/")

file_name_without_format file_name_without_format [len (
file_name_without_format)-1] # get the clean file name only
new_file_name = file_name_without_format + ’.csv’

new_file_with_path = output_folder + new_file_name

JSON_data=open (input_file_path).read ()

print (£" [INFO] JSON file {file_name_without_format} opened
successfully")

JSONArray = json.loads(JSON_data)

print ("[INFO] JSON data imported successfully")

length = len(JSONArray)
print ("[DEBU]", length, "data frames to be converted from",
file_name_without_format) # DEBUG

labels = [’Packet_no’,’Timestamp’,’Time_delta’,’Source_IP’,’
Destination_IP’,’Frame_type’,’Frame_total_length’,’

Frame_header_length’,

#

’Frame_payload_length’,’Source_port’,’Destination_port’,’

TCP_completeness’,’TCP_compl_reset’,’TCP_compl_fin’,’TCP_compl_data’,

>TCP_compl_ack’,’TCP_compl_syn_ack’,’TCP_compl_syn’,’

TCP_compl_str’,’TCP_flags_bin’,’TCP_flags_str’,’TCP_window_size’,

>TCP_window_size_scale’,’Frame_protocols’,’IP_protocols’,’

81
82
83
84

86
87
88
89

90

96
97
98
99
100

109

144

IP_flag_reserved_bit’,’IP_flag_dont_fragment’,’IP_flag _more_fragments

J
B

>TTL’, ’TCP_header_length’,’Data_length’,’QUIC_packet_length
>,’QUIC_length’]

df = pd.DataFrame(columns = labels)
df .to_csv(new_file_with_path, header = True, index = False)

for obj in range(length):

try:
pkt_number = JSONArray[objl[’_source’][’layers’][’frame’][’
frame.number ’]
except Exception:

timestamp = None

try:
timestamp = JSONArray[objl[’_source’][’layers’][’frame’][’
frame.time_relative’]
except Exception:

timestamp = None

try:

time_since_last_pkt JSONArray [obj]l [’ _source’][’layers’][’
frame’] [’ frame.time_delta’]
except Exception:

None

time_since_last_pkt

try:
ipv4_ip_src = JSONArray[objl[’_source’][’layers’][’ip’]1[’ip
.src’]
except Exception:

ipv4_ip_src = None

try:

ipv4_ip_dst JSONArray[objl[’ _source’][’layers’][’ip’][’ip.
dst’]
except Exception:

ipv4_ip_dst = None

try:
frame_type = JSONArray[obj][’_source’][’layers’][’frame’] [’
frame.encap_type’]
except Exception:
frame_type = None
more info on that: https://gitlab.com/wireshark/wireshark
/-/blob/master/wiretap/wtap.h#L87

110
111

125
126
127

129

130

138
139
140

141
142
143
144
145
146

try:

145

frame_len = JSONArrayl[objl[’_source’][’layers’][’frame’][’

frame.len’]
except Exception:

frame_len = None

try:

header_len = JSONArray[obj]l[’_source’][’layers’][’ip’][’ip.

hdr_len’]
except Exception:

header_len = None

try:

payload_len = JSONArray([objl[’_source’][’layers’][’udp’]([’

udp.length’]
except Exception:
try:
payload_len =
1[’tcp.len’]
except Exception:

payload_len =

try:

JSONArray [objl [’ _source’][’layers’][’tcp’

None

src_port = JSONArray([objl[’_source’][’layers’][’udp’][’udp.

srcport’]
except Exception:

try:

src_port = JSONArray[objl[’_source’][’layers’][’tcp’][’

tcp.srcport’]

except Exception:

src_port = None

try:

dst_port = JSONArray[objl[’_source’][’layers’][’udp’][’udp.

dstport’]
except Exception:

try:

dst_port = JSONArray[objl[’_source’][’layers’][’tcp’]1[’

tcp.dstport’]

except Exception:

dst_port = None

TCP only begin
try:
tcp_completeness
J[’tcp.completeness’]

except Exception:

JSONArray [obj]l [’ _source’][’layers’][’tcp’

163
164
165
166
167

178
179
180
181
182

184
185

146

tcp_completeness = None

TODO forcibly convert these "completeness flags" to int or
bool
try:
tcp_completeness_reset = JSONArray[objl[’_source’][’layers’
J[’tcp’][’tcp.completeness_tree’] [’tcp.completeness.rst’]
except Exception:

tcp_completeness_reset = None

try:
tcp_completeness_fin = JSONArray[objl[’_source’][’layers’][’
tcp’][’tcp.completeness_tree’][’tcp.completeness.fin’]
except Exception:

tcp_completeness_fin = None

try:
tcp_completeness_data = JSONArray[objl[’_source’][’layers’][
>tcp’][’tcp.completeness_tree’][’tcp.completeness.data’]
except Exception:

tcp_completeness_data = None

try:
tcp_completeness_ack = JSONArray[objl[’_source’][’layers’][’
tcp’][’tcp.completeness_tree’][’tcp.completeness.ack’]
except Exception:

tcp_completeness_ack = None

try:
tcp_completeness_syn_ack = JSONArray[objl[’_source’][’layers
>J[’tcp’][’tcp.completeness_tree’] [’tcp.completeness.syn-ack’]
except Exception:

tcp_completeness_syn_ack = None

try:
tcp_completeness_syn = JSONArray[objl[’_source’][’layers’][’
tcp’]l[’tcp.completeness_tree’] [’tcp.completeness.syn’]
except Exception:

tcp_completeness_syn = None

try:

tcp_completeness_str JSONArray[obj][’ _source’][’layers’][’
tcp’]l[’tcp.completeness_tree’] [’tcp.completeness.str’]

if (tcp_completeness_str == "[Null]"): # TODO check if
this won’t break anything

tcp_completeness_str = None

tcp_completeness_str = ’’.join(filter(str.isalnum,

186
187
188
189
190

191
192

193

194
195
196
197
198

216

[\]
-~

218

219
220
221

147

tcp_completeness_str))
except Exception:

tcp_completeness_str = None

try:

tcp_flags_hex = JSONArray[objl[’_source’][’layers’][’tcp’][’
tcp.flags’]

if needed, adjust 010b and 10 to the desired length below

see alternatives here: https://www.geeksforgeeks.org/
python-ways-to-convert -hex-into-binary/

tcp_flags_bin = "{0:010b}".format (int(str(tcp_flags_hex),
10))

except Exception:

tcp_flags_bin = None

try:
tcp_flags_str = JSONArray[objl[’_source’][’layers’][’tcp’][’
tcp.flags_tree’][’tcp.flags.str’]
tcp_flags_str = ’’.join(filter(str.isalnum, tcp_flags_str))
except Exception:

None

tcp_flags_str

try:

tcp_window_size JSONArray[obj] [’ _source’][’layers’][’tcp’
J[’tcp.window_size’]

except Exception:

tcp_window_size None
try:
tcp_window_size_scalefactor = JSONArray[obj]l[’_source’][’
layers’][’tcp’][’tcp.window_size_scalefactor’]
except Exception:
tcp_window_size_scalefactor = None
TCP only end

try:

frame_protocols JSONArray [objl[’ _source’][’layers’][’frame
>][’frame.protocols’]

frame_protocols = ’’.join(filter(str.isalnum,

frame_protocols))
filter just erases all special chars, to keep the strings
human readable, it’s better to swap the chars instead
frame_protocols = swap_special_chars_to_underscore (
frame_protocols) # TODO test the performance of using this function
except Exception:

frame_protocols = None

226

148

try:

ip_protocols JSONArray [objl [’ _source’][’layers’][’ip’][’ip
.proto’]

except Exception:

ip_protocols None
try:
ip_flag reserved_bit = JSONArray[objl[’_source’][’layers’][’
ip’][’ip.flags_tree’][’ip.flags.rb’]
except Exception:

ip_flag_reserved_bit = None

try:
ip_flag_dont_fragment = JSONArray[objl[’_source’][’layers’][
’ip’][’ip.flags_tree’][’ip.flags.df’]
except Exception:

ip_flag_dont_fragment = None

try:
ip_flag _more_fragments = JSONArray[objl[’_source’][’layers’
J[’ip’][’ip.flags_tree’][’ip.flags.mf’]
except Exception:

ip_flag _more_fragments = None

try:
ip_ttl = JSONArray[objl[’_source’][’layers’][’ip’][’ip.ttl’]
except Exception:

ip_ttl = None

TCP only begin
try:

tcp_header_length
>]J[’tcp.hdr_len’]

except Exception:

JSONArray [objl [’ _source’][’layers’][’tcp

tcp_header_length None

TCP only end

UDP only begin
try:
data_length = JSONArray[objl[’_source’][’layers’][’data’][’
data.len’]
except Exception:
data_length = None
UDP only end

QUIC only begin
try:

149

263 quic_packet_length = JSONArray[objl[’_source’][’layers’][’
quic’][’quic.packet_length’]

264 except Exception:

265 quic_packet_length = None

266

267 try:

268 quic_length = JSONArray[objl[’_source’][’layers’][’quic’][’
quic.length’]

269 except Exception:

270 quic_length = None

271 # QUIC only end #

272

273 record = [(pkt_number, timestamp, time_since_last_pkt,

ipv4_ip_src, ipv4_ip_dst, frame_type, frame_len,

274 header_len, payload_len, src_port, dst_port,
tcp_completeness, tcp_completeness_reset,

275 tcp_completeness_fin, tcp_completeness_data,
tcp_completeness_ack, tcp_completeness_syn_ack,

276 tcp_completeness_syn, tcp_completeness_str,
tcp_flags_bin, tcp_flags_str, tcp_window_size,

277 tcp_window_size_scalefactor, frame_protocols,

ip_protocols, ip_flag_reserved_bit,

278 ip_flag_dont_fragment, ip_flag _more_fragments, ip_ttl,
tcp_header_length, data_length,

279 quic_packet_length, quic_length)]

280

281 df = pd.DataFrame.from_records(record, columns=1labels)

282 with open(new_file_with_path, ’a’, encoding=’utf-8’) as f:

283 # old way of reporting status, commented to avoiding
flooding the stdout

284 # print ("[INFO] Writing dataframe", obj, "of", length, "(",
round (obj*100/1length, 1) ,"%) to CSV")

285 progressBar (obj, length, print_control, f"Writing {
new_file namel}")

286 df .to_csv(f, header=False, index = False)

287

288 print ("\n[INFO] All", length, "records from", new_file_name, "were
successfully written")

289 # print ("[DEBU] Columns of CSV are", list(df)) # DEBUG

290 # parse("", "./") # Enable this line to run in "stand alone" mode (e.g.

not importing as python module)

Source: Created by the author (2025).

wt

6

-3

13

36

150
APPENDIX K — Source of the box-plotter.py script

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import pandas as pd
import matplotlib.pyplot as plt
import time

import os
from util import glob_get_files_list

File paths

input_files_path = "./pcap/output/3-JSON-export/" # read CSV files from
here
output_files_path = "./pcap/output/3-JSON-export/box-plots/" # save the

output there

def plot_box_plot(file_path):
Read the CSV file
df = pd.read_csv(file_path)
input_file_name = os.path.splitext(file_path.split(’/’)[-1]) [0]

If needed, drop some columns
df .drop(columns=["TCP_window_size"], axis=1, inplace=True) # drop

TCP window size because of its size

df .boxplot (vert=False, figsize=(6,8))

plt.title(input_file_name + °’ box plot’)

plt.xscale("symlog")

plt.subplots_adjust(left=0.28)

plt.tight_layout ()

Reference for the layout adjustment: https://stackoverflow.com/a
/18500068

full_output_path = output_files_path + input_file_name + ’.pdf’
plt.savefig(full_output_path, bbox_inches=’tight’, pad_inches=0, dpi
=120)

print ("[INFO] Box plot sucessfully saved on", full output_path)

plt.show() # DEBUG
plt.close() # close each figure after finishing to enable multiple
runs

start_time = time.time() # record the start of execution

List of CSV files

38
39
40
41
42
43

4
45

for i in csv_files:
try:
plot_box_plot (i)
except AssertionError as e:
print (" [ERRO] Could not

parse",

i,

7 csv_files = glob_get_files_list(input_files_path, "csv"

"due to", e)

end_time = time.time() # record the end of execution

print (£" [DEBU] Execution time:

Source: Created by the author (2025).

{end_time

start_timel} s")

151

ot

6

152
APPENDIX L — Source of the add__label_to_ name.sh script

As indicated in Subsection 4.5.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

#!/usr/bin/env bash

Helper script to iterate over all CSV files to add a label to their
names

this is necessary to help adding the labels to the data on the next
step

CSV_FOLDER=./pcap/output/3-JSON-export/ # read CSV files from here

OUT_FOLDER=./pcap/output/4-ML/preprocess/labeled_files/ # save the
output there

COUNTER=0

List all CSV files in the input folder
FILES=("$CSV_FOLDER"*.csv)
FILES_LIST_SIZE=${#FILES[@]}

if [$FILES_LIST_SIZE -eq O]; then
echo "[ERRO] No CSV files found in the directory: $CSV_FOLDER"
exit 1

fi

echo "[INFO] Read $FILES_LIST_SIZE files"

Loop through each file and rename it based on user input
for FILE in "${FILES[@]}"; do
((COUNTER++))

Extract the base name of the file (without extension)
BASE_NAME=$(basename "$FILE" .csv)

while true; do

Display options to the user

echo "[INFO] Working on file $COUNTER of $FILES_LIST_SIZE"
echo "Choose a label for $BASE_NAME :"

echo "1. eMBB"

echo "2. URLLC"

echo "3. mMTC / mIoT"

echo "4. Skip this file for now"

echo "5. Cancel and exit"

echo "" # new line to improve readability

64

T
78

read -p "Enter an option (1-5): " OPTION

Validate the user’s
case "$0OPTION" in

1

2)

3)

4)

5)

*)

esac

done

Construct the new filename with the label appended
NEW_FILE="$0UT_FOLDER$BASE_NAME"_"$LABEL.csv"

LABEL="embb"

break

)

LABEL="urllc"
break

)

LABEL="mmtc"

break

echo "[INFO]
exit 1

’

echo " [ERRO]
sleep 2

3

input

User asked to quit"

Invalid option!"

