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RESUMO

O Desenvolvimento Global de Software (GSD) tem experimentado um aumento
significativo nos últimos anos, impulsionado pela crescente importância do software em
diversos setores. A demanda por especialistas com habilidades técnicas específicas e
experiência em domínios industriais tornou-se crucial para que as organizações mantenham
uma vantagem competitiva. No entanto, o ritmo acelerado de mudanças característico
da quarta revolução industrial apresenta desafios significativos para atender a essa de-
manda. Esta revolução evolui exponencialmente, afetando todos os países e indústrias
simultaneamente, e exige que a indústria de software se adapte constantemente para
acompanhar os rápidos avanços. Para abordar a lacuna de talentos e os desafios impostos
pela rápida evolução da tecnologia, este estudo apresenta o DevFinder, uma arquitetura de
software projetada para apoiar a busca por especialistas em desenvolvimento de software
cujo conhecimento esteja alinhado com domínios industriais e tecnologias específicas. A
arquitetura DevFinder utiliza técnicas como redes complexas e “Large Language Models”
(LLMs) para processar informações de repositórios de código do mundo real, gerando
uma lista classificada de desenvolvedores que atendem às necessidades específicas das
partes interessadas. Ao extrair, interpretar e processar dados de repositórios de software, o
DevFinder visa preencher a lacuna entre os requisitos técnicos das empresas e a escassez de
talentos especializados. A implementação da arquitetura DevFinder foi realizada por meio
de três ciclos de Pesquisa em Design Science, culminando na versão final atual. Os requisi-
tos arquiteturais foram identificados através de um estudo de mapeamento sistemático, e
as iterações de implementação foram avaliadas em três estudos separados. Os resultados
da avaliação confirmam que a arquitetura desenvolvida é capaz de apoiar recrutadores
na busca por especialistas em software com a combinação desejada de conhecimento em
domínios industriais e expertise técnica. As principais contribuições desta pesquisa incluem
especificar os requisitos para uma arquitetura eficaz, desenvolver um modelo de processo
de negócios que comunique os processos de extração, filtragem e classificação às partes
interessadas e implementar processos para extrair e filtrar repositórios utilizando técnicas
de LLM. Além disso, foi definida uma métrica para classificar os colaboradores com base
em aspectos de colaboração, e a arquitetura proposta foi implementada com dados reais de
repositórios e desenvolvedores de software. Em geral, o DevFinder demonstra o potencial
de ajudar as organizações a localizar desenvolvedores de software adequados, abordando
assim a lacuna de talentos e garantindo que as empresas de desenvolvimento de software
possam acompanhar os rápidos avanços da quarta revolução industrial.

Palavras-chave: especialistas em desenvolvimento de software; recomendação; redes
complexas; large language models.



ABSTRACT

Global Software Development (GSD) has experienced a significant surge in recent
years, driven by the growing importance of software across various industries. The demand
for experts with specific technical skills and industry domain experience has become crucial
for organizations to maintain a competitive edge. However, the rapid pace of change
characteristic of the fourth industrial revolution presents significant challenges in meeting
this demand. This revolution evolves exponentially, a�ecting all countries and industries
simultaneously, and necessitates the constant adaptation of the software industry to keep
up with swift advancements. To address the talent gap and the challenges posed by the
rapid evolution of technology, this study introduces DevFinder, a software architecture
designed to support the search for software development specialists whose knowledge aligns
with specific industry domains and technologies. DevFinder leverages advanced techniques
such as complex networks and Large Language Models (LLMs) to process information from
real-world code repositories, generating a ranked list of developers who meet stakeholders’
specific needs. By extracting, interpreting, and processing data from software repositories,
DevFinder aims to bridge the gap between the technical requirements of companies and
the scarcity of specialized talent. The implementation of DevFinder architecture was
carried out through three cycles of Design Science Research, culminating in the current
final version. The architectural requirements were identified through a systematic mapping
study, and the implementation iterations were assessed in three separate studies. The
evaluation results confirm that the developed architecture is capable of supporting job
recruiters in finding software specialists with the desired combination of industry domain
knowledge and technical expertise. The main contributions of this research include
specifying the requirements for an e�ective architecture, developing a business process
model that communicates the extraction, filtering, and ranking processes to stakeholders,
and implementing processes to extract and filter repositories using LLM techniques.
Additionally, a metric was defined to rank committers based on collaboration aspects, and
the proposed architecture was implemented with real-world data from repositories and
software developers. Overall, DevFinder demonstrates the potential to aid organizations
in locating suitable software developers, thereby addressing the talent gap and ensuring
that software development companies can keep pace with the fourth industrial revolution’s
rapid advancements.

Keywords: software development specialists; recommendation; complex networks;
large language model;
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1 Introduction

This chapter introduces the inspiration behind the study, outlines the primary
challenges, and discusses the research methodologies applied, ultimately culminating in a
solution proposal.

1.1 Contextualization

Global Software Development (GSD) has experienced a significant surge in recent
years, driven by the growing importance of software across various industries (60, 61). As
software continues to play a crucial role in driving business operations, organizations incre-
asingly seek individuals with specialized technical knowledge and industry experience to
meet their development needs. The demand for experts with specific technical skills—such
as proficiency in particular programming languages or adherence to software development
standards—combined with industry domain experience is of great interest to companies
and institutions involved in software development (145).

This growing demand for specialized talent is further compounded by the rapid
pace of change characteristic of the fourth industrial revolution. Unlike previous industrial
revolutions that progressed linearly, this revolution evolves exponentially, a�ecting all
countries and industries simultaneously (126, 127). Consequently, the software industry
faces the challenge of keeping up with these swift advancements. As a result, software
development companies often hire professionals at early stages in their careers to bridge
the gap, as finding highly experienced experts has become increasingly di�cult (145).

Therefore, addressing this dilemma is crucial for bridging the gap between a
company’s technical requirements and the scarcity of specialized talent. Developing
e�ective strategies to identify professionals with precise technical skills, whether in specific
programming languages, software development standards, or industry-specific knowledge,
is paramount to organizations involved in software development (162). This ability to
match the right talent to the right roles is essential for maintaining a competitive advantage
and fostering innovation in the rapidly evolving software industry.

1.2 Motivation

In response to this dilemma, solutions have emerged addressing the challenge
of meeting the growing demand for specialized talent in the software industry amidst
the rapid and exponential changes of the fourth industrial revolution. Rostami (2023),
for instance, proposes a deep learning-based method to identify agile software teams by
focusing on T-shaped experts who have both specialized and broad knowledge, which is
critical for adapting to fast-paced technological advancements. This approach improves
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the selection process by considering the content of candidates’ posts on StackOverflow and
also outperforms traditional methods by a significant margin (48). Similarly, Vergne (2014)
uses social network analysis, both syntactic and semantic, to identify experts in Global
Software Development. Analyzing collaboration patterns and expertise with machine
learning and ontologies helps pinpoint key members in a constantly changing industry
(49).

Other studies also present innovative solutions to the challenge of rapidly changing
demands for expertise. For example, Tuarob (2021) introduces RECAST, an intelligent
recommendation system that considers both technical skills and teamwork compatibility
to suggest optimal team configurations. This system uses machine learning to generate a
scoring function from heterogeneous features, addressing the complexity of forming e�ective
teams in large-scale software projects (46). Additionally, Hau� (2015) o�ers a practical
solution by matching GitHub developer profiles to job advertisements, automating the
process of finding suitable candidates based on their activities and contributions. These
approaches collectively demonstrate a shift towards leveraging advanced algorithms and
data-driven methods to bridge the talent gap and ensure that software development
companies can keep pace with the fourth industrial revolution’s rapid advancements (51).

Also, as a key aspect of the area, the emergence of artificial intelligence (AI),
specifically Large Language Models (LLMs), has reshaped the landscape of research across
various domains, with implications in Natural Language Processing (NLP) (30). LLMs,
characterized by their massive training parameters, have demonstrated capabilities in
tasks that involve language understanding, generation, and recommendation. For instance,
Chat-Rec (5), which leverages ChatGPT for user interactions, has demonstrated the
potential to enhance recommendation accuracy and explainability. Similarly, Zhang (2023)
has harnessed T5, an LLM-based recommendation system, to enable users to express their
preferences in natural language, significantly improving recommendation performance over
traditional user-item interaction-based systems. These developments underscore LLMs’
transformative impact and potential to augment recommendation systems (160).

Nevertheless, despite the works presented, there are still some challenges to be
further comprehended regarding the recommendation of software developers for specific
open positions. Therefore, this study introduces distinctive contributions in contrast to
existing related work. As a prevalent contribution, this research o�ers an architecture,
called DevFinder, that aims to tackle the challenge of finding specialists whose knowledge
aligns with experience in specific industry domains but also specific technologies. Thus, the
research problem addressed in this work is to support the search for software development
specialists who align knowledge in specific industry domains to desired technologies.
DevFinder architecture was designed to gather information regarding software developers
in real-world code repositories, process this information using techniques such as complex
networks and large language models, and generate a ranked list of software developers
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who attend to the specific needs of stakeholders. The goal was to extract, interpret and
process data from the repositories of software developers, in the context of specific industry
domains and technologies inputted by the stakeholder. Thus, the research question posed
within the scope of this study is "How can DevFinder architecture support the

search for software experts whose knowledge aligns specific industry domains

with specific technologies?"

1.3 Objectives

This work aims to support stakeholders in decision-making processes through an
approach that uses complex networks and Large Language Models to rank real-world
software developers. The DevFinder architecture aims to support job recruiters in finding
software specialists whose knowledge aligns with experience working in specific industry
domains with experience working with specific technologies.

The implementation of DevFinder was carried out through three cycles of Design
Science Research, culminating in the current final version. Thus, after conducting a
Systematic Mapping study (138), the architectural requirements were identified and the
implementation iterations were assessed in two separate studies (136, 137). Therefore,
the main contribution of this research lies in the DevFinder software architecture that
leverages the capabilities of complex networks and Large Language Models to recommend
software specialists whose knowledge aligns specific software technologies to experience in
desired industry domains. The implementation and assessment of the architecture were
performed, presenting results that demonstrate that the developed architecture is, in fact,
capable of supporting companies and job recruiters in the task of finding such software
specialists.

To achieve these objectives, the following specific objectives were considered:

• Specify the requirements for an architecture capable of supporting stakeholders on
the task of finding software specialists;

• Specify a Business Process Model that encompasses the requirements of the architec-
ture, capable of communicating the extraction, filtering, and ranking processes to
stakeholders;

• Specify and implement a process that can extract real repositories and software
developers from a version control system;

• Specify and implement a process that can filter the retrieved repositories and software
developers using Large Language Model techniques.

• Define a metric to rank committers from the retrieved repositories, taking into
account collaboration aspects;
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• Specify and implement a process that can rank the retrieved software developers
using the defined metric;

• Implement the proposed architecture with real-world data from repositories and
software developers.

1.4 Outline

This work is divided into six chapters. Chapter 2 explores the theoretical foundation
for this work, providing a framework for understanding the subsequent chapters. Chapter
3 delves into the systematic mapping conducted, o�ering insights into the research process
underpinning the DevFinder architecture’s development. Chapter 4 details the various
development DSR cycles of DevFinder, shedding light on its creation’s iterative and evolving
nature. Moving forward, Chapter 5 evaluates and discusses the proposed architecture,
presenting a comprehensive analysis of its strengths and potential areas for improvement.
Finally, Chapter 6 serves as the concluding chapter, summarizing key findings, reflecting
on the journey undertaken, and outlining potential avenues for future research and
development.
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2 Theoretical Foundation

2.1 Industry Domains and Technical Knowledge

In this study, industry domains refer to distinct sectors or fields within the broader
economic landscape, characterized by common patterns of operation, shared technologies,
and similar business models. Drawing insights from various perspectives in strategic
management and information technology literature (153, 154, 155), industry domains
encompass not only the structural and competitive dynamics of industries but also the
transformative impact of digitalization and enterprise systems. These domains serve as
the contextual backdrop within which organizations operate, navigate challenges, and
leverage opportunities, emphasizing the importance of understanding industry-specific
factors in driving strategic alignment, technological investments such as enterprise resource
planning (ERP) systems, and the interplay between digital transformation and employee
competency.

Similarly, in our study, technical knowledge refers to the comprehension and
expertise within specific technical domains. It is characterized by acquiring specialized
knowledge and skills that enable individuals to proficiently navigate and contribute
to their respective fields (158). Drawing insights from scholarly works (156, 158, 157,
159), technical knowledge is identified as possessing high levels of expertise in particular
technical domains while often requiring less formal educational attainment, as articulated
by Rothwell’s classification of skilled technical worker (158). Furthermore, Tarafdar
(2007) exploration of information systems competencies highlights the importance of
knowledge management and collaboration within technical contexts, emphasizing the role
of technical knowledge in facilitating process innovation and organizational advancement
(159). Thus, technical knowledge emerges as a multifaceted construct, encompassing
specialized expertise, practical skills, and the ability to innovate within technical domains.

Industry domains and technical knowledge are key components of this study, as the
primary goal is to identify software experts whose expertise aligns with specific industry
domains and technologies. Therefore, the definitions provided are carefully crafted to
distinguish the concepts relevant to this research from other interpretations the reader
might encounter.

2.2 Large Language Models

In recent years, the field of artificial intelligence has witnessed a paradigm shift
with the advent of Large Language Models (LLMs). These models, based on deep
learning architectures, have demonstrated unprecedented capabilities in natural language
understanding and generation, significantly impacting various domains such as natural
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language processing, information retrieval, and human-computer interaction.

Large Language Models have their roots in the broader field of artificial neural
networks. The development of deep learning techniques, particularly the rise of Transfor-
mer architectures, has been instrumental in the evolution of LLMs. The seminal work of
Ashish (2023) introduced the Transformer model, which laid the foundation for subsequent
advancements in large-scale language understanding. The self-attention mechanism intro-
duced in the Transformer architecture is central to the success of LLMs. This mechanism
allows the model to weigh di�erent parts of the input sequence di�erently, capturing
long-range dependencies and contextual information e�ectively (28).

LLMs are often pre-trained on vast corpora of text data using unsupervised learning
objectives, such as language modeling or masked language modeling. This pre-training
phase is followed by fine-tuning on specific tasks of interest, enabling the models to adapt
to domain-specific requirements (29).

LLMs have demonstrated good performance in tasks such as sentiment analysis,
named entity recognition and question answering. Models like BERT have set new
benchmarks by capturing intricate contextual relationships within language (29). OpenAI’s
GPT (Generative Pre-trained Transformer) series, has showcased the ability to generate
coherent and contextually relevant text. These models have found applications in content
creation, language translation, and even code generation (30).

Nonetheless, the rise of LLMs has raised ethical concerns related to bias, misinfor-
mation, and the responsible use of AI. Researchers emphasize the importance of addressing
these challenges to ensure the fair and ethical deployment of LLMs in various applications
(31).

LLMs play a relevant role in this study as they form the foundation for two key
modules: filtering and insight generation within the proposed architecture. These modules
were integrated into the DevFinder architecture as a solution to address specific issues
identified in a previous iteration of the system.

2.3 Ontologies

To facilitate the exchange and reutilization of knowledge across diverse systems,
it becomes imperative to establish a shared vocabulary for representing this knowledge.
Gruber (1995) introduced the term ontology, borrowing it from philosophy, and defined
it within the computational context as a formal and explicit specification of a shared
conceptualization. This conceptualization provides a simplified and abstract perspective
of the world, crafted for specific purposes. Generally, an ontology delineates a domain
vocabulary, comprising definitions of classes, relationships, and functions. Its utility lies in
fostering a common understanding of information structure among individuals or software
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agents, facilitating the reuse of domain knowledge, elucidating assumptions about the
domain, segregating domain knowledge from operational knowledge, and analyzing domain
knowledge (139).

The Ontology Web Language (OWL) was specifically designed to enhance the inter-
pretation of Web content through ontologies, providing a more comprehensive vocabulary
with formal semantics compared to other languages like XML, RDF, and RDF Schema
(RDF-S) (142). OWL’s advantage lies in its suitability for situations where document
information needs processing by applications, as opposed to cases where content is intended
solely for human consumption. It serves as a language for constructing ontologies that
o�er high-level descriptions of Web content, employing class hierarchies to describe domain
concepts and establishing relationships between classes using properties (142).

OWL and Semantic Web Rule Language (SWRL) stand out as the primary lan-
guages of the Semantic Web. OWL not only represents data as instances of OWL classes
(referred to as individuals) but also provides mechanisms for reasoning and manipulating
the data. Additionally, OWL features an axioms language for precisely defining the
interpretation of concepts in an ontology (143). SWRL complements OWL by enabling the
creation of rules expressed in terms of OWL concepts, facilitating reasoning about OWL
individuals. Noteworthy is SWRL’s ability to support user-defined predicates, known as
built-ins, allowing the formulation of rules with diverse functionalities, including currency
conversion, temporal manipulations, and taxonomy searches (144). While the arguments
for these built-ins generally must be OWL DL property values, some built-in libraries may
also support class or property built-in arguments, though reserved for use in OWL Full
ontologies (143).

As a way to represent and conceptualize data, the concepts and techniques behind
ontologies were employed to the first version of DevFinder architecture and, for this
iteration, the concepts represent a crucial role.

2.4 Final Remarks of the Chapter

This Theoretical Foundation chapter has provided an overview of fundamental
keywords to this study: industry domains and technical knowledge, large language models
(LLMs), and ontologies. The emergence of Large Language Models (LLMs), such as BERT
and the GPT series, signifies a transformative era in natural language understanding.
Ontologies, formalizing shared conceptualizations, facilitate knowledge exchange.

The synergies between these foundations set the stage for the subsequent chapters,
where practical applications and intersections are explored. Navigating the complexities of
connectivity, language understanding, decision facilitation, and knowledge representation,
this research aims to contribute to an understanding of contemporary complex systems.



22

3 Systematic Mapping Study

This chapter presents the Systematic Mapping Study (SMS) conducted and pu-
blished in Willey Journal Of Software: Evolution And Process (138). The study aims to
understand how recommendation approaches can e�ectively align technical knowledge
with industry domains of software developers. By exploring this intersection, we seek to
uncover insights that can inform the design, development, and optimization of systems
tailored to specific industry needs. Following the guidelines for the Snowballing procedure
(79), and the hybrid systematic literature mapping guidelines (74, 75), we employed a
combination of database search and snowballing techniques. Through this process, we
analyzed a total of 1251 papers, resulting in the classification of these papers into 21
distinct studies.

Therefore, to guide the study of this chapter, we focus on the following Research
Questions (RQ): How is the alignment of industry domains and technical expertise used in
systems that recommend software developers?

The main intent of answering this question is to investigate and understand how
technical expertise and industry domains interact to shape the functionality, e�ectiveness,
and performance of systems that recommend software developers. By addressing this
question, the study seeks to uncover insights that can lighten the strategies, practices,
and mechanisms through which industry-specific knowledge and technical proficiency are
integrated to design, develop, and optimize such approaches.

This SMS presents contributions to software processes as it addresses overlooked
aspects in systems that recommend software developers by identifying expert developers
with both technical proficiency and diverse industry experience, the research enhances
software development processes. For software practitioners, the study o�ers valuable
insights into industry practices, technologies, and data sources for systems that recommend
software developers. Thus, the main contributions of this work are: i) Identification and
classification of 21 studies proposing software developer recommendation approaches over
the optics of the alignment of technical skills to specific industry domains; ii) Our analysis
yielded results regarding the prevailing technologies and data sources utilized in the
examined solutions; iii) The aggregation of valuable insights into the current trends in the
field, shedding light on future directions for research and development; iv) Bring spotlights
to specific characteristics that a new RS of software experts that align technical skills to
an industry domain knowledge should take into account.

By studying and analyzing data from the 21 selected studies, our research unveils
current trends in this research field and o�ers a practical guide for future researchers
interested in creating systems that recommend software developers that connect technical
expertise with specific industry domains. This guide provides valuable insights, suggestions,
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and proven methods for designing and developing e�ective RS systems that bridge the
technical skills-industry knowledge gap.

