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RESUMO

A customização em massa de sistemas críticos modernos tem gerado produtos com

milhares de pontos de variação, impactando arquitetura and propriedades de dependability

(e.g., safety e security) destes sistemas. Devido ao fato das técnicas existentes de gerencia

de variabilidades serem rudimentares, modelar a diversidade de sistemas críticos e suas

propriedades de dependability se torna uma tarefa árdua. Por isso, esta dissertação apre-

senta uma abordagem de gerência de variabilidades para sistemas críticos. A abordagem

é ilustrada através de um estudo de caso de domínio automotivo. Como avaliação, a

abordagem foi comparada com duas técnicas similares de gerencia de variabilidades. Dentre

os benefícios, a abordagem apresentada reduz o “gap” entre variabilidade e anotações

de dependability de granulosidade baixa e garante a derivação de modelos corretos e

completos.

Palavras-Chave: Functional Safety. Cybersecurity. Dependability. Linhas de

Produto. Variabilidade.



ABSTRACT

Mass customization of modern critical systems has led to products with many

variation points, impacting their architecture and dependability properties. Given the

rudimentary vulnerability management techniques available, modeling diversity in critical

systems and their corresponding dependability (e.g., safety and security) characteristics

is challenging. That being said, this dissertation presents a novel annotative variability

management approach for critical systems. The approach is illustrated using a case

study from the automotive domain. As part of the evaluation, the proposed approach is

compared against two similar vulnerability management solutions. Among the benefits,

the the proposed approach reduces the gap between variability and finer-grained model

dependability annotations and ensures the derivation of correct and complete critical

system models.

Keywords: Functional Safety. Cybersecurity. Dependability. Product Lines.

Variability.
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1 INTRODUCTION

1.1 CONTEXT

Safety-critical systems are systems whose failure or malfunction could result in loss

of human life, significant damage to the property or damage to the environment (KNIGHT,

2002). There are many well known examples of safety-critical systems in application

domains such as medical devices (ROBERTS et al., 2017), automotive (GREENGARD,

2015), aircraft flight control (STOREY, 1996), railway (AUSTON, 2021) (RETP, 2021),

defense (EMBRAER, 2021) and nuclear power plant (BYVAIKOV et al., 2006) control

systems. Failure in one of these systems might endanger human life, leading to economic

loss, legal retaliation and environmental damage.

The design of safety-critical systems have been moved from mechanical-based

towards complex computer-reliant architectures. Computer-based system architectures

can perform sophisticated control functions and their applications are immerse in many

areas that a�ect our daily lives (KNIGHT, 2002). The vehicle we drive contains multiple

programmable components1 that perform safety-critical tasks such as engine control,

battery management, and steering control. Computer-based systems boost advanced

safety-critical features in automotive systems such as electronic stability control that

automatically detects loss of steering control and brakes individual wheels to fix the

vehicle’s trajectory (AZEVEDO, 2015; GREENGARD, 2015).

Apart from the benefits of automation, computer-based systems introduce additional

complexity into the system architecture. Complex systems are more di�cult to design and

more likely to contain errors (STOREY, 1996). For example, hardware architectures are

composed by several small parts that can fail in multiple ways, rising a huge number of

failure scenarios to be considered. With respect to software, the number of execution paths

can easily increase into a number that is not feasible to test exhaustively (AZEVEDO,

2015). Currently, there is a trend towards increasing the complexity of safety-critical

software (BOZZANO; VILLAFIORITA, 2010), especially in the automotive domain.

Such complexity is inherent the greater possibilities o�ered by inter-connectivity and the

increased computing power (MACGREGOR; BURTON, 2018). In the development of the

latest automotive systems, newer functionalities are provided by integrating independent

Original Equipment Manufacturers (OEMs).

The mass customization in the automotive industry (SPLC HALL OF THE FAME,

2019) (SCHULZE; MAUERSBERGER; BEUCHE, 2013; TISCHER et al., 2011) and other

safety-critical domains (WÖLFL et al., 2015; DORDOWSKY; BRIDGES; TSCHOPE,

2011; HABLI; KELLY; HOPKINS, 2007) has led to a higher diversity within single
1 Component: a modular part of a system that encapsulates its contents and whose manifestation

is replaceable within its environment (OMG, 2017c).
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products with hundreds and thousands of variations points (POHL; HÖCHSMANN, et

al., 2018). A variation point consists in a place in an artefact that can be changed or

customized to be used in di�erent contexts (GURP; BOSCH; SVAHNBERG, 2001). The

di�erence between configurations of an artefact can be found in the presence or absence of

a certain optional or alternative model2/code elements, parameters or parameter values

(SCHULZE; MAUERSBERGER; BEUCHE, 2013). A variation point describes all possible

configurations available at a given point in an artefact.

Automotive electronic control units (ECUs) (TISCHER et al., 2011) used in airbags,

electronic window lifter and driver assistant systems, and powertrain controllers (SPLC

HALL OF THE FAME, 2019) are highly variant-intensive. With the purpose to cope

with the complexity of modern safety-critical software with respect to the increasingly

number of variants, component-based (OMG, 2017a,c) approaches and Software Product

Lines (SPL) (CLEMENTS; NORTHROP, 2001) have been successfully used in industry,

specially in the automotive (SCHULZE; MAUERSBERGER; BEUCHE, 2013; TISCHER

et al., 2011) and aerospace (WÖLFL et al., 2015; DORDOWSKY; BRIDGES; TSCHOPE,

2011) domains, increasing the software quality, reducing the time-to-market and system

development costs.

Although product line design maximizes the reuse across multiple critical software

variants, it must still yield safe individual configurations. A malfunction or loss of a

function in a safety-critical product can potentially impact on functional safety with severe

consequences to the system operating environment, threatening human’s life with serious

injuries or even loss of life.

The nature and inherent complexity of critical systems demands addressing de-

pendability requirements, e.g., safety, cybersecurity, reliability, availability, integrity and

maintainability (AVIZIENIS; LAPRIE; RANDELL, et al., 2004), to demonstrate the

services provided by these systems can justifiably be trusted. Justifying why a system

is acceptably safe and its components are reliable before release for operation is key to

certification and the adoption of the system by the market, and those are questions to be

answered within the scope of Dependability Engineering.

1.2 MOTIVATION

The development of complex and variant-intensive critical systems demands the

analysis of safety, cybersecurity, reliability, and other dependability properties of system

functions and components, and ensuring that they hold across di�erent configurations in

compliance with standards.

Variation in the system design and its intended usage context3 may impact on
2 A model is an abstraction with a well defined purpose.
3 Usage Context: refers to characteristics of the operating environment that determine how
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dependability properties, modifying potential events leading to accidents, their risks e.g.,

in terms of severity and likelihood, the dependability requirements to mitigate their e�ects,

the ways how failures propagate throughout architectural subsystems and components

contribute to system failures. So, reusing critical components across di�erent configurations

requires the systematic reuse of associated dependability artefacts. Dependability artefacts

may contain qualitative information about component faults and their propagation’s

expressed in failure logic models (FLM) (GALLINA; JAVED, et al., 2012; PAPADOPOU-

LOS et al., 2011; FEILER, 2013), and quantitative information expressed in probabilistic

models (MONTECCHI; PURI, 2020; MALHOTRA; TRIVEDI, 1995).

The dependability information is the key point of diversity in the analysis and veri-

fication of complex and configurable critical system architectures (BRESSAN; OLIVEIRA;

CAMPOS; CAPILLA, 2021; OLIVEIRA; BRAGA, et al., 2019). Reusing qualitative

failure logic and probabilistic models for system dependability analysis demands a way to

manage the diversity of emergent failure events leading to accidents, cybersecurity threats,

safety and security goals and requirements that may rise in di�erent configurations and

targeting usage contexts (OLIVEIRA; BRAGA, et al., 2019; OLIVEIRA, André Luiz de;

BRAGA, R.; MASIERO, P.; PAPADOPOULOS, et al., 2018).

Although safety and cybersecurity standards, e.g., ISO 26262 and ISO/SAE 21434

provide guidelines to develop single products, industrial production is inherently variable in

which di�erent critical products are built upon a common base system (WOLSCHKE et al.,

2019; SPLC HALL OF THE FAME, 2019; WÖLFL et al., 2016; TISCHER et al., 2011).

SPL approaches have been successfully adopted by automotive (SPLC HALL OF THE

FAME, 2019; TISCHER et al., 2011) and aerospace (WÖLFL et al., 2016; DORDOWSKY;

BRIDGES; TSCHOPE, 2011) industry to cope with the inherent complexity and variability

of safety-critical systems.

Ensuring the proper use and re-use of product family components across variants

demand the integration of functional safety and cybersecurity engineering within SPL

processes (POHL; BÖCKLE; LINDEN, 2005; GOMAA, 2004; KANG, K. C. et al., 1998),

and variant management on dependability artifacts (OLIVEIRA; BRAGA, et al., 2019;

OLIVEIRA, André Luiz de; BRAGA, R.; MASIERO, P.; PAPADOPOULOS, et al., 2018).

However, the manual analysis of SPL dependability properties and demonstration that

they hold across all possible variants and contexts would be prohibitive, labour intensive,

and error prone, potentially resulting in project delays, and in the increase of development

complexity and costs (BRESSAN; OLIVEIRA; CAMPOS, 2020; OLIVEIRA; BRAGA,

et al., 2019; OLIVEIRA, André Luiz de; BRAGA, R.; MASIERO, P.; PAPADOPOULOS,

et al., 2018).

Variant management solutions exist to support the management of variability in

and where a system can be used (LEE; KANG, 2010).
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system design and dependability information (OLIVEIRA, André Luiz de; BRAGA, R.;

MASIERO, P.; PAPADOPOULOS, et al., 2018). However, modern variability management

solutions lack mechanisms for mapping variability abstractions to their materialization

into finer-grained model fragments. Moreover, these techniques provide limited variability

resolution mechanisms that do not guarantee the derivation of correct and complete system

models enriched with dependability information concerning feature selection (BRESSAN;

OLIVEIRA; CAMPOS; CAPILLA, 2021).

BVR (VASILEVSKIY et al., 2015), vXengine (HORCAS; PINTO; FUENTES,

2017), and pure::variants (PURE-SYSTEMS, 2021) techniques generate configuration

models with broken dependencies that should be manually fixed, and dependability

information should be manually introduced into the model after variability resolution in a

clone and own fashion. Also, current industry practice for reusing dependability artefacts

in certification processes relies only on the same clone & own approaches (WOLSCHKE

et al., 2019; TISCHER et al., 2011).

1.3 PROBLEM STATEMENT

Achieving the balance between functional safety and cybersecurity assurance and

reuse still remains a challenge to Software Product Line Engineering. It requires enabling

support for: i) modeling variability at finer-grained safety and security information,

specified as annotations of component-based system models, using failure logic and state-

based modeling techniques; ii) binding variability abstractions to their realization into

safety and security information ensuring the derivation of complete and ready to use

models; and iii) integrating functional safety and cybersecurity analysis activities and

artifacts within product line processes. Functional safety and cybersecurity analysis

artefacts should be integrated within the product line core assets to enable their systematic

reuse, together with other artefacts, throughout application development (WOLSCHKE

et al., 2019; OLIVEIRA; BRAGA, et al., 2019; POHL; HÖCHSMANN, et al., 2018;

OLIVEIRA, André Luiz de; BRAGA, R.; MASIERO, P.; PAPADOPOULOS, et al., 2018).

Extensions of conventional software product line approaches with safety analysis

activities (OLIVEIRA; BRAGA, et al., 2019), and the integration of model-based safety

analysis and variant management tools (BRESSAN; OLIVEIRA; CAMPOS, 2020; DOMIS;

ADLER; BECKER, 2015a) have been proposed. However, the aforementioned variant

management approaches focus on functional safety and reliability properties, not covering

variant management on cybersecurity properties.

The diversity of threats that impact information security and functional safety posed

by the higher inter-connectivity of modern and configurability safety-critical systems should

be managed during the analysis of threats to cybersecurity properties, i.e., Confidentiality,

Integrity, and Availability - CIA, throughout product line processes. Variation in design
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choices and their potential interactions may impact on a range of threats that can exploit

di�erent vulnerabilities with di�erent consequences to information security and functional

safety. So, ensuring system safety and information security becomes even more challenging

(BRESSAN; OLIVEIRA; CAMPOS; CAPILLA, 2021; KENNER; MAY, et al., 2021;

WOLSCHKE et al., 2019).

Research on product line engineering and security has been concerned with how

configurability may reveal confidential information, harming privacy (ACHER et al., 2015),

the potential security threats originating from variability bugs that could hinder source

code comprehension and the uncovering of software bugs (ABAL et al., 2018), and the

use of variability models to assess the threat potential of configurable systems (KENNER;

DASSOW, et al., 2020). An automated approach to create a vulnerability feature model

from the analysis of vulnerability databases has been proposed by (KENNER; DASSOW,

et al., 2020) to support security analysts to identify the potential vulnerabilities and attack

scenarios for a particular system. However, these studies lack support for managing the

impact of variation in the design on both cybersecurity and safety properties.

1.4 RESEARCH CHALLENGES AND QUESTIONS

The integration of Model-Driven Engineering, Software Product Lines, and Safety

and Security co-analysis enables the management of the diversity into dependability

artefacts, but still poses the following challenges (BRESSAN; OLIVEIRA; CAMPOS;

CAPILLA, 2021; KENNER; MAY, et al., 2021; BRESSAN; OLIVEIRA; CAMPOS, 2020;

WOLSCHKE et al., 2019; OLIVEIRA; BRAGA, et al., 2019; OLIVEIRA, André Luiz de;

BRAGA, R.; MASIERO, P.; PAPADOPOULOS, et al., 2018):

• CH1: Integrating model-based safety and cybersecurity co-analyses within product

line processes.

• CH2: Reducing the gap between variability constructs and finer-grained functional

safety and cybersecurity analysis information expressed as annotations attached to

system models.

• CH3: Enabling the systematic reuse of system models enriched with functional

safety and cybersecurity analysis information.

• CH4: Ensuring the derivation of correct and complete system models enriched with

functional safety and cybersecurity information from a variability (feature) model.

The aforementioned challenges found in the state of the art of Software Variability

Management techniques with respect to representing the diversity of safety and security

artifacts raise the following research questions:
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• RQ1: How to represent the diversity in system dependability artefacts?

• RQ2: How to derive correct and complete (with respect to feature selection) product

system models enriched with dependability information from a variability model?