Move and rename the file

mv "$FILE"

"$NEW_FILE"

echo "[DEBU] Moved and renamed °’$FILE’ to

; done

echo "[INFO] All files have been processed"

Source: Created by the author (2025).

>$NEW_FILE "

153

32
33
34
35

36

154
APPENDIX M — Source of the ml.py script

As indicated in Subsection 4.5.2, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import pandas as pd
import pickle
import csv
from numpy import mean,std
from datetime import datetime
from time import time_ns
from sklearn.model_selection import train_test_split,cross_validate
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import HistGradientBoostingClassifier,
RandomForestClassifier ,AdaBoostClassifier ,StackingClassifier,
VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import LinearSVC
from lightgbm import LGBMClassifier
from xgboost import XGBClassifier
from sklearn.metrics import (accuracy_score,
precision_score,
recall_score,
f1_score,
roc_auc_score,
confusion_matrix,

make_scorer)

from util import (glob_get_files_list,
read_csv,
plot_confusion_matrix,
preprocess_data,
read_and_label_data,
data_oversample,
data_undersample,
generate_smaller_dataframe,

get_available_threads)

File paths

working_folder = "./pcap/output/4-ML/"

input_files_path = working_folder + "preprocess/labeled_files/" # read
CSV files from here

output_files_path_preprocessed_data = working_folder + "preprocess/

data_ready_to_ml/" # save preprocessed data there

" output_files_path_labeled_data = working_folder + "preprocess/

labeled_data/" # save the labeled output files there

155

38 output_files_path_resampled_data = working_folder + "preprocess/
resampled_data/" # save the labeled output files there

39 output_files_path_models = working_ folder + "models/" # save the model
files there

40 output_files_path_results = output_files_path_models + "training_results
/" # save the model files there

11

12 # Control the execution of each function

43 run_model_training = True

44 run_cross_val = True #Cross validation

45 run_SMOTE = True # Oversampling

16 run_0SS = False # Undersampling

48 timestamp = datetime.now().strftime ("%Y%m%d-%H%M%AS")

19 total _run_time_begin = datetime.now ()

51 def classifier_select(classifier_acronym):

52 match classifier_acronym:

53 case ’'LR’:

54 clf = LogisticRegression()

55 case ’DT’:

56 clf = DecisionTreeClassifier (max_depth=3)

57 case ’RF

58 clf = RandomForestClassifier ()
59 case ’'MLP’:

60 clf = MLPClassifier ()

61 case ’SVM’:

62 clf = LinearSVC()

63 case ’'HGB’:

64 clf = HistGradientBoostingClassifier ()
65 case ’LightGBM’:

66 clf = LGBMClassifier(verbose=-1)
67 case ’'XGB’:

68 clf = XGBClassifier ()

69 case ’AdaBoost’:

70 clf = AdaBoostClassifier ()

71 case ’Stacking’:

72 estimators = [

73 (’dt’, DecisionTreeClassifier (max_depth=2)),

74 (’svc’, LinearSVC()),

75 (’ada’, AdaBoostClassifier ())

76]

77 clf = StackingClassifier(estimators=estimators,

final_estimator=LogisticRegression())
78 case ’Voting’:
79 estimators = [

80 (’dt’, DecisionTreeClassifier (max_depth=3)),

81
82
83
84

116

118
119
120

(’1r’, LogisticRegression()),
(’ada’, AdaBoostClassifier())
]

156

clf = VotingClassifier(estimators=estimators, voting=’soft’,

weights=[0.1, 0.1, 0.8])
case
print ("[ERRO] Failed to load the model")
exit ()

return clf

def save_model_locally(model, file_name, out_dir):
file_path = out_dir + file_name + ".pkl"
pickle.dump (model, open(file_path, ’wb’))

model_name = model.__class__.__name__

print (£" [INFO] Model {model_namel} sucessfully saved on {file_pathl}")

Load and prepare splits from labeled training data

def read_and_split_train_data(csv_file_list, split, dataset_percentage

=100) :
training_data = pd.DataFrame ()
if (dataset_percentage == 100): # use the whole dataset
for file in csv_file_list:
if ’training’ in file:
df = read_csv(file)

training_data = pd.concat([training_data, df],

ignore_index=True)

elif ’inference’ in file:

print ("[DEBU] Skipped inference file found at",

DEBUG
pass
elif ’SMOTE’ in file and len(csv_file_1list) ==
training_data = read_csv(csv_file_1list [0])
elif ’0SS’ in file:
training_data = read_csv(file)

else:

file)

raise ValueError (f"[ERRO] Could not determine data set

type from filename {filel}")
exit ()

else: # or a smaller portion of it (useful for testing the

implementation)

training_data = generate_smaller_dataframe(csv_file_list,

dataset_percentage)

Prepare data for supervised learning
X = training_data.drop(’label’, axis=1) # Features

y = training_datal[’label’] # Target variable

157

121

122 # print ("\n[DEBU] Split data")

123 # print ("[DEBU] Class distrib.:", y.value_counts()) # summarize
class distribution

124 # print ("[DEBU] Class distrib. (%) :\n", y.value_counts(dropna=False,
normalize=True)) # summarize class distribution

125 # print ("[DEBU] Total no. training samples:", len(y))

126

127 if (split):

128 # Now X and y are ready for supervised learning

129 X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)

130

131 return X_train, X_test, y_train, y_test

132 else:

133 return X, y

134

135 def train_models (model, X_train, X_test, y_train, y_test):

136 model _name = model._ _class__.__name__

137 data_num_rows = len(X_train)

138

139 print ("[INFO] Training model", model_name)
140 training_time_begin = time_ns ()

141 model.fit(X_train, y_train)

142 training_time_end = time_ns ()

143

144 training_disk_time_begin = time_ns ()

145 save_model_locally(model, model_name, output_files_path_models)

146 training_disk_time_end = time_ns ()

147

148 y_pred = model.predict(X_test)

149 cm = confusion_matrix(y_test, y_pred, labels=[0, 1, 2])

150 plot_confusion_matrix(cm, output_files_path_results, "", model_name,

"training", timestamp, True, False)

152 # Model evaluation data

153 accuracy = accuracy_score(y_test, y_pred)

154 precision_avg = precision_score(y_test, y_pred, average="weighted")

155 recall_avg = recall_score(y_test, y_pred, average="weighted")

156 f_score_avg = fl_score(y_test, y_pred, average="weighted")

157 f_score_classO = f1_score(y_test, y_pred, average=None, labels=[0])
[ol

158 f_score_classl = f1_score(y_test, y_pred, average=None, labels=[1])
(ol

159 f_score_class2 = f1_score(y_test, y_pred, average=None, labels=[2])

(o]
160

161
162
163
164
165

166

168

184

188
189
190
191
192
193
194
195
196
197

H OH OH OH

#

158

print ("[DEBU] Accuracy:", round(accuracy, 10))

print (£"[DEBU] Confusion Matrix:\n{cml}")

print ("[DEBU] Precision :", round(precision_avg, 10))

print ("[DEBU] Recall :", round(recall_avg, 10))

print ("[DEBU] Fl-score :", round(f_score_avg, 10))

print ("[DEBU] Fl-score/class :", fl1_score(y_test, y_pred, average=

None, labels=[0, 1, 2]))

if (model_name != "LinearSVC" and model_name != "StackingClassifier"

)

LinearSVC doesn’t implement proba

auc_score = roc_auc_score(y_test, model.predict_proba(X_test),

average=’macro’, multi_class=’ovo’, labels=[0, 1, 2])

print ("[DEBU] ROC AUC Score :", round(auc_score, 10))

else:

print ("[DEBU] ROC AUC Score : Not calculated for", model_name)

auc_score = "N.A."

if (model_name == ’DecisionTreeClassifier’):

Record feature importance for Decision Tree

importance_with_columns = pd.DataFrame ({’feature’: X_train.

columns, ’importance’: model.feature_importances_})

importance_with_columns.sort_values (by=’importance’, ascending=

False, inplace=True, ignore_index=True)

importance_with_columns.to_csv(f"{output_files_path_results}{

timestamp}_dt_feature_importance.csv", header=True)

elif (model_name == ’RandomForestClassifier’):

Record feature importance for Random Forest

importance_with_columns = pd.DataFrame ({’feature’: X_train.

columns, ’importance’: model.feature_importances_})

importance_with_columns.sort_values (by=’importance’, ascending=

False, inplace=True, ignore_index=True)

importance_with_columns.to_csv(f"{output_files_path_resultsl}{

timestamp}_rf_feature_importance.csv", header=True)

training_time_ms = (training_time_end - training_time_begin) / 10**6

training_disk_time_ms = (training_disk_time_end -

training_disk_time_begin) / 10%%*6

training_total_time_ms = training_time_ms + training_disk_time_ms

new_row = {

columns_training results_df [0]: model_name,
columns_training_results_df[1]: data_num_rows,
columns_training_results_df [2]: accuracy,
columns_training_results_df [3]: precision_avg,
columns_training_results_df [4]: recall_avg,
columns_training results_df [5]: f_score_avg,

columns_training_results_df [6]: f_score_classO,

159

198 columns_training_results_df [7]: f_score_classl,

199 columns_training_results_df [8]: f_score_class2,

200 columns_training_results_df [9]: auc_score,

201 columns_training_results_df [10]: training_ time_ms,

202 columns_training_results_df [11]: training_disk_time_ms,

203 columns_training_results_df [12]: training_total_time_ms,

204 }

205

206 # Add new row to the dataframe using loc[] method

207 training_results_df.loc[len(training_results_df)] = new_row

208

209 training_results_df.to_csv(f"{output_files_path_results}{timestamp}
_training_results.csv", index=False)

210 print (£" [INFO] {model_namel} training finished")

211

212 def cross_val(clf, X, y):

213 model _name = clf.__class__.__name__

214 data_num_rows = len(X)

215 print ("[INFO] Running Cross Validation on", model_name)

216 scoring = {’prec_macro’: ’precision_macro’,

217 ’rec_macro’: make_scorer(recall_score, average=’macro’),

218 ’fl-score_avg’: make_scorer (fl_score, average=’weighted’),

219 # ’fl-score_classO’: make_scorer (fl1_score, average=None,
labels=[0]) [0]

220 }

221 cv_folds = 10 # reduce this number to reduce RAM usage during CV

222 # 3 uses up to around 50GB, 10 uses up to around 128GB (except for

LinearSVC that requires more)
223 amount_of_cpus_to_use = 0.9 # e.g. if there are 16 CPUs available,
90% will be equals to 14

224

225 # Run StratifiedKFold

226 scores = cross_validate(clf, X, y, scoring=scoring, cv=cv_folds,
return_train_score=True, n_jobs=get_available_threads(
amount_of_cpus_to_use))

227

228 s_fit_time_sec = scores[’fit_time’] # time is in seconds for more
information, see the URLs below

229 s_score_time_sec = scores[’score_time’] # time is in seconds for
more information, see the URLs below

230 # https://stackoverflow.com/questions/73548091/unit-for-fit-time-and

-score-time-in-sklearn-cross-validate

231 # https://github.com/scikit-learn/scikit-learn/blob/55
a65a2fab653257225d7e184da3d0c00ff852b1/sklearn/model_selection/
_validation.py#L673

232 s_train_precision = scores[’train_prec_macro’]

233 s_train_recall = scores[’train_rec_macro’]