A key point to consider is that, although the final architecture proposed the use
of complex networks and Large Language Models (LLMs), these approaches were not
initially considered during the systematic mapping process. The primary goal of the
systematic mapping was to analyze existing work in the field to identify methods for
recommending software developers in our target context. As a result, the findings from
this SMS ultimately inspired the authors to incorporate complex networks and LLMs into
the proposed solution.

3.1 SMS Related Work

In the software engineering field, several studies (88, 89, 132) have explored di�erent
aspects related to recommendation approaches, metrics, team formation, labor market
analytics, code repository analysis, and requirement engineering challenges. This section
compares our study on aligning technical knowledge to an industry domain with six
relevant studies.

The first study, “Systematic mapping of recommendation systems for requirements
engineering” (81), undertakes a systematic mapping to explore recommendation systems
tailored for requirements engineering processes. Through this exploration, the study
provides an overview of such systems, detailing their characteristics and the current
state of validation. By analyzing the resulting maps, the study concludes and identifies
limitations in existing research, consequently pinpointing areas for future investigation.
Additionally, the study utilizes the insights gained from the mapping to lay the groundwork
for future work, specifically focusing on the development of a recommendation system
aimed at aiding product managers in making informed decisions regarding the allocation
of requirements across subsequent releases, while factoring in constraints such as time,
e�ort, quality, and resources.

The second study, “Metrics to quantify software developer experience: a systematic
mapping” by Brasil-silva (2022), investigates the relationship between developer experience
and software maintainability, particularly focusing on the metrics used to quantify developer
experience in 34 di�erent works. It emphasizes the crucial role experienced developers
play in defining architectural solutions that enhance a system’s maintainability, thus
facilitating timely and cost-e�ective development of new features and defect fixes. Through
a systematic mapping, the study catalogs various metrics employed to measure developer
experience, categorizing them based on the type of experience they represent and their
purpose of use. The findings reveal that a majority of the selected studies utilize metrics
centered around counting developer activities within codebases (82).

The study by Costa (2020) on “Team Formation in Software Engineering” examines
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the current state of research on software team formation, identifying and analyzing 51
primary studies out of a total of 2516. Through this analysis, the study aimed to classify the
research based on the methods used, overall quality, characteristics of formed teams, and
proposed solutions. It found that the majority of studies utilize search and optimization
techniques, with technical attributes being the most common factors considered in team
formation. The study also introduced a taxonomy for organizing the knowledge in
software team formation, highlighting the prevalent use of search-based approaches that
combine search and optimization techniques with technical attributes. However, there is a
growing trend towards incorporating non-technical attributes as supplementary information.
Identified research gaps include the subjective nature of software team formation and
limitations in the scalability of proposed solutions (83).

The fourth study, “Extracting Knowledge from On-Line Sources for Software
Engineering Labor Market: A Mapping Study” by Papoutsoglu (2019), addresses the
evolving needs of the software engineering labor market through the application of data
analytics sourced from digital platforms. By conducting a Systematic Mapping Study,
researchers categorized and evaluated 86 primary studies to identify digital sources suitable
for labor market analytics in software engineering. These sources encompass a variety of
skill types, methods of data analysis, and goals. The study’s objectives include facilitating
continuous learning and training in new technologies, improving job matching between
employers and candidates, and detecting expertise. By leveraging digital sources, the study
seeks to provide timely and accurate insights to stakeholders, including both employers
and employees, in the software engineering labor market (84).

Another study, “Characterizing the hyperspecialists in the context of crowdsourcing
software development” (87), explores the behavior of hyperspecialists, a specific contributor
profile, on crowdsourcing platforms, focusing on software development challenges within
the Topcoder platform. Through quantitative analysis of 664 developers’ participation
over 18 months, the research identified traits associated with hyperspecialization, such as
consistent engagement in specific challenge types and technologies. Notably, a high dropout
rate of 66% was observed among participants during the study period. Hyperspecialists,
who constituted a significant portion of developers, demonstrated distinct behavior and
characteristics compared to non-specialists, including a lower winning rate. This study
sheds light on the dynamics of crowdsourcing platforms, emphasizing the importance of
understanding participant behavior for the success of such models.

3.1.1 Comparative Analysis

The comparative analysis among the presented studies showcases diverse inves-
tigations within the realm of software engineering and related fields. While each study
employs systematic mapping techniques to explore di�erent facets of the discipline, they
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converge on the significance of data-driven insights for decision-making processes. The first
study by Mohebzada (2012) delves into recommendation systems tailored for requirements
engineering, aiming to enhance decision-making for product managers (81). In contrast,
Brasil-silva (2023) focuses on quantifying software developer experience, underlining its
impact on software maintainability (82). Both studies emphasize the role of informed
decision-making in optimizing software development processes. Similarly, Costa (2020)
examines software team formation, highlighting the necessity of e�cient team structuring
for project success. The integration of technical and non-technical attributes in team
formation resonates with the multifaceted approach advocated by the first two studies (83).
Further expanding the scope, Papoutsoglu (2019) addresses the evolving software enginee-
ring labor market, emphasizing the importance of data analytics for talent management
and job matching (84) . Lastly, Neira (2018) explores the behavior of hyperspecialists in
crowdsourcing software development, revealing insights into participant dynamics crucial
for platform e�cacy (87). Collectively, these studies underscore the interdisciplinary
nature of software engineering research and the pivotal role of data-driven insights in
shaping its evolution.

In comparison to the existing studies outlined in the comparative analysis, our
research presents a focus on the alignment of technical knowledge with industry domains
within recommendation approaches and, to the best of our knowledge we could not identify
any other studies focusing on such aspects. While the referenced studies explore diverse
aspects of software engineering, such as developer experience, team formation, labor market
analytics, and crowdsourcing dynamics, our study specifically targets the integration of
technical proficiency and industry-specific knowledge in systems that recommend software
developers. By conducting a Systematic Mapping Study and analyzing 21 distinct studies,
this study o�ers insights into industry practices, technologies, and data sources for
recommender approaches providing a practical guide for future researchers interested in
creating systems that recommend software developers that bridge the technical skills-
industry knowledge gap. Therefore, this research distinguishes itself for its specific focus
on aligning technical expertise with industry domains within recommendation approaches,
o�ering di�erent perspectives and contributions to the field.

3.2 Systematic Mapping Study

As an approach for identifying and consolidating evidence, a systematic literature
mapping is employed (72, 68) in this study. The primary objective of a systematic
mapping is to examine, assess, and interpret relevant studies in the literature concerning
the research questions. This process enables gathering evidence to identify research gaps
and opportunities, being an important evidence-based approach to software engineering
(70).
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For this systematic mapping, the years 2012 to 2023 were selected to provide a
comprehensive overview of the contemporary landscape of global software engineering
(GSD). This time frame was chosen to ensure relevance, capture recent trends, and avoid
potential obsolescence, as suggested by previous studies (76, 91, 92). While acknowledging
the historical foundations of technical knowledge in software development spanning decades,
we focused on this dynamic period characterized by rapid advancements in technology,
methodologies, and global collaboration practices. By prioritizing recent data and in-
sights, our study aims to o�er valuable insights into the current state of GSD, informing
practitioners, researchers, and policymakers alike.

To mitigate research bias (73), a protocol was established. This section provides an
overview of the steps to define the objectives and formulate the protocol. Reproducibility
is a crucial aspect of systematic mappings, and the protocol plays a significant role in
ensuring its attainment.

The organization of this mapping study follows key activities (71), which include
planning, conducting, and reporting the study. In order to address the di�culties associated
with database management and the comprehensive identification of synonyms during
database searches, a hybrid approach was followed (74). We selected Scopus1 as the
digital library for this study, as it is widely recognized as the largest abstract and citation
database of peer-reviewed literature (74, 75).

3.3 SMS Planning

In the planning phase, we established the study objectives and developed a protocol.
This protocol outlines the methodology employed in the systematic review and mapping,
ensuring that potential researcher biases are minimized. Additionally, it is crucial for the
systematic review and mapping to be reproducible, and the protocol plays a significant
role in meeting this requirement. This section provides a summary of the protocol (70).

3.3.1 Scope definition

To define the scope of our study, we have considered the PICOC method as proposed
by Petticrew and Roberts (76). This method aligns with our research questions and helps
structure our investigation.

• Population: Studies on systems that recommend software developers

• Intention: Studies related to software developers recommendation

• Comparison: Not applicable
1 https://scopus.com
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• Outcome: Solutions that recommended software developers aligning technical kno-
wledge with industry domains

• Context: Global Software Development

Thus, the objective of the systematic mapping is to address the following research
question (RQ): How is the alignment of industry domains and technical expertise used in
systems that recommend software developers?

By investigating this RQ, we aim to reveal the methods, approaches, and me-
chanisms used to combine industry-specific expertise and technical skills in the creation,
enhancement, and optimization of systems that recommend software developers. This
undertaking has the potential to o�er insights to professionals, scholars, and stakeholders
engaged in the advancement and fine-tuning of systems that recommend software develo-
pers customized for distinct industry sectors. Specific questions to attend the main RQ
were designed in order to detail the intrinsic aspects of the subject and are presented in
the Discussion section.

3.3.2 Inclusion and exclusion criteria

The process employed to include and exclude papers was structured around nine
inclusion criteria (IC) and ten exclusion criteria (EC). The considered IC were: IC1:
Industry domains are taken into consideration in the solution of the study; IC2: Technical
knowledge is taken into consideration in the solution of the study; IC3: The approach
tested or applied in the industry; IC4: The paper approaches software OR system OR
application; IC5: The paper discusses recommendation approaches of experts; IC6: The
paper is a primary study; IC7: The paper is reported in a peer-reviewed conference
journal; IC8: The paper is written in English; and IC9: The paper proposes a pragmatic
recommendation approaches.

The following criteria were set for exclusion: EC1: The paper was published 10
years ago or more, EC2: The proposed solution analyses but does not order collaborators in
order to generate a recommendation list and EC3: The proposed solution strictly adheres
to the academic application context.

And the following criteria were set for exclusion: EC1: The paper does not approach
software OR system OR application; EC2: The paper does not discuss the recommendation
approaches of experts; EC3: The paper does not propose a pragmatic commendation
system; EC4: The paper is not a primary study, EC5: The paper is not reported in a
peer-reviewed conference journal, EC6: The paper is not written in English, EC7: The
paper was published 10 years ago or more, EC8: The proposed solution analyses but does
not order collaborators in order to generate a recommendation list, EC9: The proposed
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solution strictly adheres to the academic application context, and EC10: The proposed
solution strictly adheres to the open-source application context.

3.3.3 Query String

We first identified the key terms from the defined research questions and PICOC,
along with their alternative spellings and synonyms. To construct the search string,
synonyms, and alternate spellings were combined using Boolean OR, and then each set of
terms was combined using Boolean AND to form a single string. The final search string
used was:

(“global software development” OR “collaborative software development” OR “col-
laborative software engineering” OR “dispersed locations” OR “dispersed teams” OR
“distributed development” OR “distributed teams” OR “distributed work” OR “geographi-
cally distributed software” OR “global software engineering” OR “global software teams”
OR “multi-site development” OR “o�shore” OR “o�shoring”) AND (“expert” OR “archi-
tect” OR “coder” OR “collaborator” OR “developer” OR “engineer” OR “programmer”)
AND (“recommendation system” OR “advisory system” OR “recommender system” OR
“suggestion system”)

The constructed query string was analyzed and tested by two specialists in the
area, and a set of potential primary studies was also defined to validate the search string
accuracy in the selected databases and to determine if the search retrieved relevant studies
(77). In that sense, (47) and (40) were known potential interest studies used to assess
whether the search string successfully identified relevant studies.

To mitigate the risk of overlooking pertinent studies, we implemented a control
group of papers during the search process. This control group was designed to ensure that
a specific set of papers would consistently appear in the search engine results (39, 40).

3.4 Systematic mapping conduction

The systematic mapping of the literature was conducted following the outlined
steps, also shown in Figure 1.

3.4.1 String Search on Scopus

To evaluate the initial corpus of systematic mapping studies, a search was performed
in the Scopus database using the mentioned search string, resulting in 683 studies in this
first stage.

The obtained studies from the search were then input into the parsif.al2 system,
which facilitated the subsequent steps of duplicate removal, filtering, and quality assess-
2 https://parsif.al
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– Figure 1 - Systematic Mapping Overview
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ment. Parsifal is a system designed to aid researchers in conducting systematic literature
reviews specifically tailored to the field of Software Engineering following the guidelines of
Kitchenham (71).

After removing 7 duplicates, the remaining 676 studies underwent a thorough
evaluation, with particular attention given to the title and abstract. This allowed for
filtering 641 non-relevant studies, focusing the analysis on those most aligned with the
research objectives. During the assessment, two papers could not be fully accessed due to
limited availability. Nonetheless, the mapping process continued, utilizing the available
information from these papers to the fullest extent possible.

Subsequently, to ensure the quality and reliability of the included studies, a quality
assessment was conducted. As recommended by Kitchenham (2007), it is essential for
researchers to create quality checklists that aid in evaluating individual studies. These
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checklists serve as valuable tools during the paper selection process, providing support and
guidance. In alignment with these guidelines, a customized quality assessment checklist
was developed to ensure a thorough and rigorous evaluation of the selected papers (71).

Finally, an examination of the full texts of the selected studies was undertaken.
This in-depth reading further refined the selection by eliminating studies that did not
meet the predetermined relevance criteria, where 21 studies were identified as non-relevant
and 14 studies remained.

In the full-text reading, the papers underwent an evaluation process using the
developed quality assessment checklist in Table 1, where QA stands for Quality Assessment.
Each study was thoroughly read, and its quality was assessed based on the 11 questions,
listed in the last paragraph of this section. Each question had a scoring system where a
"Yes"response scored 1 point, a "Partial"response scored 0.5 points, and a "No"response
scored 0 points. This scoring system allowed each paper to achieve a score ranging from 0
to 11 points.

Table 1 – Quality Assessment Questions

ID Question
QA1 Does the study present one or more approaches to recommend collaborators?
QA2 Is technical knowledge taken into consideration in the solution of the study?
QA3 Are industry domains taken into consideration in the solution of the study?
QA4 Is empirical research conducted on the study?
QA5 Is data properly described?
QA6 Are data statistical methods properly defined and justified?
QA7 Is the relation between data, interpretation, and conclusion coherent?
QA8 Do the authors clearly specify the research goals?
QA9 Are all research questions resolved?
QA10 Are issues related to validity and/or reliability discussed?
QA11 Are the findings debated, rather than only displayed?

To establish a cuto� point for inclusion, the first quartile (11/4 = 2.75) was utilized.
Any paper scoring below 2.75 was excluded from the final list to ensure the exclusion of
low-quality works. Alongside the evaluation process, an important task of data extraction
was also performed, gathering relevant information from the selected papers.

The following checklist was considered for this step: i) Does the study present
one or more approaches to recommend collaborators?; ii) Is technical knowledge taken
into consideration in the solution of the study?; iii) Are industry domains taken into
consideration in the solution of the study?; iv) Is empirical research conducted on the
study?; v) Is data properly described?; vi) Are data statistical methods properly defined
and justified?; vii) Is the relation between data, interpretation, and conclusion coherent?;
viii) Do the authors clearly specify the research goals?; ix) Are all research questions
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resolved?; x) Are issues related to validity and/or reliability discussed?; xi) Are the findings
debated, rather than only displayed?

3.4.2 Snowballing

Snowballing is a technique that involves leveraging the reference list of a paper or
the citations to that paper in order to identify additional relevant papers (79).

This study follows hybrid systematic mapping guidelines (74), combining a database
search and snowballing techniques. The process includes applying inclusion and exclusion
criteria to the retrieved studies, and then using the selected studies as an initial set for
both Backward Snowballing (BS) and Forward Snowballing (FS) approaches.

In this study, both BS and FS techniques were employed, leading to the identification
of 568 new studies. Out of these, 31 duplicate studies were identified and subsequently
removed. Subsequently, title and abstract filtering was conducted, resulting in a reduction
of 490 studies. However, during the full-text filtering stage, it was found that 5 studies
were inaccessible. Eventually, after reading the full texts of the remaining studies, a
total of 33 studies were filtered, yielding a final selection of 21 studies for this systematic
mapping. All the studies returned from the snowballing passed the quality assessment.

An external link3 to a comprehensive table is available, featuring a complete list of
studies obtained from both the Scopus search and the snowballing process. This table
contains essential information such as study titles, authors, sources, and the final status of
each study that has undergone the described process, o�ering resources for cross-referencing
and verifying study-related details.

3.5 Systematic Mapping Report

After conducting the search using the specified string in the database, a total of 12
studies were identified which are presented in Table 2. These studies, are denoted by an
ID starting with the letter R (which stands for “returned”), followed by a corresponding
number, that serves as the basis for the subsequent discussion.
3 https://tinyurl.com/msmpfece
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Table 2 – Selected studies returned from the search string
ID Title Published at Org. Type Ref.

R1 Developer recommenda-
tion for Topcoder through
a meta-learning based po-
licy model

Empirical Software Engi-
neering

Springer Journal (39)

R2 Harnessing global ex-
pertise: A comparative
study of expertise profi-
ling methods for online
communities

Information Systems
Frontiers

Springer Journal (40)

R3 Replacing the Irreplacea-
ble: Fast Algorithms for
TeamMember Recommen-
dation

24th International Confe-
rence on World Wide Web

ACM Conference (41)

R4 The Zen of Multidiscipli-
nary Team Recommenda-
tion

Journal of the Associa-
tion for Information Sci-
ence and Technology

Wiley Journal (42)

R5 Identifying Reputable
Contributors in Col-
laborative Software
Development Platforms

International Conference
on Research Challenges in
Information Science

IEEE Conference (43)

R6 Collaboration Analysis in
Global Software Develop-
ment

23rd International Confe-
rence on Computer Sup-
ported Cooperative Work
in Design

IEEE Conference (44)

R7 Recommending External
Developers to Software
Projects based on Histo-
rical Analysis of Previous
Contributions

XXXIII Brazilian Sympo-
sium on Software Engine-
ering

ACM Conference (45)

R8 Automatic team recom-
mendation for collabora-
tive software development

Empirical Software Engi-
neering

Springer Journal (46)

R9 CoopFinder: Finding
Collaborators Based on
Co–Changed Files

IEEE Symposium on
Visual Languages and
Human-Centric Compu-
ting

IEEE Conference (47)

R10 A deep learning-based ex-
pert finding method to re-
trieve agile software te-
ams from CQAs

Information Processing &
Management

Elsevier Journal (48)

R11 Expert Finding Using
Markov Networks in
Open Source Communi-
ties

Advanced Information
Systems Engineering:
26th International Confe-
rence

Springer Conference (49)

R12 A broad approach to ex-
pert detection using syn-
tactic and semantic so-
cial networks analysis in
the context of Global Soft-
ware Development

Journal of Computational
Science

Elsevier Journal (50)

Table 3 provides an overview of the 9 studies discovered through the snowballing
process. Each study is identified by an ID starting with the letter S (representing
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“snowballing”), followed by a unique number. This table serves as a valuable reference for
the ensuing discussion in the following section.

Table 3 – Selected studies from snowballing process
ID Title Published at Org. Type Ref.

S1 Matching GitHub develo-
per profiles to job adver-
tisements

12th Working Conference
on Mining Software Repo-
sitories

IEEE Conference (51)

S2 Expert Recommendation
in OSS Projects Based on
Knowledge Embedding

2017 International
Workshop on Complex
Systems and Networks

IEEE Conference (52)

S3 Mining Shape of Exper-
tise: A Novel Approach
Based on Convolutional
Neural Network

Information Processing &
Management

Elsevier Journal (53)

S4 DevRec: Multi-
Relationship Embedded
Software Developer Re-
commendation

IEEE Transactions on
Software Engineering

IEEE Journal (54)

S5 Identifying Experts in
Software Libraries and
Frameworks among
GitHub Users

16th International Confe-
rence on Mining Software
Repositories

IEEE Conference (55)

S6 Intern retrieval from com-
munity question answe-
ring websites: A new va-
riation of expert finding
problem

Expert Systems with Ap-
plications

Elsevier Journal (56)

S7 Assessing Developer Ex-
pertise from the Statisti-
cal Distribution of Pro-
gramming Syntax Pat-
terns

25th International Confe-
rence on Evaluation and
Assessment in Software
Engineering

ACM Conference (57)

S8 Mining Experienced De-
velopers in Open-Source
Projects

17th International Confe-
rence on Evaluation of No-
vel Approaches to Soft-
ware Engineering

SCITEPRESS Conference (58)

S9 CodeCV: Mining Exper-
tise of GitHub Users from
Coding Activities

2nd International Wor-
king Conference on
Source Code Analysis
and Manipulation

IEEE Conference (59)

3.5.1 Research trends over the years

To map and understand the research area, we aim to identify key aspects by
observing trends in publication years. By analyzing these factors, we can gain insights
into the research landscape and its evolution over time.