• RQ3: How model-based safety and cybersecurity co-analyses can be integrated

within product lines processes?

• RQ4: Which software variant management technique is most e�ective and e�cient in

supporting product line engineers in managing the diversity into safety and security

artefacts throughout variability realization modeling?

1.5 RESEARCH GOALS

The goals of this master’s dissertation are developing i) an e�ective variability

realization modeling language compliant with Common Variability Language (CVL)

(HAUGEN; WASOWSKI; CZARNECKI, 2012) standard4 to represent the diversity

of safety and security information, ii) an e�cient model-transformation approach to

support the automatic resolution of variability into dependability artefacts that ensures

the derivation of complete and correct system models enriched with safety and security

information with respect to feature selection, and iii) a method that integrates model-based

safety and security analysis within product line processes.

The variability realization modeling language and resolution tool integrated with

state of the art software variant management techniques, e.g., pure::variants (PURE-

SYSTEMS GMBH, 2020), BVR (HAUGEN; ØGÅRD, 2014), or FeatureIDE (MEINICKE

et al., 2017), enables the specification of mappings between domain features, safety

and security information throughout variability realization modeling, and automated

derivation of correct and complete system models enriched with dependability information

from complex product family models. The method may support engineers performing

model-based safety and security analysis aware of variation in the design, and to map

dependability information to domain features to make them available for reuse. Achieving

the research goals demand addressing the following specific goals:

1. Analyzing the state of the art on software variability management ap-

proaches, e.g., CVL, BVR, and pure::variants, and variant management techniques

addressing dependability, their benefits and limitations, aiming to identify the vari-

ability modeling capabilities that can be reused, adapted, or improved to enable

support for mapping variability constructs to fragments of safety and security analysis

artefacts throughout variability realization;
4 CVL was approved by Object Management Group for standardization, but the process is

currently frozen for legal issues.
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2. Evaluating variability resolution algorithms from existing software variant

management tools, e.g., BVR and pure::variants, in supporting the resolution of

variability into MOF-compliant system models enriched with finer-grained safety

and security information aiming to verify their e�ectiveness at resolving variability

at a finer-grained level;

3. Developing a variability realization modeling language and model-trans-

formation approach to support the specification of mappings between domain

features and their realization into safety and security analysis and resolution of

variability within dependability information specified into MOF-compliant models;

4. Analysing the structure of safety and cybersecurity life-cycles prescribed by

cross-domain standards and implemented by model-based dependability analysis

frameworks, and product line approaches to identify how model-based safety and

security analysis can be integrated within product line processes;

5. Structuring a method that integrates model-based safety and security analysis

and variant management within product line processes; and

6. Evaluating the feasibility of the proposed variability realization modeling language,

method, and tool into case studies involving a critical system from the automotive

domain.

1.6 SUMMARY OF CONTRIBUTIONS

In order to address the goals and answer the research questions, this dissertation in-

troduces CRITVAR-ML modeling language, method, and tool to support the realization of

domain variability into safety and security analysis artefacts, and variability resolution into

re-configurable MOF-compliant system models enriched with dependability information.

CRITVAR-ML (BRESSAN; OLIVEIRA; CAMPOS; CAPILLA, 2021) is a vari-

ability realization modeling language built upon the CVL standard to support engineers

specifying mappings between domain problem-space features and finer-grained safety and

security information stated as annotations (elements and property values) into MOF-

compliant system models (e.g., SysML, AADL) in the solution space, thus, answering

RQ1.

The tool (BRESSAN; OLIVEIRA; CAMPOS; CAPILLA, 2021) is extensible and

compatible with feature and configuration models from state-of-the-art variant management

tools, e.g., pure::variants, BVR, FeatureIDE, and it supports variability resolution into

MOF-compliant models enriched with safety and security analysis information, answering

RQ2.
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The proposed method (BRESSAN; OLIVEIRA; CAMPOS, 2020; BRESSAN;

OLIVEIRA; CAMPOS; PAPADOPOULOS, et al., 2020) answers RQ3 with the provision

of a set of activities and tasks to support engineers performing model-based safety and

security co-analyses aware of variation in the system design and its usage context, and

mapping domain features to fragments of dependability artefacts to make them available

for reuse.

Finally, an automotive case study was carried out to evaluate the feasibility and

e�ectiveness of CRITVAR-ML language, method, and tool in supporting the specification

of mappings to link domain features to their realization into dependability artefacts, and

derivation of product-specific models with dependability information that correspond to

feature selection, answering RQ4.

1.7 PUBLICATIONS

The contributions from this dissertation has been published in: a top Software

Engineering conference (BRESSAN; OLIVEIRA; CAMPOS; CAPILLA, 2021), covering

CRITVAR-ML and model-transformation engine; one qualified conference on Dependable

Computing (BRESSAN; OLIVEIRA; CAMPOS, 2020), which introduces the method to

support model-based safety analysis in variant-intensive systems; and in a Model-Based

Safety Assessment conference (BRESSAN; OLIVEIRA; CAMPOS; PAPADOPOULOS,

et al., 2020), which describes a method to support process tailoring in variant-intensive

systems.

The contributions outside of this dissertation scope include (BRESSAN; PIOLI,

et al., 2021), (GALLINA; MONTECCHI, et al., 2022), (BRESSAN; BRAGA, et al., 2020)

and (BRESSAN; OLIVEIRA; CAMPOS, 2020).

1.8 STRUCTURE

This dissertation is organized into seven chapters. Chapter 2 presents the foundation

concepts to the reader to understand the contributions of this dissertation. Chapter 3

presents an overview of related work. Chapter 4 introduces CRITVAR-ML variability

realization modeling language. Chapter 5 presents the CRITVAR model transformation

engine. Chapter 6 describes the process that integrates safety and security life-cycle

activities into product line processes. Chapter 7 illustrates the evaluation of CRITVAR-

ML language, method, and tool in the HAD vehicle automotive case study. Finally,

Chapter 8 summarizes the contributions of this dissertation, their benefits, limitations,

and future work.
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2 BACKGROUND

This chapter presents an overview of the following concepts needed for the reader

to understand the contributions of this work: Software Product Line Engineering; Software

Variability Management; Safety-Critical Systems; System Dependability and Standards

Standards; Model-based Dependability Analysis, General Purpose Languages, and CHESS

Model-Based Dependability Analysis tool.

2.1 SOFTWARE PRODUCT LINE ENGINEERING (SPLE)

Software Product Lines comprise a collection of software-intensive systems that

share a common and manageable set of features (CLEMENTS; NORTHROP, 2001). A

feature is a distinct system characteristic visible to the end user (KANG, K. C. et al.,

1998). Several cases have demonstrated the benefits of the adoption of Software Product

Lines such as reduced time-to-market and costs, systematic reuse, and portfolio scalability

(YOUNG; CLEMENTS, 2017). Furthermore, Software Product Lines are also known for

supporting mass customization, enhancing customer satisfaction, and improving product

quality and risk management (POHL; BÖCKLE; LINDEN, 2005 apud MOTTAHIR;

IRSHAD; ZAFAR, 2016). Pohl, Böckle, and Linden (2005) define Software Product Line

Engineering (SPLE) as "a paradigm to develop software applications using platforms and

mass customization". SPLE comprises two phases: Domain and Application Engineering

(Figure 1).

The Domain Engineering phase supports the establishment of the reusable platform

i.e., defining the commonalities and variability of the product line. This phase encompasses

the definition of domain requirements, design, realization, source code, test cases, and the

establishment of commonalities and variability within these artifacts through a Feature

Model. Feature Models are used to describe the commonalities and variability of a family

of systems, and represent the product line variability at the highest level of abstraction

(KANG, Kyo C et al., 1990).

Variability is the ability of an artifact or system to be used in di�erent contexts by

changing or customizing its characteristics and is expressed through variation points and

variants (POHL; BÖCKLE; LINDEN, 2005). A variation point is a place where members

of a product line may di�er from each other. Such di�erence may be the existence of

certain model artifacts (optional or alternative artifacts) or parameters. A variant is a

possible instantiation of a variation point (GURP; BOSCH; SVAHNBERG, n.d.).

The commonalities and di�erences between products are denoted in a feature

tree which, in its most simple form, nodes represent the features themselves and may

present one or more children. Parent features can relate to their children features through

mandatory (child feature is required), optional (child feature is optional), OR (one or more
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Figure 1 – Software Product Line Engineering processes (POHL; BÖCKLE; LINDEN,
2005)

child features can be selected), XOR (only one child feature must be selected) (KANG,

Kyo C et al., 1990).

Figure 2 shows a feature model describing the commonalities and variability in a

car Product Line. Depending on the consumer needs or application requirements, the car

can implement either an Automatic or Manual transmission. Furthermore, cars with over

100hp may or may not implement an Air Conditioning system.

Figure 2 – Car Feature Model (KANG, Kyo C et al., 1990)

Although feature models capture the domain variation points in a concise way, their
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elements are merely propositional (CZARNECKI; ANTKIEWICZ, 2005 apud LACKNER;

SCHLINGLOFF, 2017). The feature models only contain an abstract view of the variability

domain with its commonalities and variability. The systematic and consistent reuse neces-

sary to derive new product configurations is facilitated during the Product Management

phase, by the establishment of mappings between these artifacts i.e., realization (POHL;

BÖCKLE; LINDEN, 2005).

Mappings between features and artifacts can be done in two di�erent ways: Ex-

plicitly through a separate variability model; or Implicitly within the actual referenced

artifacts. Furthermore, variability modeling can be split into three major paradigms: An-

notative, Compositional or Transformational (LACKNER; SCHLINGLOFF, 2017).

In Annotative Variability Modeling approaches, base models store every element that is

used in each possible product configuration. Variants are resolved by subtracting elements

from the base model (GRÖNNINGER et al., 2014). In an Compositional Variability

Modeling approaches, base models only contain the elements that are common among

all products (GROHER; VÖLTER, 2007). Additional elements are added accordingly to

resolve variants. Lastly, in Transformational Variability Modeling, model elements can be

either added or removed to resolve a variant.

The Application Engineering phase supports the configuration i.e., resolution, and

derivation, of new products. Products are built based on the reuse of domain artifacts e.g.,

requirements, design models and by exploiting the variability in them (POHL; BÖCKLE;

LINDEN, 2005). In other words, the Application Engineering phase ensures the appropriate

binding of the variability, based on each product requirements and supports the generation

of di�erent applications by reusing the domain platform artifacts.

2.2 SOFTWARE VARIABILITY MANAGEMENT

Software Variability Management techniques provide the realization of the Software

Product Line Engineering framework, and the abstractions needed for describing and

managing variability into domain artifacts. Solutions such as the Common Variability

(CVL) (HAUGEN; WASOWSKI; CZARNECKI, 2012) and Base Variability Resolution

(BVR) languages (HAUGEN; MØLLER-PEDERSEN, et al., 2008) provide instantiable

abstractions needed throughout the Domain and Application engineering phases of SPLE,

e.g., feature modeling, realization, and resolution.

The Common Variability Language (CVL) defines "variability modeling means to

generate product models" (HAUGEN, 2014b). The Base Variability Resolution (BVR)

Language comprises an evolution of CVL in which certain constructs have been removed for

simplicity while others, have been added for improved expressiveness (HAUGEN; ØGÅRD,

2014). CVL/BVR are domain independent and enables the variability specification and

resolution of any MOF-compliant model. Both the CVL and BVR architectures are divided
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into two inter-related models: Variability Abstraction (VAM) and Variability Realization

(VRM) Models (Figure 3).

Figure 3 – CVL/BVR Architecture (adapted from Bosco et al. (2012) and Haugen and
Øgård (2014)

The Variability Abstraction Model (VAM) extends traditional feature modeling and

contains a tree-based structure containing Variability Specifications (VSpecs). Furthermore,

the VAM also includes the resolution of VSpecs into di�erent products e.g., if or how a

certain VSpec is implemented by a certain product. VSpecs are the nodes of the variability

tree and can be divided into three types: Choices, Variables and Classifiers. Similar to
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traditional features, Choices can be resolved to either ’yes’ or ’no’ e.g. by setting them as

either true or false in the Resolution model. Variables are VSpecs that require a value, set

in the resolution model, to be resolved. Classifiers are instantiable VSpecs that can be

resolved on a per-instance basis i.e., using VInstances and setting them as true or false in

the Resolution model (HAUGEN; WASOWSKI; CZARNECKI, 2012 apud BOSCO et al.,

2012).

Generally, mappings between features and artifacts can be done in two di�erent

ways: Explicitly through a separate variability model; or Implicitly within the actual

referenced artifacts, e.g., as done in Ziadi, Hélouët, and Jézéquel (2004) and Clauss

(2001). CVL provides an Explicit variability mapping approach in which the links between

features and artifacts are done through the Variability Realization Model (VRM). VRM

is responsible for storing the mappings between VSpecs and base model elements. A

base model is an artifact that implements the product line features e.g., UML model

describing a system. Moreover, each VSpec is mapped to a fragment of the base model

e.g., Classes or parameters. The VRM alongside the Resolutions in the VAM are used

to specify and ensure the changes needed in resolved i.e., product-specific, models. Such

changes are represented as Variation Points in the VRM and similar to VSpecs, can also be

divided into three main types: Existence, Substitution and Value Assignment (HAUGEN;

WASOWSKI; CZARNECKI, 2012 apud BOSCO et al., 2012). CVL Existence variation

points can be split into two types: ObjectExistence and LinkExistence. ObjectExistence

variation points are used to describe base model objects that may either exist or not across

di�erent products. Similarly, LinkExistence variation points, do the same for model links

e.g., UML transitions.

Substitution variation points are also divided into two di�erent types: ObjectSubsti-

tution and FragmentSubstitution. Each Substitution variation point i.e., ObjectSubstitution

or FragmentSubstitution contains a Placement and a Replacement fragment. Whenever a

substitution variation point is activated, base model fragments referenced by a Placement

are deleted and replaced by those referenced by a Replacement. ObjectSubstitution varia-

tion points remove and replace one single base model object while FragmentSubstitution

variation points does the same for base model fragments containing multiple objects/links

at once.