268

269

N N
N

~
[\

3 5
w

™
J

160

s_train_f_score = scores[’train_fl-score_avg’]
S_test_precision = scores[’test_prec_macro’]
s_test_recall = scores[’test_rec_macro’]
s_test_f_score = scores[’test_fl-score_avg’]

print ("[DEBU] Fit time:", s_fit_time)

print ("[DEBU] Score time:", s_score_time)

print ("[DEBU] -Train-")

print ("[DEBU] Precision:", s_train_precision)

print ("[DEBU] Recall:", s_train_recall)

print ("[DEBU] Average Fl1-Score:", s_train_f_score)
print ("[DEBU] -Test-")

print ("[DEBU] Precision:", s_test_precision)

print ("[DEBU] Recall:", s_test_recall)

print ("[DEBU] Average Fl1-Score:", s_test_f_score)

avg_s_test_precision = mean(s_test_precision)
avg_s_test_recall = mean(s_test_recall)
avg_s_test_f_score = mean(s_test_f_score)

avg_s_fit_time_sec mean(s_fit_time_sec)

avg_s_score_time_sec = mean(s_score_time_sec)
cv_total_time_sec = s_fit_time_sec + s_score_time_sec
new_row = {

columns_cross_val_results_df [0]:
columns_cross_val_results_df [1]:
columns_cross_val_results_df [2]:
columns_cross_val_results_df [3]:
columns_cross_val_results_df [4]:
columns_cross_val_results_df [5]:
columns_cross_val_results_df [6]:
columns_cross_val_results_df [7]:

columns_cross_val_results_df [8]:

model _name,
data_num_rows,

mean (s_train_precision),
mean (s_train_recall),
mean (s_train_f_score),
avg_s_test_precision,
avg_s_test_recall,
avg_s_test_f_score,

std(s_test_precision, mean=

avg_s_test_precision), # reuse the mean to improve performance

columns_cross_val_results_df [9]:
avg_s_test_recall),
columns_cross_val_results_df [10]
avg_s_test_f_score),

generated/numpy.std.html

columns_cross_val_results_df [11]:
columns_cross_val_results_df [12]:
columns_cross_val_results_df [13]:

columns_cross_val_results_df [14]:

avg_s_fit_time_sec),

columns_cross_val_results_df [15]

avg_s_score_time_sec), # see comment above

std(s_test_recall, mean=

see the URL below

std(s_test_f_score, mean=

https://numpy.org/doc/stable/reference/

avg_s_fit_time_sec,
avg_s_score_time_sec,
mean (cv_total_time_sec),

std(s_fit_time_sec, mean=

reuse the mean to improve performance

std(s_test_recall, mean=

161

275 }

276

277 # Add new row to the dataframe using loc[] method

278 cross_val_results_df.loc[len(cross_val_results_df)] = new_row

279

280 cross_val_results_df.to_csv(f"{output_files_path_results}{timestamp}
_cross_val_{cv_folds} _folds_results.csv", index=False)

281

282 print (£" [INFO] {model_name} Cross Validation done")

283

284 # Buid the CSV files list

285 csv_files = glob_get_files_list(input_files_path, file_format="csv"

286

287 # Preprocess the data

288 preprocess_data(csv_files, output_files_path_preprocessed_data,
output_files_path_results, timestamp, drop_protocols_and_ports=True)

289

200 # Update the 1list of CSV files

291 csv_files = glob_get_files_list (output_files_path_preprocessed_data,
file_format="csv")

292

293 # Label all data inside CSV files

294 [read_and_label_data(file, output_files_path_labeled_data, False) for

file in csv_files]

296 # Update the list of CSV files

207 csv_files = glob_get_files_list(output_files_path_labeled_data,
file_format="csv"

298

299 # Prepare data splits to train the models

300 if (run_model_training or run_SMOTE or run_0SS):

301 print ("[INFO] Preparing training data splits ... ", end=’’, flushs=
True)

302 if (run_08S):

303 data_amount = 1 # amount of data to be used in 0SS

304 else:

305 data_amount = 100

306 X_train, X_test, y_train, y_test = read_and_split_train_data(
csv_files, split=True, dataset_percentage=data_amount)

307 print("[OK 1")

308

309 # Apply some data undersampling with 0SS
310 if (run_0SS):

311 # 0SS parameters
312 k=1
313 seed = 100

315

316

318
319
320

321

324

326
327
328
329
330

336
337
338

339
340

162

print ("[INFO] Applying 0SS on training data ... ", end=’’, flush=
True)

0SS_run_time_begin = datetime.now ()

X_train_oss, y_train_oss = data_undersample(X_train, y_train, k,
seed)

print("[0K 1")

print ("[DEBU] Data before 0SS")

print ("[DEBU] Class distrib.:", y_train.value_counts())
summarize class distribution

print ("[DEBU] Class distrib. (%) :\n", y_train.value_counts(dropna=
False, normalize=True)) # summarize class distribution

print ("[DEBU] Total no. training samples:", len(y_train))

print ("[DEBU] Data after 0SS")

print ("[DEBU] Class distrib.:", y_train_oss.value_counts())
summarize class distribution

print ("[DEBU] Class distrib. (%) :\n", y_train_oss.value_counts(
dropna=False, normalize=True)) # summarize class distribution

print ("[DEBU] Total no. training samples:", len(y_train_oss))

Save the undersampled dataset on disk

undersampled_data = X_train_oss.join(y_train_oss)
undersampled_data.to_csv(f"{output_files_path_resampled_datal}{
timestampl}_0SS_undersample_k_{k}_seed_{seed}.csv", header=True, index
=False)

Use the undersampled data in the model training

X _train = X_train_oss

y_train y_train_oss

0SS_run_time_end = datetime.now()

print (£" [INFO] Parameters: k = {k}, seed = {seedl}")

print ("[INFO] 0SS run time:", (0SS_run_time_end - 0SS_run_time_begin

) .total_seconds (), "(seconds)")

resampled_csv_files = glob_get_files_list(

output_files_path_resampled_data, file_format="csv")

TODO load the preprocessed files and use them to train the models

Apply some data oversampling with SMOTE
if (run_SMOTE):

SMOTE parameters

k =5

strategy = ’minority’

Update the list of CSV files

smote_files_available = glob_get_files_list(
output_files_path_resampled_data, file_name_pattern=f"{k}*{strategyl}"

, file_format="csv", allow_empty_list=True)

163

350

351 if smote_files_available:

352 smote_files_available.sort ()

353 smote_file = smote_files_available[-1] # get the most recent
file

354

355 print (£" [INFO] File {smote_file} was found, skipping SMOTE")

356 print ("[INFO] Reading preprocessed SMOTE file ... ", end=’’,
flush=True)

357 X_train, X_test, y_train, y_test = read_and_split_train_data ([
str(smote_file)], split=True)

358 print("[OK 1")

359

360 else:

361 print ("[INFO] Applying SMOTE on training data ... ", end=’’,
flush=True)

362 SMOTE_run_time_begin = datetime.now ()

363 X_train_smote, y_train_smote = data_oversample(X_train, y_train,

strategy=strategy, k=k)

364 print ("[0K 1")

365 # print ("[DEBU] Data before SMOTE")

366 # print ("[DEBU] Class distrib.:", y_train.value_counts()) #
summarize class distribution

367 # print ("[DEBU] Class distrib. (%) :\n", y_train.value_counts(
dropna=False, normalize=True)) # summarize class distribution

368 # print ("[DEBU] Total no. training samples:", len(y_train))

369 # print ("[DEBU] Data after SMOTE")

370 # print ("[DEBU] Class distrib.:", y_train_smote.value_counts ())

summarize class distribution
371 # print ("[DEBU] Class distrib. (%):\n", y_train_smote.
value_counts (dropna=False, normalize=True)) # summarize class

distribution

372 # print ("[DEBU] Total no. training samples:", len(y_train_smote)
)

373 X_train = X_train_smote

374 y_train = y_train_smote

375

376 # Save the oversampled dataset on disk

377 oversampled_data = X_train_smote.join(y_train_smote)

378 oversampled_data.to_csv(f"{output_files_path_resampled_datal}{

timestamp}_ SMOTE_oversample_k_{k}_strategy_{strategyl}.csv", header=
True, index=False)

379

380 SMOTE_run_time_end = datetime.now ()

381 print ("[INFO] SMOTE run time:", (SMOTE_run_time_end -
SMOTE_run_time_begin) .total_seconds (), "(seconds)")

382

164

383 model_names_list = [’LR’, ’DT’, °’RF’, °MLP’, °SVM’, ’HGB’, ’LightGBM’, °’
XGB’, ’AdaBoost’, ’Stacking’, ’Voting’]

384

385 # Cross validation

386 if (run_cross_val):

387 columns_cross_val_results_df = ["model _name", "data_num_rows", "
train_precision_avg", "train_recall_avg",

388 "train_fl_score_avg", "
test_precision_avg", "test_recall_avg", "test_fl_score_avg",

389 "test_precision_stdev", "
test_recall_stdev", "test_fl_score_stdev",

390 "fit_time_sec_avg", "score_time_sec_avg"

"total_cross_val_time_sec_avg",

391 "fit_time_sec_stdev", "
score_time_sec_stdev"

392]

393 cross_val_results_df = pd.DataFrame (columns=
columns_cross_val_results_df) # df to save the CV results

394

395 X, y = read_and_split_train_data(csv_files, split=False,
dataset_percentage=100) # prepare data splits to cross val

396 for i in model_names_1list:

397 clf = classifier_select (i)

398 cross_val (clf, X, y)

399

400 # Model training

401 if (run_model_training):

402 columns_training_results_df = ["model_name", "data_num_rows", "
accuracy", "precision_avg", "recall_avg",

403 "fl_score_avg", "fl_score_classO", "
fl score_classl", "f1l_score_class2",

404 "auc_score_avg", "training_time_ms", "
training_disk_time_ms", "training_total_time_ms"]

405 training_results_df = pd.DataFrame (columns=

columns_training results_df) # df to save the training results

406 # Execute the actual model training

407 for i in model_names_1list:

408 clf = classifier_select (i)

409

410 train_models (clf, X_train, X_test, y_train, y_test)
411

412 total _run_time_end = datetime.now ()

413 print (" [INFO] ML total run time:", (total_run_time_end -

total_run_time_begin).total_seconds (), "(seconds)")

Source: Created by the author (2025).

21

165
APPENDIX N — Source of the inference.py script

As indicated in Subsection 4.5.2, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import pandas as pd

import numpy as np

import pickle

from datetime import datetime

from time import time_ns

from sklearn.metrics import (accuracy_score,
precision_score,
recall _score,
f1_score,
roc_auc_score,

confusion_matrix)

from util import glob_get_files_list ,read_csv,label_id_to_text,

plot_confusion_matrix,read_and_label_data,preprocess_data

File paths

5 working_folder = "./pcap/output/4-ML/"

input_files_path = working_folder + "preprocess/labeled_files/" # read
labeled data CSV files from here

output_files_path_preprocessed_data = working_folder + "preprocess/
data_ready_to_ml/" # save preprocessed data there

models_folder = working_folder + "models/" # read the models from here

data_folder = working_folder + "preprocess/labeled_data/" # save or read
the inference data from here

results_folder = working_folder + "inference_results/" # save the
results here

timestamp = datetime.now () .strftime ("%Y%mJ%d-%H%M%S")

def run_inference(models_file_list, inference_data_file_list, extra_run=
False):
for file in inference_data_file_list:
file_name = file.split(’/’)[-1]

if ’inference’ in file:

print ("[INFO] Running inference on", file_name)

columns = ["file_name", "file _num_rows", "model_name",
"inference_result_label", "inference_result",
"accuracy", "precision", "recall", "
f score_class",

"inference_result_count_O", "

36

62
63

64

166

inference_result_count_1", "inference_result_count_2",
"inf_disk_time_ms", "inf_pred_time_ms", "
inf_total_time_ms"]

Initialize results_df with columns

results_df = pd.DataFrame(columns=columns)
data = read_csv(file) # load inference data
data_num_rows = len(data)

for path in models_file_list:

total_inference_time_begin = time_ns ()

model_load_time_begin = time_ns ()

model = pickle.load(open(path, ’rb’)) # load model from
disk

model_load_time_end = time_ns() # TODO measure and save
it

model_name = model.__class__.__name__

print ("[INFO] Using", model_name)

y_true = datal[’label’] # save the labels for evaluation

true_label = y_true.iloc[0] # save true label sample for
evaluation

inference_data = data.drop(’label’, axis=1) # remove

the label column

inference_pred_time_begin = time_ns ()

y_pred = model.predict(inference_data)

inference_pred_time_end = time_ns ()

inference_result = pd.Series([model.classes_[i] for i in
y_predl)

inference_result_counts = inference_result.value_counts
O

inference_result_int = inference_result_counts.idxmax ()

inference_result_label = label_id_to_text (
inference_result_int)

total_inference_time_end = time_ns ()

print (f"[DEBU] Inference result: {inference_result_int
} ({inference_result_labell})") # DEBUG

print (£"[DEBU] Labels and their occurrences:\n{

inference_result_counts}") # DEBUG

total_inference_time = (total_inference_time_end -
total_inference_time_begin) / 10%x6

inference_pred_time = (inference_pred_time_end -
inference_pred_time_begin) / 10%%6

inference_disk_time = (model_load_time_end -
model_load_time_begin) / 10%%*6

~
at

76

83

84

90

167

Model evaluation data

accuracy = accuracy_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred, labels=[0, 1, 2])
precision = precision_score(y_true, y_pred, average="

weighted", zero_division=np.nan, labels=[true_labell])

recall = recall_score(y_true, y_pred, average="weighted"
, zero_division=np.nan)

f_score_class = fl1_score(y_true, y_pred, average="
weighted", zero_division=np.nan, labels=[true_labell])

plot_confusion_matrix(cm, results_folder, file_name,

model_name, "inference", timestamp, True, False)

print ("[DEBU] Accuracy:", round(accuracy, 10))

print (£"[DEBU] Confusion Matrix:\n{cml}")

print ("[DEBU] Precision :", round(precision, 10))
print ("[DEBU] Recall :", round(recall, 10))

print ("[DEBU] Fl-score of class :", round(

f_score_class, 10))

if (model _name !'= "LinearSVC"): # LinearSVC doesn’t
implement proba

auc_score = roc_auc_score(y_true, model.
predict_proba(inference_data), average=’macro’, multi_class=’ovo’,
labels=[0, 1, 2])

print ("[DEBU] ROC AUC Score :", round(auc_score,
10))

else:

print ("[DEBU] ROC AUC Score : Not calculated for",

model _name)

auc_score = "N.A."