A noticeable concentration of papers is observed in 2019, 2021, and 2022, with four
papers published in each of these years, as shown in Figure 2. This concentration implies
that these particular years saw a high research activity and publication on the subject
matter.
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– Figure 2 - Publication over the years

The analysis of the studies also suggests the emergence of new trends during those
years, attracting significant attention from researchers, also summarized in Table 4.

Table 4 – Correlation between trends and the year of publication of the studies

Deep Learning
and AI

Collaboration and
Social Networks

Evolution and
Improvement

2012-2014 R2, R4, R8

2015-2017 R7, S1, S5, S2 R3, R11

2018-2020 R6, S3, S6

2021-2023 S7, S3 R10, R11, R9, S8, S9,
S4, S6

R1, S7, S2, S5

The Emergence of Deep Learning and AI: Several papers published in
recent years (2020-2023) have mentioned deep learning, meta-learning, and convolutional
neural networks (CNNs). This issue indicates an increasing focus on leveraging advanced
machine learning and artificial intelligence techniques in the context of expert finding,
team recommendation, and collaborative software development. The incorporation of
these technologies suggests a shift towards more sophisticated and data-driven approaches
to enhance the e�ectiveness of recommendation approaches.

Collaboration and Social Networks: A subset of papers explores the analysis
of collaboration and social networks in the context of software development. These papers
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highlight the importance of understanding and leveraging the relationships, interactions,
and social structures among developers to improve expert findings and team recommendati-
ons. Syntactic and semantic analysis, as well as historical analysis of previous contributions,
are mentioned as techniques to uncover valuable insights from collaboration networks.

Evolution and Improvement: The publication years of the papers suggest an
evolution and ongoing improvement of research in the field of expert findings and team
recommendations. Earlier papers published in 2012 and 2014 lay the groundwork for
subsequent studies, while more recent papers build upon and extend previous approaches.
This trend suggests a continuous e�ort to refine and enhance the accuracy, e�ciency, and
applicability of recommendation approaches in real-world software development scenarios.

3.6 Discussion

In order to address the Research Question (RQ) of this systematic mapping, which
focuses on the alignment of industry domains and technical knowledge in recommendation
approaches, three specific questions were formulated, as follows:

• How do authors describe the approach to recommend collaborators?

• What are the data sources for the recommendation approach?

• Could the described approach be used to recommend collaborators aligning desired
technical skills to industry domains?

These questions served as guidelines for extracting relevant data during the full-text
reading process. The subsequent discussion debates findings over the extracted answers to
these three questions.

3.6.1 The described approaches

One common approach observed in multiple papers is the use of machine learning
models for recommending collaborators. These models leverage various data sources
such as social networks, coding repositories, and QA websites like StackOverflow. For
example, Paper R10 proposes a deep learning-based method that utilizes candidate posts
on StackOverflow to estimate their relevant knowledge and select team members. Paper
R12 (Table 2) presents a broad approach using syntactic and semantic analysis in social
networks for global software development, incorporating machine learning algorithms to
explore the network and ontology to enrich the data semantically.

Another trend is the consideration of di�erent factors and criteria in the recom-
mendation process. Papers like R8 and R1 (Table 2) focus on recommending collaborators
for specific tasks or challenges, filtering out developers who are unlikely to participate,
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and recommending those with the highest possibility of success. This issue highlights the
importance of tailoring recommendations to specific contexts and objectives. Paper R9
(Table 2) introduces COOPFINDER, which suggests collaborators based on co-changed
files, emphasizing the relevance of shared code modifications as an indicator of collaboration
potential.

Furthermore, several papers discuss expertise identification as a crucial aspect of
collaborator recommendation. Approaches such as those presented in Paper R2, R11, S9,
and S6 (Table 2 and Table 3) aim to identify and rank experts based on their knowledge,
skills, and contributions in specific domains or communities. These methods often rely on
analyzing coding activities, commit histories, and other artifacts to determine expertise
levels and recommend suitable collaborators accordingly.

3.6.2 Data sources

Several patterns and trends can be identified regarding the data sources used for
recommendation approaches in the context of aligning the technical skills of software
developers with their industry domain experience. Figure 3 shows the representation of the
data sources used on the projects. GitHub was the data source of 6 studies, StackOverflow
was the data source of 3 papers the other studies used di�erent fonts.

– Figure 3 - Data sources frequency representation
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Firstly, it is evident that GitHub repositories play a significant role as a data source
in several papers. Papers such as R7, R9, R12, S2, S5, S8, and S9 (Table 2 and Table 3)
explicitly mention using GitHub repositories to gather information for the recommendation
approach. This indicates that analyzing developers’ activities, commits, and projects on
GitHub can provide valuable insights into their expertise and skills.

StackOverflow is another prominent data source mentioned in the papers. Papers
R16, R10, and S6 (Table 2 and Table 3) make use of StackOverflow forum data to identify
experts or retrieve information about developers’ expertise. StackOverflow, a popular
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platform for knowledge sharing and QA among developers, is a valuable resource for
understanding their technical skills and domain knowledge.

Additionally, some papers focus on specific online communities or platforms. For
instance, Paper R2 (Table 2) collects data from Sun forums (now Oracle forums) and
Apple Discussions, while Paper R5 concentrates on the Launchpad collaborative software
development platform. These papers highlight the importance of considering data sources
specific to particular communities or platforms when making recommendations.

Moreover, a few papers utilize specialized datasets or corpora. Paper R1 (Table 2)
uses Topcoder data between 2009 and 2018 for developer recommendation, while Paper R3
(Table 2) mentions utilizing the DBLP dataset, MovieLens dataset, and NBA/ABA statis-
tics. These papers indicate that domain-specific datasets can be valuable in determining
the expertise and skills of software developers.

Furthermore, some papers involve mining job advertisements and developer profiles.
Paper S1 (Table 3) mentions crawling job advertisements from the UK job portal Indeed,
while extracting developer profiles from the GHTorrent dataset. This approach suggests
that analyzing job requirements and developers’ profiles can provide insights into their
technical skills and align them with industry domains.

Regarding similarities, GitHub repositories are frequently mentioned as a common
data source across multiple papers, indicating their significance in identifying developers’
skills. StackOverflow is another widely used data source, highlighting its importance as
a platform for acquiring expertise-related information. Additionally, the utilization of
specialized datasets, online communities, and job-related data also appears in several
papers, demonstrating their relevance in making accurate recommendations.

To align the technical skills of software developers with their industry domain
experience, the most relevant mentioned sources include GitHub repositories and StackO-
verflow. Analyzing developers’ activities, commits, and projects on GitHub can provide
insights into their technical proficiency, while StackOverflow data can reveal their expertise
in specific programming languages and domains. Additionally, considering specialized
datasets, online communities, and job-related data can further enhance the accuracy of the
recommendation approach by incorporating domain-specific knowledge and requirements.

In summary, the analysis of the provided scientific papers indicates that GitHub
repositories, StackOverflow, specialized datasets, online communities, and job-related data
are valuable sources for developing a recommendation approach that aligns the technical
skills of software developers with their industry domain experience.

3.6.3 Technical skills and industry domain alignment

To answer the question "Could the described approach be used to recommend
collaborators aligning desired technical skills to industry domains?", the authors undertook
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a meticulous analysis of each paper. This involved dissecting the methodologies outlined
in the papers, and the underlying datasets employed, and subsequently categorizing the
response into three distinct possibilities: "Yes,No,"and "Partially.".

Following this procedure, it was possible to obtain a broader overview of the state
of the art in terms of the proposed alignment. The majority of papers (15 out of 21) have
been answered with "No,"indicating that the described approach in these papers is not
suitable for recommending collaborators from di�erent industry domains. This suggests
that the proposed methods may have limitations or are not directly applicable to this
particular use case. Only six were classified with "Partially", suggesting that some aspects
of the described approach could be used to recommend collaborators across industry
domains, but the methods might require modifications or additional considerations to be
e�ective. No paper was classified with "Yes", indicating that none of the papers directly
present an approach that is fully suitable for recommending collaborators from di�erent
industry domains. This might be due to the complexity and specificity of this task.

While none of the papers received a "Yes"answer, the fact that several papers
received "Partially"answers indicates that there might be potential for future research and
development in this area. Researchers could potentially build upon the existing approaches
to create more e�ective methods for recommending collaborators from di�erent industry
domains.

In conclusion, the dataset suggests that while none of the papers directly provide a
solution for recommending collaborators from di�erent industry domains, there are some
papers that o�er elements that could be adapted or combined to create e�ective methods.
The prevalence of "No"answers highlights the challenges in finding a straightforward solution
for this complex task. Researchers could focus on leveraging the partially applicable
methods and exploring ways to enhance their e�ectiveness for cross-domain collaboration
recommendations.

3.6.4 Authors conclusions

The conclusions of the analyzed papers primarily focus on evaluating the e�ective-
ness, e�ciency, and performance of the proposed methods in expert finding, recommenda-
tion, and expertise identification within software development contexts.

Among the similarities (Figure 4) in the authors’ conclusions, one prominent
similarity is the emphasis on the superiority of the proposed approach compared to
baseline methods or choices. For instance, paper R10 (Table 2) highlights that their deep
learning-based method outperforms the best baseline method by significant margins in
terms of F-measure on datasets C and Java. Similarly, paper R3 (Table 2) concludes
that their method, which combines skill matching and structural matching, significantly
outperforms choices in terms of both average precision and recall.
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– Figure 4 - Conclusions similarities
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Another recurring theme is the validation and evaluation of the proposed approaches.
Many papers, such as Paper R8 (Table 2) and Paper S8 (Table 3), emphasize the validation
and e�ciency of their approaches through stress testing, accuracy checks, and comparisons
with existing methods. The authors often highlight the practical usefulness and benefits of
their approaches in assisting with expert identification, collaboration, and recommendation
in software development projects.

Regarding di�erences (Figure 5), some papers focus on specific aspects or dimensions
of expertise identification. Paper R2 (Table 2), for example, compares expertise profiling
methods and highlights the appropriateness of the Latent Dirichlet Allocation (LDA)
model, particularly when combined with specific filtering strategies. Paper R4 distinguishes
its approach by considering three dimensions: individuals, expertise areas, and social
dimensions, which sets it apart from other studies.

Several papers also discuss the implications and potential applications of their
findings. For instance, Paper S1 (Table 3) concludes that their approach of matching
developer profiles to job advertisements shows promise and provides interesting insights
into the overlap of concepts between adverts and README files. Paper S9 (Table 3)
indicates that their approach of mining expertise from coding activities can detect higher-
level expertise in commit histories and describe skills in programming languages, libraries,
and higher-level concepts.

Among the most relevant conclusions from the provided papers, several stand
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– Figure 5 - Conclusions di�erences
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out. Paper R10’s deep learning-based method achieving superior performance on di�erent
datasets is noteworthy. Paper R3’s combination (Table 2) of skill matching and structural
matching resulting in improved precision and recall is another significant finding. Additio-
nally, Paper S5’s proposition (Table 3) of using clustering techniques to identify experts
in specific libraries and frameworks shows promise, as it outperforms standard machine
learning classifiers.

The analyzed papers present various approaches to expert finding, recommendation,
and expertise identification in software development. The conclusions highlight the
superiority of the proposed methods, the validation and evaluation of the approaches,
and the potential applications of the findings. The most relevant conclusions include the
superior performance of deep learning-based methods, the e�ectiveness of combining skill
matching and structural matching, and the use of clustering techniques for identifying
experts in specific contexts.

The conclusions from the analyzed papers provide valuable insights for companies
looking to find software developers with expertise in specific industry areas. These conclu-
sions highlight the e�ectiveness and practical benefits of various expertise identification
methods, showing they outperform basic approaches. The validation and evaluation
of these methods give confidence in their reliability, and insights into specific expertise
dimensions and potential applications help tailor strategies for talent acquisition and team
building. Key findings, like the success of deep learning methods and combining matching
techniques, o�er practical tools for decision-making and competitive advantage in the
software development field.
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3.6.5 Answering the Research Question

This subsection answers the RQ ("How is the alignment of industry domains and
technical expertise used in systems that recommend software developers?") through an
analysis of the sub-questions presented.

The alignment of industry domains and technical expertise within recommendation
approaches is explored through an in-depth analysis of various research findings. Authors
of the surveyed papers reveal two predominant trends in collaborator recommendation.

Firstly, machine learning models leveraging diverse data sources such as social
networks, coding repositories, and platforms like StackOverflow are prevalent. These
trends underscore the significance of advanced algorithms and varied data to enhance
recommendation accuracy.

Secondly, contextualized recommendations are prominent, exemplified by papers
like R8 and R1 (Table 2), which tailor suggestions to specific tasks, challenges, and success
probabilities. The introduction of COOPFINDER in Paper R9 (Table 2) emphasizes
shared code changes as valuable collaboration indicators. Expertise identification also
plays a pivotal role, evident in Papers R2, R11, S9, and S6 (Table 2 and Table 3), where
methods gauge domain-specific skills through coding activities and commit histories.

In essence, these trends reflect ongoing e�orts to refine collaborator recommen-
dations, considering intricate collaboration contexts, diverse data, and expertise-driven
evaluations. Additionally, the pivotal role of GitHub repositories and StackOverflow as
primary data sources underlines their importance in aligning technical skills with industry
domains.

This combined with supplementary data forms a robust foundation for e�ective
alignment. While challenges persist, the study suggests the potential for future research
to enhance cross-domain collaboration recommendation approaches, encapsulating both
complexities and possibilities in this domain.

Therefore, in short, an answer to the RQ of this systematic mapping
could be: Recommendation alignment of industry domains and expertise leverages
machine learning, contextualization, and data from sources like GitHub and StackOverflow
for enhanced accuracy and relevance.

3.7 Insights

This section aims to facilitate meaningful discussions with researchers seeking to
contribute innovative and relevant solutions in this research area. To guide our discussion,
we address two key questions that provide valuable insights and help steer the direction of
further investigations:
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• What is the future work mentioned by the authors?

• What should a new software developer recommendation system that aims to align
desired technologies to the industry domains take into consideration?

In addition to addressing the general needs of collaborative software development,
it’s imperative to underscore the significance of aligning the recommendation system with
the unique requirements of established industries such as finance, automotive, industrial
systems, and healthcare. These sectors demand specialized expertise and stringent re-
gulatory compliance, making tailored recommendations essential for successful project
outcomes. By incorporating domain-specific customization into the recommendation
system, it can e�ectively cater to the distinct challenges and nuances of each industry,
ensuring that recommended developers possess the requisite skills and knowledge pertinent
to their respective domains. For instance, in finance, expertise in risk management and
regulatory compliance may be paramount, while the automotive industry may prioritize
developers with experience in embedded systems and automotive software standards. Simi-
larly, healthcare projects necessitate developers well-versed in healthcare regulations and
data privacy protocols. By explicitly addressing the needs of these industries, the proposed
recommendation system not only enhances collaboration but also adds practical value
by facilitating the creation of high-quality software solutions tailored to industry-specific
requirements.

3.7.1 Mentioned future work

After reviewing the future work outlined by the authors, several relevant approaches
and technologies emerge and gathering them into a concrete list could ease and shed some
light on the path ahead to the research and industry communities. In Table 5, the main
future work and the papers that mention them are summarized, nonetheless, we discuss
each future work in detail.

Table 5 – Summary of the main future work and their papers

Future Work Papers

Leveraging Network Analysis and Social Interactions R10,
R12

Incorporating Contextual Information and Domain-Specific Knowledge R5, S7

Exploring Advanced Techniques and Technologies S3, S9

Continuous Improvement and Expansion R8, R4

Firstly, leveraging network analysis and social interactions among candidates
is mentioned in several papers. The authors of Paper R10 (Table 2) propose using
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the questions and answers exchanged among candidates on StackOverflow to create a
network of candidates. This approach can provide valuable insights into the expertise
and knowledge of individuals, allowing for a better estimation of candidates’ suitability
for agile teams. Similarly, Paper R12 (Table 2) discusses enhancing the ontology and
incorporating syntactic and semantic social network analysis to recommend specialists
and teams with complementary skills in Global Software Development (GSD) contexts.
These approaches highlight the importance of leveraging collaborative platforms and social
interactions to improve the accuracy of expert findings.

Secondly, there is a focus on incorporating contextual information and domain-
specific knowledge. Paper R5 (Table 2) mentions considering project domain information
to improve the reputation scores of contributors. Recognizing that reputation and expertise
can vary across di�erent domains emphasizes the need for context-dependent evaluation
and systems that recommend software developers. Additionally, Paper S7 (Table 3)
mentions the need to define patterns that specify the domain expertise of programmers.
By capturing and utilizing domain-specific knowledge, future systems can provide more
accurate and tailored recommendations based on the specific requirements and challenges
of di�erent software projects.

Thirdly, there is a push to explore advanced techniques and technologies to enhance
recommendation approaches. Deep learning approaches, such as convolution neural
networks (CNNs), are mentioned in Paper S3 (Table 3) for mining the shape of expertise.
The authors suggest that CNNs can extract meaningful patterns and features from expert
profiles, enabling more accurate expert grouping. Furthermore, Paper S9 (Table 3) proposes
improving the quality of indicator words by applying di�erent selection mechanisms and
conducting user studies to evaluate the e�ectiveness of the system. These advancements
in machine learning and natural language processing techniques can significantly improve
the recommendation accuracy and overall performance of expert-finding systems.

Moreover, the papers emphasize the need for continuous improvement and expansion
of the systems that recommend software developers. Several papers, including Paper R8
and Paper R4 (Table 2), discuss the incorporation of new metrics and the integration of
additional tools for more seamless collaboration. The authors highlight the importance
of identifying and incorporating further new metrics to quantify team characteristics, as
well as integrating third-party tools to harness detailed digital footprints. This ongoing
evolution of recommendation approaches ensures that they remain relevant and e�ective
in the dynamic landscape of collaborative software development.

In summary, the future work mentioned in the analyzed papers indicates that the
field of expert finding, team recommendation, and collaborative software development is
moving towards leveraging social interactions, incorporating contextual information, explo-
ring advanced techniques like deep learning, and continuously improving and expanding
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the systems that recommend software developers. By embracing these approaches and
technologies, future systems can provide more accurate and tailored recommendations,
enabling e�ective collaboration and enhancing the productivity and success of software
development projects.

3.7.2 A new systems that recommend software developers should consider

As you embark on the design of a groundbreaking recommendation system geared
toward aligning software developers with precise technical expertise relevant to specific
industry domains, it’s imperative to ensure that all requirements are identified and
met. To attain this, delving into the state-of-the-art within this domain is a prudent
initial step. By conducting this systematic requirements analysis, we have e�ectively
compiled a comprehensive list of requirements that warrant consideration. Therefore, a
recommendation system with the overarching goal of facilitating this matchmaking process
must give utmost importance to the following seven key aspects 4: 1. Data Collection
and Integration, 2. Feature Engineering, 3. Machine Learning Models, 4. Evaluation
and Validation, 5. Domain-Specific Customization, 6. User Interface and Interaction, 7.
Continuous Improvement. ( Figure 6).