Value Assignment variation points are used to set values to model attributes. One

of the main Value Assignment variation point types in CVL is SlotAssignment. When

resolved, SlotAssignments allocate specific values to model slots e.g., an UML Property’s

defaultValue. LinkAssignment variation points can be used to assign model links to

di�erent objects. Lastly, Opaque variation points are domain-specific variation points

which semantics are not defined in CVL. Their resolution behavior must be defined

externally by the user according to domain specific needs.
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Variation points can be classified into Compositional, Annotative and Hybrid

(HORCAS; CORTIÑAS, et al., 2018). Compositional Variation Points "define the coarse-

grained variability that is applied at the architectural level" (HORCAS; CORTIÑAS,

et al., 2018) and include the traditional variation points provided in CVL and BVR,

e.g., ObjectExistence, FragmentSubstitution and SlotAssignment. CVL is a compositional

approach intended to be applied at a high level of abstraction, e.g., architectural, instead

of working at code or extra-functional levels e.g., dependability. Annotative Variation

Points are Opaque Variation Points, i.e., user defined, used to establish "fine-grained

variability that is applied at a lower level of abstraction" (HORCAS; CORTIÑAS, et

al., 2018). Lower level of abstraction artifacts may include source code and component

dependability annotations. Annotative Variation Points semantics imply that "there is an

annotation, located in a base model artifact this variation point refers to, that is mapped

to a feature". Hybrid Variation Points share the characteristics of Compositional and

Annotative Variation Points.

2.3 CRITICAL SYSTEMS

Sommerville (2015) defines safety-critical systems as "systems whose failure can

lead to human injury or death". In addition to that, the malfunctioning behavior of

critical systems may also contribute to financial losses and catastrophic consequences to

the environment. Due to their critical nature, safety-critical systems are often required

to have dependability properties i.e., safety and reliability, verified and demonstrated at

di�erent levels of abstraction e.g., system, hardware and software.

Dependability is the ability of a system to deliver its intended services in a justifiably

trusted manner (AVIZIENIS; LAPRIE; BRIAN, 2000) and encompasses availability,

reliability, safety, security and resilience properties (Figure 4). Availability describes the

capability of delivering the correct service when requested. Reliability relates to the

continuous delivery of the correct service. Safety is the lack of catastrophic consequences

both to the user and to the environment upon the incorrect delivery of a system service

and can be considered an extension of Reliability (AVIZIENIS; LAPRIE; BRIAN, 2000).

Safety is a system property since system failures may a�ect the environment. Reliability

on the other hand, is a component property and may impact on Safety. System Safety

cannot be achieved without also achieving reliability.

Security comprises a composite notion that can be further broken down into

availability, confidentiality and integrity. Confidentiality describes the absence of unautho-

rized information disclosure. Integrity relates to the ability of a system to protect itself

against improper state alterations. Security is defined as the coexistence of availability,

confidentiality and integrity (COMMISSION OF THE EUROPEAN COMMUNITIES,

1991)(AVIZIENIS; LAPRIE; BRIAN, 2000). Lastly, resilience describes the capability of
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Figure 4 – Dependability properties (SOMMERVILLE, 2015)

a system to resist and recover itself in the presence disrupting events (SOMMERVILLE,

2015).

Safety-critical systems are becoming increasingly complex and being integrated into

more open and interconnected platforms. According to the National Science Foundation

(2012), the term Cyber-Physical Systems (CPS) indicates the tight conjoining of and

coordination between computational and physical resources. Moreover, Cyber-Physical

Systems are systems that integrate aspects from both the physical and digital worlds

(LISOVA; äLJIVO; �AUäEVI∆, 2019). Due to their openness, contemporary critical

systems combining both safety-critical and Cyber-Physical characteristics, must be both

secure and safe (AMASS, 2018). Thus, modern critical systems are required to have

their safety and security properties evaluated and demonstrated in respect to domain

specific functional safety e.g., ISO 26262 (ISO, 2018), and cybersecurity standards e.g.,

J3061 (SAE, 2016), to ensure their proper operation and dependability (LISOVA; äLJIVO;

�AUäEVI∆, 2019).

2.4 SYSTEM DEPENDABILITY AND STANDARDS

Dependability Engineering is a mature discipline that was initially used as an

external body responsible for analysing the causes of a system failure after an accident,

and has evolved and integrated within system’s development processes (BOZZANO;

VILLAFIORITA, 2010). As a result of such maturity, novel safety analysis techniques

have emerged and dependability practices across di�erent domains, e.g., industry processes,

automotive, aerospace, railway, medical devices, have been documented in standards

throughout the last 60 years. Critical systems should be developed in compliance with

safety, e.g., IEC 61508 (IEC, 2010) for electrical, electronic and programmable electronic

safety related systems, ISO 26262 (ISO, 2018) for automotive and SAE ARP 4754a (SAE

INTERNATIONAL, 2010) and DO-178C (RTCA, 2011) for aerospace, and cybersecurity,
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e.g., IEC 62443-4-1 (IEC, 2018) for industrial automation systems, ISO/SAE 21434 (ISO,

2021) for automotive, and aerospace DO-356 (RTCA, 2014), standards from the targeted

domains.

Safety standards provide requirements and guidance for the analysis and demon-

stration of safety properties at di�erent levels of abstraction. At the system level, engineers

should identify the conditions and threats that can potentially lead to accidents, causing

harm to the environment or to life, and classify their risks, e.g., using Functional Hazard

Analysis (FHA) (SAE INTERNATIONAL, 1996) or HAZard and OPerability studies

(HAZOP) (KLETZ, T. A, 1999; CHEMICAL INDUSTRIES ASSOCIATION, 1977). At

the architectural design, the reliability of hardware components and the way how the

e�ects of hazardous conditions propagate throughout architectural subsystems should be

analyzed to identify unsafe and unreliable behaviors, and the most critical system execution

paths, e.g., using top-down analysis techniques, e.g., Fault Tree Analysis (FTA) (VESELY

et al., 2002), Event Tree Analysis (ETA) (ANDREWS; DUNNETT, 2000), and Petri-Nets

(MALHOTRA; TRIVEDI, 1995). Finally, direct and indirect contributions of components

to hazardous conditions leading to accidents should be analyzed to identify the most

critical components from the architecture, and applicable safety goals and requirements to

reduce dependability risks using bottom-up analysis techniques such as Failure Modes and

E�ects Analysis (FMEA) (US MILITARY, 1977).

The introduction of software and connectivity in modern automotive, aerospace,

and systems from other domains, and the potential hazards and economic losses posed

by cyberattacks increased the concern on security. Such concern is manifested both in

theory (DOBAJ et al., 2019) and practice (FOSTER et al., 2015; MILLER; VALASEK,

2015). Therefore, security challenges have emerged, requiring engineering approaches

and methods to deal with threats, risk management, secure design, and cybersecurity

measures over the whole life-cycle (MACHER; SCHMITTNER; VELEDAR, et al., 2020).

Cybersecurity standards, e.g., automotive ISO/SAE 21434, define high-level guidance

for security life-cycles of cyber-physical systems, and coordination of interaction points

between safety and security processes. Security life-cycles comprise Threat Analysis and

Risk Assessment (TARA) to identify the potential cybersecurity threats and classify their

risks, and identification of cybersecurity goals and requirements at system and functional

levels to reduce security risks.

Cybersecurity analysis methods and techniques including ETSI Threat, Vulnerabil-

ity, and implementation Risk Analysis (TRVA) (ETSI, 2011), Operational Critical Threat,

Asset, and Vulnerability Evaluation (OCTAVE) (ALBERTS et al., 1999), HEAVENS

(LAUTENBACH; ISLAM, 2014) security model, and attack trees (MOORE; ELLISON;

LINGER, 2001) can be adopted to support threat analysis at the function and item

levels. Besides, Cybersecurity HAZOP (SRIVATANAKUL; CLARK; POLACK, 2004),

STRIDE (SWIDERSKI; SNYDER, 2004), SAHARA (MACHER; SPORER, et al., 2015),
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Confidentiality, Integrity, and Availability (CIA) (LIPNER; ANDERSON, 2018) analysis

approaches can also support threat analysis and risk assessment, and identification of

cybersecurity goals. The analysis and demonstration of dependability properties at system,

design, and component levels constitute the phases of safety and cybersecurity analyses

processes defined in the life-cycles of prescriptive standards.

2.5 MODEL-BASED DEPENDABILITY ANALYSIS

System safety and security analyses can be performed with the support of modern

model-based techniques. Model-Driven Engineering (MDE) raises the level of abstraction

of software specification allowing unambiguous expression of requirements and architecture,

it automates system design and safety analysis. For these benefits, model-based techniques

have been adopted by industry (BEUCHE; SCHULZE; DUVIGNEAU, 2016; SCHULZE;

MAUERSBERGER; BEUCHE, 2013; DORDOWSKY; BRIDGES; TSCHOPE, 2011)

and accepted by regulators (LISAGOR; KELLY; NIU, 2011). Moreover, standards from

di�erent domains, e.g., automotive ISO 26262 (ISO, 2011) and aerospace SAE ARP

4754a (SAE, 2010), have been recognized the maturity of model-based techniques in the

development and verification of safety-critical systems. Model-based techniques (MAZZINI

et al., 2016; FEILER, 2013; PAPADOPOULOS et al., 2011) allow performing safety

analysis based on the preliminary system architecture and initial functional decomposition

(STEWART et al., 2017). These techniques are built upon Meta-Object Facility (MOF)

(OMG, 2019a), which is the OMG industry-standard for Model-Driven Engineering.

Component-based approaches such as Unified Modeling Language (UML) (OMG,

2017c) and System Modeling Language (SysML) (OMG, 2017a) from Object Manage-

ment Group (OMG), Architectural Analysis and Design Language (AADL) (DELANGE,

2016), EAST-ADL (EAST-ADL ASSOCIATION, 2013), and MATLAB Simulink (MATH-

WORKS, 2021) are suitable for capturing system dependability information. There are

several Model-Based Safety Analysis (MBSA) (JOSHI et al., 2005) frameworks that

currently support engineers reasoning about faults in component-based models, such

as CHESS Failure Logic Analysis (FLA) (GALLINA; JAVED, et al., 2012) and State-

Based Analysis (SBA) (MONTECCHI; PURI, 2020) for Papyrus UML/SysML (ECLIPSE

FOUNDATION, 2017), AADL Error Annex (FEILER, 2013) and Hierarchically-Performed

Hazard Origin and Propagation Studies (HiP-HOPS) (PAPADOPOULOS et al., 2011)

for AADL (DELANGE, 2016), EAST-ADL (EAST-ADL ASSOCIATION, 2013) and

MATLAB Simulink (MATHWORKS, 2021) models. Extensions to CHESS, HiP-HOPS,

and AADL model-based safety analysis frameworks support the analysis and verification of

cybersecurity properties. These extensions support engineers reasoning about violations of

CIA (ANDERSON, J., 1972) cybersecurity properties in component-based models during

threat analysis and risk assessment.
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Model-based dependability analysis (JOSHI et al., 2005) allow engineers to enrich

component-based system models with qualitative and probabilistic functional safety,

reliability, and cybersecurity properties. MBSA frameworks also enable the automatic

syndissertation of fault trees, FMEA, and attack trees artefacts, which are costly to

produce, from a system model enriched with dependability information. Safety is a system

property related to freedom from events (accidents) that result in injuries or loss of life,

significant damages to the environment or some other form of loss important to the system

stakeholders (LEVESON, 1995). Reliability is the probability that a piece of equipment or

component will perform its intended function satisfactorily for a prescribed time and under

stipulated environmental conditions. Cybersecurity is the ability of a system to protect

itself against unauthorized access to its features, data, or hardware that can compromise

confidentiality1, integrity2, or availability3 (LIPNER; ANDERSON, 2018; SALTZER;

SCHROEDER, 1975; ANDERSON, J., 1972). Cybersecurity information relates to the

potential vulnerabilities (AVIZIENIS; LAPRIE; RANDELL, et al., 2004) that can be

exploited by external attacks and expose the system, potentially causing harm to its users

or the environment. The sources of cybersecurity vulnerabilities can be faults in the design,

e.g., unintended function interactions, development (e.g., bu�er overflow), or operation

(e.g., configuration error) (MCGRAW, 2006).

2.6 GENERAL PURPOSE LANGUAGES

This section provides an overview of the core capabilities of UML (Section 2.6.1)

and the MOF metamodeling language (Section 2.6.2).

2.6.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) (OMG, 2017d) is a General Purpose

Language used to visualize, specify, construct and document the artifacts of software-

intensive systems (BOOCH; RUMBAUGH; JACOBSON, 2005). The abstract syntax of

UML is defined through the UML metamodel. The UML metamodel is a constrained

subset of itself (e.g., it uses classes to define UML Classes themselves and other UML

abstractions) which is also reused in the Meta Object Facility metamodeling language

specification (OMG, 2017d).

The UML Core (Figure 5) contains the underlying modeling concepts used in

UML, e.g., Elements and Comments. The UML metaclass Element is the root of the

Core Package and therefore, the superclass for all the metaclasses defined in UML. The

main UML abstractions such as Classes, Relationships (e.g., Generalizations, Associations)
1 Confidentiality: ensuring the information is only available to authorized users.
2 Integrity: ensuring the information has not been modified by an unauthorized entity.
3 Availability: reliable and timely access to a system and its data always when required.
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Figure 5 – Excerpt of the UML Root and the definition of the metaclass Element

and class Properties are all Elements. Elements may own other Elements (identified as

ownedElements). The relationship between Elements, is defined through a composition and

therefore, whenever an Element is deleted, all of its ownedElements are also removed from

the model. An Element may also own Comments through the composition relationship

ownedComment. A Comment is also a subclass of Element and provides the body property

to which the comment text can be defined at model level i.e., M1. Furthermore, the

abstractions within metamodels that use the UML Core, e.g., SysML (OMG, 2017b), are

all Elements as well.

One of the main principles addressed by the UML metamodel is extensibility.

UML provides a lightweight extensibility mechanism through Profiles, which enables the

customization of the language and address specific platforms, solutions and domains.

Additionally, UML models extended with Profiles are compatible with any UML modeling

tool and these extensions, can be specified through the tools themselves, e.g, through Eclipse

Papyrus (ECLIPSE FOUNDATION, 2017) or Capella Model-Based System Engineering

(MBSE) Tool (CAPELLA, 2020). Therefore, adapting and extending UML instead of

creating a MOF-based modeling language from scratch, is easier and cheaper (OSIS;

DONINS, 2017). The specification of a MOF-based modeling language i.e., metamodel,

requires the creation of new tools alongside the language itself (OSIS; DONINS, 2017).