TODO fix ROC AUC score

RuntimeWarning: invalid value encountered in scalar
divide ret = ret.dtype.type(ret / rcount) /n [DEBU] ROC AUC Score

nan

new_row = {
columns [0]: file_name,
columns [1]: data_num_rows,
columns [2]: model_name,
columns [3]: inference_result_label,
columns [4]: inference_result_int,
columns [5]: accuracy,
columns [6]: precision,
columns [7]: recall,
columns [8]: f_score_class,
columns [9]: int(inference_result_counts[0]) if O in

inference_result_counts else O,

104

118
119
120

168

columns [10]: int(inference_result_counts[1]) if 1 in
inference_result_counts else O,

columns [11]: int(inference_result_counts[2]) if 2 in
inference_result_counts else O,

columns [12]: inference_disk_time,

columns [13]: inference_pred_time,

columns [14]: total_inference_time,

Add new row to the dataframe using loc[] method

results_df.loc[len(results_df)] = new_row

Get the original input file name without format
output_filename = file_name.split(’/’)[-1].split(’
inference’) [0]
Save the results dataframe to a CSV file with a unique
filename based on the current time
if not extra_run:
results_df .to_csv(f"{results_folder}{output_filenamel}_ {
timestampl}_inference_results.csv", index=False)
else:
adjust parameters if running multiple times
results_df.to_csv(f"{results_folder}{output_filenamel}_ {
timestamp}_inference_results.csv", index=False, mode=’a’, header=
False)

else:
print (£" [WARN] Skipping file {file_namel}")

print ("[INFO] Running inference preprocess")

Run preprocess in case the inference data wasn’t already preprocessed
total_preprocess_time_begin = datetime.now()

Get the list of CSV files

csv_files = glob_get_files_list(input_files_path, file_format="csv"

Preprocess the data
preprocess_data(csv_files, output_files_path_preprocessed_data,

results_folder, timestamp, drop_protocols_and_ports=True)

Update the list of CSV files
csv_files = glob_get_files_list(output_files_path_preprocessed_data,

file_format="csv")

7 # Label all data inside CSV files

[read_and_label_data(file, data_folder, False) for file in csv_files]

total_preprocess_time_end = datetime.now ()

print (" [INFO] Running inference")
Buid the PKL and CSV files lists

169

pkl_files = glob_get_files_list(models_folder, file_format="pkl")

inference_data_files = glob_get_files_list(data_folder, file_format="csv
II)
total_run_time_begin = datetime.now()

run_inference(pkl_files, inference_data_files)

run_inference(pkl_files, inference_data_files, extra_run=True)

run_inference(pkl_files, inference_data_files, extra_run=True)

total_run_time_end = datetime.now()

print ("[INFO] Total preprocess run time:"

B

(total_preprocess_time_end -

total_preprocess_time_begin).total_seconds(), "(seconds)")

print ("[INFO] Total inference run time:",

total_run_time_begin).total_seconds (),

Source: Created by the author (2025).

(total_run_time_end -

"(seconds)")

ot

170

APPENDIX O — Source of the traffic generator scripts

As indicated in Subsection 4.5.3, these scripts are part of the implemented
NWDAF_ml module. The ready-to-use source code and documentation are available in
a public GitHub repository (41).

The play-video.sh script allows for playing stored videos or streaming live bro-
adcasts depending on the selected mode. As detailed below, the URLs can be easily
customized to use other online services, and may use Mozilla Firefox or Brave internet

browsers to perform the configured task.

#!/usr/bin/env bash

IP_UE=10.60.0.1 # IP given by 5GC to point-to-point interface (a.k.a.
uesimtunO)

#YT_URL="https://www.youtube.com/watch?v=LXb3EKWsInQ" # URL of the
stored video

YT_URL="https://www.youtube.com/watch?v=LXb3EKWsInQ&list=
PLrNS5hDSKBQCLN_p4SJwgHSNO3ToomP -il&index=1" # URL of a ~2h playlist
of stored videos

NAVER_TV_URL="https://tv.naver.com/1/164367" # URL of the live stream

PREPARE_MODE=0

RUN_MODE=0

LIVE_STREAM=0 # If 1, will use YT_URL, if O, will use NAVER_TV_URL

USE_FIREF0X=1 # If 1, will use Mozilla Firefox, if 0, will use Brave

Browser

check the input parameters and set the control vars accordingly
if [$# -gt 0 1; then
while [$# -gt 0]; do
case $1 in
-prepare)
PREPARE_MODE=1
-play-yt)
RUN_MODE=1
LIVE_STREAM=0
-play-1live)
RUN_MODE=1
LIVE_STREAM=1
-use-brave)
if [$# -gt 1]; then
USE_FIREF0X=0
else

echo "[ERRO] The option ’-use-brave’ can’t be used alone

43

64

69

171

exit 1

*)
echo "[ERRO] Some input parameter wasn’t found. Check your
input and try again"
exit 1
55
esac
shift

done

else

fi

echo "[ERRO] At least one parameter is required"

exit 1

check_x_server_availability () {

forwarding is necessary to run the browser correctly
when connecting remotely
if [-n "$DISPLAY"]; then
echo "[INFO] X11 forwarding is enabled."
else
echo "[ERRO] X11 forwarding is not enabled. Connect to SSH using
-X parameter"
exit 1
fi

prepare () {

run

if [[$USE_FIREFOX -eq 1 1]; then
sudo apt install firefox

elif [[$USE_FIREFO0X -eq O 1]; then
Install Brave browser instead

curl -fsS https://dl.brave.com/install.sh | sh

fi
O {
if [! -f ./nr-binder]; then
echo "[ERRO] nr-binder not found!"
echo "TIP: move $0 to the same folder as nr-binder"
currently this folder is called ’build’ on UERANSIM sources
fi

Set URL to be played
if [[$LIVE_STREAM -eq O]]; then

172

URL=$YT_URL

elif [[$LIVE_STREAM -eq 1]]; then
URL=$NAVER_TV_URL

fi

if [[$USE_FIREFOX -eq 1]]; then

bash nr-binder $IP_UE firefox --new-window $URL
elif [[$USE_FIREFOX -eq O]]; then
Use Brave browser as an alternative
bash nr-binder $IP_UE brave-browser --new-window --incognito
$URL
using incognito to prevent Brave resuming a previous session
(i.e. ’Continue where you left off’)
fi
}

check_x_server_availability

if [[$PREPARE_MODE -eq O && $RUN_MODE -eq 1]]; then
run

elif [[$PREPARE_MODE -eq 1 && $RUN_MODE -eq O]]; then
prepare

elif [[$PREPARE_MODE -eq 1 && $RUN_MODE -eq 1]]; then
prepare
run

fi

Source: Created by the author (2025).

The udp-server.sh and udp-client.sh scripts facilitate the transmission of UDP
packets at a fixed rate or within a probability-based interval range. As detailed below,

these scripts provide customization while maintaining simplicity.

#!/usr/bin/env bash
Basic UDP server
PORT=30000 # port used to listen for client packets

echo "[INFO] Starting server"
nc -u -k -1 $PORT # nc server

Source: Created by the author (2025).

173

1 #!/usr/bin/env bash

2

3 # Basic UDP client

4

5 # SLEEP_TIMER=60 # send packets in a fixed rate (1 packet/sec)
6 # SLEEP_TIMER=0.01 # send packets in a fixed rate (100 packets/sec)
7 IP_UE=10.60.0.1

8 IP_5GC=10.0.0.110

9 DEST_PORT=30000 # port used to connect to server

10 SOURCE_PORT=1337 # port used to send the packets

11

12 get_sleep_time () {

13 # Generate a random number from O to 100

14 num=$ (shuf -i 0-100 -n 1)

15

16 # Determine which range the number falls into based on the

probabilities

17 # the intervals below were based on https://doi.org/10.1109/INFCOMW
.2017.8116438 (page 3)

18 if [$num -1t 85]1; then # 0-20 range (85% probability)

19 min=1

20 max=20

21 elif [$num -1t 96]; then # 20-60 range (11% probability)

22 min=20

23 max=60

24 else # 60-90 range (the 47 probability left)

25 min=60

26 max=90

27 # NOTE source above doesn’t specify a upper limit

28 # it only says "longer than one minute"

29 # so I decided to limit to 90s

30 fi

31

32 raffle=$((min + RANDOM % (max - min + 1)))

33

34 # echo "[DEBU] Value: $raffle"

35 echo "$raffle"

36 T

37

38 while true; do
39 # SLEEP_TIMER=$((1 + RANDOM % 20)) # send packets in the interval

between 1 to 20 seconds

40 SLEEP_TIMER=$(get_sleep_time) # send packets in the interval between
1 to 90 seconds with probabilities

11 LOAD_ONE_MIN=$(cat /proc/loadavg | awk ’{print $1}’)

42 echo "[INFO] Sending data"

43 echo -e "System Load: $LOAD_ONE_MIN Next update in $SLEEP_TIMER

174

seconds" | nc -4 -u -wO0 -s $IP_UE $IP_5GC $DEST_PORT -p $SOURCE_PORT
nc client

44 echo "[INFO] Sleeping for $SLEEP_TIMER seconds..."

45 sleep $SLEEP_TIMER

46 done

Source: Created by the author (2025).

19
20

21
22

31

175
APPENDIX P — Source of the model__tuning.py script

As indicated in Subsection 5.2.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import numpy as np

import pandas as pd

from sklearn.metrics import make_scorer, fl_score

from sklearn.model_selection import RepeatedStratifiedKFold,
cross_val_score,StratifiedKFold

from scipy.optimize import differential_evolution

from util import read_csv,glob_get_files_list

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import HistGradientBoostingClassifier,
RandomForestClassifier ,AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.svm import LinearSVC

from lightgbm import LGBMClassifier

from xgboost import XGBClassifier

File paths

working_ folder = "./pcap/output/4-ML/"

input_files_path = working_folder + "preprocess/labeled_data/" # read
CSV files from here

def hyperparam_tuning_ DE(params, params_names, estimator, X_train,

y_train):

model_name = estimator.__class__.__name__

params_dict = {params_names[i]:params[i] for i in range(len(params))
}

try:

match model_name:

case "LogisticRegression":

penalty = [’11’, ’12°, ’elasticnet’, Nonel]

solver = [’1lbfgs’, ’newton-cg’, ’newton-cholesky’, ’sag’
, ’saga’]

params_dict ["penalty"] = penalty[int(params_dict["
penalty"]1)]

params_dict["solver"] = solver[int (params_dict["solver"
1]

params_dict["max_iter"] = int(params_dict["max_iter"]) #

cast param to int type

40

41

42

43

44

46

48

49

50

56

60

61

62

176

case "LinearSVC":
penalty = [’11°, °12°]

loss = [’hinge’, ’squared_hinge’]

params_dict ["penalty"] = penaltyl[int(params_dict["
penalty"])]
params_dict["loss"] = loss[int(params_dict["loss"])]

params_dict ["max_iter"] = int(params_dict["max_iter"]) #

cast param to int type

case "HistGradientBoostingClassifier":
params_dict["max_iter"] = int(params_dict["max_iter"]) #
cast param to int type

params_dict ["max_leaf_nodes"] = int(params_dict["
max_leaf_nodes"]) # cast param to int type

params_dict ["max_depth"] = int(params_dict["max_depth"])
cast param to int type

params_dict ["min_samples_leaf"] = int(params_dict["
min_samples_leaf"]) # cast param to int type

params_dict ["max_bins"] = int(params_dict["max_bins"]) #

cast param to int type

case "RandomForestClassifier":
criterion = ["gini", "entropy", "log_loss"]

max_features = ["sqrt", "log2", Nomnel

params_dict["criterion"] = criterion[int (params_dict["
criterion"])]
params_dict ["max_features"] = max_features[int (

params_dict ["max_features"])]

params_dict["n_estimators"] = int(params_dict["
n_estimators"]) # cast param to int type

params_dict ["max_depth"] = int(params_dict["max_depth"])
cast param to int type

params_dict["min_samples_split"] = int(params_dict["
min_samples_split"]) # cast param to int type

params_dict["min_samples_leaf"] = int(params_dict["
min_samples_leaf"]) # cast param to int type

params_dict ["max_leaf_nodes"] = int(params_dict["

max_leaf_nodes"]) # cast param to int type

case "DecisionTreeClassifier":
criterion = ["gini", "entropy", "log_loss"]

splitter = ["best", "random"]

68
69

~
at

76

84

85

86

88

89

90

91

92

93

94

177

max_features = ["sqrt", "log2", Nomnel

params_dict["criterion"] = criterion[int (params_dict["
criterion"1)]

params_dict["splitter"] = splitter[int(params_dict["
splitter"])]

params_dict ["max_features"] = max_features[int (

params_dict ["max_features"])]

params_dict ["max_depth"] = int(params_dict["max_depth"])
cast param to int type

params_dict["min_samples_split"] = int(params_dict["
min_samples_split"]) # cast param to int type

params_dict["min_samples_leaf"] = int(params_dict["
min_samples_leaf"]) # cast param to int type

params_dict ["max_leaf_nodes"] = int(params_dict["

max_leaf_nodes"]) # cast param to int type

case "MLPClassifier":
hidden_layer_sizes = ["(100,)", " (100, 50, 25)", " (100,
100, 50)"]
activation = ["identity", "logistic", "tanh", "relu"]

solver = ["lbfgs", "sgd", "adam"]

params_dict ["hidden_layer_sizes"] = hidden_layer_sizes|[
int (params_dict["hidden_layer_sizes"])]

params_dict["activation"] = activation[int (params_dict["
activation"])]

params_dict ["solver"] = solver[int(params_dict["solver"