– Figure 6 - The desired composition of the recommendation system

Desired
Recommendation

System

Machine
learning
models

Continuous
improvement

Feature

engineering

Diverse
sources data

collection

Use
r

inter
fac

e

Do
m

ai
n-

sp
ec

ifi
c

cu
st

om
iza

tio
n Evaluation

m
etrics

4 The terms that comprise each priority are related to the studies so that readers can easily
refer to them in the texts.
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Priority 1: Data Collection and Integration Begin by gathering relevant data
from diverse sources, including social-coding repositories, collaborative platforms, coding
activities, and developer profiles. Thoroughly integrate and preprocess the collected data
to construct a comprehensive dataset that encompasses the necessary information for
generating meaningful recommendations.

Data collection and integration are foundational for the recommendation system.
Priority should be given to gathering data from various sources, including developer profiles,
project repositories, industry-specific knowledge bases, and user interactions. E�cient
data integration allows an understanding of developers’ skills and expertise.

Priority 2: Machine Learning Models Machine learning models play a central
role in analyzing and matching developers’ skills with industry-specific domains. Prioriti-
zing the development of accurate models is crucial for making relevant recommendations.
These models should consider both user behavior and content-based recommendation
approaches.

Employ state-of-the-art machine learning techniques, such as neural networks,
graph convolution networks, or latent Dirichlet allocation, to construct models capable
of learning from the collected data. These models should be adept at handling the
intricate complexities inherent in the software development context and yield accurate
recommendations based on the extracted features.

Priority 3: Feature Engineering E�ective feature engineering is essential for
extracting relevant information from the data. Prioritize the creation of meaningful features
that capture developers’ skills, project requirements, and industry-specific knowledge.
These features enhance the accuracy of recommendations.

Extract meaningful features from the collected data, taking into account factors
such as expertise, coding patterns, collaboration history, and social network analysis. These
features should capture both the technical skills possessed by the developers and their
collaborative characteristics, thereby enabling a holistic representation of their capabilities.

Priority 4: User Interface and Interaction A user-friendly interface is im-
portant for user engagement. The system should provide an intuitive and responsive
user interface that allows developers and industry stakeholders to input requirements,
explore recommendations, and provide feedback. Prioritize usability, visual design, and
responsiveness.

Devote attention to the development of a user-friendly interface that seamlessly
facilitates user interaction with the recommendation system. Provide intuitive visualiza-
tions and explanations to enhance transparency and assist users in comprehending the
rationale behind the recommendations presented to them. A well-designed user interface
enhances user engagement and promotes the adoption of the system.
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Priority 5: Continuous Improvement Continuous improvement is crucial for
the system’s long-term success. Prioritize the implementation of mechanisms for collec-
ting user feedback, monitoring system performance, and making iterative enhancements.
Regular updates and refinements keep the recommendation system relevant and valuable
to users.

Implement mechanisms to gather user feedback and establish an iterative process
for improving the recommendation system over time. Embrace an agile development
approach that allows regular updates and enhancements based on evolving user needs
and collaboration dynamics. By actively seeking and incorporating user feedback, the
system can be refined and further optimized to meet the evolving requirements of software
development teams.

Priority 6: Evaluation and Validation Evaluation and validation are necessary
to assess the system’s e�ectiveness and reliability. Prioritize the establishment of robust
evaluation metrics and validation methods to measure the quality of recommendations.
This includes precision, recall, user satisfaction, and algorithm performance.

Establish appropriate evaluation metrics to rigorously assess the performance of the
recommendation system. Utilize robust validation techniques, including cross-validation or
A/B testing, to validate the e�ectiveness and robustness of the employed machine learning
models. These techniques ensure that the recommendations generated meet the desired
quality standards.

Priority 7: Domain-Specific Customization While important, domain-specific
customization can be addressed once the foundational components are in place. Customi-
zation allows the system to adapt to specific industry needs and requirements. It should
be considered after the core functionality is established.

Tailor the recommendation system to the specific context and domain of software
development. Take into consideration the unique challenges, collaboration patterns, and
expertise requirements prevalent in the target domain, in order to provide relevant and
e�ective recommendations aligned with the specific industry contexts.

By adhering to these recommendations and considering the current trends found in
the existing literature, a new project could create a recommendation system that e�ectively
suggests suitable collaborators in software development. This system would help foster
smooth collaboration and improve team performance. Emphasizing critical aspects such
as data quality, feature richness, appropriate machine learning model selection, rigorous
evaluation, domain-specific customization, user experience, and continuous improvement
contribute to the development of a robust and valuable recommendation system.



47

3.7.3 Insight conclusions

This priority list emphasizes the importance of building a strong foundation with
data collection, machine learning models, and feature engineering. These components
are critical for the accuracy of recommendations. User interface and interaction are also
essential for user adoption. Non-functional requirements like continuous improvement and
evaluation ensure the system’s long-term success and quality.

While the trend of AI and deep learning may seem ubiquitous in today’s techno-
logical landscape, it is a trend that cannot be overlooked or ignored. These advanced
techniques o�er transformative capabilities that have the potential to revolutionize software
developer recommendation approaches. Ignoring this trend risks falling behind competitors
and missing out on opportunities to significantly improve recommendation algorithms’
accuracy, e�ciency, and e�ectiveness. Embracing AI and deep learning allows for a more
nuanced analysis of developer expertise and project requirements. It opens doors to
innovative approaches that can better cater to the diverse needs of collaborative software
development across various industries. Therefore, while acknowledging the prevalence of
this trend, researchers and practitioners alike must embrace it wholeheartedly and explore
its full potential in advancing recommendation system technologies.

Domain-specific customization is placed lower in priority because it typically
involves tailoring the system to specific industries, which can be addressed as the system
matures.

As a way of directly answering the questions proposed at the beginning of this
section, we can conclude that an answer for the first Insight question (What is the future
work mentioned by the authors?), could be: Authors propose future work in expert finding
and team recommendations, emphasizing data source expansion, context integration,
advanced techniques like CNNs, and ongoing system improvement with new metrics and
tools for seamless collaboration, ensuring e�ectiveness in evolving collaborative software
development.

Therefore, a resumed answer to the second insight question (What should a new
software developer recommendation system that aims to align desired technologies to the
industry domains take into consideration?), could be: A novel software developer recom-
mendation system, aiming to align technologies with industry domains, must consider data
collection and integration, feature engineering encompassing expertise and collaboration
aspects, state-of-the-art machine learning models, rigorous evaluation, domain-specific
customization, user-friendly interface design, and continuous improvement through user
feedback. This holistic approach ensures meaningful recommendations, tailored to the
software development context, fostering seamless collaboration, and enhancing team
performance through an agile and evolving system.

In conclusion, the insights gained from exploring future work in expert finding and
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team recommendations, along with recognizing the significance of AI and deep learning
trends, contribute to advancing software developer recommendation approaches. By
prioritizing aspects like social interactions, contextual information, and user-friendly design,
researchers and practitioners can develop more e�ective systems tailored to collaborative
software development needs. These insights provide a roadmap for addressing research
questions and objectives, fostering the creation of systems that recommend software
developers and that facilitate smooth collaboration and improve team performance in
software development projects.

3.8 Threats to validity

This systematic literature mapping was conducted to comprehensively identify,
categorize, and analyze systems that recommend software developers for software developers
in the global software development domain. However, like any research method, there are
certain potential threats to its validity and limitations that need to be acknowledged.

One potential limitation is associated with the possibility of errors in the protocol
definition and the search string employed, which may have inadvertently excluded relevant
keywords and studies, thereby potentially omitting valuable insights. To mitigate this
limitation, the mapping planning presented in Section 3 underwent rigorous review and
scrutiny by other experienced researchers to enhance its comprehensiveness and minimize
potential oversights.

Beyond that, the inherent limitations imposed by the nature of Systematic Mapping
Studies (SMS) also represent a threat to the validity of the study. Specifically, the
involvement of multiple companies or entities with distinct hard boundaries presents
a challenge. As an SMS, we do not exercise control over the selection of companies
participating in the studies, nor do we influence the delineation of their boundaries.
Consequently, the applicability of data source mining techniques discussed in this paper
may be constrained in such contexts. While e�orts were made to mitigate this limitation
through comprehensive analysis, the variability introduced by diverse company structures
remains a pertinent consideration.

Another potential limitation pertains to selection bias. The inclusion and exclusion
criteria used to select studies could introduce bias if they are not clearly defined or
consistently applied. To address this potential bias, a meticulous peer review of the
accepted and rejected studies was conducted, ensuring that the criteria were rigorously
applied and adhered to.

Furthermore, there is the inherent risk of data extraction bias. The process of
extracting data from the included studies can be subjective and susceptible to bias if it is
not standardized or if di�erent researchers interpret the data di�erently. To mitigate this
bias, a structured form was developed, encompassing predefined data fields that need to be
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consistently extracted from each included study. This approach helps minimize subjectivity
and ensures a more objective data extraction process across di�erent researchers involved
in the study.

By acknowledging and addressing these potential limitations, we strive to enhance
the validity and reliability of our systematic literature mapping, providing a more robust
foundation for the insights and conclusions drawn from this research.
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4 DevFinder architecture

Based on the results presented in the systematic mapping described in the last
chapter, gaps and opportunities were identified. Firstly, it is noted the absence of studies
that directly propose architectures to recommend software developers specialists whose
experience of working on specific industry domains aligns with knowledge of specific
technologies. Secondly, the answer to the RQ of the systematic mapping highlights the
usage of machine learning, contextualization, and data from sources such as GitHub for
enhanced accuracy. This piece of information underscores the relevance of these approaches
in the construction of the desired architecture to recommend software developer specialists
who align knowledge in specific industry domains to desired technologies. Thirdly, the
authors’ conclusions and future work point out leveraging network analysis, incorporating
contextual information, and exploring advanced techniques to better support decision-
makers on the task of finding software developers. Lastly, the insights gathered serve
as seeds for the elicitation of requirements for the features and characteristics that an
architecture of this nature would have to perform.

Therefore, the requirements, advice, and ideas gathered on the systematic mapping
were used as the bedrock for the development of the DevFinder architecture. To develop
this architecture, the Design Science Research (DSR) methodology was used, and three full
iterations of the DSR cycle were performed to guarantee the quality and trustworthiness
of the solution.

As an illustration for the employment scenario of DevFinder, consider that John
serves as the hiring manager for a software company that recently entered into a contract
with a bank to enhance a legacy application. Due to the current capacity of the development
team and the specificity of the project from the client, John is actively seeking a developer
with hands-on experience in the banking industry and proficiency in Java, which serves as
the primary language for the application (Figure 7).

To find matching candidates, John turns to DevFinder. Inputting the specific
industry and technology criteria, he initiates the search, prompting DevFinder to employ
techniques such as data mining, complex network analysis, large language models, and
semantic analysis. This approach allows DevFinder to identify and rank software developers
from a version control system based on contribution factors, also providing insights to
assist John in evaluating each candidate.

The outcome is a ranked list of software developers proficient in Java who have
worked on banking-related projects. By clicking on each developer, John can read key
information and insights generated by large language models, summarizing the developer’s
skills based on the criteria he input.

Equipped with this information, John’s decision readiness is higher, and he now feels
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– Figure 7 - John’s journey on DevFinder
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better prepared to make an informed decision, armed with a comprehensive understanding
of each developer’s qualifications and how they align with the project’s specific requirements,
serving as an illustrative example of a use-case scenario in DevFinder. The processes for
searching, ranking, and generating insights are further discussed in the next sections.

4.1 Methodology

Design Science Research (DSR) stands as a methodological approach driven by
the continual enhancement of a solution through the introduction of novel artifacts and
the corresponding construction processes (114). The application domain, comprising
individuals, organizations, and technological systems working towards a common goal,
serves as the backdrop for DSR research. Typically, the research journey begins by
identifying and portraying opportunities and challenges within a real-world application
environment.

The initiation of the relevance cycle marks the commencement of the research,
with the application context not only providing the research requirements—such as the
identified opportunity or problem—as inputs but also establishing acceptance criteria
for the final assessment of research outcomes. The research output is then reintegrated
into the environment for thorough examination and evaluation within the application
domain. The examination of the artifact in the domain can be carried out through various
technology transfer methods, such as applied research (115, 116).

The outcomes of the domain test determine whether additional iterations of the
relevance cycle are necessary for the ongoing Design Science project. The newly deve-
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loped artifact may require additional functionalities or inherent qualities, like improved
performance or usability, to enhance its practical utility. The resulting artifact may
unveil the need for new requirements or expose misconceptions or incompleteness in the
existing requirements. Subsequently, another iteration of the relevance cycle commences,
incorporating feedback from the research environment and redefining research requirements
based on experiential insights.

Throughout the relevance cycle, there is a continual refinement of the requirements
to align the artifact with its intended goal. Additionally, a comprehensive analysis of the
application context, involving the people and organizational systems, is essential to ensure
the congruence of requirements with the identified problem. The design cycle encompasses
the construction of the artifact, involving its implementation and development processes,
culminating in an evaluation. This process can yield a tangible product, an improved
process, or contribute to the body of scientific knowledge.

The rigor cycle is where the theoretical underpinning comes into play, guiding
the construction of the artifact using methods, theories, or processes available in the
literature. In this cycle, the validity of initial theoretical assumptions is scrutinized
through the evaluation of the artifact. A holistic view of Design Science Research involves
three interconnected cycles: relevance, design, and rigor, as depicted in Figure 8. Each
cycle plays a crucial role in the systematic and iterative development of artifacts and the
advancement of knowledge within the Design Science paradigm.

– Figure 8 - DSR Flow

Source: (117)

This research follows DSR methodology by employing cycles of development and
undergoing DSR thoroughness on each cycle iteration.

4.2 Requirements

For the system specification, functional and non-functional requirements were
prioritized for its development taking into account the key factors found in the systematic
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mapping presented in the last chapter. Therefore, the final implementation of DevFinder
architecture targets the support of job recruiters stakeholders on the search for software
specialists through the functional and non-functional requirements that follow.

4.2.1 Functional Requirements

• FR 001. The architecture must support the data processing from domain-specific
combinations of industries and technologies specified by the user.

• FR 002. The architecture must support the data extraction from real-world reposi-
tories on version control systems.

• FR 003. The architecture must support the repositories filtering that are not related
to the specified industry domain.

• FR 004. The architecture must support the software developers ranking based on
collaboration metrics.

• FR 005. The architecture must support the provision of insights about each ranked
software developer generated through the available data of software developers.

• FR 006. The architecture must support the provision of a final recommendation list
so that user interfaces can be integrated into it.

4.2.2 Non-functional Requirements

• NFR 001 (Dependability). The architecture should facilitate interaction with external
data sources.

• NFR 002 (Extensibility). The architecture design should adhere to extensibility
principles to accommodate the potential expansion.

• NFR 003 (Scalability). The architecture must respect scalability principles. This
involves the ability to integrate new data sources and perform intelligent processing
dynamically.

4.3 Related Work

Previous studies have been published regarding previous DSR iteration cycles
(136, 137). On the first DSR iteration cycle (136), the study aimed to streamline the process
of identifying experts with specific technical skills and industry knowledge in software
development by integrating data from various platforms such as LinkedIn, GitHub, and
Topcoder. Utilizing semantic and syntactic techniques along with an ontology, the approach
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matched data and inferred non-obvious information to compile a list of recommended
experts.

On the second DSR iteration cycle (137), the study aimed to address the challenge
of finding software development experts who possess both specific technical skills and
experience in particular industry domains, a crucial requirement in software development
environments. To tackle this issue, we proposed a recommendation approach that identifies
and categorizes eligible experts by extracting data from repository databases and cons-
tructing a complex network that considers three key aspects: the impact of a developer
on industry-related repositories, the technologies relevant to the search terms, and the
timeline of the developer’s contributions to projects.

Other approaches have been developed to aid stakeholders in decision-making
processes. Focusing on the current DSR iteration of DevFinder architecture, which
incorporates LLM modules, this section presents research related to this paper, highlighting
the employment of LLM on systems that recommend software developers. In the end, we
make a comparative analysis among them, bringing up the contribution of this paper.

As the first related work, Hua (2023) explore the advancements by Foundation
Models, particularly Large Language Models (LLMs), in recommender systems. This tuto-
rial not only introduces the concept of Foundation Models like LLMs for recommendation
but also delves into the evolution of recommender systems from shallow to deep models
and ultimately to large models. Additionally, it discusses how LLMs enable generative
recommendation as opposed to the traditional discriminative recommendation and provi-
des insights into building LLM-based recommender systems from multiple perspectives,
encompassing data preparation, model design, pre-training, fine-tuning, multi-modality,
multi-task learning, fairness, and transparency (151).

Zhang (2023) presents a novel approach to developing recommendation models
by leveraging Large Language Models for instruction-based recommendation systems.
Rather than solely relying on historical behavior data, the researchers propose using
natural language instructions to convey user preferences and needs to LLMs, allowing
them to generate recommendations accordingly. They design a general instruction for-
mat and create a substantial amount of user-personalized instruction data. Through
experiments on various recommendation tasks using real-world datasets, the proposed
approach demonstrates superior performance compared to competitive baselines, including
GPT-3.5. This study showcases the potential of integrating natural language instructions
into recommender systems, enabling more user-friendly interactions and providing more
accurate recommendations (160).

Fan (2023) addresses the limitations faced by Deep Neural Networks (DNNs) in
recommender systems, such as understanding the interests of users, capturing textual
side information, generalizing to di�erent recommendation scenarios, and reasoning on
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predictions. It highlights the potential of Large Language Models (LLMs) like ChatGPT
and GPT4, aiming to provide a systematic overview of LLM-empowered recommender
systems, covering aspects like Pre-training, Fine-tuning, and Prompting. The paper
introduces methods utilizing LLMs as feature encoders for learning user and item represen-
tations, reviews recent techniques of LLMs for enhancing recommender systems through
pre-training, fine-tuning, and prompting, and discusses future research directions in this
emerging field (8).

A study conducted by Di Palma (2023) explores the integration of Large Language
Models (LLMs) into Recommender Systems (RSs), leading to the development of a novel
approach termed Retrieval-augmented Recommender Systems. Traditionally, RSs excel
in o�ering personalized recommendations within well-defined domains but struggle with
adaptability to novel data. By combining these technologies, the study aims to enhance
RSs’ ability to provide relevant recommendations even in scenarios with sparse data. This
fusion of retrieval-based and generation-based models presents a promising solution for
delivering contextual and personalized suggestions across various domains, ranging from
e-commerce to content streaming platforms (152).

Liu (2023) investigates the application of ChatGPT in the domain of recom-
mendation systems. The researchers explore ChatGPT’s potential as a general-purpose
recommendation model by leveraging its extensive linguistic and world knowledge acqui-
red from large-scale corpora. They design a set of prompts and evaluate ChatGPT’s
performance across five recommendation scenarios without fine-tuning the model during
the evaluation process, relying solely on the prompts for task conversion. Additionally,
they explore the use of few-shot prompting to incorporate user interaction information,
enhancing ChatGPT’s understanding of user needs and interests. Experimental results
on the Amazon Beauty dataset demonstrate promising performance across various tasks,
with human evaluations confirming the model’s capability to generate clear and reasonable
recommendations. The study underscores the potential of language models like ChatGPT
to enhance recommendation system performance, urging further exploration in this field
(9).

Fan (2020) introduces a novel framework called GraphRec+ for social recommenda-
tions, leveraging Graph Neural Networks (GNNs) to e�ectively model graph data inherent
in social networks and user-item relationships. By addressing challenges such as the
simultaneous involvement of users and items in various graphs, integration of user opinions
in user-item interactions, and the heterogeneous nature of social relations, GraphRec+
o�ers a coherent solution for learning user and item representations. The framework intro-
duces a principled approach to jointly capture interactions and opinions in the user-item
graph, along with an attention mechanism to di�erentiate heterogeneous strengths of
social relations. Through comprehensive experiments on real-world datasets, the e�cacy of
GraphRec+ is demonstrated, highlighting its potential to advance social recommendation
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Table 6 – Related work summary

Study Authors Focus Approach/Technique Key Findings

DevFinder (1st iteration) de Campos et al.

Identifying experts with specific skills
and knowledge in software

development

Integration of data from LinkedIn,
GitHub, Topcoder; use of semantic
and syntactic techniques, ontology

Successful in matching data and
inferring non-obvious information to

recommend experts

DevFinder (2nd iteration) de Campos et al.