Examples of UML Profile extensions include the Systems Modeling Language - SysML

(OMG, 2017b), a General Purpose Language (GPL), that enables the detailed specification,

analysis, design and verification of systems that may include both software and hardware

modules; and the CHESS Modeling Language - CHESS-ML (INTECS, 2020), a Domain
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Specific Language (DSL) built upon UML/SysML. CHESS-ML contains profiles that

allows the enrichment of models with dependability (e.g., safety, security and reliability)

information.

Figure 6 illustrates an example of an UML Profile, its core elements and depen-

dencies. An UML Profile diagram comprises of a Metamodel, i.e., a package containing

the elements that are extended with the Profile; a reference relationship linking the

Profile package with the Metamodel package; and the Profile package itself extending

the referenced Metamodel through the definition of Stereotypes. Stereotypes are elements

defined inside the Profile package that extend a Metaclass e.g., the UseCase metaclass

from UML. A Stereotype extends existing UML vocabulary by adding a new element and

describing how an existing metaclass can be extended enabling the integration of platform

or domain specific terminology or notation in the modeling language (OSIS; DONINS,

2017). Stereotypes can be used to extend mataclasses with new properties called tagged

values. Metaclasses are extended through the Extension relationship which is directed

from a Stereotype element to the Metaclass it extends. At last, Profile Application is a

dependency relationship between a package and a Profile, which enables the use of of

Profile Stereotypes, in the model elements of the source package (OSIS; DONINS, 2017).

Figure 6 – Example of a profile and its application. Adapted from: Osis and Donins (2017)

2.6.2 Meta Object Facility (MOF)

MOF metamodeling language (OMG, 2019a) "reuses the structural modeling capa-

bilities of UML, based on the common metamodel shared between UML and MOF" (OMG,

2019a). MOF comprises of two main packages: Essential MOF (EMOF) and Complete

MOF (CMOF). EMOF is a subset of MOF that matches the capabilities of Object Oriented

Programming Languages (e.g., Java, C++) and XML. EMOF "is designed to match the
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capabilities of object oriented programming languages and of mappings to XMI or JMI"

(OMG, 2019a). EMOF provides a framework for mapping MOF abstractions to their im-

plementations in XMI and Java Metadata Interface (JMI) specifications. CMOF "provides

the full metamodeling capabilities of MOF 2" (OMG, 2019a). A similar metamodeling

infrastructure and language is Ecore. Ecore provides the core meta-modeling capabilities

to the Eclipse Modeling Framework (EMF). Similar to MOF, Ecore is also based on XMI

and is an implementation of OMG’s EMOF.

MOF uses packages to organize modeling elements into groups that can be ma-

nipulated as a set (BOOCH; RUMBAUGH; JACOBSON, 2005), used for two purposes:

importing and merging. Package importing is a mechanism for grouping model elements

together and facilitate reuse (OMG, 2019a). Package imports enable the specification of

additional relationships between elements from di�erent packages and their extension with

new features (e.g, through subclassing). Package merging on the other hand, combines

new or reusable metamodeling features and enables the creation of extended modeling

languages. Once two packages are merged, classes in the merging package will contain all

the characteristics of similarly named classes found in the merged package (OMG, 2019a).

Unlike in package importing where elements are simply imported into the package as

they are, in package merging, elements are redefined based on a concept. MOF merges

the UML Core metamodel to reuse and extend its concepts, e.g., importing, subclassing,

adding new classes and association between classes. Both EMOF and CMOF merge and

reuse the MOF Reflection package and thus, also reuse the UML Core.

Figure 7 – Excerpt of how MOF reuses and extends the UML metamodel. Adapted from:
OMG (2019a)

The underlying MOF metamodeling concepts are defined in the Reflection Package

(Figure 7). In a MOF-based metamodel, everything is an Object. The Reflection Package
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enables the manipulation and the discovery of the nature of metaobjects (i.e., an object’s

class) and metadata. A metaobject can be used to reveal the object’s kind and features

(OMG, 2019a). The MOF Reflection Package merges the UML Core and therefore, reuses

and extends many of the modeling concepts present in it e.g., classes and relationships.

Just like in UML, MOF also has an Element metaclass which is a subclass of Object. The

MOF Element metaclass merges and extends UML::Element and therefore, all model

elements that specialize MOF Reflection’s Element, inherit the model elements from UML

(OMG, 2019a).

2.7 CHESS MODEL-BASED DEPENDABILITY ANALYSIS

The CHESS Modeling Language (INTECS, 2020) extends UML (through profiles)

by providing abstractions to support dependability engineering activities. CHESS-ML

addresses compositional compositional dependability (safety and security) analysis. Re-

garding safety, CHESS-ML provides abstractions for safety analysis using Failure Logic and

Probabilistic Dependability Modeling. When it comes to security, CHESS-ML provides

means for specifying threats, detailing attacks and their e�ects on safety at component

level. The abstractions provided by CHESS-ML needed for enriching SysML design models

with dependability information are contained in the Safety and Security profiles (both

part of the CHESS-ML Dependability profile).

The Safety profile package defines stereotypes for specifying hazards, FPTC com-

ponent annotations, component internal fault probabilities and state machines describing

components’ failure behavior. The FailureMode stereotyped element (Figure 8) can re-

ferred by system ports with the FailureModes stereotype i.e., through the failureMode

tagged value, and allows the specification hazards and their risks e.g., Severity, Exposure,

Controlability and Likelihood.

Figure 9 illustrates an example of the application of the FailureMode stereotype to

denote a system level hazard and its risk. The alarm port with the FailureMode stereotype,

describes the absence of a sound alert by System A upon experiencing a major failure. The

hazard has an exposure of E1, i.e., very low, a controllability of C1, i.e., easily controllable

and a severity of S3, i.e., possibly causing a life threatening injuries. The likelihood tagged

value was used to assign an ASIL to the hazard which in this case is QM.

When it comes to qualitative dependability analysis and FLM, CHESS-ML also

supports the enrichment of architectural elements, e.g., SysML Blocks and Parts, with

FPTC annotations through the FLABehavior stereotype (Figure 10). Component FPTC

rules are defined through the fptc tagged value. CHESS-ML extends the FPTC grammar

defined in Wallace (2005) and requires the provision of a component port for each fail-

ure mode in the expression e.g., [port_name.failure_mode] [port_name.failure_mode].

Furthermore, CHESS-ML also replaces and defines two new value failure types: value-
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Figure 8 – The FailureMode Stereotype. Adapted from Intecs (2020)

Subtle and valueCoarse. valueSubtle denotes that an input or output has deviated from

its expected value in a way which humans cannot detect. valueCoarse denotes that an

input or output has deviated from its expected value in a way which humans can detect

(GALLINA; PUNNEKKAT, 2011).

An example of component enriched with FPTC logic is illustrated on Figure 11.

The reading output port of ComponentA fails with an omission if both sensorA and

sensorB input ports fail with an omission as well.

The FLABehavior stereotype is mainly used by the CHESS Failure Logic Analysis

(CHESS-FLA) plugin (GALLINA; JAVED, et al., 2012) to determine how failure modes

propagate throughout the system and its components. FLA results are similar to those

produced during FMEA and provide local, e.g., of a component, and system failure e�ects.

In addition, the results obtained through CHESS-FLA can be used by the FLA2FT plugin

(HAIDER; GALLINA; MORENO, 2019) to automatically derive system Fault Trees.

As for dynamic quantitative safety analysis approaches, CHESS-ML also defines

a stereotype for specifying internal component failure. The SimpleStochasticBehavior

stereotype (Figure 12) enables the specification of components’ internal failure rates, (i.e.,
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Figure 9 – Application of the FailureMode Stereotype

Figure 10 – The FLABehavior Stereotype. Adapted from Intecs (2020)

through the failureOccurrence tagged value), repair delay, (e.g., time a component needs

to get back to its healthy state), and failure modes distribution, e.g., the failure modes

propagated through the component output ports and their probabilities once an internal
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Figure 11 – Application of the FLABehavior Stereotype

fault happens. The failureOccurrence and repairDelay tagged values assume a time-based

probabilistic distribution, specified via the MARTE Value Specification Language (VSL)

(OMG, 2019b), which can be deterministic, i.e., det(value), exponential, i.e., exp(lambda),

uniform, i.e., uni(alpha,beta), normal, i.e., norm(mean,var), gamma, i.e., gam(alpha,beta),

and weibull, i.e., wei(alpha,beta).

Figure 12 – The SimpleStochasticBehavior Stereotype. Adapted from Intecs (2020)

Figure 13 shows the application of the SimpleStochasticBehavior stereotype on

ComponentA. The failure rate i.e., failureOccurrence, of ComponentA follows an exponential
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distribution of 10^-8 per unit of time (user defined and can be in minutes, hours, days

or years). Once the component fails, it stays failed and may not get back to its healthy

state on its own (hence the empty repairDelay). Also, once failed, ComponentA has a

95% chance of propagating an omission and 5% of propagating a valueSuble through its

reading output port.

Figure 13 – Application of the SimpleStochasticBehavior Stereotype

Components enriched with the FLABehavior stereotype can also be used in con-

junction with SimpleStochasticBehavior for computing system availability and reliability

through the CHESS State Based Analysis (CHESS-SBA) plugin (MONTECCHI; PURI,

2020). Since FLABehavior and SimpleStochasticBehavior support the safety analysis of

individual components in the architecture, they can also be used for manually generating

either local, e.g., subsystem, array of components, or system wide Fault Trees and FMEA

tables.

Another way to perform quantitative compositional dependability analysis through

CHESS-SBA, is by enriching components with specialized UML state machines. Con-

ventional UML state machines and their elements e.g., transitions and states, can also

be specialized with CHESS-ML abstractions (Figure 14), to support the specification of

components’ error states, transitions, probabilities and delays. These state machines are

specialized with the ErrorModel stereotype can be attached to any elements in the model

that apply the ErrorModelBehavior stereotype.

Within ErrorModel state machines, states can be specialized with the ErrorState

stereotype to denote a component’s erroneous state, i.e., not complying with its spec-

ifications. ErrorStates can be reached through InternalFault, InternalPropagation or

Failure transitions. InternalFault transitions describe a component’s internal fault and
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Figure 14 – CHESS-ML state machine dependability stereotypes. Adapted from Intecs
(2020)

may connect either a healthy state to an ErrorState or two ErrorStates together. In-

ternalPropagation transitions can be enriched with the external incoming failures that

may activate them, e.g., in1.omission AND in2.omission, their delay, i.e., amount of time

it takes for them to be activated, and weight, i.e., relative probability that a transition

occurs with respect to other transitions incoming from the same state. InternalFault are

be activated based on their occurrence which assumes a failure occurrence distribution

based on MARTE’s VSL and may also be enriched with a weight. Transitions that apply

the Failure stereotype, may be enriched with the output failure modes generated by a state

e.g., out1.late, out2.late. Models containing component ErrorModel state machines and

components that also apply the FLABehavior and SimpleStochasticBehavior stereotypes,

are transformed into Stochastic Petri Nets (SPNs) and simulated by the CHESS-SBA

plugin to estimate a system’s dependability proprieties, e.g., availability and reliability.

Figure 15 a) shows an example of a ErrorModelBehavior component enriched

with an ErrorModel state machine (Figure 15 b). The component follows an exponential

failure rate of exp(1.0E-4). Once an internal failure happens, there is an 80% chance

that the component will detect the failure and move to the LateDetection ErrorState and

a 20% chance it will move to the Undetected ErrorState. If the component reaches the

LateDetection ErrorState then it will produce a late failure mode through its out port.

On the other hand, if the component reaches the Undetected ErrorState isntead, it will

propagate an omission through its output port.

CHESS-ML also provides a Security Profile that supports TARA and SAHARA

(MACHER; SCHMITTNER; ARMENGAUD, et al., 2017) through the analysis of the

e�ects of attacks on safety properties, in a compositional fashion. As illustrated in Figure

16, the Attack stereotype is a specialized InternalPropagation (from the Safety Profile)
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Figure 15 – Application of the ErrorModel Stereotype

referring to the erroneous transition caused by an external fault (an attack). It supports

the specification of an attack, the threat type and exploited vulnerability, its severity, and

its likelihood. An Attack "represents an attempt to expose, modify, disable, destroy, steal

or gain unauthorized access to or make unauthorized use of an asset" (INTECS, 2020).

Attacks may rise due to a Threat and cause a breach, if capable of successfully exploring a

Vulnerability (INTECS, 2020). By specializing the InternalPropagation stereotype, Attacks

may also be enriched with a set of externalFaults, (i.e., failure modes injected by the

attacker into the component to try to trick or gain access to it), delay, (i.e., the time

needed to successfully perform the attack) and weight, (i.e., probability that the attack is

successful).

CHESS-ML allows classifying attacks into one of the following categories: masquer-

adeAttack, i.e., the attacker uses a fake identity to gain access to the system; dataSpoofin-

gAttack, i.e., the attacker is able to identify itself as someone authorized to gain access or

higher privileges to the system; denialOfServiceAttack; i.e., attack with the objective of

purposely make a component or service unavailable; bruteForceAttack, i.e., attack based

on trial and error to gain access to the system.

A Vulnerability represents an internal weakness of a component and may be associ-

ated with a component input port through which an Attack can be performed (INTECS,

2020). Vulnerabilities can be classified under the following categories: missingDataIntegri-

tySchemes i.e., lack of mechanisms to detect and prevent attempts to modify system data,

inadequateEncryptionStrength, i.e., lack of robust and modern encryption technologies to
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Figure 16 – CHESS-ML Security profile stereotypes. Adapted from Intecs (2020)

secure sensitive data within the system; or resourceAllocationWithoutLimits, i.e., absence

of system resource use limitations that could potentially lead to a Denial of Service attack.

Finally, attacks may also arise due to a Threat which can be either an unauthorizedAcces-

sOfService, i.e., attacker is able to access the system without having the privileges to do

so; unauthorizedModificationOfService, i.e., attacker is able to modify the system or its

data; or unauthorizedDenialOfService, i.e., attacker disables the system. The e�ects of

attacks on safety properties are established by linking Threats to ErrorStates.

Figure 17 shows an example of a state machine diagram enriched with both safety

and security information. The state machine illustrates the e�ects of a masqueradeAttack

that unleashes a unauthorizedModificationOfService Threat, by exploiting a missingDataIn-

tegritySchemes vulnerability e.g., through input port in. Moreover, if successful, the attack

generates a valueSubtle failure through the component’s reading output port.
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Figure 17 – Example of a component state machine containing safety and security infor-
mation
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3 RELATED WORKS

This section highlights the related works, their limitations, and research challenges

addressed in this work. The state-of-the-art research on variability management in safety-

critical systems covers extensions of product line processes to address system dependability

properties and applications of model-based techniques to address variability in design,

implementation, and dependability artifacts.