IDN

params_dict ["max_iter"] = int(params_dict["max_iter"]) #

cast param to int type

case "LGBMClassifier":

params_dict ["num_leaves"] = int(params_dict["num_leaves"
1) # cast param to int type

params_dict ["max_depth"] = int(params_dict["max_depth"])
cast param to int type

params_dict["n_estimators"] = int(params_dict["
n_estimators"]) # cast param to int type

params_dict ["subsample_for_bin"] = int(params_dict["

subsample_for_bin"]) # cast param to int type

params_dict["min_child_samples"] = int(params_dict["

min_child_samples"]) # cast param to int type

case "XGBClassifier":

178

97 params_dict["eta"] = int(params_dict["eta"]) # cast
param to int type

98 params_dict ["max_depth"] = int(params_dict["max_depth"])
cast param to int type

99 params_dict["min_child_weight"] = int(params_dict["
min_child_weight"]) # cast param to int type

100 params_dict ["max_delta_step"] = int(params_dict["
max_delta_step"]) # cast param to int type

101 params_dict ["max_leaves"] = int(params_dict["max_leaves"
1) # cast param to int type

102 params_dict ["max_bin"] = int(params_dict["max_bin"]) #
cast param to int type

103

104 case "AdaBoostClassifier":

105 params_dict["n_estimators"] = int(params_dict["

n_estimators"]) # cast param to int type

106

107 case

108 print ("[ERRO] Failed to load the model")

109 exit O)

110

111 print ("Params:", params_dict)

112

113 estimator.set_params (**params_dict)

114

115 # cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3,
random_state=1)

116 cv = StratifiedKFold(n_splits=3)

117

118 cv_score = -1 x np.mean(cross_val_score(estimator, X_train,
y_train, cv=cv, scoring=make_scorer (fl_score, average=’weighted’)))

119

120 except Exception as e:

121 # print (e)

122 cv_score = 0

123

124 print (cv_score)

125

126 return cv_score

127

128 def classifier_select(classifier_acronym):

129 match classifier_acronym:

130 case ’'LR’:

131 clf = LogisticRegression ()

132 case ’DT’:

133 clf = DecisionTreeClassifier ()

134 case ’RF’:

179

135 clf = RandomForestClassifier ()
136 case ’MLP’:

137 clf = MLPClassifier ()

138 case ’SVM’:

139 clf = LinearSVC()

140 case ’'HGB’:

141 clf = HistGradientBoostingClassifier ()
142 case ’LightGBM’:

143 clf = LGBMClassifier(verbose=-1)
144 case ’XGB’:

145 clf = XGBClassifier ()

146 case ’AdaBoost’:

147 clf = AdaBoostClassifier ()

148

149 return clf

151 def run_model_tuning(clf, X, y):

152 model _name = clf._ _class__.__name__

153 print ("Running for", model_name)

154

155 # Mapping of model names to their parameters and integrality

156 models = {

157 "LogisticRegression": (lr_params, lr_integrality),

158 "LinearSVC": (svc_params, svc_integrality),

159 "HistGradientBoostingClassifier": (hgb_params, hgb_integrality),
160 "RandomForestClassifier": (rf_params, rf_integrality),

161 "DecisionTreeClassifier": (dt_params, dt_integrality),

162 "MLPClassifier": (mlp_params, mlp_integrality),

163 "LGBMClassifier": (lgbm_params, lgbm_integrality),

164 "XGBClassifier": (xgb_params, xgb_integrality),

165 "AdaBoostClassifier": (adaboost_params, adaboost_integrality)

166 }

167

168 # Get the parameters and integrality for the specified model

169 if model_name in models:

170 params, integrality = models[model_name]

171 result = differential_evolution(hyperparam_tuning DE, list(list(

params.values())), args=(list(params.keys()), clf, X, y), maxiter=4,
popsize=4, tol=0.01, workers=10, integrality=integrality, disp=True,
updating=’deferred’)

172 print ("Dict:", result)

173 print ("Best params:", result.x)

174 else:

175 print (£"[ERRO] Model {model_namel} not found.")

176
177 # Load and prepare splits from labeled training data

178 def read_and_split_train_data(csv_file_list, split, dataset_percentage

180

=100) :

179 training_data = pd.DataFrame ()

180 if (dataset_percentage == 100): # use the whole dataset

181 for file in csv_file_list:

182 if ’training’ in file:

183 df = read_csv(file)

184 training_data = pd.concat([training_data, df],
ignore_index=True)

185 elif ’inference’ in file:

186 # print ("[DEBU] Skipped inference file found at", file)
DEBUG

187 pass

188 else:

189 raise ValueError (£"[ERRO] Could not determine data set

type from filename {filel}")

190 exit ()

191 else: # or a smaller portion of it (useful for testing the
implementation)

192 training_data = generate_smaller_dataframe(csv_file_list,
dataset_percentage)

193

194 # Prepare data for supervised learning

195 X = training_data.drop(’label’, axis=1) # Features

196 y = training_datal[’label’] # Target variable

197

198 print (" [DEBU] Split data")

199 print ("[DEBU] Class distrib.:", y.value_counts()) # summarize class

distribution

200 print ("[DEBU] Class distrib. (%) :\n", y.value_counts(dropna=False,
normalize=True)) # summarize class distribution

201 print (" [DEBU] Total no. training samples:", len(y))

202 # exit ()

203

204 if (split):

205 # Now X and y are ready for supervised learning

206 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

207

208 return X_train, X_test, y_train, y_test
209 else:

210 return X, y

211

212 # Parameters to be tested

213 # Logistic Regression

214 lr_integrality = [0, 1, 1, 1]

215 1lr_params = {

216 ’c’: [0.01, 100.0],

181

’penalty’: [0, 3],
’solver’: [0, 4],
’max_iter’: [100, 1000]
}
For more LR parameters check: https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.LogisticRegression.html

Linear Support Vector Machine
svc_integrality = [0, 1, 1, 0O, 1]
svc_params = {
>C’>: [0.01, 100.0],
’penalty’: [0, 1],
>loss’: [0, 17,
’intercept_scaling’: [1.0, 2.0],
max_iter’: [1000, 5000]
}
For more LinearSVC parameters check: https://scikit-learn.org/stable/

modules/generated/sklearn.svm.LinearSVC.html

Histogram-based Gradient Boosting Classification Tree
hgb_integrality = [0, 1, 1, 1, 1, O, 0, 1]
hgb_params = {
’>learning_rate’: [0.01, 1.0],
max_iter’: [100, 1000],
’max_leaf_nodes’: [1, 100],
’max_depth’: [3, 50],
’min_samples_leaf’: [10, 100],
’12_regularization’: [0.0, 1.0],
‘max_features’: [1.0, 10.0],
’max_bins’: [100, 1000]
¥

; # For more LinearSVC parameters check: https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.
html

Random Forest

rf_integrality = [1, 1, 1, 1, 1, 1, 1, 0]

rf_params = {
’n_estimators’: [50, 10007,
’criterion’: [0, 2],
’max_depth’: [3, 20],
’min_samples_split’: [1000, 100000],
’min_samples_leaf’: [1000, 100000],
‘max_features’: [0, 2],
’max_leaf_nodes’: [1, 50],

’min_impurity_decrease’: [0.0, 0.8],

182

260 # For more RandomForest parameters check: https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

262 # Decision Tree
263 dt_integrality = [1, 1, 1, 1, 1, 1, 0, O]
264 dt_params = {

265 ’criterion’: [0, 2],

266 >splitter’: [0, 1],

267 ’max_depth’: [3, 20],

268 ’min_samples_split’: [1000, 100000],
269 ’min_samples_leaf’: [1000, 100000],
270 "max_features’: [0, 2],

271 ’max_leaf_nodes’: [1, 50],

272 ’min_impurity_decrease’: [0.0, 0.8],
273 ’ccp_alpha’: [0.0, 1.0]

274 }

275 # For more DecisionTreeClassifier parameters check: https://scikit-learn
.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.
html

276

277 # Multilayer Perceptron

278 mlp_integrality = [1, 1, 1, 0, O, 1, O]

279 mlp_params = {

280 ’hidden_layer_sizes’: [0, 2],

281 ’activation’: [0, 3],

282 ’solver’: [0, 2],

283 ’alpha’: [0.0001, 10.0],

284 ’>learning_rate_init’: [0.001, 0.1],
285 max_iter’: [200, 1000],

286 ’tol’: [0.0001, 0.01]

287 }

288 # For more MLPClassifier parameters check: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_network.MLPClassifier.html

289

200 # Light GBM

291 lgbm_integrality = [1, 1, O, 1, 1, 0, O, 1, 0, O]

202 lgbm_params = {

203 ’num_leaves’: [20, 100],

204 ’max_depth’: [-1, 10],

295 ’learning_rate’: [0.01, 1.0],

296 ’n_estimators’: [50, 200],

297 >subsample_for_bin’: [100000, 300000],
298 ’min_split_gain’: [0.01, 0.8],

299 ’min_child_weight’: [0.001, 0.1],

300 ’min_child_samples’: [1000, 10000],

301 >subsample’: [0.5, 1.0],

302 >colsample_bytree’: [0.5, 1.0]

329
330

336
337
338
339
340

3

183

For more LGBMClassifier parameters check: https://lightgbm.readthedocs

.io/en/stable/pythonapi/lightgbm.LGBMClassifier.html

; # eXtreme Gradient Boosting

xgb_integrality = [0, O, 1, 1, 1, O, O, O, 1, 1]
xgb_params = {
’eta’: [0.0, 1.0],
>gamma’: [0.0, 1.0],
"max_depth’: [5, 20],
’min_child_weight’: [1, 10000],
’max_delta_step’: [0, 10],
>subsample’: [0.5, 1.0],
’lambda’: [0.0, 2.0],
>alpha’: [0.0, 2.0],
‘max_leaves’: [0, 100],
’max_bin’: [128, 512]
}

For more XGBClassifier parameters check: https://xgboost.readthedocs.

io/en/stable/parameter.html

AdaBoost
adaboost_integrality = [1, O]
adaboost_params = {
’n_estimators’: [10, 1000],
’learning_rate’: [0.0, 5.0],
}

modules/generated/sklearn.ensemble.AdaBoostClassifier.html

model_names_list = [’LR’, ’DT’, ’RF’, °MLP’, ’SVM’, ’HGB’,

XGB’, ’AdaBoost’]

Buid the CSV files 1list

csv_files = glob_get_files_list(input_files_path, file_format="csv"

X, y = read_and_split_train_data(csv_files, split=False,

dataset_percentage=100) # prepare data splits to tuning

Run the tuning for all models in the 1list
for i in model _names_1list:
clf = classifier_select (i)

run_model_tuning(clf, X, y)

Source: Created by the author (2025).

3 # For more AdaBoost parameters check: https://scikit-learn.org/stable/

>’LightGBM’,

184
APPENDIX Q — Source of the dt_ visualization.py script

As indicated in Subsection 5.2.1, this script is part of the NWDAF_ml module. The

ready-to-use source code and documentation are available in a GitHub repository (41).

import pandas as pd
import time
from subprocess import check_call
from sklearn.tree import DecisionTreeClassifier ,export_graphviz
from sklearn.model_selection import train_test_split
from util import (glob_get_files_list,
read_csv,

data_oversample)

File paths

working_folder = "./pcap/output/4-ML/"

input_files_path_labeled_data = working_folder + "preprocess/
labeled_data/" # read the labeled output files from here

Vars

class_names_list = ["eMBB","URLLC","mMTC"]

features _names_list = []

5 start_time = time.time() # record the start of execution

Load and prepare splits from labeled training data
def read_and_split_train_data(csv_file_list, split, with_features_names=
False):
training_data = pd.DataFrame ()
for file in csv_file_list:
if ’training’ in file:
df = read_csv(file)
training_data = pd.concat([training_data, df], ignore_index=
True)
elif ’inference’ in file:
print ("[DEBU] Skipped inference file found at", file)
DEBUG
pass
else:
raise ValueError (£"[ERRO] Could not determine data set type
from filename {filel}")

exit ()

Prepare data for supervised learning
= training_data.drop(’label’, axis=1) # Features

y = training_datal[’label’] # Target variable

if (split):

Now X and y are ready for supervised learning

185

38 X_train, X_test, y_train, y_test = train_test_split(X, vy,

test_size=0.3, random_state=42)

40 if (with_features_names) :

41 feature_list = 1list(X.columns)

42

43 return X_train, X_test, y_train, y_test, feature_list
44 else:

45 return X_train, X_test, y_train, y_test

46

47 else:

48 return X, y

50 # Create the DT visualization plots
51 def create_and_plot_tree_visualization(file_name_suffix,

rounded_rectangles, horizontal, print_percentages, parallel_leaves=

False):
52 file_path_without_format = "img/dtree_" + file_name_suffix
53 dot_file_path = file_path_without_format + ".dot"
54 png_file_path = file_path_without_format + ".png"
55 pdf _file_path = file_path_without_format + ".pdf"
56
57 print (£" [INFO] Exporting {dot_file_path} ... ", end=’’, flush=True)
58 export_graphviz(dt, out_file=dot_file_path, class_names=

class_names_list, feature_names=features_names_list,

59 rounded=rounded_rectangles , rotate=horizontal,
proportion=print_percentages, leaves_parallel=parallel_leaves)

60 # For more parameters see: https://scikit-learn.org/stable/modules/
generated/sklearn.tree.export_graphviz.html

61 print (" [0K 1 ")

63 print (£" [INFO] Plotting {file_path_without_formatl} ... ", end=’’,
flush=True)

64 # check_call([’dot’, ’-Tpng’, dot_file_path, ’-o’, png_file_path]) #

save as PNG

65 check_call([’dot’, ’-Tpdf’, dot_file_path, ’-o’, pdf_file_path]) #
save as PDF

66 print(" [0K 1 ")

67

68 print ("[INFO] Loading files and creating the model ... ", end=’’, flush=
True)

69

70 # Update the 1list of CSV files

71 csv_files = glob_get_files_list(input_files_path_labeled_data,
file format="csv"

72

73 # Create the splits

74

-~
at

78

79 #

80

81 #

82

83

84

86

88
89
90
91
92
93
94

97
98
99
100
101

102
103

104
105
106

X_train, X_test, y_train, y_test, features_names_list =

read_and_split_train_data(csv_files, True, True)
Apply SMOTE to oversample the underrepresented class
X_train, y_train = data_oversample(X_train, y_train) # Uncomment

apply SMOTE

Uncomment one of the lines below

=

dt = DecisionTreeClassifier() # default parameter DT (run #O)

could be adjusted is the tree depth (param example for run #0)

dt = DecisionTreeClassifier (max_depth=4) # a first parameter that

186

to

dt = DecisionTreeClassifier (min_samples_leaf=1000, min_samples_split

=10000) # (run #1)

dt = DecisionTreeClassifier (max_depth=6, min_samples_leaf=1000,
min_samples_split=10000) # (run #2)

dt = DecisionTreeClassifier (max_depth=3) # try another value for
tree depth (param example for run #3)

dt = DecisionTreeClassifier (max_depth=2) # try yet another value

the tree depth (param example for run #3)

For more parameters see: https://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.html
dt.fit(X_train, y_train)
print(" [0K 1 ")

Plot "normal" tree (default parameters + rounded boxes)

the

for

create_and_plot_tree_visualization("vertical_raw", True, False, False)

Plot "normal" tree paralell leaves
create_and_plot_tree_visualization("vertical_leaves", True, False,
, True)

Plot "normal" tree with percentages

False

create_and_plot_tree_visualization("vertical_percentages", True, True,

True)

Plot horizontal tree with numerical values

create_and_plot_tree_visualization("horizontal_raw", True, True, False)

Plot horizontal tree with numerical values

create_and_plot_tree_visualization("horizontal_leaves", True, True,
False, True)

Plot horizontal tree with percentages

create_and_plot_tree_visualization("horizontal_percentages", True,
True)

print ("[INFO] Plotting has finished successfully")

end_time = time.time() # record the end of execution

print (£" [DEBU] Execution time: {end_time - start_timel} s")

Source: Created by the author (2025).

True,

187

APPENDIX R — Test phase confusion matrices

The confusion matrices of the ML test phase are presented in Figures 23-33,
illustrating how each model classified the test data on one of the runs. Given that this is
a multi-class problem, each matrix comprises four components: TP, FP, TN, and FN).
The optimal results (i.e., the TPs) are located along the main diagonal, while the upper
triangular portion contains the FPs, the FNs are found in the lower triangular portion,
and the TNs are class specific (e.g., the TNs of eMBB class are the other two values
from the main diagonal). The performance metrics and further analysis related to these
matrices are provided in Subsection 5.2.3.1, while the raw values of each performance

metric detailed in Subsection 2.2.2 is contained in Appendix S. The confusion matrices of
all runs are archived on Zenodo (39).

Figure 23 — RF confusion matrix for the test phase
Confusion Matrix for RandomForestClassifier training¢g

2262869

eMBB

2152918

True Label
URLLC

-1.0

-0.5

mMTC
)

2261470

-0.0

! !
eMBB URLLC
Predicted Label

Source: Created by the author (2025).

Figure 24 — LGBM confusion matrix for the test phase

Confusion Matrix for LGBMClassifier training 106

priviiy)

eMBB

2152916

True Label
URLLC

-1.0

mMTC
)

2261470

i -0.0
URLLC mMTC

Predicted Label

'
eMBB

Source: Created by the author (2025).

Figure 25 — XGB confusion matrix for the test phase

Confusion Matrix for XGBClassifier training 1e6

o 2.0
o
] 2262860
[7)
15
2
© 9
33 2152888
$5 L1.0
=
S} -0.5
£ 2261470
£
-0.0

' '
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 26 - HGB confusion matrix for the test phase

Source:

Figure 27 — MLP confusion matrix for the test phase

Source:

Confusion Matrix for HistGradientBoostingClassifier trainig

© 2.0
o
2 2262381
[
15
2
c 9
33 2152644
g5 1.0
'_
(S} -0.5
15 2261470
€
-0.0

URLLC mMTC
Predicted Label

Created by the author (2025).

'
eMBB

Confusion Matrix for MLPClassifier training

le6
m 2.0
o
2 2261188
[
1.5
o
<9
= 2 2152586
55 L1.0
'_
© -0.5
s 2261470
€
-0.0

URLLC mMTC
Predicted Label

Created by the author (2025).

1
eMBB

188

Figure 28 — Stacking confusion matrix for the test phase

Confusion Matrix for StackingClassifier training 1e¢

o 2.0
o
2 2257244
(V)
15
2
G
33 2150754
$5 1.0
'_
o -05
g 2261470
€
-0.0

' '
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 29 — AdaBoost confusion matrix for the test phase

True Label

Confusion Matrix for AdaBoostClassifier training 1e6

m 2.0
o
o 2252276
[}
1.5

Q
E 2150019
=} - 1.0
o -0.5
E 2261430
€

-0.0

URLLC mMTC
Predicted Label

1
eMBB

Source: Created by the author (2025).

Figure 30 — DT confusion matrix for the test phase

Source:

True Label

Confusion Matrix for DecisionTreeClassifier training 16

g 2.0
] 2237014
[}
15

S
3 2152800
= -1.0
8 -05
g 2261470
€

-0.0

! !
eMBB URLLC
Predicted Label

Created by the author (2025).

189

Figure 31 — Voting confusion matrix for the test phase

Confusion Matrix for VotingClassifier training 1¢¢6

o 2.0
o
o 2236870
(V)
15
2
© Y
-3 2152799
$5 1.0
'_
[8) -0.5
g 2261456
€
-0.0

' '
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 32 — Linear SVC confusion matrix for the test phase

True Label

Confusion Matrix for LinearSVC training 1e6
o 2.0
o
g 2236840
[
1.5

Q
E 2152800
=] -1.0
S} -0.5
E 2261470
€

-0.0

URLLC mMTC
Predicted Label

1
eMBB

Source: Created by the author (2025).

Figure 33 — LR confusion matrix for the test phase

Source:

True Label

Confusion Matrix for LogisticRegression training 16

g 2.0
] 2236607
[}
15

Y
3 2152799
=} -1.0
8 -05
g 2259104
€

-0.0

! !
eMBB URLLC
Predicted Label

Created by the author (2025).

190

191
APPENDIX S — Test phase raw performance metrics

The performance metrics detailed in Subsection 2.2.2 and in Appendix Y (Accuracy,
Precision, Recall, F1-score, and AUC score) of the ML test phase are presented in Tables 22—
32, illustrating the classification performance of each model related to the test data.
Notably, the “average” metrics concern the average values of the three classes and the
values are an average of three runs with the fixed random_state seed disabled. The
analysis related to these tables is provided in Subsection 5.2.3.1. Finally, the raw model

performance results detailed below are archived on Zenodo (39).

Table 22 — Training RF performance results

Performance Metric Value
Accuracy 0.999995756755246
Average Precision 0.999995756 758762
Average Recall 0.999995756755246
Average fl-score 0.999995756755408
Class 0 fl-score 0.999993739715435
Class 1 fl-score 0.99999341629356
Class 2 fl-score 1.0

Average AUC Score 0.999999844878934

Source: Created by the author (2025).

Table 23 — Training LGBM performance results

Performance Metric Value
Accuracy 0.99999540731156
Average Precision 0.99999540731582
Average Recall 0.99999540731156
Average fl-score 0.999995407311511
Class 0 fl-score 0.999993371391405
Class 1 fl-score 0.99999287478899
Class 2 fl-score 0.9999998526929

Average AUC Score 0.999999999769697

Source: Created by the author (2025).

Table 24 — Training XGB performance results

Performance Metric

Value

Accuracy

Average Precision
Average Recall
Average fl-score
Class 0 fl-score
Class 1 fl-score
Class 2 fl-score
Average AUC Score

0.999988418437847
0.999988418446283
0.999988418437847
0.999988418437006
0.999982986655971
0.999982031579259
0.999999926307082
0.999999999438396

Source: Created by the author (2025).

Table 25 — Training HGB performance results

Performance Metric

Value

Accuracy

Average Precision
Average Recall
Average fl-score
Class 0 fl-score
Class 1 fl-score
Class 2 fl-score
Average AUC Score

0.999887379292167
0.9998873820785
0.999887379292167
0.999887379409384
0.999833982847908
0.999825293972727
0.9999998526929
0.999999960191564

Source: Created by the author (2025).

Table 26 — Training MLP performance results

Performance Metric

Value

Accuracy

Average Precision
Average Recall
Average fl-score
Class 0 fl-score
Class 1 fl-score
Class 2 fl-score
Average AUC Score

0.999650007188556
0.999650153074434
0.999650007188556
0.999650007319171
0.999483462991802
0.999467328645237
0.999990349680517
0.999998593566159

Source: Created by the author (2025).

192

193

Table 27 — Training Stacking performance results

Performance Metric Value

Accuracy 0.998023995798688
Average Precision 0.998029789944568
Average Recall 0.998023995798688
Average fl-score 0.998024086900127
Class 0 fl-score 0.997078630762018
Class 1 fl-score 0.99694395273203
Class 2 fl-score 0.999996904819142
Average AUC Score N/A

Source: Created by the author (2025).

Table 28 — Training AdaBoost performance results

Performance Metric Value

Accuracy 0.997935786228325
Average Precision 0.997942234507552
Average Recall 0.997935786228325
Average fl-score 0.997935818257243
Class 0 fl-score 0.996953741847231
Class 1 fl-score 0.996854535993169
Class 2 fl-score 0.99994666516008

Average AUC Score 0.999983901260544

Source: Created by the author (2025).

Table 29 — Training DT performance results

Performance Metric Value

Accuracy 0.996120476201887
Average Precision 0.996165562798257
Average Recall 0.996120476201887
Average fl-score 0.996120892703388
Class 0 fl-score 0.994243709366724
Class 1 fl-score 0.994021669151318
Class 2 fl-score 0.999995285556495

Average AUC Score 0.99986424483371

Source: Created by the author (2025).

194

Table 30 — Training Voting performance results

Performance Metric Value

Accuracy 0.996100857434964
Average Precision 0.996145789417267
Average Recall 0.996100857434964
Average fl-score 0.996101133335754
Class 0 fl-score 0.994214452601538
Class 1 fl-score 0.994030698143807
Class 2 fl-score 0.999957641465848

Average AUC Score 0.999981979855719

Source: Created by the author (2025).

Table 31 — Training Linear SVC performance results

Performance Metric Value

Accuracy 0.996084932787003
Average Precision 0.996130413788997
Average Recall 0.996084932787003
Average fl-score 0.99608524470447
Class 0 fl-score 0.994190665252682
Class 1 fl-score 0.993995878869977
Class 2 fl-score 0.999967662120633
Average AUC Score N/A

Source: Created by the author (2025).

Table 32 — Training LR performance results

Performance Metric Value

Accuracy 0.995706784798601
Average Precision 0.995748462837908
Average Recall 0.995706784798601
Average fl-score 0.995706963409681
Class 0 fl-score 0.993632665282345
Class 1 fl-score 0.993998326120172
Class 2 fl-score 0.999406996134278

Average AUC Score 0.999612523228833

Source: Created by the author (2025).

195

APPENDIX T — eMBB inference confusion matrices

The confusion matrices of the ML inference phase for eMBB class are presented
in Figures 34-44, illustrating how each model classified the eMBB inference data. Given
that this is a multi-class problem, each matrix comprises four components: TP, FP, TN,
and FN). The optimal results (i.e., the TPs) are located along the main diagonal, while
the upper triangular portion contains the FPs, the FNs are found in the lower triangular
portion, and the TNs are class specific (e.g., the TNs of eMBB class are the other two
values from the main diagonal). The performance metrics and further analysis related to

these matrices are provided in Subsection 5.2.5.2. The confusion matrices of all runs are
archived on Zenodo (39).