Finding software development experts
with specific skills and industry

experience

Recommendation system
extracting data from repositories;

complex network analysis

Effective in identifying experts
considering repository impact,

relevant technologies, and
contribution timelines

LLM in Recommender
Systems Hua et al.

Advancements in recommender
systems using Large Language Models

(LLMs)

Overview of LLM applications in
recommendation, covering data
prep, model design, pre-training,

fine-tuning, and fairness

LLMs enable generative
recommendations and provide

insights into building sophisticated
recommender systems

Instruction-based Rec.
Models Zhang et al.

Developing recommender systems
using natural language instructions

Leveraging LLMs for user
preferences via instructions;
creation of user-personalized

instruction data

Demonstrated superior performance
in recommendation tasks compared

to traditional baselines

LLM Empowered Rec.
Systems Fan et al.

Enhancing recommender systems with
Large Language Models

Systematic overview of LLMs in
recommendations, including
pre-training, fine-tuning, and

prompting

LLMs address limitations in
DNN-based recommenders,

improve feature encoding and
scenario adaptability

Retrieval-Augmented RS Di Palma
Combining LLMs with recommender

systems for better adaptability
Fusion of retrieval-based and

generation-based models

Improved recommendations in
scenarios with sparse data,
enhancing contextual and

personalized suggestions across
domains

ChatGPT for Rec. Systems Liu et al.
Applying ChatGPT to recommendation

tasks without model fine-tuning

Use of prompts and few-shot
prompting for task conversion and

user interaction integration

ChatGPT showed promising
performance in various

recommendation tasks, with human
evaluations supporting the results

GraphRec+ for Social Rec. Fan et al.
Social recommendations using Graph

Neural Networks (GNNs)

Modeling user-item relationships
and social networks, using
attention mechanisms for
heterogeneous relations

Demonstrated effectiveness in
capturing interactions and opinions

in social recommendation tasks

systems (21).

4.3.1 Comparative Analysis

As also depicted in Table 6, considering the employment of LLM on systems that
recommend software developers, we can summarize the related work as: Hua (2023) and
Zhang (2023) focus on LLMs, emphasizing their role in the generative recommendation
and the incorporation of natural language instructions for personalized recommendations,
respectively. Fan (2023) extends this discussion by addressing the limitations of Deep
Neural Networks (DNNs) and emphasizing the potential of LLMs like ChatGPT and GPT4.
Conversely, Di Palma (2023) proposes a fusion approach termed Retrieval-augmented
Recommender Systems, combining LLMs with traditional RSs to enhance adaptability
and relevance in sparse data scenarios. Liu (2023) further explores the utility of ChatGPT
for recommendation tasks, demonstrating its e�ectiveness in generating contextually
relevant suggestions without fine-tuning. On the other hand, Fan (2020) delves into social
recommendations, presenting GraphRec+ as a comprehensive framework leveraging GNNs
to model complex social networks and user-item interactions.

These studies collectively highlight the diverse approaches and methodologies
employed to leverage advanced AI models for improving recommendation approaches and
addressing various challenges including adaptability, personalization, and integration with



57

social structures.

Nevertheless, despite the number of works employing Large Language Models on
systems that recommend software developers, there are still some challenges to be further
comprehended regarding the recommendation of software developers for specific open
positions. Hence, this study introduces distinctive contributions in contrast to existing
related work. As a prevalent contribution, this research o�ers a system that assists
in decision-making tailored for industry domains, addressing the needs of stakeholders.
Furthermore, we investigate the integration of Large Language Models within systems
that help in decision-making, emphasizing their potential in this context. The concept
of Accuracy Zones introduced in our work provides a practical method for optimizing
recommendation accuracy based on the number of characters used in Large Language
Model prompts. Finally, our research culminates in developing functional software capable
of recommending software developers under specific conditions, o�ering a unique and
practical solution tailored to industry domains. This highlights the applicability and
versatility of LLMs in systems that recommend software developers for real stakeholders.

4.4 DSR Cycles

The DSR approach functions through iterative phases, wherein both artifacts and
procedures undergo development, reassessment, enhancement, and progression. For this
reason, each cycle may introduce new requirements, challenges, and opportunities for
refinement. Therefore, throughout the development of DevFinder, three main iterations
were performed, incorporating additional requirements and refining the solution at the
end of each iteration.

4.4.1 First Cycle

In the first cycle, we propose an approach that extracts data from multiple sources,
as indicated as a relevant approach by the results of the systematic mapping conducted.
Hence, we propose extractions on LinkedIn1, TopCoder2 and GitHub3 databases. To achieve
that, data is converted into a canonical format, saved into a Global Schema Database, and,
finally, non-obvious inferences are made from the extracted information through a proposed
ontology considering semantic and syntactic analysis. As theoretical knowledge learned in
this cycle, it stands out ontology and advanced databases theories comprehension, and as
the main technical knowledge produced, it stands out: i) the modeling for extraction and
integration of three di�erent relevant bases, and ii) an ontology that considers collaboration
aspects of the specialists found, resulting on a published paper (136). Regarding the
1 1 - https://www.linkedin.com
2 2 - https://www.topcoder.com
3 3 - https://github.com
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architectural functional requirements, this iteration of the DSR aims to work mainly on the
FR 001, supporting data processing from domain-specific combinations of industries and
technologies specified by the user, and FR 002 supporting data extraction from real-world
repositories on version control systems. Other requirements were further implemented and
assessed on the next DSR iterations.

As a way to gather data, Figure 9 presents an overview of the first cycle approach
phases. The extraction process begins with API connections with the Local Conceptual
Schemas (LCSs) (118). The extraction service then saves the raw data to a data lake (119).
In a data lake, saving the data returned from the extraction in an unchanged form is prior
in order to guarantee the usage of the information in the following steps. The model of
integration with the databases is a logical model. In this model, the information that
is extracted from the databases is pre-established and, at each query, only the relevant
information established in the project is extracted.

Three main databases are listed to obtain data from developers and are processed
through the proposed solution: i) LinkedIn, ii) GitHub, iii) Topcoder. The first, LinkedIn,
was chosen due to the information from professionals it brings to the proposed solution
regarding the context of their professional positions, work experience, industry sectors,
time of experience, and education. The second, GitHub, aggregates information specific to
the software development context, being able to provide information such as programming
languages used, projects carried out, companies or institutions, and time of experience.
The third, Topcoder, is a crowdsourcing platform that has been used to solve challenges,
in which developers are rewarded for the completion of tasks, focusing on collaboration.
From this database, it is possible to extract information such as the challenges involved
by the users, the programming languages used, and general information about developers,
such as work experience or education.

At the end of the extraction layer, the data from each database in its canonical
representation flows into the enhancement layer. In this layer, the data is aggregated, and
non-obvious inferences are made from the ontology.

The first step of this layer is the mapping. In this step, Schema Matching and
Schema Mapping are performed. In Schema Matching, the syntactic and semantic corres-
pondences between the elements is determined. In the Schema Mapping, the way in which
each element of the LCSs is mapped to the Global Conceptual Schema (GCS) (118) is
determined.

The database model is defined in advance with the GCS, so the results of queries
prompted by the system user are restricted to the set of objects defined in the global
model. This is a Global As View (GAV) model (118).

The ontology step is the last in the data enhancement layer. Non-obvious inferences
are made from the data contained in the canonized base, which is an important intelligence
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– Figure 9 - Overview of the first cycle proposed approach
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step in the process. We propose a novel ontology4 considering the GSC schema and the
recommendations on provenance standards (120).

In order to represent the personal attributes of developers, hereby called soft skills,
the list of such skills compiled by Matturro (2019) and described in their systematic mapping
is used in this work. When querying the databases, our approach searches for such soft skills
and assigns them to the related developers. The considered soft skills in this project are:
Communication skills, Conflict Management, Customer orientation, Teamwork, Analytical
skills Organizational and Planning skills, Interpersonal skills, Problem-solving skills,
Autonomy, Decision-making, Initiative, Change management, Commitment/Responsibility,
Ethics, Results orientation, Innovation, Critical thinking, Listening skills, Fast learner,
Methodical (109).

As a way of guaranteeing the traceability of the developers’ information generated
from the proposed ontology and thus guaranteeing quality and reliability factors for the
final results, the proposed model uses the PROV-O provenance model4. Three types of
data stand out in the model: i) agents, ii) entities, iii) activities. The entities of the model
are: Developer, Company, and Industry. The entities are: Hardskill, Softskill, Location
and Role. The activities: LinkedIn-Experience, GithubProject and Topcoder-Challenge,
as shown in Figure 10.

The relationships between entities are also proposed by the PROV-O model and
link the information extracted in the bases to their correspondences in the ontology. The
purpose of using an ontology lies in providing intelligence to the system by inferring
non-obvious information from the data it possesses. For that, we used Semantic Web
4 4 - https://www.github.com/vitorqcq/devFinderOntology
4 4 - https://www.w3.org/TR/prov-o/
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– Figure 10 - Proposed ontology representation
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Rule Language (SWRL). These are the rules that bring intelligence and inferences to
this solution that traditional databases may not be able to express. In Figure 11, the
relationships inferred by the ontology are represented by the dotted lines. The defined
SWRL rules were:

• Rule 1: Developer(?d) ^influenced(?d, ?w) ^Company(?c) ^influenced(?c, ?w)
æactedOnBehalfOf(?d, ?c)

• Rule 2: Company(?c) ^actedOnBehalfOf(?c, ?i) ^Industry(?i) ^influenced(?i, ?c)
^Developer(?d) ^actedOnBehalfOf(?d, ?c) æactedOnBehalfOf(?d, ?i)

• Rule 3: Work(?w) ^used(?w, ?s) ^Skill(?s) ^influenced(?s, ?w) ^Developer(?d) ^
influenced(?d, ?w) æwasInfluencedBy(?d, ?s)

• Rule 4: Location(?p) ^atLocation(?w, ?p) ^Work(?w) ^
wasAssociatedWith(?w, ?d) ^Developer(?d) æatLocation(?d, ?p)
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• Rule 5: Role(?r) ^hadRole(?w, ?r) ^Work(?w) ^wasAssociatedWith(?w, ?d) ^
Developer(?d) æhadRole(?d, ?r)

• Rule 6: Work(?w) ^wasAssociatedWith(?w, ?c) ^Company(?c) ^
actedOnBehalfOf(?c, ?i) ^Industry(?i) æwasAssociatedWith(?w, ?i)

Rule 1 aims to relate the developer who is linked to a work activity with the
company related to this work. Rule 2 relates the developer to the industry to which their
work experiences are linked. Rule 3 expresses that if the developer used a skill (skill)
in a work experience, then the developer has that skill. Rule 4 relates the location of a
work experience to the developer who is connected to it. Rule 5 relates the role title that
a developer has had in some work experience to the developer itself. Rule 6 associates
industries with an activity entity.

Figure 11 demonstrates the classes view (on the left) and the OntoGraf tab (on the
right) of the Protegè system. Through the figure, it is possible to perceive the organization
of the proposed classes as activities, agents, and entities in addition to the Location and
Role classes, inherited from the PROV-O provenance model.

– Figure 11 - Representation of the proposed ontology in the Protègè system

4.4.1.1 Lessons Learned on the first cycle

The first development cycle of DevFinder brought to light some important lessons
and decisions that had to be taken for the next iteration of the development of DevFinder.

The first lesson lies in the usage of multiple data sources. Even though the amount
and variety of data of software developers from various sources may be beneficial, the
consequences are overcomplicated to be dealt with. Handling diverse, non-standardized,
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and disconnected data poses challenges that require extra-sophisticated approaches. For
instance, the integrated platforms do not source data to match di�erent users as being the
same person, and thus, they are represented by di�erent unique IDs or emails by each
platform, which turns the work of matching users from distinct platforms a challenging
task. Therefore, the first decision for the next cycle of DevFinder’s implementation was to
use a single data source, which is discussed and justified in the next section.

The second lesson learned for the next DSR iteration regards the usage of ontologies.
While ontologies can be powerful tools for representing and organizing data in certain
contexts, one key factor that led us to opt not to employ them for the next iteration. As
listed in the requirements section, DevFinder is intended to evolve with dynamic data
requirements and adapt swiftly to changing business needs. As also discussed by Welty
(2021) and Motik (2007), while ontologies o�er a structured way to represent knowledge,
their inherent complexity and rigidity could potentially impede our ability to make agile
adjustments and ensure extensibility principles (NFR 002) and requisites of scalability
(NFR 003) (146, 147).

4.4.2 Second Cycle

On the second DSR cycle, the focus of our work is the model of a complex network
that aims to rank software developers through collaboration aspects. Thus, regarding
the architectural functional requirements, this iteration also implements FR 001 and FR
002 as the first cycle, but it delves into the FR 004, supporting the software developers
ranking based on collaboration metrics, and FR 006, supporting the provision of a final
recommendation list so that user interfaces can be integrated into it. Other functionalities
are discussed and implemented on the third DSR cycle.

Therefore, as a result of the second cycle development of theoretical, technological,
and scientific knowledge was produced. As the main theoretical knowledge, it stands
for the complex network for modeling graphs, resulting in the technical and scientific
knowledge expressed in a published study (137).

As shown in Figure 12, the extraction process on the second cycle starts at the
Extraction Layer, where requests are made to the version control system API, returning
information from repositories and users by using Node.js for the requests and file manipu-
lation. The main target at this point is to save the essential information from the API to
make the network modeling possible. At the end of this layer, a JSON file is saved in the
Data Lake database. A non-relational database expressing the classes and fields of the
diagram of Figure 13.

To better understand the further proposed network modeling of DevFinder, note
that the field TotalRepoChanges in the Repository class stores the total number of changes
done to that particular repository, whereas the field UserCommitChanges in the class
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– Figure 12 - DevFinder overview on the second DSR cycle
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Committer stores the number of changes done by a version control system user summing
up all the number of changes in commits done by the user to this particular repository. In
a later discussion, these values are important for calculating the impact of a committer on
a repository.

– Figure 13 - Classes diagram of the Data Lake database
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The TotalTechnologiesUsage in the Repository class and the TechnologyUsage in
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the Technology are also worth attention. On the one hand, TotalTechnologiesUsage is
intended to store the total number of bytes used to store all technologies of the repository
on the version control system. On the other hand, TechnologyUsage stores the number of
bytes used by those technologies targeted by the search process. These values are further
used to calculate the impact of the target technologies on the repositories found.

The Data Treatment Layer converts data to the global schema format. This layer
is also responsible for translating data if another source than the chosen version control
system is used to ensure the project is extensible and modular.

The final intent of this layer is to provide the next one with a readable JSON file
containing the necessary fields for generating the graph network. This layer also calculates
the weights for the graph’s edges. The final JSON file that serves as input for the next
layer contains three fields: the committer ID, the repository ID, and the edge weight.

Further data processing takes place in the Data Enhancement Layer when informa-
tion is better analyzed by going through NetworkX1. Being a Python package, NetworkX
is responsible for creating, manipulating, and studying the proposed complex network of
DevFinder. Finally, data is saved in the last database that a front-end service could use.

4.4.2.1 Network modeling

The DevFinder network can be represented as a bipartite graph G = (V, E). In
the proposed network, there are two kinds of vertices. A “Committer” vertex is a user
from the version control system that contributes to the repository. A “Repository” vertex
represents an artifact containing the source code committed by di�erent Committers. The
committers are defined as a set of nodes C = c0, c1, ..., cn and the repositories as a set of
nodes R = r0, r1, ..., rn connected by a set of edges E = e0, e1, ..., en, where C fi R = V .

To represent the weight of the edges of the network, we define the Contribution
Factor (CF). CFs represent the contributions of a committer to a repository considering
three aspects: i) the changes made by the committer through commits, ii) the technologies
considered in the search terms, and iii) the dates when the committer has contributed
to the repository. Hence, for every committer i committing to a repository j using the
technology k, the weight, or Contribution Factor, can be written as Cf(i, j, k), as shown
of Figure 4.

– Figure 16 - DevFinder’s Network representation

Ci Rj
Cf(i, j, k)

1 2 -https://networkx.org/
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To calculate the proper CF for every edge of the network, the following expression
can be assumed:

Cf(i, j, k) = Ruc(i, j) ◊
A

Ucc(i, j)
Trc

B

◊
A

Pu(j, k)
Tbu(j)

B

,

where Ruc(i, j) is the User Contribution to the repository. This is a value given by the
version control system API that aims to represent a user’s contribution to a repository.
It takes into account when a user commits to a project’s branches, opens an issue, or
proposes a Pull Request on the version control system.

Ucc(i, j) represents the total user commit changes and Trc represents the total
repository changes. With these two values, it is possible to measure the impact of developer
commits on a repository.

Note that Ucc(i, j) considers the date of each commit and results in a final value
following the expression below:

Ucc(i, j) =
nÿ

c=1

C(i, j, c)
t ≠ Ct0(i, j) ,

where C(i, j, c) represents the number of changes of commit c done by a committer i in
the repository j. The extraction date is represented by t, Ct0(i, j) is the commit date,
and n is the total number of commits done by a committer i to a repository j.

The right-most parenthesis of Cf(i, j, k) is intended to represent how much the
target technology impacts the repository. Pu(j, k) is the usage of technology k in repository
j, whereas Tbu(j, k) is the total usage of all technologies in a repository j.

4.4.2.2 Implementation choices on the second cycle

Once the outlined process considers the integration with a version control system,
many systems could be used to play this role, such as GitHub, Git, Subversion, and
others. The decision to integrate GitHub as the version control system into the application
stems from its capacity to consolidate pertinent information within the realm of software
development. As described by the systematic mapping conducted and pointed out by
other authors in the area, GitHub serves as a robust platform capable of aggregating
specific details crucial to our context, including the programming languages employed,
executed projects, associated companies or institutions, and the duration of the experience
(7). Leveraging GitHub enhances our system’s ability to obtain a comprehensive profile of
potential software developers, providing valuable insights into their skills, projects, and
professional backgrounds.

Therefore, the GitHub API1 is used to search the desired industry domain and
technology through terms contained in the description fields of the repositories through the
1 https://docs.github.com/pt/rest/search/search?apiVersion=2022-11-28
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API’s q parameter and also desired technologies used in the projects through the language
parameter. In this project, the term q is used to enter the desired industry domain, and
the term language is used to enter the desired technologies that an end user might be
looking for.

4.4.2.3 Lessons Learned on the second cycle

After publishing the study related to the second cycle (137), gathering feedback from
other authors in the area, and investigating the results over DevFinder’s recommendation
list, two main improvements were identified as opportunities:

• Repositories filter: Some of the repositories returned from the search contained the
industry terms, but were not strictly related to the industry itself. For instance,
when the industry was related to oil or petroleum, repositories related to the game
Minecraft2 were returned.

• Data enhancement: The contribution factor could be supported by some more con-
textual and qualitative data regarding the recommended committers. For example,
a committer has a Contribution Factor of 4.8 and is well positioned on the recom-
mendation list, but other information returned from the API would still need to be
comprehended by analyzing a large amount of data scattered across the committer’s
repositories.

Figure 15 depicts the extension of the diagram of Figure 13 representing our
understanding regarding the two improvement areas where LLM could be used at the
end of the second cycle where the green LLM Filter and LLM Insight generation boxes
represent the steps to be included on the architecture.

– Figure 15 - Improvements representation on the second iteration of DevFinder
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Therefore, to perform these improvements, a new iteration of DevFinder could
leverage the capabilities of Machine Learning, as also suggested by the SMS conducted
2 Minecraft is a sandbox game developed by Mojang Studios.



67

(138), to improve the two perceived weaknesses: the filter and the data enhancement. A
thorough analysis of the second DSR cycle is explored in the Evaluation chapter.

4.4.3 Third Cycle

To incorporate the improvements derived from the lessons learned during the second
DSR interaction, the new version of DevFinder architecture integrates additional modules.
Therefore, as functional requirements implemented in this iteration we highlight FR 003,
supporting the Repositories filtering that are not related to the specified industry domain,
and FR 005, supporting the provision of insights about each ranked software developer
generated through the available data of software developers. Thus, in this iteration all
the functional requirement were considered, however, a higher attention to the new two
implemented, FR 003 and FR 005, was given.