The works referenced in this section have been selected based on di�erent strategies.

Firstly, a search string has been defined with the assistance of domain experts:

(("safety" OR "security" OR "dependability") AND ("reuse" OR "software product line"

OR “product families” OR "SPL" OR "PLE")) AND ("critical" OR "dependable" OR

“cyber-physical” AND (“variability” OR "reconfigurable"))

The above string was used in the following research databases: Scopus, IEEEXplore,

Web of Science, Science Direct, Engineering Village and SpringerLink. The following study

exclusion criteria have been defined:

• EC1: Studies that have been written in languages other than English;

• EC2: Studies that are not journal, proceeding or conference papers;

• EC3: Studies that are set as “Preview Only”;

• EC4: Duplicate studies;

• EC5: Studies that are not related to the Software Engineering area;

• EC6: Secondary and tertiary studies;

• EC7: Studies that do not discuss or propose approaches that enable the reuse of

safety or security related artifacts;

• EC8: Reports, case studies, evaluations, surveys.

The inclusion criteria, considered in the specified selection process was:

• IC1: Studies that propose approaches that enable the reuse or variability of

safety/security engineering artifacts;

• IC2: Studies that although not being returned in the database search phase, were

indicated by domain specialists.



44

• IC3: Studies referenced in papers under IC1 that were not returned by the search

string or suggested by domain specialists (snowballing).

The studies selected via the inclusion criteria were then grouped into two areas

for further analysis: Extensions of Product Line Processes to Address Dependability and

Model-Based Techniques to Support Variability Management of Dependability Artifacts.

The selected studies are described in the following sections.

3.1 EXTENSIONS OF PRODUCT LINE PROCESSES TO ADDRESS DEPENDABIL-

ITY

Wolschke et al. (2019) have investigated the main issues being currently faced by

the industry, regrading the reuse of safety artifacts. The authors have identified that

current industry practices, rely on replicating and adapting safety artifacts with product-

specific information. However, the use for "Clone and Own" strategies may lead to the

ine�cient reuse of artifacts and impose many challenges in the long run. Although cheap

and relatively e�cient in the beginning, Clone and Own strategies can eventually impact

costs and require extra e�ort for testing, maintaining and certifying systems (SCHULZE;

MAUERSBERGER; BEUCHE, 2013). Changes made in the reused artifacts are required

to be fed back into the domain knowledge so that future variants are in sync with the

current development environment. Thus, according to (WOLSCHKE et al., 2019), Clone

and Own reuse strategies still pose challenges to the integration of product line artifacts

into application development.

Engineers have also highlighted the importance of broadening the use of model-

based techniques, producing generic safety information and the adoption of standardized

variability specification mechanisms. Although many model-based solutions provide

support for variability management, design and analysis all in a single model, traditional

failure annotation and dependability analysis techniques based on Failure Logic, e.g.,

FPTN (FENELON; MCDERMID, 1993) and FPTC (WALLACE, 2005), and quantitative

State-Based Modeling, e.g., SPNs (HAAS; SHEDLER, 1989), lack to provide support for

the notion of variability. Wolschke et al. (2019) claim that simpler solutions for specific

variation problems are needed since existing variability management approaches are too

complex to work with. Moreover, dependability on variation points and safety artifacts

should be reduced and simplified.

Notable works regarding the extension of SPL processes to address dependability in-

clude extensions to manage variability on safety analysis artifacts, e.g., FTs, (DEHLINGER;

LUTZ, 2004; FENG; LUTZ, 2005) and the mapping between variant-intensive safety

artifacts and state-based models (LIU; DEHLINGER; LUTZ, 2007). Dehlinger and Lutz

(2004) and Feng and Lutz (2005) extend traditional FTA with SPLE phases and activities
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through the Product Line Software FTA approach (PL-SFTA). In domain engineering,

the FT nodes are tagged with commonality or variability labels. The FTs are then be

pruned accordingly and reused during the application engineering phase. The PL-SFTA

approach was then extended to allow the mapping of SFTA nodes into components and

state-machines representing their behavior.

Schulze, Mauersberger, and Beuche (2013) applies part of the PL-SFTA approach

presented by Dehlinger and Lutz (2004) and Feng and Lutz (2005) by integrating the

Ansys’ Medini Analyze (ANSYS, 2020b) and pure::variants (PURE-SYSTEMS, 2021)

tools to support variability management of Safety Goals, FTA and FMEA safety artifacts.

The solution is built upon a referencing model, which maps problem-domain features to

safety artifacts in the solution space, e.g., system FTA and FMEA results. However, the

reuse of system fault trees tends to be challenging since it requires the revision of the whole

tree (LISAGOR; MCDERMID; PUMFREY, 2006). The reuse of component dependability

annotations tends to be more e�ective since variability is specified in small steps in a

divide and conquer fashion. Di�erent dependability artifacts i.e., Fault Trees, FMEA

tables and reliability estimations, can be generated from one single type of dependability

annotation, e.g., FPTC and state-based models.

In order to overcome the challenges of reusing system FTs, Gómez, Liggesmeyer,

and Sutor (2010) propose a solution to enable the systematic reuse of Component Fault

Trees (CFTs). Although adopting a compositional strategy and thus, addressing the

aforementioned challenges of reusing system fault trees, the approach relies on "clone and

own" strategies where fragments of CFTs of similar systems are reused and adapted for the

specification of new CFTs. Domis, Adler, and Becker (2015b) solves that, by combining

the ideas of enriching FT nodes with variability information (DEHLINGER; LUTZ,

2004; FENG; LUTZ, 2005) and systematically reusing CFTs (GÓMEZ; LIGGESMEYER;

SUTOR, 2010) by integrating model-based design, and variability-management, i.e., using

pure::variants, to support the reuse of Component Integrated Component Fault Trees

(C2FTs) (SCHWINN; ADLER; KEMMANN, 2013). C2FTs were integrated into UML

via profiles and combine Fault Trees and FMEA results into an unique artifact covering

both safety analysis at component and system level. However, the approach is exclusive

to graphical C2FTs notations and does not address other domain-problem space artifacts,

such as probabilistic Markov models (SPNs), FPTC and Reliability Block Diagrams, that,

according to Wolschke et al. (2019), still pose challenges to the reuse of dependability

artifacts.

Dordowsky, Bridges, and Tschope (2011) describe their experience on implementing

a helicopter SPL. The authors list a series of requirements that SPLs of the aerospace

domain must follow in order to comply with guidelines to support the implementation

of critical systems, e.g., DO-178C (RTCA, 2011). Such requirements include ensuring

the full reusability and completeness of all components across variants without the need
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for modifications and guaranteeing the absence of dead code or information that do not

conform to a variant, when generating source code files. However, the approach is strictly

focused on the functional implementation of product line components and does not address

safety analysis.

ProLiCES (BRAGA; BRANCO, et al., 2012) is an extension of traditional SPLE to

address the development of safety critical systems and optimize critical software reuse. The

process covers not only traditional SPLE activities such as feature modeling and resolution

but also, domain and application engineering development, e.g., planning, requirements

analysis, system modeling & simulation, code generation and integration, and verification

activities, e.g., requirements inspection and architecture validation. In subsequent work,

Braga, Trindade Junior, et al. (2012) propose a metamodel to address certification aspects,

in the development of critical SPLs. The metamodel considers domain features, custom

SPL process activities, e.g., ProLiCES, certification objectives and the di�erent integrity

levels product variants may achieve by including or excluding certain features. In Braga,

Trindade, et al. (2012), the authors exemplify the incorporation of certification aspects

into an Unmanned Aerial Vehicle (UAV) SPL. The authors present their experience on

defining relationships between features and measuring the impacts of the selection of

di�erent feature combinations on integrity levels. The authors also determine the feature

requirements for achieving a certain integrity level in di�erent products.

Käßmeyer, Schulze, and Schurius (2015) propose a systematic process that integrates

SPLE and Safety Engineering processes together to address the management and impacts

of change onto safety artifacts. The approach is exemplified through an Advanced Driver

Assistant System (ADAS) and addresses the impacts of change into HARA, e.g., risk

estimation, allocation of safety goals and requirements, and Safety Analysis e.g., system and

component FTs and FMEA. Unlike in approaches where variability is exclusively managed

in system level solution space artifacts (SCHULZE; MAUERSBERGER; BEUCHE, 2013),

the process presented by Käßmeyer, Schulze, and Schurius (2015) is incremental and

addresses the mapping between variability and safety properties from the earliest stages of

development. In subsequent work Kaessmeyer, Moncada, and Schurius (2015) the process

was evaluated with the support of third-party model-based design, e.g., Enterprise Architect

and I-SafE (now safeTBox), and variability management tools, e.g., pure::variants.

(OLIVEIRA, André Luiz de; BRAGA, R.; MASIERO, P.; PAPADOPOULOS,

et al., 2018) and (OLIVEIRA; BRAGA, et al., 2019) present an extension of traditional

SPLE methods to address dependability analysis during both domain and application

engineering phases. Domain engineering is extended with safety engineering activities such

as HARA, safety requirements and integrity level allocation, component fault modeling,

and the mapping between variability information and safety artifacts. In application

engineering, variants are derived and analyzed independently. Safety artifacts such as

FTs and FMEA tables are then automatically generated for each variant. However, the
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approach is limited to safety engineering and does not address security aspects such as

TARA. In addition, the approach relies on the use of third-party variability modeling,

e.g., BVR, safety analysis solutions, e.g., HiP-HOPS, and therefore, is impacted by their

limitations regarding the fine-grained reuse of compositional dependability information.

In conclusion, although addressing the systematic variability management in de-

pendability artifacts, most of these approaches do not provide tool support to do so. Some

approaches make use of third-party variability management and compositional dependabil-

ity analysis tools such as pure::variants, BVR, and HiP-HOPS. However, these solutions

lack support for either fine-grained variability specification or the generation of complete

resolved models, therefore, making the systematic reuse of dependability information

challenging and prone to errors. Moreover, none of the presented SPLE extensions address

the systematic reuse of security information, e.g., state-based models, and the execution

of security engineering tasks, e.g., TARA.

3.2 MODEL-BASED TECHNIQUES TO SUPPORT VARIABILITY MANAGEMENT

OF DEPENDABILITY ARTIFACTS

In the category of model-based solutions to address variability, Vasilevskiy et al.

(2015) propose Base Variability Resolution (BVR) a language extension of the Common

Variability Language (HAUGEN; WASOWSKI; CZARNECKI, 2012) and tool, to support

standard variability management on MOF (OMG, 2019a) compliant models. BVR supports

Product Line Engineering Activities, i.e., feature, realization and resolution modeling,

through inter-related graphical model editors. BVR also provides a model transformation

engine through which, resolved models are automatically derived, according to the product

requirements specified in the resolution model.

Examples of the application of BVR in critical domains include Vasilevskiy et al.

(2015) and Javed, Gallina, and Carlsson (2019) for managing variability in system design,

Javed and Gallina (2018) for managing variability in safety process models, and Bressan,

Oliveira, and Campos (2020) for the quantitative compositional safety analysis of critical

systems, through the AMASS platform. BVR has also been interated within the AMASS

(VARA et al., 2019) to enable variability management in design and dependability artifacts

built upon UML, SysML and CHESS-ML.

Although the benefits, BVR lacks key concepts and capabilities described in the

CVL and BVR Languages that could make the systematic reuse of architectural and

dependability information easier. Variability resolution is bound to Fragment Substitu-

tion operations, which consist of the removal of placement and replacement of model

element fragments. The BVR Tool does not cover the resolution of variability based on

ObjectExistence, Property Values e.g., through SlotAssignments, and custom implemented

OpaqueVariationPoints. As pointed out by Horcas, Pinto, and Fuentes (2017), experiments
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(DEGUEULE et al., 2015; BOSCO et al., 2012; HORCAS; PINTO; FUENTES, 2014) have

shown that fragment substitutions alone are not su�cient to cover the needs of certain

domains. In addition, in previous work (BRESSAN; OLIVEIRA; CAMPOS; CAPILLA,

2021), we have highlighted how the limitations of BVR makes the systematic reuse of

dependability information challenging.

The BVR Tool Bundle’s lack of support for the specification of variability within

property values for example, makes it impossible to fully address variability in component

dependability information, e.g., FPTC and failure occurrence distributions, specified as

annotations in the system model. Such limitation, may lead to the derivation of incorrect

critical models, i.e., that do not conform to product requirements, and imply in the

adoption of clone and own strategies in the management of variability in dependability

information. As a result, the reuse and analysis of variant-rich critical models, becomes a

complex and error prone task.

Horcas, Pinto, and Fuentes (2017) tackles a few of the limitations of BVR regarding

the lack of variability resolution methods other than FragmentSubstitutions, by proposing

an implementation of the CVL transformation engine. vEXgine supports variability

resolution based on CVL’s ObjectExistence, and the specification of Opaque Variation

Points. vEXgine enables the resolution of variability in UML and other MOF-compliant

models by simply activating and deactivating model fragments instead replacing them

through fragment substitution operations. The engine is also highly extensible and allows

the specification of custom transformations through Opaque Variation Points. In previous

work, (HORCAS; PINTO; FUENTES, 2014) extend CVL through Opaque Variation

Points to manage variability in sequence diagrams representing security related system

functions. However, the extension focuses on the functional side of security and does

not address compositional security analysis. Moreover, similar to BVR, vEXgine does

not support the fine-grained variability management and resolution of model properties

and their values, e.g, through SlotAssignment variation points. Therefore, dependability

annotations attached to system model elements still need to be cloned to and adapted in

the resolved system model to enable the proper reuse of dependability information.

Horcas, Cortiñas, et al. (2018) proposes an approach that integrates Annotative

Variation Points into CVL (HAUGEN; WASOWSKI; CZARNECKI, 2012) to manage

fine-grained variability within web applications and their source code. The approach

is hybrid and makes use of ObjectExistence variation points to manage variability on

coarse grained artifacts, e.g., website modules, source files and components, and Opaque

Variation Points to manage fine-grained variability at source code level. Fine-grained

variability is achieved by annotating parts of the source code files with comments, instead

of creating the mappings within the Variability Resolution Model like it is typically done

in CVL. These comments surround portions of code, e.g., /* if (feature.[feature_name])

[variable_code] */), that may be deleted or kept after transformation and indicate the
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feature the portion it surrounds, is mapped to. Although providing means for managing

fine-grained variability, the semantics behind the variation points defined in the approach,

are directed towards source code and do not cover fine-grained variability in models and

dependability information.

kCVL (DEGUEULE et al., 2015) is an implementation of CVL extended with the

concepts and semantics needed for properly realizing patterns on MOF compliant models.

kCVL introduces new variation points to CVL to support the addition of patterns into the

based model, e.g., through the PatternIntegration variation point, and the merging between

patterns and existing base model elements, e.g., via the PatternFusion variation point.