Figure 34 — RF confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for RandomForestClassifier inferencegg

eMBB

1002853 1611 0

g 0.6
Q

S3 0 0 0

25

I

= -0.4
2 -0.2
E E 0 0 0
€

| | | -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 35 - LGBM confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for LGBMClassifier inference 16
1.0

1002753 1710 1

eMBB

3 0.6
(]
52 0 0 0
) o
E =)
= - 0.4
O
-0.2
E. 0 0 0
€
‘ ‘ ' -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 36 — XGB confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for XGBClassifier inference

1e6
1.0
[ea)
g 1002671 1792 1
[0.8
] 0.6
O
33 0 0 0
vE
=
= -0.4
O
-0.2
E. 0 0 0
E
‘ ‘ ‘ -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 37 — HGB confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for HistGradientBoostingClassifier inferggse
1.

o
@ 1002632 1832 0
] 0.8
3 0.6
Q
53 0 0 0
vg
2
= -0.4
O
-0.2
. 0 0 0
€
' ‘ ' -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 38 — MLP confusion matrix for the inference phase

Source:

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for MLPClassifier inference

1e6
== 1.0
o
2 1002154 2273 37
] 0.8
T 0.6
QO
32. 0 0 0
@ [°4
E =)
= 0.4
(&)
-0.2
E E 0 0 0
£
, , ' -0.0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

196

Figure 39 — AdaBoost confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for AdaBoostClassifier inference 1.6

1.0
[2a]
2 1001959 2492 13
] 0.8
o 0.6
Q0
3 = 0 0 0
()
E =)
= - 0.4
(&)
-0.2
E. 0 0 0
£
\ \ \ -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 40 — Stacking confusion matrix for the inference phase

Source:

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for StackingClassifier inference 1.6

1.0
o
g 1000987 3477 0
] 0.8
g 0.6
Q
83, 0 0 0
w o
E p}
= -0.4
O
-0.2
g.- 0 0 0
€
! ! | -0.0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

Figure 41 — Voting confusion matrix for the inference phase

Source:

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for VotingClassifier inference

le6 10
[a)
g 1000435 4026 3
] 0.8
] 0.6
Qo
O
33 0 0 0
o
52
= -0.4
2 -0.2
s- 0 0 0
€
‘ ‘ ‘ -0.0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

197

Figure 42 — DT confusion matrix for the inference phase

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for DecisionTreeClassifier inference ¢¢ 1o

[2a]
g 1000428 4036 0
] 0.8
] 0.6
Q0
3 = 0 0 0
()
E =)
= -0.4
2 -0.2
E. 0 0 0
£
, , ‘ -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 43 — Linear SVC confusion matrix for the inference phase

True Label

youtube-1M-1080p_inference_embb_labeled.csv

Confusion Matrix for LinearSVC inference le6 |
1.
o
g 1000364 4100 0
[0.8
0.6
<
2- 0 0 0
)
-0.4
o L
0.2
g.- 0 0 0
€
. | | -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 44 — LR confusion matrix for the inference phase

Source:

True Label

youtube-1M-1080p_inference_embb_labeled.csv
Confusion Matrix for LogisticRegression inference 1¢6

1.0
o
g 1000363 4078 23
] 0.8
0.6
O
J- 0 0 0
ol
-0.4
2 -0.2
E. 0 0 0
£
' ' , -0.0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

198

199

APPENDIX U — URLLC inference confusion matrices

The confusion matrices of the ML inference phase for URLLC class are presented
in Figures 45-55, illustrating how each model classified the URLLC inference data. Given
that this is a multi-class problem, each matrix comprises four components: TP, FP, TN,
and FN). The optimal results (i.e., the TPs) are located along the main diagonal, while
the upper triangular portion contains the FPs, the FNs are found in the lower triangular
portion, and the TNs are class specific (e.g., the TNs of eMBB class are the other two
values from the main diagonal). The performance metrics and further analysis related to

these matrices are provided in Subsection 5.2.5.2. The confusion matrices of all runs are
archived on Zenodo (39).

Figure 45 — Linear SVC confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urlic_labeled.csv

Confusion Matrix for LinearSVC inference 1e6

eMBB
!
o
o
o

2 o 0.6
©
= 0 1042908 10
¢35
2
= -0.4
O
£ 0 0 0 0.2
€
‘ ‘ | -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 46 — LR confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for LogisticRegression inference 16

1.0

eMBB
!
o
o
o

0.8

0.6
4626 1037963 329

True Label
URLLC

-0.4

-0.2

mMTC
)
o
o
[S)

' i ' -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 47 — DT confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urlic_labeled.csv
Confusion Matrix for DecisionTreeClassifier inference|¢g

1.0
o
2- 0 0 0
0.8
%% o 0.6
-2 6034 1036883 1
g3
= -0.4
o L
= T T . 0.2
£
, ' , -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 48 — Voting confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for VotingClassifier inference 16

1.0
2
2 0 0 0
o 0.8
o 0.6
Q0
© 3
- 2 23358 1019557 3
L3
2
= -0.4
o 5
E 0 0 o 0.2
3
i ! ! -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 49 — Stacking confusion matrix for the URLLC inference phase

Source:

True Label

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for StackingClassifier inference

700000
a
g 0 0 0
3 600000
500000
Y - 400000
2 756780 286137 1
=)
- 300000
- 200000
(@)
= 0 0 0
€ - 100000
| . ! -0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

200

201

Figure 50 — MLP confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for MLPClassifier inference

800000
8 0 0 0
o
> 700000
600000
-0 500000
=2 881565 139946 21407
v g - 400000
=
- 300000
- 200000
(&)
E- 0 0 0
E - 100000
, , , -0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 51 — LGBM confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urlic_labeled.csv
Confusion Matrix for LGBMClassifier inference

o 800000

o

2 0 0 0

[}

600000

2
CB=
=3 904316 138601 1
5> - 400000
=

9] - 200000

. 0 0 0

€

‘ : ' -0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 52 — HGB confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urlic_labeled.csv
Confusion Matrix for HistGradientBoostingClassifier inference

© 800000

[+a]

a 0 0 0

[0}

600000

o
Q0
© I
33 905342 137576 0
$5 - 400000
=

o - 200000

E 0 0 0

£

, , , -0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 53 — XGB confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for XGBClassifier inference

@ 800000
o
o. 0 0 0
[}
600000
2
Q
©
=3 122311 1
Q
2 > - 400000
o) - 200000
E b 0 0 0
€
: :] -0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 54 — RF confusion matrix for the URLLC inference phase

naver-tv-1M_inference_urllc_labeled.csv
Confusion Matrix for RandomForestClassifier inferencgqg

1.0
o
o. 0 0 0
[} 0.8
% o 0.6
-3 1027443 15474 1
oS
=
= -0.4
O L
E. 0 0 0 02
€
‘ ‘ ‘ -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 55 — AdaBoost confusion matrix for the URLLC

Source:

naver-tv-1M_inference_urlic_labeled.csv
Confusion Matrix for AdaBoostClassifier inference 16

1.0
a
2- 0 0 0
08
3 0.6
© 9
39 1042917 1 0
g3
= 0.4
(&)
£ 0 0 0 0.2
£
‘ ‘ ‘ -0.0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

inference phase

202

203

APPENDIX V — mMTC burst inference confusion matrices

The confusion matrices of the ML inference phase for mMTC class (burst traffic)
are presented in Figures 56-66, illustrating how each model classified the mMTC inference
data. Given that this is a multi-class problem, each matrix comprises four components:
TP, FP, TN, and FN). The optimal results (i.e., the TPs) are located along the main
diagonal, while the upper triangular portion contains the FPs, the FNs are found in the
lower triangular portion, and the TNs are class specific (e.g., the TNs of eMBB class
are the other two values from the main diagonal). The performance metrics and further

analysis related to these matrices are provided in Subsection 5.2.5.2. The confusion
matrices of all runs are archived on Zenodo (39).

Figure 56 — AdaBoost confusion matrix for the mMTC burst inference phase

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for AdaBoostClassifier inference 16

1.0

o

o 0 0 0

()

0.8

o
%u 0.6
43 0 0 0
wﬂ:
ED
'_

-0.4

11 1 1069961 -0.2

mMTC
)

' I -0.0
eMBB URLLC

Predicted Label

Source: Created by the author (2025).

Figure 57 — LR confusion matrix for the mMTC burst inference phase

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for LogisticRegression inference 16

1.0

@

o 0 0 0

(V)

0.8

o
'r%‘-’ 0.6
-3 0 0 0
[
ED
'_

1069070 862 41 -0.2

mMTC

i ' -0.0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 58 — Voting confusion matrix for the mMTC burst inference phase

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for VotingClassifier inference

le6
1.0
a
o 0 0 0
[7]
0.8
3 0.6
o .
3 = 0 0 0
()
E =)
= - 0.4
(&)
£ 1069941 0 32 -0.2
£
-0.0

URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 59 — RF confusion matrix for the mMTC burst inference phase

Source:

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for RandomForestClassifier inferencg.g

1.0
o
2- 0 0 0
[}
0.8
3 0.6
o .
©
i} ; A 0 0 0
oS
2
= -0.4
O
g 1069966 1 6 -0.2
€
-0.0

! |
eMBB URLLC mMTC
Predicted Label

Created by the author (2025).

Figure 60 — XGB confusion matrix for the mMTC burst inference phase

Source:

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for XGBClassifier inference

le6
1.0
o
2. 0 0 0
()
0.8
3 0.6
o .
©
i 0 0 0
) [°4
S ol
2
= -0.4
(&)
g 1069966 1 6 -0.2
£
-0.0

URLLC mMTC
Predicted Label

Created by the author (2025).

204

Figure 61 — DT confusion matrix for the mMTC burst inference phase

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for DecisionTreeClassifier inference ¢¢

1.0
B
2- 0 0 0
0.8
2 0.6
o .
©
e 0 0 0
) [°4
E ol
= -0.4
(&)
g 1069967 0 6 -0.2
£
-0.0

URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 62 — HGB confusion matrix for the mMTC burst inference phase

Source:

Figure 63 — LGBM confusion matrix for the mMTC burst inference phase

Source:

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for HistGradientBoostingClassifier inferggse

1.0
2
@ 0 0 0
(]
0.8
2 0.6
o .
©
-3 0 0 0
L3
2
= -0.4
O
g 1069966 1 6 -0.2
€
-0.0

! |
URLLC mMTC
Predicted Label

Created by the author (2025).

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for LGBMClassifier inference 106

1.0
a
o 0 0 0
[
0.8
3 0.6
o .
©
B 0 0 0
@ [°4
S =)
2
= - 0.4
(&)
£ 1069966 1 6 -0.2
£
-0.0

. s
eMBB URLLC mMTC
Predicted Label

Created by the author (2025).

205

Figure 64 — Linear SVC confusion matrix for the mMTC burst inference phase

udp-100pps_inference_mmtc_labeled.csv

Confusion Matrix for LinearSVC inference 1e6
1.0
a
2- 0 0 0
[
0.8
g 0.6
o .
5 = 0 0 0
[
E =}
= ~04
O
g 0 1069967 6 -0.2
£
-0.0

! |
eMBB URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 65 — MLP confusion matrix for the mMTC burst inference phase

True Label

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for MLPClassifier inference 1.4

1.0
2
] 0 0 0
[}
0.8
o 0.6
-
2 0 0 0
=)
-0.4
O
g 1069964 3 6 -0.2
£
-0.0

! |
eMBB URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 66 — Stacking confusion matrix for the mMTC burst inference phase

Source:

True Label

udp-100pps_inference_mmtc_labeled.csv
Confusion Matrix for StackingClassifier inference 16

1.0
a
D 0 0 0
()
058
o 0.6
E‘ L 0 0 0
ol
~0.4
(&)
g 20339 1049628 6 -0.2
£
-0.0

! s
eMBB URLLC mMTC
Predicted Label

Created by the author (2025).

206

207

APPENDIX W — mMTC probabilistic inference confusion matrices

The confusion matrices of the ML inference phase for mMTC class (probabilistic
traffic) are presented in Figures 67-77, illustrating how each model classified the mMTC
inference data. Given that this is a multi-class problem, each matrix comprises four
components: TP, FP, TN, and FN). The optimal results (i.e., the TPs) are located along
the main diagonal, while the upper triangular portion contains the FPs, the FNs are
found in the lower triangular portion, and the TNs are class specific (e.g., the TNs of
eMBB class are the other two values from the main diagonal). The performance metrics
and further analysis related to these matrices are provided in Subsection 5.2.3.2. The

confusion matrices of all runs are archived on Zenodo (39).

Figure 67 — AdaBoost confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for AdaBoostClassifier inference

@

- 0 0 0
= 800

3 600
Q

©

43 0 0 0

@ o

E =)

'_

- 400

- 200

mMTC

: |
eMBB URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 68 — Voting confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for VotingClassifier inference

@
g 0 0 0
3 800
3 600
Q
8 ; 0 0 0
Q
E =)
'_

- 400

- 200

mMTC

| |
eMBB URLLC mMTC
Predicted Label

Source: Created by the author (2025).