As theoretical knowledge of this iteration, it stands out the LLM and Machine
Learning theories, and as technical and scientific knowledge, it stands for the study in
the acceptance process of the Information and Software Technology (IST) journal. Hence,
the new architecture, including the enhancements of the new iteration, is depicted in the
components diagram shown in Figure 16.

– Figure 16 - Components Diagram of DevFinder
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A complete description of functionalities is elaborated in the following sections.
Below is a brief description of each module:

• Extraction (Addresses RF 001, RF002, NRF 001 and NRF 003):

– Extraction Module: Collects data from various repositories and developer
activities, serving as the initial step in data acquisition.

– Translation Module: Converts extracted data into a standardized format,
ensuring consistency for further processing.

– Data Matching Module: Aligns the standardized data with predefined search
criteria to filter out irrelevant information.
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• Filter Module (Addresses RF 003): Uses large language models to refine data
by excluding repositories and profiles that are not directly relevant to the specified
industry or technology.

• Ranking (Addresses RF 004 and NRF 002):

– Network Modeling Module: Builds a network model to analyze relationships
and contributions among developers, highlighting key contributors.

– Ranking Generation Module: Uses the network model to rank developers
based on their contributions, technology expertise, and activity levels.

• Insights Module (Addresses RF 005): Generates detailed profiles and insights
about developers, aligning their skills with job requirements and providing context
for recruitment decisions.

• Results (Addresses RF 006):

– Ranked Developers Module: Stores the ranked list of developers, making it
easily accessible for retrieval and analysis.

– API Module: Provides external access to architecture implementation through
APIs, turning it available to integration with other applications and systems.

In order to further discuss the implemented system on a more detailed level, we have
opted to describe the solution in a Business Process Model (BPM) notation. The adoption
of BPM representation was deliberate, driven by its ability to provide a standardized
portrayal of business processes. This choice aims to enhance clarity and facilitate e�ective
communication among diverse stakeholders, including business analysts, developers, and
end-users (22), all of whom may find value in utilizing the designed solution. Notably,
BPM notation serves as a shared language, fostering cross-functional collaboration (23),
an aspect that is particularly advantageous for ensuring the reproducibility of the study,
aligning with the best practices in research and system design.

Thus, in Figure 17, the activities contained in the "Recruiter input"and "Se-
arch"columns are representatives of the "Extraction"block from the components diagram
of Figure 16. In the same way, the activity in the "Filtering"column represents the "Filter
Module", the activity in the "Ranking"column represents the "Ranking"block, the acti-
vity in the "Insight generation"column represents the "Insights Module"and the activities
contained in the "Results presentation"column are the representation of the "Results"block.

Therefore, the third DSR iteration primarily focuses on the incorporation of new
LLM modules into the DevFinder architecture. Therefore, it’s crucial for the reader to
pay close attention to two key tasks: “Filter repositories using LLMs” and “Generate
insights using LLMs”. As depicted in Figure 17, the process involves two key actors:
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i) Recruiter and ii) System. Human interaction activities from the Recruiter actor are
accommodated in two distinct lanes: the Recruiter Input lane and the Result Presentation
lane. The remaining lanes are dedicated to the steps undertaken by the System actor,
encompassing the search, ranking, and filtering processes for the results obtained from
repository searches. DevFinder’s primary process encompasses the specified actors and
lanes, along with sub-processes like the Search and Ranking processes. The activities
within the process involve the utilization of large language models. The culmination of
the entire sequence is marked by a concluding script activity responsible for generating
the final JSON file containing the recommended software developers.

– Figure 17 - DevFinder BPM representation
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4.4.3.1 Inputting activity

The inputting activity’s main objective is to prompt the system with the desired
technology and industry domain to be used in the search process. It would be the equivalent
of filling the ’Industry’ and ’Technology’ fields, and hitting the button ’Search’ to start
the process.

4.4.3.2 Search sub-process

This sub-process aims to systematically explore and retrieve information about
potential repositories and software developers from a version control system, as shown in
Figure 19.

– Figure 19 - Search sub-process BPM representation
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The initiation of a sub-process involves a crucial step of searching repositories.
This means inputting specific criteria for desired technology and industry to find relevant
repositories. Then, three activities happen simultaneously to gather key information.

Firstly, contributors’ URLs are collected, providing data about people actively
contributing to the repositories. At the same time, commits’ URLs are gathered, o�ering a
comprehensive understanding of the development history in these repositories. Additionally,
languages’ URLs are extracted to show the coding languages used.

Once these activities are done, the system organizes and saves data from the version
control system. This ensures that the collected information is structured for further analysis.
Using the foundational data, the sub-process retrieves additional information regarding
the technologies of the repositories and additional information about the committers.

The sub-process concludes by creating an Extraction JSON file. This file encapsula-
tes all the extracted data, o�ering an overview of the software developers identified during
the search. The class diagram in Figure 13 (from the second DSR cycle) demonstrates
the data structure contained in the JSON, being composed primarily by the Extraction
Class, which contains general information such as the extraction date, the number of
repositories retrieved, and an array of repositories. Each object of the class Repository is
stored with the repository ID, name, description, a number to represent the number of
bites contained in the performed changes, and data structures to represent the Committers
and the Technologies of each Repository.

4.4.3.3 LLM filter activity

Some of the repositories retrieved contained industry-related terms but were not
directly aligned with the specified industry. Hence, the utilization of LLMs addresses a
particular challenge encountered during the retrieval of repositories.

To mitigate such instances of misalignment, our filter harnesses LLMs’ comprehen-
sive language understanding capabilities. By evaluating the nuanced content of repository
descriptions, the LLM-based filter distinguishes repositories genuinely pertinent to the
specified industry from those that only contain industry-related terms tangentially.

As a way to assess the e�ectiveness of the prompt used to filter repositories in this
activity, two approaches were tested.

The main idea of Prompt 1 is to give one single instruction to the LLM containing
all the repositories and their descriptions. The LLM would then give a single answer
containing only the repositories related to the specified industry domain. On the other
hand, prompt V2 aims to request the LLM to answer a singular boolean value, representing
a granular representation of the correlation between one repository to the industry domain
being analyzed. In the Evaluation section, we discuss the comparative results of each
approach.
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4.4.3.4 Ranking sub-process

In the previous DSR cycle, we introduced the concept of the Contribution Factor
(137). This factor serves as a fundamental element for the construction of a graph network,
enabling the classification of the repository’s committers according to their contributions.
Our study delves into the comprehensive analysis of three key factors: i) the influence of a
developer within the target context, ii) the technological aspects covered by the search
terms, and iii) the temporal dimension, specifically the date on which a developer made
contributions to the project.

The ranking sub-process (Figure 19) takes advantage of the Contribution Factor
modeling and results in a recommendation list JSON as output.

– Figure 19 - Ranking sub-process BPM representation
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The initial step involves quantifying the Contribution Factor for each committer
within the repository, guided by the intricacies of the modeled network, as already discussed.
Leveraging graph-based algorithms and network analysis techniques, this calculation takes
into account factors such as code commits, issue resolutions, and collaborative interactions.
The Contribution Factor serves as a quantitative metric, o�ering a nuanced evaluation of
a committer’s impact on the collaborative software development ecosystem (137).

After calculating Contribution Factors, an important step involves filtering and
ranking committers based on their respective metrics. This activity aids in identifying
and highlighting contributors who significantly influence the software development process.
The ranking mechanism provides a clear hierarchy of contributors, o�ering insights into
their relative impact and contributions. Additional data is extracted and generated to
enrich the understanding of committers’ contributions and further refine the ranking
process.
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The final step involves consolidating the ranked committers and their associated
information into a RecommendationList JSON file. This file serves as a resource, providing
a structured representation of committers, their Contribution Factors, and additional
insights. The JSON format facilitates seamless integration with other tools and systems,
enabling downstream processes such as team formation, mentorship allocation, and project
assignment based on the nuanced analysis of contributor dynamics.

4.4.3.5 Insight generation activity

On the one hand, if the Contribution Factor is used for ranking developers on the
final recommendation list, on the other hand, a representation of how much the data of
each developer is aligned with the requirements of the hiring company would provide a
better glimpse of the person being screened. This contextual data is essential for accurately
representing each professional’s profile, particularly considering the unique requirements
of the specific job opening. For instance, if a hiring company is seeking a developer with
extensive experience in Python and a background in data science, the system not only
ranks developers based on their overall contributions but also highlights those whose work
and skills specifically match these criteria. This contextual data could be essential for
accurately representing each professional’s profile, ensuring that the unique requirements
of the specific job opening are met.

Therefore, the core objective of the insight field is to o�er a comprehensive overview
of developers and an initial analysis conducted by an LLM to assess the alignment between
the job specifications and the technical skills possessed by the developers.

A prompt is crafted for the LLM to achieve this, incorporating pertinent developer
information sourced from their repositories. This includes details such as name, email,
address, bio, repository descriptions, and the primary languages used in the repositories.
The prompt also encompasses information about the technology and industry domain
specified by the Recruiter as constraints for the search. By providing this comprehensive
data set, the LLM can generate insights that facilitate a more informed evaluation of the
match between the developers’ capabilities and the specific requirements of the job at
hand.

The construction of the insight generation prompt was guided by strategies outlined
by Fan (2023). These strategies contextualize the LLM, providing clear instructions on
the nature of the request and encouraging it to produce responses that positively impact
job recruiters involved in the personnel selection process (8). Further discussed in the
Evaluation section, this approach aims to optimize the relevance and quality of the
generated insights, aligning them with the specific needs and expectations of recruiters in
the context of personnel selection.
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4.4.3.6 Final JSON activity

The primary function of the last script activity is straightforward: it retrieves
data from preceding steps and assembles a final JSON file, which serves as the solution’s
response. Figure 20 demonstrates, through a class diagram, the resultant structure of the
DevFinder architecture. This structure aims to provide all the essential information to a
requesting service that may use the API Module of DevFinder.

On the Recommendation List class representation, there is information regarding
the request itself, such as the extraction date, the number of returned committers, and
the list of committers. The list of the committers is composed of items of the Committer
class representation, containing not only essential information of the committer, such as
name and email, but mainly the contribution factor, the insight, and the insight accuracy
for the committer. Beyond that, each Committer is attributed with a list of repositories
represented by the class Repository, which is formed by the fields: name, description, and
language.

– Figure 20 - Classes Diagram representation of the final JSON
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This JSON, once generated, provides integration into other applications through
an API. Consequently, the solution can respond to requests and deliver a curated list
of recommended software developers as a service through the API Module (Figure 16).
Therefore, multiple applications could leverage the solution proposed by the implementation
of DevFinder architecture.
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4.4.4 Non-functional requirements assessment

Regarding the described implementation and the outline non-functional require-
ments (NFR), the NFR can be considered to be met. The dependability (NFR 001) of
the DevFinder system is enhanced by the design and implementation of the API Module
within the Data Storage Block. This module is responsible for providing data access to
other systems that consume data from DevFinder. To adhere to extensibility principles
(NFR 002), the system is architected with modular components that can be extended or
replaced. The clear separation of concerns within the Extraction Block, Filter Module,
Ranking Block, and Insights Module allows for the seamless addition of new features or
enhancements. Scalability (NFR 003) is a core consideration in the DevFinder system’s
design. The architecture supports the integration of new data sources and the scaling of
data processing capabilities. The use of advanced large language models (LLMs) in the
Filter and Insights Modules guarantees that the analysis and filtering processes remain
relevant and accurate.

4.4.4.1 Implementation choices on the third cycle

To operationalize and assess the outlined process, decisions must be made regarding
selecting systems for integrating the version control system and Large Language Models
(LLMs).

Once the outlined process considers the integration with a version control system,
many systems could be used to play this role, such as GitHub, Git, Subversion, and others.
The decision to integrate GitHub3 as the version control system into the application
stems from its capacity to consolidate pertinent information within the realm of software
development. GitHub serves as a robust platform capable of aggregating specific details
crucial to our context, including the programming languages employed, executed projects,
associated companies or institutions, and the duration of experience (7). Leveraging
GitHub enhances our system’s ability to obtain a comprehensive profile of potential
software developers, providing valuable insights into their skills, projects, and professional
backgrounds.

For instance, consider a scenario where our system needs to evaluate the expertise
of a software developer named Jane Doe. By integrating GitHub, our application can
automatically pull Jane’s profile, which includes her repositories, contribution history,
and specific details about the programming languages she has used. For instance, Jane’s
GitHub profile reveals she has actively contributed to several projects involving Python and
JavaScript over the last three years, working on diverse applications from web development
to machine learning. This information helps our system to compile a detailed portfolio,
highlighting her proficiency in these languages and the nature of her projects.
3 https://github.com
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Various models can be employed to fulfill this function when incorporating LLMs
integration into the outlined process. Examples include GPT (Generative Pre-trained
Transformer), BERT (Bidirectional Encoder Representations from Transformers), T5
(Text-to-Text Transfer Transformer), and others. The choice of employing GPT4 as the
Large Language Model for the application is grounded in its proficiency in language-related
tasks. GPT is primarily designed for language generation, excelling in tasks that involve
mapping embedding vectors back to the text space and generating contextually relevant
responses (8). This characteristic aligns with our system’s objectives, where e�ective
communication and contextual understanding play a pivotal role. By integrating GPT,
our application can generate insights and responses based on the collected data, fostering
a more dynamic and responsive user experience (8).

4.5 Final Remarks of the Chapter

This chapter explores the DevFinder architecture, detailing its key characteristics
and methodologies for recommending software developers. We refined the system through
cycles of the Design Science Research framework, focusing on improving the repository
filter and the data.

In the first DSR cycle, DevFinder was proposed to be integrated into three data sets
and to use ontologies, which were revised to be removed from the solution. The second cycle
reveals insights on how to optimize the relevance of results and the importance of contextual
data for the Contribution Factor, evaluating a developer’s impact on collaborative software
development. In the third cycle, we integrated Large Language Models (LLMs), improving
repository filtering and analysis and in the representation of the Business Process Model
(BPM), increasing clarity in DevFinder architecture. The iterative journey exemplifies
Design Science Research, continually refining the solution’s functionalities.

A thorough analysis of the third DSR cycle is explored in the Evaluation chapter.

4 https://openai.com
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5 Evaluation

In this chapter, we present an evaluation and assessment regarding DevFinder
architecture steps in generating the recommendation list. Firstly, we delve into the complex
network discussion and secondly, we deepen the assessment regarding the LLM integration.

5.1 Complex network

This section explores the evaluation of the Complex Network proposal implemented
in the second DSR cycle and discussed in Chapter 4. To further understand the results of
DevFinder in terms of collaboration, the interaction between the proposed Contribution
Factor with other classic metrics, such as closeness and degree centrality, was investigated.
Considering the proposed bipartite graph, as presented on the second cycle of development
of DevFinder, a committer node with a high closeness value would represent a developer
who committed to multiple repositories, possibly indicating a strong collaboration behavior.
As so, a committer node with a high degree of centrality value would also indicate a strong
collaboration behavior once this node would have a high number of connections.

Aligned with the proposed Contribution Factor, the most desired software developer
would be ranked at the top of the three lists: Contribution Factor, closeness, and degree
centrality. Hence, the final result of this approach is the intersection between the best-
ranked committers regarding these three metrics. We define the committers with the highest
Contribution Factors as TopCf , the committers with the highest closeness centrality as
TopCl, and the committers with the highest degree centrality as TopDg. Therefore, the
final recommended specialists are represented by the intersection TopCf flTopCl flTopDg.

To assess the proposed solution’s e�ectiveness, we performed instances aligning
di�erent industry domains and technologies. The chosen contexts were: i) Education and
PHP, ii) Oil and JavaScript, and iii) Finance and Python. These combinations of industry
domains and technologies were chosen due to the higher numbers of repositories returned
after a study of multiple API responses to di�erent combinations.

Applying the intersection to the three chosen contexts, we obtained the final number
of committers. As shown in Table 7, for the Education and PHP search, the initial number
of committers was 233, and the final 16. For the second search, Oil and JavaScript, the
initial number of committers was 222 and the final number was 33. Finally, the Finance
and Python search presented an initial number of committers of 239 and a final number of
31.

Figures 21, 22, and 23 show box plot graphics of the mentioned metrics for each
of the three combinations of industry domain and technology. The metric values were
normalized so that a better understanding of their importance could be discussed.
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Table 7 – Number of committers
Education
and PHP

Oil and
JavaScript

Finance and
Python

Initial
number of
committers

233 222 239

Final
number of
committers

16 33 31

For the first search, shown in Figure 21, the highest contribution factor value was
0.7949, the lowest was 0.0112, and the standard deviation of 0.2110. These numbers show
a great leap between the final experts’ CFs, which would result in higher attention to the
best-ranked experts on the list by a final user of the RS looking for a new contributor for
his or her team.

The first expert on this search was also best allocated in terms of closeness and
degree centrality. The di�erence in closeness between the first and second places in our
ranking is 0.1142, and the di�erence in degree centrality is 0.3781. When the last expert
on the list has a degree centrality of 0.1944, it turns out that only the di�erence between
the first and second-best-ranked experts is higher than the last-raked expert’s degree
centrality. This shows that the first expert not only contributed to one repository but to
multiple repositories, being well connected to the network, becoming the most sought-after
specialist if you are an RS end user looking for a new collaborator for your team in the
PHP and Education context.

In the second search, shown in Figure 22, the highest contribution factor value was
0.6448, the lowest was 0.0158, and the standard deviation of 0.1395. Despite having a
considerable standard deviation, the CFs values are more homogeneous than those in the
first search.

The highest Closeness was 0.3728 and the highest degree centrality was 0.4376.
Nonetheless, the ranked expert with these highest metrics is not the same as the best ranked
in the Contribution Factor. In fact, the position of the best-ranked expert considering
closeness and degree centrality is 26 from 33.

In this case, if you are a recruiter looking for a new team member, a choice would
have to be made. The first-positioned experts from this combination of technology and
industry domain are those with the highest contributions to the repositories they have
committed, but they are not the same as those who committed to the highest number of
repositories. The ones with the highest Closeness and Degree Centrality metrics would
likely be the ones with the highest chances of having collaborative behavior.

In the third search, shown in Figure 23, the highest Contribution Factor value
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– Figure 21 - Results of the first search

– Figure 22 - Results of the second search

was 0.6513, the lowest was 0.0004, and the standard deviation of 0.1615. This was the
most homogeneous result of the three, presenting more committers with high scores at
the top of the list. In terms of the Contribution Factor, a recruiter looking for a new
team member would have more options, once there is a higher number of experts with a
relatively elevated CF.

From a Closeness and Degree Centrality point of view, something similar to the
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second search happens: the ranked expert with the highest metrics is not the same as the
ones with the highest CFs. Hence, a decision would have to be taken to prior di�erent
collaboration aspects when recruiting this new team member.

– Figure 23 - Results of the third search

The discussed results are a positive indication that our research question is attended.
DevFinder solution is capable of providing suitable specialists that meet the criteria of
technical specificity allied to the specificity of acting in specific domains of the industry.
The presented data would also ease recruiters’ decision-making in terms of collaboration,
indicating di�erent aspects of the ranked experts.

5.1.1 Analysis

Further analysis can be made over the final returned committers. Figure 24 shows
the Contribution Factor Frequency. The x-axis represents the Contribution Factor, whilst
the y-axis represents the number of committers having the same value of Contribution
Factors.

It is possible to see a trend in the three di�erent contexts when the same sort of
behavior happens to all searches. There is a high number of CFs with values near zero.
These committers could be understood as those who contributed little to repositories,
being the most of the final committers list. On the other hand, there are few contributors
with high CF values, being these ones the most desired contributors to a project in each
context.

There are di�erences between the three contexts, though. The education and PHP
along with Finance and Python graphics show fewer intermediary committers between
the lowest and highest CF values, whilst the Oil and JavaScript demonstrate a more
heterogeneous distribution on the x-axis. This would mean that if specialists from the top
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of the Oil and JavaScript list eventually did not join a recruiter’s project, there would be
more intermediary options to fulfill the role.