Moreover, kCVL also ensures the correctness of the generated models by updating its

elements accordingly, upon the addition, removal or integration of a new pattern. However,

kCVl only covers the architectural aspects of these patterns. Similar to other CVL

implementations and extensions to handle variability in MOF compliant models, kCVL

also lacks support for the fine-grained variability management and reuse of extra-functional

model properties such as dependability annotations.

pure::variants (PURE-SYSTEMS GMBH, 2020) is a commercial variability solution

that supports variability modeling, mapping and management on Simulink and Eclipse

Modeling Framework (EMF) models. The solution works mainly with the idea of Annota-

tive, e.g., 150%, variability. Features are linked to elements and values through a mappings

editor. Feature to model fragment mappings are established through boolean expressions,

e.g., Feature1 AND Feature2, using the pure::variants Simple Constraint Language (pvSCl).

Fine-grained model variability can be achieved through the creation of pvSCL calculation

rules in the mappings editor. Calculation rules are similar to programming language

functions and return a value based on the calculation’s result. For example, the calculation

IF Feature1 THEN "exp(1.0E-5)" ELSE "" ENDIF would return the string "exp(1.0E-5)"

if Feature1 is activated during product configuration and an empty string case the con-

trary. Such returned value can be mapped to any model property or tagged value e.g.,

FPTC annotations, and automatically assigned during resolution. Although its benefits,

pure::variants fails to fully handle the derivation of multilayered and hierarchical models

such as SysML. For example, the model transformation engine fails when deleting a Block

from a BDD and its Parts, i.e., instances, from an IBD. In addition, the transformation

engine does not handle broken or missing dependencies in the model e.g., a connector

missing its from or to ports, unless explicitly told to do so. Thus, the generated models

may be incomplete since users are still required to manually delete broken dependencies

from them.

Beuche, Schulze, and Duvigneau (2016) provide a solution for applying the 150%

modeling approach on source code files by extending the pure::variants model transfor-

mation engine. Such a solution is based on the notion of preprocessor directives, e.g.,

#if [boolean expression containing features] [source code fragment] #endif, adopted in
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programming languages such as C, C++ and Assembly. Source code fragments that may

vary across di�erent variants are surrounded by these directives and a logical expression

containing the features that activate them. Given a product resolution model, resolved

source code files are generated by executing pure::variants model transformation engine.

Although Beuche, Schulze, and Duvigneau (2016)’s approach provides means for specifying

variability at a more fine-grained level, it exclusively addresses source code and its concepts

have not been applied and adapted yet to work with models. We believe that integrating

the ideas proposed by Beuche, Schulze, and Duvigneau (2016) and Horcas, Cortiñas, et al.

(2018) and implementing them into critical models, may help us lowering the granularity

with which dependability annotations can be managed and systematically reused. Thus,

guaranteeing the generation of correct models and reducing the burden of dependability

analysis.

Regarding variability modeling notations, several authors have proposed UML ex-

tensions via stereotypes, to enable the specification of variability within UML based models.

Clauss (2001) introduces an UML extension to support feature modeling and explicit

representation of variation points and optional elements in UML diagrams. Similarly, Ziadi,

Hélouët, and Jézéquel (2004), proposes an UML profile for software product lines and the

use of OCL to support the specification of constraints among variation points and variants.

Flores and Oliveira (2021) provides a tool environment, i.e., SmartyModeling, to support

the engineering of UML-based Software Product Lines. SmartyModeling implements the

concepts and functionalities of Stereotype-based Management of Variability (SMarty)

which include the SMartyProfile (OLIVEIRA; GIMENES; MALDONADO, 2010) and the

SmartyParser (LANCELOTI et al., 2013). SMartyProfile extends abstractions defined

in the UML metamodel through profiles, to enable the specification of variation points,

variants and constraints as UML stereotypes. SmartyParser (LANCELOTI et al., 2013)

provides a XMI parser for handling variability data provided by UML XMI-based files

enriched with SMartyProfile variability annotations. None of these approaches however,

provide mechanisms to define fine-grained variability.

Botterweck, Polzer, and Kowalewski (2009) propose an approach based on the

Simulink variability mechanisms to represent optional (Enabler subsystems), alterna-

tive (Switch blocks), and inclusive-or (Integrator blocks) elements in Simulink models.

pure::variants (PURE-SYSTEMS GMBH, 2020) provides a Simulink connector which

equally enables the specification of variability using enabler, switch and integrator Simulink

blocks. pure::variants simply sets these variability blocks as true or false instead of auto-

matically removing them, alongside the a�ected blocks. This may generate issues during

model to code transformation, since the presence of disabled blocks in the resolved models,

leads to the generation of dead code. Botterweck, Polzer, and Kowalewski (2009) address

this issue via an Annotative variability modeling and using model transformations to

automatically exclude model fragments deactivated by the variability blocks.
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Delta-Simulink (HABER et al., 2013) provides a di�erent solution for variability

management on Simulink models, where blocks and model fragments are encapsulated

within deltas that can be added, removed, modified or replaced from the model when

needed. Simulink models are then transformed into configuration models according to the

selected deltas. However, none of these Similink-based variability management approaches

(BOTTERWECK; POLZER; KOWALEWSKI, 2009; HABER et al., 2013) support the

fine-grained variability specification of information attached to Simulink model elements.

Therefore, information such as component dependability annotations still need to be cloned

and adapted across di�erent model variants.

Hephaestus (STEINER; MASIERO; BONIFÁCIO, 2013) provides support for

variability management of xml-based use case scenarios, business processes, source code

and Simulink models. The tool takes a feature, resolution, mappings model, (e.g., defined in

a third-party tool such as pure::variants), a base model, (e.g., Simulink), and automatically

generates a resolved model as a result. When applied to Simulink, Hephaestus ensures

the generation of complete and concise resolved models by automatically fixing any

left out broken dependencies, e.g., by reconnecting or removing broken port connectors.

Hephaestus also implements fine-grained variability specification mechanisms which allows

the definition of variability within data, e.g., use case descriptions. When it comes to

Simulink models however, Hephaestus has only been applied to manage architectural and

nominal behavior variability. Its feasibility and applicability for managing component

dependability annotations is unknown. Moreover, when it comes to variability modeling

in architecture and behavior, its compatibility is restricted to Simulink.

Reuling et al. (2020), adapt variability modeling concepts implemented in code-

oriented SPLs and import them over to Model-based SPLs. The adapted code-oriented

variability modeling concepts include Annotative variability modeling approaches, e.g.,

use of preprocessor directives to bound portions of code with variability with are resolved

negatively, and Projectional variability modeling (BEHRINGER; PALZ; BERGER, 2017)

approaches which enable the use of multiple simultaneous variability representations e.g.,

Annotative and Transformational, for the same code fragment. The approach presented

by Reuling et al. (2020) is hybrid and allows the specification of model variability using

deltas. The solution is also modeling language independent and is intended to work on

any EMOF-based model. Variability is specified through EMOF Comments in the base

model containing a boolean expression of feature resolutions that if satisfied, binds the

appropriate variability, by deleting or adding elements to the base model, according to the

chosen variability representation method. So far however, fine-grained variability has only

been applied to entities such as multiplicities and property data types, e.g., by changing

a property’s type from Int to Float. The approach has not been yet applied to models

enriched with dependability annotations and thus, further evaluation is needed to verify

its feasibility for critical systems.
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EPM (ABELE et al., 2012) was a prototype tool which combined system design

and variability management on EAST-ADL (EAST-ADL ASSOCIATION, 2013) models.

EAST-ADL provides architecture description language for describing automotive systems

(BLOM et al., 2016). In EPM, variability is resolved in an Annotative (GRÖNNINGER

et al., 2014) fashion, by turning base model fragments on and o�. The tool also extends

EAST-ADL to enable the enrichment of model components with failure annotations and

hazardous scenarios.

In EPM, compositional safety analysis is supported by HiP-HOPS (PAPADOPOU-

LOS et al., 2011), a framework that supports the automated system safety analysis in

Simulink (PAPADOPOULOS et al., 2011), SysML (COLEMAN et al., 2012) and AADL

(MIANI; ZARPELAO; MENDES, 2015) and EAST-ADL (WALKER et al., 2013) models.

HiP-HOPS works with the idea of compositional safety analysis in which components

are annotated with quantitative, i.e., failure rate distributions and probabilities, and

qualitative, i.e., FPTC and FPTN based failure propagation expressions, dependability

information.

HiP-HOPS summarizes the component dependability annotations and generates

system wide Fault Trees and FMEA results based on user defined system hazards. HiP-

HOPS also supports variability management and reuse of safety analysis information via

failure model libraries. System components can be enriched with multiple implementa-

tions, i.e., di�erent internal failure and failure propagation rules, and might be reused

under di�erent systems and contexts. Although enabling the reuse of component failure

annotations, HiP-HOPS still does not fully mitigate the issues related to Clone and Own

strategies. The level of granularity with which HiP-HOPS annotations can be reused

is still high and engineers may still be required to repeat pieces of failure information

across di�erent component implementations. The failure rates of a hardware component

for example, may vary depending on its manufacturer. Its generated e�ects however,

(i.e., output failure modes), may always the same. In this case, with the component

implementations strategy adopted by HiP-HOPS, engineers are required to clone and own

failure annotations by replicating dependability annotation and modifying them across

di�erent component implementations.

3.3 DISCUSSION

From the analysis of related work, we believe that there is still space for improvement

concerning the reduction of the gap between variability, dependability, and the derivation of

correct critical models that conform with product requirements. Existing model variability

management techniques lack to support fine-grained variability specification of model

properties such as component dependability annotations, e.g., FPTC and quantitative data.

Furthermore, the approaches also fail to produce complete models that conform to product
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requirements. On the architectural level, engineers are still required to either manually

specify variability on elements that will knowingly become broken after derivation, e.g.,

ports and connectors, and exclude missing dependencies in the generated models for those

elements that cannot be removed during model transformation e.g., Parts.

On the extra-functional level, many of the presented approaches fail to support the

specification of fine-grained variability within models. This implies in the generation of

incomplete models thus, requiring their manual revision and adaptation prior to system

level dependability analysis. The approaches that support fine-grained variability modeling

are either focused on variability specification on source code files or do not implement

automated mechanisms to manage variability on dependability annotations. Therefore,

engineers are required to go through a larger number of manual steps to specify variability

in dependability annotations and ensure their correctness in the generated product models.
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4 CRITVAR-ML: A MODELING LANGUAGE FOR VARIABILITY RE-

ALIZATION INTO SYSTEM DEPENDABILITY ARTEFACTS

This chapter introduces CRITVAR Modeling Language (CRITVAR-ML) to manage

the diversity of safety, reliability, and security information from dependability artefacts

throughout variability realization modeling, i.e., to bind domain variability constructs

specified in the feature model to their realization into fragments of safety and security

analysis artefacts to make them available for reuse, answering RQ1:How to represent

the diversity in system dependability artefacts. CRITVAR-ML is an extension to

the variability realization modeling concepts defined into CVL (HAUGEN; WASOWSKI;

CZARNECKI, 2012) variability standard, upgraded to the BVR language (HAUGEN;

ØGÅRD, 2014) by modifying the CVL metamodel with the removal of some constructs for

the sake of simplicity, and addition of other constructs for more suitable expressiveness.

Section 4.1 provides an overview of CRITVAR-ML metamodel and its relationships

with essential Meta-Object Facility (eMOF), UML, and CVL/BVR Object Management

Group standards. Section 4.2 describes the materialization of CRITVAR-ML variability

realization modeling concepts into an UML stereotype, to bind domain features to model

elements, and a textual language to bind features to their realization into safety (e.g.,

failure mode), reliability (e.g., failure rate), security (threats or confidentiality, integrity,

availability violations), or other dependability properties, e.g., repair rate, and their

respective values stored into slots of elements of MOF-compliant base models. Section

4.2 describes the relationships between CRITVAR-ML concepts and Open Dependability

Exchange (ODE) metamodel. Section 4.3 illustrates the integration of CRITVAR-ML and

CHESS-ML to enable variant management on CHESS-FLA, Stochastic, and State-Based

dependability models. Finally, Section 4.4 provides the summary of this chapter.

4.1 CONCEPT: CRITVAR-ML METAMODEL

CRITVAR-ML is a modeling language, which extends CVL/BVR, for specifying

and resolving variability into dependability artefacts, to overcome the limitations of state-

of-art variant management techniques in binding domain features to finer-grained safety

and security information expressed as MOF::Element property values into MOF-compliant

base models, and resolving variability into these models.

Figure 18 illustrates the CRITVAR-ML metamodel and its relationships with

e-MOF/UML, and BVR/CVL packages. e-MOF/UML base metaclasses are highlighted

in orange. CRITVAR-ML profile metaclasses are highlighted in blue. BVR/CVL

variability metaclasses are highlighted in green. e-MOF/UML::NamedElement and

BVR/CVL::OpaqueVariationPoint metaclasses are replicated to avoid the mixing of rela-

tionships between metaclasses from di�erent packages. Each metaclass is detailed in the

following.
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Figure 18 – CRITVAR-ML and its relationships with BVR/CVL variability and e-
MOF/UML modeling concepts

CRITVAR-ML package metaclasses extend the BVR/CVL::Opaque Variation

Point (OVP) to support custom transformations to resolve variability into model elements

(BVR/CVL::ObjectExistence) and links between them (BVR/CVL::LinkExistence), and

into values to be assigned to a slot (i.e., BVR/CVL::ParametricSlotAssignment and

BVR/CVL::ValueAssignment) of an element (i.e., BVR/CVL::ObjectHandle) of the MOF-

compliant base models.