Figure 69 — DT confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for DecisionTreeClassifier inference

a
- 0 0 0
3 800
3 600
Q
83 0 0 0
@ o
S pul
p= - 400
2 - 200
5 0 11
£
: ‘ -0
URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 70 — HGB confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for HistGradientBoostingClassifier inference

o
4 0 0 0
3 800
3 600
Q
3 2- 0 0 0
()
E =)
= - 400
9) - 200
g 0 11
£
, , -0
URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 71 — LGBM confusion matrix for the mMTC probabilistic inference phase

Source:

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for LGBMClassifier inference

S
- 0 0 0
3 800
3 600
Q
3 2- 0 0 0
()
2 pul
= - 400
2 -200
5 0 11
€
' ‘ -0
eMBB URLLC mMTC

Predicted Label

Created by the author (2025).

208

Figure 72 — RF confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for RandomForestClassifier inference

a
s - 0 0 0 800
[}

3 600
Q

533, 0 0 0

1) o

S pul

= - 400
o - 200
15 20 11
€

' ‘ -0
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 73 — XGB confusion matrix for the mMTC probabilistic inference phase

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for XGBClassifier inference

a
- 0 0 0
3 800
3 600
Q
3 = 0 0 0
[0}
E =)
= - 400
(@)
- 200
15 0 11
€
, , -0
URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 74 — MLP confusion matrix for the mMTC probabilistic inference phase

Source:

True Label
URLLC

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for MLPClassifier inference

o 800
o
@ 0 0 0
[}
600
0 0 0
- 400
0 - 200
£ 80 11
€
, , -0
URLLC mMTC

Predicted Label

Created by the author (2025).

209

210

Figure 75 — Stacking confusion matrix for the mMTC probabilistic inference phase

True Label

URLLC eMBB

mMTC

Confusion Matrix for StackingClassifier inference

udp-nc-traffic-1k_inference_mmtc_labeled.csv

! |
eMBB URLLC mMTC
Predicted Label

Source: Created by the author (2025).

800

600

- 400

- 200

Figure 76 — Linear SVC confusion matrix for the mMTC probabilistic inference phase

True Label

eMBB

URLLC
)

mMTC

udp-nc-traffic-1k_inference_mmtc_labeled.csv

Confusion Matrix for LinearSVC inference

0 0 0
0 0 0
399 597 11
'
eMBB URLLC mMTC

Predicted Label

Source: Created by the author (2025).

Figure 77 — LR confusion matrix for the mMTC probabilistic inference phase

Source:

True Label

URLLC eMBB

mMTC

udp-nc-traffic-1k_inference_mmtc_labeled.csv
Confusion Matrix for LogisticRegression inference

. :
eMBB URLLC mMTC
Predicted Label

Created by the author (2025).

500

400

- 300

- 200

- 100

1000

800

600

- 400

-200

211

APPENDIX X — Weighted recall definition and example

In multi-class classification problems such as the UE classification performed in
this work, it is essential to evaluate the performance of the model not only based on overall
accuracy but also on how well it predicts each class. Besides the metrics presented in

Subsection 2.2.2, an additional useful metric for this purpose is the weighted recall.

As shown in Subsection 2.2.2, recall is calculated by dividing the TPs by the sum
of the TPs and FNs. This computation is calculated for each class independently and
does not consider the number of instances in each class. While recall provides valuable
insight into how well a model identifies positive instances for a specific class, it may not
accurately represent the model’s performance across all classes, especially in imbalanced
datasets (146). Therefore, weighted recall addresses this limitation by incorporating
the class distribution, making it a more comprehensive metric for evaluating multi-class

classification models.

The weighted recall takes into account the number of instances for each class when
calculating the overall recall and is defined as (147, 148):

N¢ TP;)
21 (TPﬁ-FNi X NZ)

N

weighted recall =

Where:

e N¢ = Total number of classes

e TP, = True Positives for class ¢

o F'N; = False Negatives for class 7

o N; = Number of instances for class i (i.e., the sum of true instances for that class)

o N = Total number of instances across all classes (i.e., the sum of all entries in the

confusion matrix)

Notably, the term TP;‘T F, s equivalent to Equation 2.3, calculating the recall for
class 7, which measures the proportion of actual positive instances that were correctly
identified by the model. By multiplying this recall by /N;, the recall is weighted according

to the prevalence of that i*" class in the dataset.

Finally, the sum of these weighted recalls is divided by the total number of instances
N to provide an overall measure of recall that reflects the performance across all classes.
This approach ensures that classes with more instances have a greater influence on the

overall metric, leading to a more balanced evaluation of the model’s performance.

w

ot

6

-~

10

11
12

36

212

As the weighted recall was used in the implementation of the NWDAF_m1 module (41),
it is possible to create a script to validate the execution of the Python libraries (73)
and computation of numerical values representing the performance metrics. As the
results of most of the eleven models tested converged to a value (as shown in Table 16),
only DT and MLP were selected to revalidation in the example implemented in the
accuracy_recall same_value_proof.py script listed below.

import numpy as np

import pickle

from sklearn import metrics

from util import read_csv

File paths

working_folder = "./pcap/output/4-ML/"

models_folder = working_folder + "models/" # read the models from here
output_files_path_labeled_data = working_folder + "preprocess/

labeled_data/" # read preprocessed data from here

models_file_list = [models_folder + "DecisionTreeClassifier.pkl",
models_folder + "MLPClassifier.pkl"] # Use DT and MLP models
file_name = "udp-nc-traffic-1k_inference_mmtc_labeled.csv" # Using the

mMTC probabilistic inference data in this example

Load and prepare splits from labeled training data

; df = read_csv(output_files_path_labeled_data + file_name)

Prepare data for supervised learning
X = df.drop(’label’, axis=1) # Features
y_true = df[’label’] # Target variable

Load models from disk
dt_model = pickle.load(open(models_file_1list[0], ’rb’))
mlp_model = pickle.load(open(models_file_list[1], ’rb’))

6 # Classify data
/ y_pred_dt = dt_model.predict (X)

y_pred_mlp = mlp_model.predict (X)

HAHBRRRHHAHFFBRHHHAHARRRB BB RRHHHHHSHAAAHHH AR BB R BB R R RIS
Calculating using the Python/Scikit Learn libraries
HAERBBRRHHFHFFBRBHAAARARBB BB R R B HHRBBBRR RS AR RB BB BB R R RS

Confusion matrices
conf_matrix_dt = metrics.confusion_matrix(y_true, y_pred_dt, labels
=[0,1,2])

conf_matrix_mlp = metrics.confusion_matrix(y_true, y_pred_mlp, labels

48

63
64

65

66

67

68

213

=[0,1,2])

Print matrices

print ("=> Confusion matrices")

print ("Decision Tree Confusion Matrix")

print (conf _matrix_dt)

print ("Multilayer Perceptron Confusion Matrix")

print (conf_matrix_mlp)

Print the performance metrics

; print ("=> Results using libraries")

/ print (metrics.classification_report(y_true, y_pred_dt, digits=8,

zero_division=0.0, labels=[0,1,2]))
print (metrics.classification_report(y_true, y_pred_mlp, digits=8,
zero_division=0.0, labels=[0,1,2]))

HU#HHHHHFAAA SRR R BHAHAHRAHH
Calculating ’manually’
HHHHHAFFAAAHH AR BB HAHAHHRHH

Calculate model accuracy
def calculate_accuracy(conf_matrix):
True Positives and True Negatives
TP = np.diag(conf_matrix).sum() # Sum of diagonal elements (correct
predictions)
total = conf_matrix.sum() # Total instances
accuracy = TP / total if total > 0 else O

return accuracy

Calculate model recall for a specific class (e.g., class 2 / mMTC)

def calculate_class_recall(conf_matrix, class_index):

TP = conf_matrix[class_index, class_index] # True Positives for the
class
FN = conf_matrix[:, class_index].sum() - TP # False Negatives for

the class
recall = TP / (TP + FN) if (TP + FN) > 0 else O

return recall

Calculate model weighted recall

def calculate_weighted_recall(conf_matrix):
total_instances = conf_matrix.sum() # Total instances

0.0

weighted_recall

for class_index in range(conf_matrix.shape[0]):
TP = conf_matrix[class_index, class_index] # True Positives for
the class

FN = conf_matrix[:, class_index].sum() - TP # False Negatives

87
88
89
90
91

214

for the class
recall = TP / (TP + FN) if (TP + FN) > 0 else O

Count the number of instances for this class

class_instances = conf_matrix[:, class_index].sum()

Update weighted recall

weighted_recall += recall * class_instances

Normalize by total instances
weighted_recall /= total_instances if total_instances > 0 else 1

return weighted_recall

Calculate accuracy, recall and weighted recall for Decision Tree

accuracy_dt = calculate_accuracy(conf_matrix_dt)

recall _dt_class_2 = calculate_class_recall (conf_matrix_dt, 2) # Recall
for class 2

weighted_recall_dt = calculate_weighted_recall (conf_matrix_dt)

Calculate accuracy, recall and weighted recall for MLP
accuracy_mlp = calculate_accuracy(conf_matrix_mlp)
recall_mlp_class_2 = calculate_class_recall(conf_matrix_mlp, 2) #

Recall for class 2

’ weighted_recall_mlp = calculate_weighted_recall (conf_matrix_mlp)

Print results

) print ("=> Results without libraries")

print (£"DT Accuracy: {accuracy_dt:.8f}")

print (£"DT Recall (Class 2): {recall_dt_class_2:.8f}")
print (£"DT Weighted Recall: {weighted_recall_dt:.8f}")
print (£"MLP Accuracy: {accuracy_mlp:.8f}")

print (f"MLP Recall (Class 2): {recall_mlp_class_2:.8f}")

5 print (£"MLP Weighted Recall: {weighted_recall _mlp:.8f}")

Source: Created by the author (2025).
The output of the code above is:

=> Confusion matrices
Decision Tree Confusion Matrix
(L o 0 0]
[o o o]
[996 0 1111
Multilayer Perceptron Confusion Matrix
(L o 0 0]
[o 0 0]
[916 80 11]]

=> Results using libraries

[\
[\V]

[\
w

accuracy

macro avg

weighted avg

accuracy

macro avg

weighted avg

DT

precision

0.00000000
0.00000000
1.00000000

0.33333333
1.00000000

precision
0.00000000

0.00000000
1.00000000

0.33333333
1.00000000

recall

0.00000000
0.00000000
0.01092354

fl-score

0.00000000
0.00000000
0.02161100

0.01092354

0.00364118
0.01092354

recall

0.00000000
0.00000000
0.01092354

0

0.00364118
.01092354

Results without 1libraries

Accuracy:

Recall (Class 2):
Weighted Recall:
; MLP Accuracy:
MLP Recall (Class 2):
MLP Weighted Recall:

0.01092354

0.01092354

1.00000000
0.01092354

1.00000000
0.01092354

Source: Created by the author (2025).

0.00720367
0.02161100

fl-score

0.00000000
0.00000000
0.02161100

.01092354
0.00720367
0.02161100

support

0
0
1007

1007
1007

1007

support

1007

1007
1007
1007

215

Given the implementation of weighted recall, its calculation is equivalent to the

accuracy (as defined in Subsection 2.2.2). As demonstrated in the example above, there

is a possibility of these values converging, which can lead to the equal accuracy and recall

values observed in Subsection 5.2.3. The ready-to-use source code of this appendix and

its documentation are also available on GitHub (41).

216
APPENDIX Y — Receiver Operating Characteristic Area Under the Curve

In addition to the model performance metrics defined in Subsection 2.2.2, the
mathematical formulation of the Receiver Operating Characteristic (ROC) Area Under

the Curve (AUC) score is presented.

For binary classification, the ROC curve is constructed by plotting the True Positive
Rate (TPR) versus the False Positive Rate (FPR) at various threshold settings (76). These

rates are defined as in Equation .1.

TP FP
TPR=— - FPR= — 1
R TP+ FN’ R FP+TN (1)

In this context, the Area Under the Curve (AUC) is then defined as in Equation .2,
which represents the probability that a randomly chosen positive instance ranks higher

than a randomly chosen negative instance.

AUC = /O CTPR(1) dt (.2)

In a multiclass setting with K classes, a common approach is to decompose the
problem into multiple binary classification tasks. The One-vs-One (OvO) scheme constructs
a classifier for each distinct pair of classes (77). The total number of binary classifiers in
this scheme is calculated by Equation .3.

The ROC AUC score is computed for each pair of classes (7,), denoted AUC;;.
In the OvO scheme, the first step identifies all unique pair combinations. Scores are
computed by treating one element as the positive class and the other as the negative class,
then recomputing with reversed roles and taking the mean of both scores (77). Thus, the
OvO macro-average ROC AUC is then calculated by taking the average of these pairwise
ROC AUC scores as shown on Equation .4.

K-1 K

AUCumacro = T =5 _1 S Y AUC. (4)

i=1 j=i+1

This formulation assigns equal weight to each pair of classes, and consequently,
every binary comparison contributes equally to the overall multiclass evaluation metric.
For example, consider a three-class classification problem (K = 3) with classes A, B, and
C. The OvO decomposition results in the following pairs: (A, B), (A, C), and (B, C).
Suppose that for these pairs the following ROC AUC scores were obtained:

AUC,5 = 0.85, AUC,c =0.80, AUCpe = 0.90.

217

The macro-average ROC AUC would then be:

2 2 2.55
AUC! = ——(0.85+0.80+0.90) = - x 2.55 = — =~ 0.85.
macro 3(2) (+ +) 6 X 3

This value represents the aggregated performance of the classifier over all the pairwise

groupings of the classes.