It should be highlighted that these graphics take into account only the Contribution
Factor values of all committers found. The discussed intersection between CF, closeness,
and degree centrality filtered some of the committers from the list, even those with high
CF values. Due to this fact, some of the highest committers shown on the graphic are
not present in the previous Figures and analyses once they did not possess high enough
Closeness and Degree centrality values.

– Figure 24 - Contribution Factor Frequency

Once we now have data from three di�erent contexts, it is possible to take a broader
look at the committers as a community. In an e�ort to investigate deeper collaboration
aspects of the three di�erent contexts as communities, the Modularity Clustering for
each of them was calculated by first calculating partitions of the graph using the Louvain
heuristics and then plotting the graphics on Figure 25 using NetworkX packages.

A network with high modularity would have a dense connection between its nodes
but also sparse connections between di�erent clusters. In our graph, each color would
mean a di�erent community or cluster and a connection between them would indicate a
possibility of collaboration.

An interesting aspect of the plotted graphic is that the Education and PHP along
with Finance and Python show a denser connection overview, whilst the Oil and JavaScript
network presents a less dense connection overview. This could indicate that these two
denser would have a higher chance to present committers that collaborate between them.
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– Figure 25 - Modularity Clutering

5.2 Large Language Model

This section explores the evaluation of the Large Language Model proposal imple-
mented in the third DSR cycle and discussed in Chapter 4. In the world of recommendation
tasks, Large Language Models have been often employed. Liu (2023) demonstrated a
method employing ChatGPT as a system where task-specific descriptions were introduced
to enable few-shot Instructed Commonsense Learning (ICL) based on input-output exam-
ples tailored for distinct recommendation tasks (9). In-context demonstrations have also
proven valuable for enhancing recommendation performance. Building on this, a text des-
cription strategy, as outlined by Zhiyuli (2023) involves contextualizing the LLM’s function
with prompts like “You are a book rating expert” to augment in-context demonstrations
(10).

5.2.1 Method

In order to evaluate the new proposed iteration on DevFinder, we propose the
following Goal, Question, and Metric (GQM) parameters (161). GQM was chosen due to
its structured framework for aligning measurement activities with project goals. GQM
enables clear goal-setting, precise question formulation, and relevant metric definition,
ensuring a comprehensive evaluation of LLM performance in recommendation tasks.

5.2.1.1 Goal

To assess the e�cacy of the integration of Large Language Models integration to
DevFinder on the filtering task and on the insight generation task.

5.2.1.2 Questions

For the filtering task:

• Q1: How accurately can the LLM filter repositories be relevant to specific industry
domains?
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• Q2: What is the precision and recall of the LLM in distinguishing relevant repositories
from irrelevant ones?

• Q3: How does the LLM’s performance vary between di�erent prompt models and
industry domain contexts?

For the insight generation task:

• Q4: To what extent does the LLM generate insights that are strictly related to the
input data?

• Q5: How often does the LLM provide insightful analyses regarding the contributor’s
suitability for a position?

• Q6: How do the lengths of input prompts a�ect the accuracy of insights generated
by the LLM?

5.2.1.3 Metrics

For the filtering task:

• M1: Precision, recall, F1-score and accuracy (%) for each version of the filter prompt
(V1 and V2) across di�erent industry domain contexts.

• M2: Comparative analysis of confusion matrices to assess the performance of di�erent
prompt models in each industry domain context.

For the insight generation task:

• M4: Percentage of insights strictly related to the input data.

• M5: Percentage of insightful analyses regarding contributor suitability for a position.

• M6: Correlation between prompt length and the occurrence of incorrect position
matching in insights generated by the LLM.

Our filter evaluation incorporates 855 repositories from four case studies involving
di�erent industry domains and technologies: i) Insurance & Python (138 repositories),
ii) Research & Python (230 repositories), iii) Banking & Java (249 repositories), and iv)
Games & C (238 repositories). Depicted on Figure 19, the search for the repositories
considers both technology and industry domains on the API request, returning repositories
containing the desired technology as the primary programming language and the industry
within the terms on the title and description of the repository. The selection of these
specific combinations was strategic, driven by the need for a comprehensive understanding
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derived from a larger number of repositories obtained through the GitHub API after testing
other combinations. The chosen industry domains and technologies serve as real-world
contexts for evaluating the LLM filter and insight generation capabilities. The results of
this assessment contribute to our understanding of LLMs in recommendation tasks and
provide information for market stakeholders, organizations, and job recruiters. Our analysis
aims to bridge the gap between theoretical advancements and practical applications by
focusing on real-world scenarios.

In the evaluation of the filtering task, we manually classified 855 repositories
into those related and not related to the specific industry domain under analysis. The
methodology for this classification involved an examination of each repository’s title and
description by the authors of this study, followed by the assignment of a Boolean value
indicating its relevance to the subject industry domain. After that, a comparison between
the author’s classification of each repository and LLM’s classification for each repository
was done to determine the accuracy rate of the filtering task using the Large Language
Model.

As previously mentioned, two versions of a filtering prompt were designed with
distinct approaches to address concerns about the explainability of LLMs, often viewed
as “black boxes” (8). We sought to understand the behavior of the LLM in the filtering
task. To achieve this understanding, we tested the two distinct prompt models in the
application and discuss the results on the following paragraphs.

The first model, Filter Prompt V1, instructed the LLM to analyze and filter a
single JSON file containing all repository descriptions. On the other hand, Filter Prompt
V2 involved more granular evaluations, requesting the LLM to determine the relevance of
a specific repository to the industry domain. Therefore, the two proposed versions of the
filtering prompt are:

Filter Prompt V1: “Filter the JSON below to include items with des-
criptions related to the ${industry} industry. Use the ‘Description’ field
for filtering. Your answer should be in JSON format, listing the remainder
repositories.
Here is the input JSON: ${repositoriesJSON}.”

Filter Prompt V2: “Return 0 or 1. The character should be 1 if the
description below is correlated to the ${industry} industry and 0 if it is not.
Your answer should have only one character. Description: ${repositoriesDes-
criptions}.”

To answer questions Q1, Q2, and Q3, while also applying the metrics M1 and
M2 of the proposed GQM, we provide a set of confusion matrices (24), delineating the
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performance metrics for every filter version within each distinct case study. The confusion
matrices facilitate the systematic examination of true positive (PP), true negative (NN),
false positive (PN), and false negative (NP) classifications, o�ering a comprehensive
overview of the model’s strengths and weaknesses in distinguishing repositories meeting a
specified condition from those that do not.

A true positive (PP) represents a case where the authors’ classification tagged a
repository as related to the desired industry and the LLM also tagged it as related to the
desired industry. A true negative (NN) occurs when both the model and authors identify
the repository as not related to the desired industry. A false positive (PN) arises when the
authors classify a repository as related to the desired industry, but the model incorrectly
classifies it as not related. A false negative (NP) occurs when the authors correctly classify
a repository as related to the desired industry, but the model incorrectly classifies it as
not related.

5.2.1.4 Insurance & Python

As shown in Table 8, in the case of Filter V2, there is an improvement in accurately
identifying actually positive instances compared to Filter V1, achieving a higher percentage
of predicted positives for actually positive cases (69.06%) compared to Filter V1’s 19.57%.
This demonstrates a substantial increase in the ability of Filter V2 to identify positive
instances correctly.

Table 8 – Confusion matrix for the first case study

Insurance & Python
Filter V1 Filter V2
Actually
Positive

Actually
Negative

Actually
Positive

Actually
Negative

Predicted
Positive

Predicted
Positive

Predicted
Negative

Predicted
Negative

19,57% 60,14% 69,06% 9,35%

5,07% 15,22% 12,23% 9,35%
Precision 24,55% Precision 88,07%
Recall 79,41% Recall 84,96%
F1 37,50% F1 86,49%

Accuracy 34,78% Accuracy 78,42%

Moreover, Filter V2 shows progress in reducing false positives, with only 9.35%
predicted positives for actually negative cases, whereas Filter V1 had a higher false positive
rate of 60.14%. This indicates an improvement in the precision of Filter V2.

However, challenges remain evident. The true negative rate for Filter V2 is 9.35%,
which is lower than Filter V1’s 15.22%. Additionally, the false negative rate for Filter V2
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is 12.23%, higher than Filter V1’s 5.07%. This suggests that there are areas where Filter
V2’s performance does not surpass that of Filter V1.

Overall, the PP + NN values highlight that Filter V2 achieves a combined accuracy
of 78.42%, significantly higher than Filter V1’s 34.78%. This represents a substantial
improvement of 43.64% in overall accuracy for Filter V2 in this case study, meaning that
Filter V2 could perform better than V1 on correctly identifying those repositories that are
not related to the search terms but also leaving the ones that are correctly related to the
search terms on the final repositories list.

Table 8 also presents the GQM metrics used to assess the e�ectiveness of two
di�erent filters, Filter V1 and Filter V2. Precision indicates the accuracy of positive
predictions made by the filters, with Filter V2 achieving a significantly higher precision
of 88.07% compared to Filter V1’s 24.55%. Recall measures the ability of the filters to
correctly identify positive cases from the total actual positives, where Filter V2 outperforms
Filter V1 with a recall of 84.96% versus 79.41%. The F1 score combines precision and recall
into a single metric, with Filter V2 achieving a higher score of 86.49% compared to Filter
V1’s 37.50%. Finally, accuracy measures the overall correctness of the predictions, with
Filter V2 demonstrating a substantially higher accuracy of 78.42% compared to Filter V1’s
34.78%. These metrics collectively illustrate the significant performance improvements
achieved by transitioning from Filter V1 to Filter V2 in insurance data analysis using
Python.

5.2.1.5 Research & Python

In the second case study (Table 9), the analysis reveals that Filter V2 demonstrates
an improvement in accurately identifying actually positive instances, achieving 55.22%,
compared to Filter V1’s 8.70%, also displaying progress in reducing false positives from
46.96% on V1 to 0.43% on V2.

Table 9 – Confusion matrix for the second case study

Reseach & Python
Filter V1 Filter V2
Actually
Positive

Actually
Negative

Actually
Positive

Actually
Negative

Predicted
Positive

Predicted
Positive

Predicted
Negative

Predicted
Negative

8,70% 46,96% 55,22% 0,43%

5,65% 38,70% 40,43% 3,91%
Precision 15,63% Precision 99,22%
Recall 60,61% Recall 57,73%
F1 24,84% F1 72,99%

Accuracy 47,39% Accuracy 59,13%
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However, while progress is observed, challenges persist. True negative from V1
(38.70%) demonstrates a better performance than V2’s 3.91% and false negative from V2
(40.43%) is higher than V1’s 5.65%.

Overall, The PP + NN values highlight that Filter V2 achieves an accuracy of
59.13%, surpassing Filter V1’s 47.39%, presenting an improvement of 11.74% in this case
study.

In comparing Filter V1 to Filter V2 based on precision, recall, F1, and accuracy,
it is observed that Filter V1 exhibits lower precision, recall, and F1 scores compared to
Filter V2. Specifically, Filter V1 demonstrates precision of 15.63%, recall of 60.61%, and
F1 score of 24.84%, whereas Filter V2 shows significantly higher precision (99.22%), recall
(57.73%), and F1 score (72.99%). Moreover, Filter V2 also surpasses Filter V1 in terms of
accuracy, with Filter V2 achieving an accuracy of 59.13% compared to Filter V1’s 47.39%.

5.2.1.6 Banking & Java

The analysis of the Banking & Java case study’s confusion matrices, depicted in
Table 10, shows another improvement of V2 in accurately predicting positive instances,
achieving a positive classification rate of 53.41% compared to the 18.47% achieved by Filter
V1. Moreover, Filter V2 is e�ective in minimizing false positives, achieving a low rate of
4.82%, contributing to an overall accuracy of 83.53%. In contrast, Filter V1 exhibits a
higher false positive rate at 39.76%.

Table 10 – Confusion matrix for the third case study

Banking & Java
Filter V1 Filter V2
Actually
Positive

Actually
Negative

Actually
Positive

Actually
Negative

Predicted
Positive

Predicted
Positive

Predicted
Negative

Predicted
Negative

18,47% 39,76% 53,41% 4,82%

8,84% 32,93% 11,65% 30,12%
Precision 31,72% Precision 91,72%
Recall 67,65% Recall 82,10%
F1 43,19% F1 86,64%

Accuracy 51,41% Accuracy 83,53%

While Filter V2 demonstrates success in positive classifications and overall accuracy,
challenges persist in reducing false negatives, as indicated by the 11.65% rate if compared
to V1’s 8.84%.

Overall, Filter V2 presented an improvement of 32.12% in this case study.
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Comparing Filter V1 to Filter V2 based on precision, recall, F1, and accuracy,
it is apparent that Filter V2 performs better across all metrics. Filter V1 shows lower
precision, recall, and F1 score compared to Filter V2. Specifically, Filter V1 exhibits
precision of 31.72%, recall of 67.65%, and F1 score of 43.19%, while Filter V2 demonstrates
higher precision (91.72%), recall (82.10%), and F1 score (86.64%). Additionally, Filter
V2 achieves a significantly higher accuracy of 83.53%, whereas Filter V1 obtains a lower
accuracy of 51.41%.

5.2.1.7 Games & C

The analysis of the Games & C case study’s confusion matrices (Table 11) reveals
disparities in the performance of Filter V1 and Filter V2. Filter V2 demonstrates an
enhancement in accurately predicting positive instances, achieving an 88.24% positive
classification rate compared to the 48.32% achieved by Filter V1.

Table 11 – Confusion matrix for the fourth case study

Games & C
Filter V1 Filter V2
Actually
Positive

Actually
Negative

Actually
Positive

Actually
Negative

Predicted
Positive

Predicted
Positive

Predicted
Negative

Predicted
Negative

48,32% 42,02% 88,24% 2,10%

3,78% 5,88% 7,56% 2,10%
Precision 53,49% Precision 97,67%
Recall 92,74% Recall 92,11%
F1 67,85% F1 94,81%

Accuracy 54,20% Accuracy 90,34%

Moreover, Filter V2 minimizes false positives, achieving a low rate of 2.10%, while
maintaining a true negative rate at 2.10%. In contrast, Filter V1 exhibits a higher false
positive rate at 42.02%.

The PP + NN values emphasize that Filter V2 achieves an overall accuracy of
90.34%, a significant improvement over Filter V1’s 54.20%, an improvement of 36.10%.
While Filter V2 excels in positive classifications and overall accuracy, challenges persist in
reducing false negatives, as indicated by the 7.56% rate.

Comparing Filter V1 to Filter V2 based on precision, recall, F1, and accuracy, it is
evident that Filter V2 outperforms Filter V1 across all metrics. Filter V1 shows lower
precision, recall, and F1 score compared to Filter V2. Specifically, Filter V1 exhibits
precision of 53.49%, recall of 92.74%, and F1 score of 67.85%, while Filter V2 demonstrates
higher precision (97.67%), recall (92.11%), and F1 score (94.81%). Additionally, Filter
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V2 achieves a significantly higher accuracy of 90.34%, whereas Filter V1 obtains a lower
accuracy of 54.20%. These results indicate that Filter V2 provides more accurate predictions
in the context of games and programming in the C language.

5.2.2 Trends over the Filters comparison

Across all four case studies, trends emerge in the GQM metrics, highlighting that,
in each case, Filter V2 consistently exhibits improvements in accurately identifying positive
instances compared to Filter V1, being particularly pronounced in positive classification
rates, as shown in Table 12.

Table 12 – Mean Average of GQM Metrics

Metric
Mean Everage

Precision
Recall

F1
Accuracy

Filter V1 Filter V2
31,35% 94,17%
75,10% 79,22%
43,35% 85,23%
46,95% 77,85%

Starting with precision, Filter V1 exhibits a relatively low precision of 31.35%.
This figure indicates that out of all instances predicted as positive by Filter V1, only
approximately 31.35% are actually positive. Conversely, Filter V2 showcases a substantially
higher precision of 94.17%, implying a significantly better ability to accurately identify
positive instances. This stark contrast highlights the superiority of Filter V2 in terms of
precision, suggesting a more reliable positive identification compared to Filter V1.

Moving on to recall, Filter V1 demonstrates a recall of 75.10%, indicating that it
correctly identifies approximately 75.10% of all actual positive instances. While this figure
is relatively high, Filter V2 surpasses it with a slightly higher recall of 79.22%, indicating
a marginally better ability to capture positive instances. Despite the subtle di�erence,
this suggests that Filter V2 may be more e�ective in comprehensively identifying positive
instances compared to Filter V1.

The F1 score, which balances precision and recall, provides further insights into
the overall performance of each filter. Filter V1 achieves an F1 score of 43.35%, reflecting
a moderate overall performance considering both precision and recall. In contrast, Filter
V2 attains a significantly higher F1 score of 85.23%, indicating a better balance between
precision and recall. This suggests that Filter V2 maintains a more optimal trade-
o� between accurately identifying positive instances and minimizing misclassifications
compared to Filter V1.
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Finally, examining accuracy, which denotes the proportion of correctly classified
instances out of the total instances, Filter V1 achieves an accuracy of 46.95%. While
this figure indicates a relatively low accuracy rate for Filter V1, Filter V2 demonstrates a
substantially higher accuracy of 77.85%. This significant disparity underscores the superior
overall classification accuracy of Filter V2 compared to Filter V1, further reinforcing its
e�cacy in accurately classifying instances.

Notably, the atomic and task-oriented prompts employed in Version 2 showcase
superior results compared to the broader, with multiple points for analysis prompts in
Version 1. This aligns with findings from other researchers in the field (8), reinforcing the
e�cacy of a more focused and specific approach in filter tasks.

Even though filter the results of V2 suggests a better performance, challenges
persist across all domains in mitigating false negatives. In each case, Filter V2 faces
di�culties achieving optimal performance in correctly identifying instances that Filter V1
previously misclassified. This common challenge suggests that while language model-based
enhancements contribute to improvements in positive classifications and overall accuracy,
addressing false negatives remains a complex aspect that requires further attention and
fine-tuning.

5.2.3 Insights generation

The following Parts 1 to 5 compose the input prompt sent to the LLM to generate
insights about each developer:

Part 1: “The following data presents information about a software developer
and the repositories of this software developer on GitHub.”

The main idea of Part 1 is to present the data and contextualize the LLM on what
it is looking for.

Part 2: “Write a paragraph containing insights about this software developer,
considering that a job recruiter will read the paragraph.”

In Part 2, it is given a direct request, positioning how the answer should be written
and who it would be read by.

Part 3: “The job recruiter is looking for a person who has worked with
projects related to the ${industry} industry and who possesses experience in
${stack} programming language”

Part 3 establishes the constraints of insight generation, telling the industry and
the desired technology the LLM should focus on.
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Part 4: “You must consider whether the software developer is or is not
suitable for composing a team where experience in the ${stack} programming
language is mandatory and experience with projects related to the ${industry}
industry is preferable.”

Here, additional context is provided by elucidating the specific considerations that
the LLM should take into account during the analysis. This contextual information aims
to enhance the positioning of the job recruiter who will be reading the response.

Part 5: “If the software developer is not a match for these conditions, you
can also mention that he or she is not an interesting candidate.”

Finally, in Part 5, the LLM is clearly suggested to consider not recommending
the subject committer in case their data does not align with the desired industry and
technology.

In summary, the final prompt sent to the LLM comprises the amalgamation of
Parts 1 to 5, coupled with the essential information of the committer. The following
discussion delves into a detailed examination of the outcomes and analysis, exploring the
interaction dynamics between the provided prompt description and the LLM within the
context of the solution.

5.2.3.1 Insight generation assessment

In the assessment of LLM’s insight generation, resulting from the second module
that employs LLM that was integrated into DevFinder, our primary objective was to
discern instances of “hallucination” (11, 12), where the language model produces outputs
that may sound reasonable but lack factual accuracy or fail to trace back to the input
data. This evaluation was conducted across the same four contexts considered in the filter
evaluation: i) Insurance & Python, ii) Research & Python, iii) Banking & Java, and iv)
Games & C.

The dataset, encompassing contributions from 697 committers, was submitted
to the insight generation prompt detailed in section 3, with 59 contributors from the
Insurance & Python context, 281 from the Research & Python context, 101 from the
Banking & Java context, and 256 from the Games & C context.