CRITVAR-ML is a profile1 for variability realization modeling comprising: Crit-

icalObjectExistence and DependabilityPropertyValueAssignment profile classes (i.e., stereo-

types), which extend CVL::Opaque Variation Point (OVP) and e-MOF/UML::Comment

metaclasses, with properties (stereotype tag definitions) to support the specification of

bindings between domain Variability Specifications (VSpecs) and their realization into

model elements (i.e., MOF::Elements), element dependability properties and their values

(i.e., tagged values) stored into MOF::Property slots. CriticalObjectExistence profile class

provides a concrete implementation to CVL::ObjectExistence choice variation point, and

DependabilityPropertyValueAssignment is an implementation of ValueAssignment variation

point defined into CVL/BVR Variability Realization package (BVR/CVL package in

Figure 1).

CriticalObjectExistence is an implementation of CVL::ObjectExistence choice vari-
1 a profile class defines how an existing metaclass can be extended as part of the profile. A

profile enables the use of domain specific terminology or notation in place of, or in addition
to, the ones used for the extended metaclass, e.g., e-MOF/UML::Comment.
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ation point used for binding a domain feature or a feature expression to its realization

into model elements and their connections (links). If the feature or expression stated into

the VSpecs slot evaluates true in the variability resolution model, model elements tagged

with CriticalObjectExistence and their links are included in the product configuration

model after resolution of variation points into the base model. CriticalObjectExistence is

an implementation of CVL::OVP variation point, which its VSpecs slot is used to support

the specification of a OVP.bindingVSpec referencing to a single VSpec (feature) or to

an expression combining two or more VSpecs (Variability Specifications) using logical

operators (AND, OR, NOT). A VSpec is a decision point that needs to be resolved, i.e.,

a variation point, and therefore, a VSpecResolution refers to a VSpec. For example, a

CriticalElementVariationPoint UML stereotype with its VSpecs property set with AutoAc-

celeration domain feature, attached to Powertrain SysML block from a Block Definition

Diagram denotes that the Powertrain block should be included into the configuration

model only if the user choose AutoAcceleration feature in the resolution model.

The grammar below contains the rules of our VSpec logical expression language.

The supported boolean operations are and, e.g., VSpecName1 AND VSpecName2 and

returns True if both the VSpecResolutions are resolved to True, or, e.g., VSpecName1 OR

VSpecName2 and returns True if at least one of the VSpecResolutions are resolved to

True and not, e.g., NOT VSpecName1 and returns True if VSpecResolution1 is resolved

to False.

ÈexprÍ ::= VSpecName

| ÈexprÍ ‘AND’ ÈexprÍ

| ÈexprÍ ‘OR’ ÈexprÍ

| ‘NOT’ ÈexprÍ

| ‘(’ ÈexprÍ ‘)’

DependabilityPropertyValueAssignment is a type of annotative variation point that

indicates the existence of the entirety or portions of fine-grained dependability information,

e.g., FPTC expressions and failure occurrence distributions. Dependability information

that is common across di�erent variants, must be cloned into di�erent ValueSpecifications.

Similarly, information that vary, must be adapted across the di�erent ValueSpecifications

accordingly. We tackle this issue by enabling the specification of information that is both

common and variable across di�erent variants through the expression parameter of the De-

pendabilityPropertyValueAssignment Variation Point. Similar to how it is done by Beuche,

Schulze, and Duvigneau (2016) and Horcas, Cortiñas, et al. (2018), in solutions designed

to support the fine-grained variability management of source code and in pure::variants

through calculations, component dependability annotations are surrounded by directives

indicating the VSpecs that resolve them.
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Fine-grained variability specification into component dependability annotations

works in a similar way to the notion of preprocessor directives adopted in programming

languages, e.g., C/C++ and Assembly. In CRITVAR, fine-grained dependability in-

formation, e.g., fptc rules and component failure occurrence probabilities, are enclosed

by #BeginVP and #EndVP tags. Following each #BeginVP tag, comes a logical

expression, containing VSpecs, that if satisfied , i.e., resolved as true, keeps the variable

information between the # BeginVP and # EndVP directives in the resolved model. The

grammar below contains the production rules needed to specify fine-grained variability

using CRITVAR.

ÈVarExpressionÍ ::= ‘#BeginVP’ ÈexprÍ‘:’ ÈVarDepInformationÍ ‘#EndVP’

ÈVarDepInformationÍ ::= ÈVarExpressionÍ

| fptcRule

| failureOccurrenceProb

| ...

ÈexprÍ ::= VSpecName

| ÈexprÍ ‘AND’ ÈexprÍ

| ÈexprÍ ‘OR’ ÈexprÍ

| ‘NOT’ ÈexprÍ

| ‘(’ ÈexprÍ ‘)’

The BVR/CVL package contains VSpec, VSpecResolution, VariationPoint, Ob-

jectExistence and ValueAssignment elements defined into the BVR/CVL (HAUGEN,

2014b) specification for describing software variability concepts. CRITVAR-ML pro-

vides concrete implementations for ObjectExistence and ValueAssignment variation point

conceptual metaclasses defined into BVR/CVL variability standard.

The EMOF/UML package comprises e-MOF/UML elements and their relation-

ships. The Element metaclass may own properties and other elements. An Element may

contain zero or more Comment annotations. A Comment represents a textual annota-

tion, e.g., a remark, that can be attached to an or more e-MOF/UML::Elements. The

OpaqueVariationPoint profile class extends Comment metaclass to support the explicit

representation of variation into e-MOF/UML::Element and Property types. Essential

Meta-Object Facility (e-MOF) is the OMG standard for model-driven architecture that

shares a common core with UML 2.0 (OMG, 2017c). An e-MOF::Element extends the

UML::Element. An e-MOF::NamedElement can be a Namespace, ModelElement or a

Property. EMOF provides the basis for model-based design and safety analysis languages

and tools, e.g., CHESS Papyrus UML (MAZZINI et al., 2016) and Component Fault

Trees (ADLER et al., 2011) integrated within Eclipse Capella, OSATE AADL environ-

ment (CMU, 2020) with AADL Error Annex extension for dependability analysis. Since
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e-MOF::Element extends UML::Element, MOF elements can be enriched with variability

annotations via CriticalObjectExistence and DependabilityPropertyValueAssignment profile

classes from CRITVAR-ML package. This is possible because CRITVAR-ML profile classes

extend e-MOF/UML::Comment metaclass, enabling both coarse-grained and fine-grained

variant management on MOF Elements, Properties, and property values. The relationships

between CRITVAR-ML and system desgin and dependability models, and implementations

of CRITVAR-ML profile classes into a variability modeling language are detailed in the

following.

4.2 CRITVAR-ML and Open Dependability Exchange Metamodel

The relationships between CRITVAR-ML variability modeling, ODE::Design,

ODE::Hazard Analysis and Risk Assessment (HARA), and ODE::FailureLogic

packages from Open Dependability Exchange (ODE) (DEIS, 2020) metamodel are detailed

through this section. The ODE metamodel describes the model-based design and depend-

ability (safety, security, reliability) assessment concepts shared between state-of-the-art

model-based design and dependability assessment frameworks and tools, e.g., HiP-HOPS,

OSATE (CMU, 2020) Architecture Analysis and Design Language (AADL) (FEILER,

2013) environment and ADDL Error Annex (DELANGE, 2016) extension for dependability

analysis, the CHESS framework (MAZZINI et al., 2016), Component Fault Trees (ADLER

et al., 2011) and HiP-HOPS (PAPADOPOULOS et al., 2011).

The ODE metamodel provides the core abstractions to the concept of Digital

Dependability Identity (DDI) (SCHNEIDER et al., 2015) of a component or a system. A

DDI contains all the information that uniquely describes the dependability characteristics

of a system or components, including attributes that describe the system’s or component’s

dependability behavior such as fault propagations, requirements on how to interact with

other entities (systems or components) in a dependable way, and the level of trust and

assurance. The DDI concept can be used for integrating components into systems during

development as well as for the dynamic integration of systems to systems of systems in

the field. The concepts embedded into ODE metamodel enable exchange and integrated

analysis of modular (component) dependability-related information over supply chains.

The ODE metamodel provides concepts the represent typical models, e.g., architec-

tural design, hazard analysis and risk assessment, and failure logic, fault trees, and FMEA

required by dependability assurance lifecycles. These models can be specified with the

support of model-based dependability assessment tools (PAPADOPOULOS et al., 2011;

CMU, 2020; MAZZINI et al., 2016). The ODE metamodel is an exchange format for

system design and dependability models produced by di�erent tools to support di�erent

engineering stories. The ODE is a common language for exchange of models produced by

di�erent system and component vendors using di�erent tools built upon Eclipse Modeling
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Framework (EMF). EMF is a well established implementation of Model-Object Facility

OMG standard for Model-Driven Engineering from which a number a tools are built.

The ODE allows tool providers to implement import and export features to serialize and

de-serialize (i.e., parse) data from/to their own tools.

4.2.1 An Overview of Open Dependability Exchange Metamodel

In the ODE metamodel, the concepts related to each lifecycle model is separated

into modular packages that capture system architecture modeling and dependability

analysis concepts: failure logic modeling, hazard analysis and risk assessment, and de-

pendability requirements specification as illustrated in Figure 19. This section focuses

on ODE Base, Design, HARA, and Failure Logic packages. The ODE::Base package

encapsulates BaseElement, KeyValueMap, and Value, and their relationships, representing

MOF Element, NamedElement, and Property base classes and their implementations

in EMF platform. BaseElement is the common base class of all ODE classes in same

way Element is the common base class of all MOF classes. A MOF::Element may own

properties, operations, and other elements. A ODE::BaseElement has a unique identifier

and name, and optionally a description. The elements from other ODE packages inherit

ODE::BaseElement properties. The ODE::Base package also includes the TimeUnit

enumeration commonly used in other packages.

Figure 19 – Open Dependability Exchange packages and CRITVAR-ML.
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Dependability can only be demonstrated in the context of structural and be-

havioral models of a particular system or system of systems. The concepts needed to

model structural and behavioral aspects of the system architecture are encapsulated into

ODE::Design package. In the ODE::Design package, the System can be a logical

(software) or physical (hardware) representation of the system, and a Function is used

for representing a system behavior. The System is the root element from ODE::Design

package. A ODE::System is a composite element that may comprise subsystems and

ports. Ports are explicitly defined interfaces from which the System element communicates

with external systems, sub-systems, logical or physical components via signals. A Signal

represents a connection between Ports thorough which the information (data) flows from a

source to a destination system element. A Port has an assigned direction according to the

direction of the signal, which can be incoming, outgoing, or both. Di�erent phases of the

engineering lifecycle focus on di�erent aspects of the system under design such as logical,

physical, and safety, which demand the analysis of di�erent attributes. In order to support

the specification and analysis of di�erent system attributes, ODE provides LogicalCompo-

nent, PhysicalComponent, and SafetyRelatedSystem system sub-types. Independent from

the modeling aspect, a System is a hierarchical representation of the architecture and has

a set of Functions representing the behavior the system should realize (DEIS, 2020). A set

of performance characteristics (PerfChars), i.e., non-functional requirements, can emerge

from the system functional requirements and be attached to a Function to be realized.

System and all design package elements inherit all basic attributes and relationships from

a BaseElement (ODE::Base package).

A System element should be developed in compliance with dependability ODE::

Dependability::Domain::Standards. A Standard provides a Lifecycle to develop

systems in a given Domain, a risk-based approach for determining risk classes (i.e.,

ODE::Dependability::Domain::Assurance Levels) for classifying the risk posed by each haz-

ard during risk assessment, and requirements for validation and confirmation measures to en-

sure that an acceptable level of safety is achieved. A System element can have an Assurance

Level and a set of assigned ODE::Dependability::Requirements::DependabilityRequirements

to achieve the given assurance level.

Systems and Functions can fail and their failure behavior are captured in FailureMod-

els (ODE::FailureLogic package). A Function can have several Malfunctions (ODE::HARA

package). A Malfunction describes a safety-critical deviation from the intended behavior.

A Port can have related failure modes (ODE::FailureLogic::FailureMode) describing the

failure propagation interface of a System or a Function. Associations between System and

Functions and ODE::FailureLogic::FailureModels, and between ODE::FailureLogic::Failures

and Ports make more explicit the relationship between system failure analysis and in-

dividual failure behaviors at the level of function/system/component. A System can

operate within one or more specific Contexts. Each Context contains relevant information
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about the System’s operation, usage, or environment. A System can also be present into

zero or multiple Configurations. A Configuration may contain one or a set of System

elements. Each system configuration may have di�erent failure models and di�erent failure

propagation interfaces (Port failure modes).

The ODE::HARA package provides the modeling concepts to support haz-

ard analysis and risk assessment, the starting point for system dependability analysis,

where Malfunctions of the intended system behavior specified as Functions are identi-

fied, resulting in Hazards and their risks are estimated via levels of severity, likelihood,

controllability, or other parameters associated with RiskAssessment element. Di�erent

ODE::Dependability::Measures can be assigned to eliminate or minimize the e�ects of a

Hazard according to its risk. A Hazard is referenced by a RiskAssessment element for

conducting probabilistic risk assessment to classify the risk posed by that hazard to the

overall safety. A Hazard is also referenced by a Function due to the data exchange between

them. Hazard is also referenced by a ODE::Design::SafetyFunction for the derivation

of a safety function, and by a ODE::Dependability::Requirements::SafetyRequirement for

the derivation of a safety goal and safety requirement. In IEC 61508 (IEC, 2010), a

safety requirement is a requirement for a safety function and its associated safety integrity

(assurance) levels. A safety function is a function to be implemented by a safety-related

system intended to achieve or maintain the safe state for an electronic unit control with

respect to a specific hazardous event. A safety-related system is a system aiming to

implement safety functions to ensure the safe state for an electronic unit.

4.2.2 ODE::Dependability::Requirements and Failure Logic Packages

The ODE::Dependability::Requirements package contains the elements to

model dependability requirements and their relationships with their requirement sources

(ODE::Dependability::RequirementSource), e.g., product-specific goals and requirements,

product and process requirements from relevant standards, and domain-specific regulations

to achieve a given assurance level. A dependability requirement is a requirement for

a system to deal with the avoidance service failures more frequent and severe than

acceptable. System failure elements and their associated attributes are handled by

ODE::Dependability::HARA and ODE::FailureLogic packages.

A dependability requirement can be assigned to mitigate the e�ects of one or

more failures (ODE::FailureLogic::Failure). An assigned dependability requirement may

require applicable measures (ODE::Dependability::Measure and maintenance procedures

(ODE::Dependability::MaintenanceProcedure) to address a specific assurance level (ODE::

Dependability::AssuranceLevel). A safety requirement is a sub-type of dependability

requirement derived from hazards (ODE::HARA::Hazard) to mitigate their e�ects on

the overall system safety. A security requirement is a kind of requirement referencing a
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security capability to ensure system and/or data confidentiality, integrity, and availability.