To assess potential instances of “hallucination” in the Large Language Model’s
responses, each output from LLM underwent investigation. The methodology for this
investigation involved comparing the input data transmitted to the LLM’s API and the
subsequent responses generated. In this investigative process, two key questions were
addressed, with boolean values annotated to facilitate metric generation:
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Table 14 – Insights assessment metrics results

Metric Insurance &
Python

Research &
Python

Banking &
Java Game & C

Strictly related 93,22% 98,10% 97,57% 95,43%
Not strictly related 6,78% 1,90% 2,43% 4,57%

Correct position matching 95,22% 96,60% 96,27% 96,63%
Incorrect position matching 4,78% 3,40% 3,73% 3,37%

1. Is the insight strictly related to the information passed to the LLM?

2. Does the final analysis regarding the contributor’s suitability for the position make
sense?

These questions present an e�ort to attend metrics M4, M5 and M6 and aim to
provide not only a quantitative assessment of the LLM’s accuracy but also qualitative in-
sights into the potential occurrence of “hallucinatory” outputs in the context of contributor
assessments.

After manually annotating the Boolean values to each LLM response for all com-
mitters, it was possible to assemble a table to present the final results of the analysis.
Hence, Table 14 demonstrates the results for the “hallucination” assessment. To better
represent each answer of the analysis, four metrics were defined and presented in Table 13.

Table 13 – Insights assessment metrics definition

Metric Meaning Correlation

Strictly related

Not strictly related

Correct position matching

Incorrect position matching

The insight is strictly related to the information
passed to the LLM Question  was tagged as True

The insight is not strictly related to the
information passed to the LLM Question  was tagged as False

The final analysis regarding the contributor's
suitability for the position does make sense Question  was tagged as True
The final analysis regarding the contributor's

suitability for the position does not make sense Question  was tagged as False

a

a

b

b

The data in Table 14 provides insights into the LLM’s performance during the
“hallucination” assessment across di�erent contexts. There is a noticeable trend with a high
percentage of responses falling under the category of strictly related insights (93.22% to
98.10%). This suggests that LLM can connect its responses to the input data, consistently
generating relevant and clear answers. Therefore, the percentage of responses marked as
not strictly related is low (6.78% to 1.90%).
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Looking at the correct position-matching metric, the percentages are consistently
high across all contexts (95.22% to 96.63%). This implies that LLM’s final analyses
regarding contributor suitability generally make sense and align with the input information.

Similarly, the percentage of responses categorized as incorrect position matching
is low (4.78% to 3.37%). This suggests that LLM successfully provides contextually
appropriate and accurate analyses, minimizing instances where the final assessment doesn’t
fit the context.

5.2.3.2 Accuracy Zones

We conducted an investigation into the size of input texts to ascertain whether
there exists any correlation with the performance of the LLM, particularly in cases of
misaligned positions. Given the observed variance in text lengths across prompts, our
analysis focused on exploring potential links between the accuracy of LLM responses and
input text length.

The main objective was to analyze trends in the LLM input length and their
correlation over the generated insights previously tagged with the metrics of "Correct
position matching"and "Incorrect position matching". Hence, the defined Accuracy Zones
are Trust, Caution, and Suspect, where their names reflect the warning that a job recruiter
should have on trusting or suspecting the generated insight.

Therefore, to define each zone, we examined the study cases under investigation to
establish the boundaries for each accuracy zone. The character count for each accuracy
zone is determined by calculating the mean average across the set of Accuracy Zones for
each study case (as shown in Table 15), following the outlined rule:

• Trust Zone: Spans from 43 characters to the lowest count where an incorrect
position matching occurs. The average ranges from 0 to 872 characters.

• Caution Zone: Extends from the lowest count where an incorrect position matching
occurred to the highest count where a correct position matching occurred. The
average ranges from 873 to 4129 characters.

• Suspect Zone: Covers from the highest count where a correct position matching
occurred to the highest count where an incorrect position matching occurred. The
average ranges from 4130 to 7929 characters.

Given the potential inaccuracies in the insight generation task, the proposed
Accuracy Zones could help job recruiters assess the precision of the generated insight.
Therefore, the generated insights should be accompanied by a tag indicating the accuracy
zone in which it falls. Therefore, the generated insights should be accompanied by a tag
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Table 15 – Accuracy Zones Ranges

Trust Caution Suspect

Insurance
& Python

Research &
Python

Banking &
Java

Games & C
Everage 43 872 873 4129 4130 7929

Min Max Min Max Min Max

37 1375 1347 4276 4277 6042

42 895 896 3810 3811 6662

35 583 584 5088 5089 12701
57 635 636 3341 3342 6309

of the respective accuracy zone where the insight is categorized, being represented on the
final JSON (Figure 20) by the field “insightAccuracy”.

5.2.4 User Interface

Figures 26 and 27 depict a user interface that could leverage DevFinder’s architec-
ture implementation by leveraging GitHub repositories and utilizing LLMs for filtering
and insight generation. The figures reflect the system implementation detailed in Section
3, considering the mitigations discussed in Section 4 to address potential downsides. The
elements presented on the UI encapsulate the concepts and concerns deliberated throughout
this study.

The UI presented in Figure 26 o�ers a view of the search and result components.
Within the search component, users would input their desired industry and technology,
clicking the “Search” button to initiate the process outlined in Section 3. Following this,
DevFinder executes the specified process, and a new tab appears on the Result component,
allowing users to access the final recommendation list of software developers.

Users would encounter developers arranged by Contribution Factor (CF) in the
tab displaying the resultant recommendation list. Each developer’s name is accompanied
by the CF value, conveniently represented with star icons, facilitating user experience
and visual interaction with the Contribution Factor, a visual representation of the data
presented on the final JSON of Figure 20
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– Figure 26 - Searching elements of DevFinder’s user interface

   Education...    JavaScript... Search        Search

3. John Wilson Contribution Factor: 3.2

Find software specialists within specific industries and technologies.

Industry Technology

Searching Filtering Assembling
data

Calculating
Contribution Factor

Ranking Generating
Insights

Done

Results
Insurance & Python Research & Python Banking & Java Games & C

1. Nicky Martin Contribution Factor: 5.0

2. Robert Miles Contribution Factor: 4.5

When users click on a recommended developer, additional information is revealed.
Users can view the developer’s name, bio, the generated insight accompanied by the
corresponding Accuracy Zone, the Contribution Factor, and various details sourced from
the developer’s GitHub account. This includes information such as location, company,
hireability status, email, and buttons providing direct links to the developer’s GitHub,
Twitter, and Blog profiles. Figure 27 illustrates the UI that portrays the described elements.
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– Figure 27 - Results elements of DevFinder’s user interface

Results
Insurance & Python Research & Python Banking & Java Games & C

1. Nicky Martin Contribution Factor: 5.0

2. Robert Miles Contribution Factor: 4.5

3. John Wilson Contribution Factor:

Bio

Insight
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ac tellus tempus, blandit velit
ac, dignissim dui. Aenean suscipit orci felis, consequat fermentum velit ultricies non. Aenean
sed diam sed sem porta consequat ut sed augue. Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Suspendisse pharetra aliquam sollicitudin. Integer
sit amet euismod dui, efficitur maximus tellus. Integer in elit eleifend, pulvinar lorem eu,
efficitur dolor. 

Trust

 Accuracy zone

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
ac tellus tempus, blandit velit ac, dignissim dui. Aenean
suscipit orci felis, consequat fermentum velit ultricies non.

Location: Place, PL

Company: XPTO INC

Hireable? Yes

Email: nicky.martin@mail.com

        Github

        Twitter

          Blog

3.2

5.2.5 Generated Insights

To o�er a tangible glimpse into the insights generated by the integrated LLM in the
outlined system, we present two real examples generated by the LLM integration through
data of real GitHub users, as outlined previously. The first example is associated with
the Banking & Java study case, highlighting a positive alignment between the recruiter’s
criteria and the developer’s skills.
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Based on the data provided, this software developer seems to be a suitable
candidate for a team where experience in the Java programming language is
mandatory and experience with projects related to the banking industry is
preferable. The developer has extensive experience with Java, as shown by
their repositories such as “keystore-management”, “open-banking-gateway”,
and “secure-token-service”. These projects indicate that the developer has
worked with Java in the context of the banking industry and has experience
implementing OAuth 2.0 Token Exchange. Additionally, their repository
“spring-boot” demonstrates familiarity with the popular Java framework for
building enterprise Java applications. Overall, this software developer aligns
with the job recruiter’s requirements and would be a valuable asset to a team
requiring Java expertise in the banking industry.

The generated insight o�ers key information for job recruiters to assess the software
developer’s skills and suitability for a position. Firstly, it emphasizes the developer’s
extensive experience with the Java programming language, evident from specific repositories
like “keystore-management”, “open-banking-gateway”, and “secure-token-service”. These
projects indicate a solid background in Java development.

Furthermore, the insight underscores the developer’s involvement in projects related
to the banking industry, providing assurance to recruiters about the candidate’s domain
knowledge. This aligns with the recruiter’s preference for experience in the banking sector.

The mention of specific projects, such as the implementation of OAuth 2.0 Token Ex-
change in the banking context, showcases the developer’s technical capabilities. Recruiters
can infer the candidate’s proficiency in security protocols and industry-specific technologies.
Additionally, the presence of the “spring-boot” repository signals the developer’s familiarity
with Spring Boot, a widely used Java framework for building enterprise applications. This
indicates the candidate’s ability to work with industry-standard frameworks.

On the other hand, the subsequent example illustrates a developer who is not well-
suited for the open position, specifically associated with the Research & Python study case.
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Based on the given data, this software developer may not be suitable for a
team where experience in the Python programming language is mandatory
and experience with projects related to the research industry is preferable.
While the developer does have some experience with Python, as seen in
repositories such as “atg” and “baselines”, their overall GitHub activity
indicates a diverse set of programming languages being used. The repositories
range from Arduino-based projects to PHP, JavaScript, and even HTML.
Additionally, there is no clear evidence of projects specifically related to
the research industry. Therefore, it is recommended that the job recruiter
considers other candidates who have a stronger focus on Python and relevant
experience in the research industry.

The conclusion suggests that the developer may not be the most suitable candidate
for a team where expertise in the Python programming language is mandatory, and
experience with projects related to the research industry is preferable.

While the developer does possess some experience with Python, demonstrated in
repositories like “atg” and “baselines”, a comprehensive review of their overall GitHub
activity reveals a diverse set of programming languages being utilized. The repositories
encompass a spectrum from Arduino-based projects to PHP, JavaScript, and HTML. This
diversity indicates the developer’ s versatility but may raise concerns regarding a focused
proficiency in Python.

As a result, the job recruiter is recommended to explore other candidates who
exhibit a more concentrated focus on Python and possess relevant experience in the
research industry.

5.2.6 Threats to validity

Regarding the network and the Contribution Factor analysis that was discussed,
some potential threats warrant consideration. External validity may be compromised as the
application of DevFinder is limited to specific industry domains (Education, Oil, Finance)
and technologies (PHP, JavaScript, Python), potentially hindering the generalizability
of findings to broader software development contexts. Sampling bias is another concern,
as the chosen domains and technologies may not be representative of the entire software
development landscape. Algorithmic biases within DevFinder’s algorithms may influence
committer selection and ranking, impacting the study’s overall validity. Additionally,
assumptions related to metric normalization and the chosen graph representation may
not universally hold true. It is essential to recognize these potential threats and conduct
thorough sensitivity analyses, considering alternative explanations to fortify the robustness
of the study’s conclusions.

Similarly, the integration of Large Language Models into systems that recommend
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software developers, as explored in this study, is not without its challenges. Existing
literature has highlighted concerns such as the potential for “hallucination” (12, 13), safety
and robustness issues (15), non-discrimination and fairness issues (16, 17), explainability
challenges (18), and privacy considerations (19, 20). Addressing these challenges is
paramount to ensuring LLMs’ responsible and ethical deployment in decision-support
contexts. Therefore, we recognize the following threats to the validity of the current
version of our study.

Firstly, during the evaluation processes for both the filter and insight generation,
the authors engaged in the subjective task of categorizing data and assigning boolean
values to assess the e�ectiveness of the LLM. This evaluative process involved interpreting
diverse information from di�erent industry contexts, some of which fell outside the authors’
complete domain expertise. Consequently, the classifications made during this process
may carry a degree of subjectivity, introducing potential variations in the presented
accuracy. Recognizing and acknowledging this subjectivity is crucial for comprehensively
understanding the study’s outcomes.

Secondly, there is a lack of direct evaluation with industry professionals. While
repositories may contain valuable information, they may not fully capture the intricacies
and nuances of real-world decision-making scenarios. Therefore, the absence of input
from industry experts could limit the study’s findings’ applicability and generalizability to
real-world contexts.

Furthermore, there is a potential limitation of this study is the use of a limited
number of contexts to generate results. By considering four di�erent contexts, the study
may not have captured the full breadth and diversity of decision-making environments.
Di�erent contexts can introduce unique challenges and considerations that may influence
the performance and e�ectiveness of systems that assist in decision-making.

As this study employs generative artificial intelligence (AI), there is inherent
variability in the results obtained from di�erent runs of the model. Generative AI systems,
including neural networks, may produce di�erent outputs each time they are run, even
when provided with the same input data. Researchers should be mindful of this variability
and consider its potential impact on the interpretation and generalizability of the results.

Lastly, the evaluation of results in this study relied on the analysis of data by
individuals referred to as "committers."However, these individuals did not participate in
the analysis of their data. This lack of involvement from the data analysts themselves
introduces a potential threat to the validity of the study’s findings. Without direct input
from the individuals responsible for generating and analyzing the data, there may be a
risk of overlooking important insights or nuances that could a�ect the interpretation of
the results.
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5.3 Final Remarks of The Chapter

The outcomes of this work address our central research question: How can Dev-
Finder support the search for software experts whose knowledge aligns specific industry
domains with specific technologies?

In addressing this question, we integrated a Large Language Model into an existing
system that recommends software developers, leveraging its advantages across two distinct
scenarios: the filtering process and insight generation.

Our case studies, focusing on the downsides of LLM integration within the system,
revealed that, on average, the filter performed well in 77.85% of cases. Additionally, the
insight generation process proved e�ective when complemented by the use of the proposed
Accuracy Zones.

Despite initial concerns about the accuracy, potential “hallucination”, and reliability
of the LLM within the integration, we found that these factors did not significantly impact
the e�ectiveness of the recommendation tasks within the solution, once mitigated by the
presence of the proposed Accuracy Zones.

The wireframes presented provide a visual representation of the DevFinder user
interface, representing the search and result components. These wireframes encapsulate the
concepts and mitigations discussed throughout the study, providing users with a seamless
experience in searching and accessing the final list of software developer recommendations.

The insights generated, illustrated through real examples, demonstrate the practical
application of the information generated by LLM for recruiters. The positive alignment
between a developer’s skills and a recruiter’s criteria in the Banking & Java case, as
well as the recommendation to explore other candidates in the Research & Python
case, demonstrate the system’s ability to assist decision-making processes e�ectively.
Going forward, LLM integration into DevFinder presents a valuable tool to increase
talent acquisition e�ciency in the software development domain. The proposed Accuracy
Zones act as a safeguard, addressing potential drawbacks and ensuring the reliability of
recommendations.

This chapter provides an evaluation of DevFinder’s recommendation generation,
focusing on complex network analysis and the integration of Large Language Models
(LLMs). The analysis covered diverse industry domains and technologies, a�rming
DevFinder’s e�cacy in identifying specialists.
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6 Conclusion

This work presents a body of knowledge regarding key concepts about systems
that recommend software developers, ontologies, complex networks, and Large Language
Models (LLMs). The work begins by introducing the domain of job recruitment scenarios
and identifying the challenges related to leveraging version control systems data for
decision-making in the recruitment process of high-specialty software developers.

Once finding software specialists poses a challenging task, this work proposed the
answer for the following research question: "How can DevFinder support the search

for software experts whose knowledge aligns specific industry domains with

specific technologies?" The proposed architecture, DevFinder, was developed intending
to support job recruiters in finding software by providing a ranked recommendation list of
software specialists within input conditions.

Case studies were conducted to assess the proposed architecture, and evidence was
presented on the feasibility of supporting decision-making. The case studies shed light
on the downsides and advantages of integrating an LLM into the system. Despite initial
concerns about accuracy and potential "hallucination", the findings indicate that, when
complemented by proposed Accuracy Zones, the LLM improves the filtering process and
insight generation.

As theoretical knowledge was produced throughout the study, it stands out subjects
such as ontologies, complex networks, Large Language Models, and Machine Learning.
When talking about technical and scientific knowledge produced, the following contributions
highlight the value of this work:

• A systematic mapping study (SMS) that analyzes 1251 studies revealing the historical
trajectory of the field and guiding future progress. Our research provides insights
into current industry practices, highlighting key technologies and data sources. In
addition, the SMS stands out by addressing the unique challenge of recommending
software developers with expertise in both specific technologies and diverse industry
domains. Lastly, we present a key factors list that serves as a practical guide for
emerging researchers, o�ering essential guidelines and tools to design e�ective systems
that recommend software developers;

• The proposal of an architecture model to extract, filter, rank, and generate in-
sights about software developers from real-world repositories in order to support
stakeholders of job recruitment tasks;

• The creation of a Contribution Factor metric that leverages collaboration aspects of
software developers to generate a comprehensive ranked list;
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• The assessment of the interaction between the proposed Contribution Factor to other
classic metrics, such as closeness and degree centrality;

• The integration of Large Language Models (LLMs) on the system to perform tasks
of filtering and insights generation.

• The assessment of the LLM integration through four case studies, considering real-
world scenarios that provided data to verify the accuracy and precision of the LLM
integration to the architecture;

• The implementation of the proposed architecture, capable of extracting software
developers from repositories, filtering them using an LLM, ranking them using
complex networks, enriching the presented data to stakeholders using an LLM, and
providing data to the visualization of end users.

As a result from the scientific and technological contributions of this work, we have
published a systematic mapping (138), the first DSR cycle of DevFinder model (136), the
second DSR cycle of DevFinder with the complex network model (137), and the third
DSR cycle considering the LLM integration to filter and generate insights (currently on
submission process of the Information and Software Technology journal).

The results of this research have significant relevance in the rapidly evolving
landscape of talent acquisition in the software development domain. Integrating Large
Language Models (LLMs) into the DevFinder architecture shows promising results in
addressing the challenges associated with identifying software experts aligned with specific
industry domains and technologies. The iterative study development process and evaluation
through diverse industry case studies contribute to advancing our understanding of the
e�ectiveness of LLMs in systems that recommend software developers. The demonstrated
success rate of 77.85% in the filtering process and the introduction of Accuracy Zones
o�er valuable insights for recruiters, providing a structured framework to evaluate the
reliability of the insights generated. The improvements in filtering and generating insights,
highlighted by the new iteration of DevFinder, mean a practical and e�ective tool for
improving talent acquisition processes. These findings are critical for organizations looking
for innovative solutions to streamline and optimize their recruitment strategies in the
competitive software development landscape.

For future work, we intend to refine the filtering process further to address challenges
related to false negatives, increasing the model’s accuracy in distinguishing repositories
relevant to specific industry domains. Furthermore, exploring alternative or complementary
models and techniques for generating insights could contribute to a more comprehensive
and robust architecture. Further investigation into the explainability and interpretability
of LLMs in the context of recruitment decision-making could address concerns related to
the “black box” nature of these models. As a way to enrich and refine data, the possibility



102

of employing ontology for semantic analysis aligned with the use of LLMs could be an
interesting topic to be explored.

The context and a day-by-day usage of the proposed architecture could be assessed
as a way to collect feedback from users on real-world scenarios. By doing so, we would
also be able to evaluate the architecture performance across a broader range of industry
domains and technologies. Also,incorporating feedback loops with recruiters to iteratively
improve the system based on real-world application experiences is another avenue for
future research.

The proposed future work could inspire researchers to further enhance architec-
tural capabilities and tackle emerging challenges, driving the ongoing evolution of talent
acquisition technologies within the software development industry.
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