A measure is an applicable action or mechanism, e.g., fault avoidance and fault removal,

to reduce the risks to system dependability. A fault tolerance measure is a risk reduction

measure, identified during functional hazard analysis, and used to derive safety goals and

safety requirements. A maintenance procedure is an applicable measure to reduce the

risks of failures in physical (hardware) components.

FTA, FMEA, and Markov models lead to dependability measures (ODE::Dependability::Measure

to mitigate hazard and failure e�ects. The DependabilityRequirement references an

ODE::FailureLogic::Failure and a ODE::Dependability::Measure. A safety requirement

can be assigned to mitigate the e�ects of one or more hazards. A ODE::TARA::Security

Requirement element represents a requirement from security domain associated with a

number of ODE::TARA::SecurityCapabilities, e.g., authentication, authorization.

Safety analysis is performed based on the top-level dependability requirements

derived from hazards identified during hazard analysis and risk assessment describing the

potential causes of failures in a System or Function leading to hazards to be mitigated

(DEIS, 2020). The ODE::FailureLogic package and its sub-packages contain the elements

to model the potential system failures and their causes using existing safety analysis

techniques such as Fault Tree Analysis (FTA) (VESELY et al., 2002), Failure Mode and

E�ects Analysis (FMEA) (US MILITARY, 1977), and probabilistic Markov modeling

(RABINER; JUANG, 1986). The ODE::FailureLogic package (Figure 2) and its sub-

packages provide the elements to support modular and hierarchical failure analysis based

on the system design using analysis techniques such as CHESS Failure Logic Analysis

(GALLINA; JAVED, et al., 2012), HiP-HOPS (ADLER et al., 2011), and AADL Error

Annex (DELANGE, 2016). The Failure element abstracts common characteristics of

failures within functions, systems, or components.

Failures in architectural elements can be categorized into input, output, or internal

according to its origin as illustrated in Figure 20. This abstraction is useful for composing

failure analysis results of hierarchical models. The failure behaviors of a system or

component is encapsulated into one or more FailureModels. A Failure can be a Common

Cause Failure (CCF), when its occurrence can trigger other Failures. A probabilistic

value for a failure rate can be assigned to PhysicalComponent (hardware) failures. A

probability distribution (ProbDist) model can be used to calculate the unavailability of a

hardware element for a given failure. There are a number of probability distribution failure

models, e.g., Constant Failure and Repair Rate, Mean Time to Failure and Repair (MTTF

and MTTR), with di�erent formulae and parameters to calculate the unavailability of a

component for a given basic event (failure).
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Figure 20 – ODE failure logic, EMOF, and CRITVAR-ML packages.

A Failure is characterized by its class attribute, used to describe its nature, e.g.,

data omission or commission, incorrect value, data sent too early or too late for safety

analysis. An Assurance Level can be assigned to classify the risk posed by a software

failure to system dependability. A component FailureModel may have a set of minimal

cut-sets. A minimal cut-set represents the smallest possible combinations of Failures

leading to the occurrence of a top-event, i.e., an output failure mode. Minimal cut-sets are

used as the basis for failure propagation and probabilistic analyses. An input or output

failure is associated with a given system or component port. A hazard can be associated

with several output failures.

4.2.3 ODE::FailureLogic Sub-packages

The ODE::FailureLogic::FTA sub-package captures the information produced

during FTA. FaulTree is a FailureModel comprising a set of Cause elements. A Cause

element can be an input, output, or a basic event, or a Gate of a fault tree. Cause

references a Failure. A Gate is Boolean logic event connector, which is a subtype of Cause,

used to chain hierarchies of causes in a fault tree.

The ODE::FailureLogic::FMEA sub-package captures the information produced

during FMEA. The FMEA element is a failure model comprising a set of entries (FMEAEn-

try). Each FMEAEntry relates an output failure from a system element under analysis

with its system level e�ects. The FMEA element can be a FMEA or a FMEDA element. A

FMEDA element has a set of FMEDAEntries. FMEDAEntry specializes FMEAEntry with

a diagnosisRate double attribute, and a relationship with ODE::FailureLogic::ProbDist,

used for calculating the system unavailability for the referenced failure mode.

The ODE::FailureLogic::Markov sub-package provides the elements to support
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the analysis of dynamic and temporal aspects of the system behavior from Markov analysis

technique. A Markov model comprises a set of normal and fail States, with one of them set

as the initial state, and probabilistic Transitions between states. A State references a failure

element from ODE::FailureLogic package. A Transition element represents a transition

from a source state to a destination state. Each state Transition has a probabilistic

attribute, calculated using a probability distribution (ProbDist) model.

4.2.4 ODE::Threat Analysis and Risk Assessment Package

The ODE::TARA package contains the elements to support security Threat

Analysis and Risk Assessment (TARA). In a TARA model, a ThreatAgent can be either a

Human or NonHuman source of an Attack. An attack may serve to a purpose. A threat

agent is a mean to achieve the overall goal of the attacker (AttackerGoal), negatively

impacting Assets, e.g., system operation and its data, being considered for security. An

attack exploits a system Vulnerability. A vulnerability is a weakness or error in the system

source code, when exploited, may lead to a SecurityViolation, compromising confidentiality,

availability, or data integrity through unauthorized access, elevation of privileges, denial

of service, or other security threats (MICROSOFT, 2009).

An exploited system vulnerability may potentially result in a SecurityViolation, im-

pacting safety and other dependability properties. SecurityViolation is a Failure sub-type

for modeling the direct e�ect of the occurrence of a security threat (ODE::TARA::Attack),

identified during TARA, on the overall system dependability. ODE::FailureLogic::Security

Violation (see Figure 20) is used for modeling and linking an individual Attack to the propa-

gation of its e�ects on the system dependability. This link enables hybrid security-safety co-

analysis since complex ODE::FTA::Causes can also be associated with ODE::FailureLogic::

Failure (Figure 20) elements from safety, reliability, robustness, availability, and other

dependability analysis. SecurityCapabilities and SecurityControls are high-level and

low-level applicable security counter-measures to reduce the e�ects of security threats

(attacks) and their risks. Security capabilities are associated with security requirements

(ODE::Dependability::Requirements::SecurityRequirements). Security controls are associ-

ated with ODE::Dependability::Measures.

The CRITVAR-ML provides elements to support the specification of mappings

(bindings) between domain features stored into BVR/CVL::Variability Specification models

(feature models) to their realization into ODE model elements, properties, and property

values. Figure 20 illustrates the relationships between CRITVAR-ML, and ODE Design,

HARA, and Failure Logic elements. Since ODE::Base::BaseElement and all other

ODE model elements are sub-types of EMOF::NamedElement, CRITVAR-ML variation

point elements, which inherit from BVR/CVL::OpaqueVariationPoint can be used to bind

domain features and/or feature expressions to their realization into ODE model elements
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and specific values for model element properties via bindingVSpecs and placeholders

relationships.

4.2.5 CRITVAR-ML Variation Points and ODE Design and Failure Logic

Packages

CRITVAR::CriticalObjectExistence variation point can be used to map a single

feature or a feature expression (via bindingVSpec property) to its realization into one

or more ODE Design, HARA, FailureLogic, and TARA model elements. There-

fore, it is possible to map features to their realization into ODE::Design::System ele-

ments, ODE::HARA::Hazard and ODE::FailureLogic::Failure safety analysis elements, and

ODE:TARA::Threat and ODE::FailureLogic::SecurityViolation security analysis elements,

and probabilistic ODE::FailureLogic::ProbDistribParam elements as illustrated in Figure

20.

For example, a CriticalObjectExistence variation point can be used to map FeatureA

to S1 and S2 objects from ODE::Design::System element, their ports and connections as

shown in Figure 21. Another CriticalObjectExistence variation point can be used to map

FeatureB to its realization into S2 system object. Therefore, when FeatureA is chosen

in the BVR/CVL::Variability Resolution model, S1 and S2 system elements, their ports

and the connection between S1 and its output port should be included into the product

ODE::Design model after product derivation process (see Figure 21). On the other hand,

only S2 system object should be included into the final product when FeatureB is selected.
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Figure 21 – Variant managament in ODE design elements using CRITVAR-ML element
variation point.

CRITVAR-ML::PropertyValueAssignment variation point can be used to map

features to their realization into specific values for a given ODE Design, HARA, FailureLogic,

and TARA model element property, enabling variant management at a finer-grained level

in both design, safety and security analysis elements. Figure 22 the usage of CRITVAR-ML

PropertyValueAssignment variation point VP3 object to map features of a feature model to

their realization into specific values for the failureRate property from a F1 Failure object

type associated with the Out1 port from a Sensor physical component. The failureRate

property from F1 is a placeholder referenced in the slotIdentifier property from VP3

PropertyValueAssignment.

Di�erent values can be assigned to the failureRate property from F1 failure element

according to the chosen feature defined in the product family feature model (F VSpecModel).

When FeatureA is selected, the value 10e-9 should be assigned to F1 failureRate property.

On the other hand, 10e-6 value should be assigned to the failureRate property when

FeatureB is chosen. The bindings between features and property values are specified via

logical expressions stated in the expression property from VP3 variation point object (

Figure 22). Each BeginVP EndVP expression block binds a VSpec feature or a feature

expression to a specific value for the failure rate placeholder property from F1 failure

object.
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Since ODE::FailureLogic::SecurityViolation extends ODE::FailureLogic::Failure

element, it is possible to map features to its realization into a specific security viola-

tion element using CRITVAR-ML::CriticalObjectExistence variation point. CRITVAR-

ML::PropertyValueAssignment can be used to map a single feature or feature expression to

its realization into a specific value for a given security violation property, e.g., failureRate,

class, origin. In this dissertation, a grammar was implemented to support the specification

of BeginVP EndVP feature-property value expression mappings stored into expression

properties from PropertyValueAssignment variation points (see Section 3.3).

Figure 22 – Variant management in ODE failure logic property using CRITVAR-ML
variation point.

4.3 MATERIALIZATION OF CRITVAR-ML INTO CHESS-ML MODELS

This section presents the materialization of CRITVAR-ML, to manage and resolve

structural and parametric variability into CHESS-ML models enriched with functional

safety, reliability, and security information (see Figure 23). CRITVAR-ML variation points

support the specification of mappings between feature and feature expressions specified

into CVL (HAUGEN; WASOWSKI; CZARNECKI, 2012) compliant feature models, e.g.,

BVR (VASILEVSKIY et al., 2015) VSpec, pure::variants (PURE-SYSTEMS, 2021) .vdm

models, to their realization into CHESS ML model elements and their dependability
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annotations specified using CHESS-FLA and CHESS-SBA plugins.

Figure 23 – Variant management into CHESS-ML models enriched with CHESS-FLA
failure annotations using CRITVAR-ML.

CRITVAR-ML::CriticalObjectExistence is materialized into a Papyrus UML stereo-

type to bind a variability abstraction (e.g., a single feature or a feature expression), specified

in a feature model (e.g., BVR VSpec and pure::variants vdm model), to its realization

into CHESS-ML (UML/SysML) model elements (structural variability), e.g., components

(SysML::Part), ports (SysML::Port), and connections (SysML::Connection). The following

figure illustrates the use of CritialObjectExistence in a CHESS model. As shown in the

figure, CRITVAR handles both fine grained and coarse grained dependencies in the model:
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Figure 24 - CriticalObjectExistence Variation Point, the a�ected coarse-grained and fine-
grained model information

CRITVAR-ML::DependabilityPropertyValueAssignmnet is materialized into a gram-

mar and an annotative textual language to bind variability abstractions (features) to

their realization into functional safety, e.g., failure mode, and reliability, i.e., probabilistic

information about component failure modes, failure and repair rate information expressed

as CHESS-FLA and CHESS-SBA annotations (parametric variability).

Figure 25 illustrates an example of a variability expression derived using the

production rules presented above.

Figure 25 – Fine-grained variability specified through variability expressions
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In CRITVAR-ML for CHESS there are two equivalent ways to specify fine-grained

variability into model artifacts. One way is by enclosing varying dependability informa-

tion directly with #BeginVP and #EndVP tags as shown in Figure 25 a). If the

VSpec Manufacturer1 is resolved as true, then ComponentA will have a failureOccurrence

of det(1.0e-6). If the VSpec Manufacturer2 is resolved as true instead, then Compo-

nentA will have a failureOccurrence of det(1.0e-6). Another way to manage fine-grained

dependability on dependability information is by annotating properties with Dependabili-

tyPropertyValueAssignment comments. Figure 25 b) shows a component annotated with a

DependabilityPropertyValueAssignment comment. The varying information is within the

failureOccurrence slot of the SimpleStochasticBehavior stereotype applied to ComponentA.

Figure 26 - Application of the DependabilityPropertyValueAssignment variation point to
manage fine-grained dependability information

4.4 SUMMARY

This section has described the CRITVAR Modeling Language and its constructs to

management variability at higher and lower levels of granularity. In the next chapter, we

discuss the CRITVAR Model Transformation Engine to support the automatic derivation

of configured models, based on the mappings created using the concepts presented in this

chapter.
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5 CRITVAR MODEL TRANSFORMATION ENGINE - TOOLING

This chapter introduces CRITVAR Model Transformation Engine (CRTIVAR-

MTE)1 to support the resolution of variability into CHESS-ML models enriched with

functional safety and security analysis information. Thus, answering RQ2: How to

derive correct and complete (with respect to feature selection) product system models

enriched with dependability information from a variability model? CRITVAR-ML variation

points was implemented by extending Papyrus UML (ECLIPSE FOUNDATION, 2017)

with CRITVAR-ML variability profile. Papyrus was chosen for being an open-source

and mature modeling environment. Papyrus UML supports the specification of UML

2.5 (OMG, 2017d) and SysML 1.1 (OMG, 2017b) modes, and many other UML and

SysML profiles, e.g., CHESS (MAZZINI et al., 2016), UML MARTE (OMG, 2019b), and

AUTOSAR (AUTOSAR, 2006) automotive industry standard for model-based design, and

dependability modeling profiles (GALLINA; JAVED, et al., 2012; MONTECCHI; PURI,

2020).

CRITVAR-MTE supports the resolution of variability into CHESS-ML models

enriched with dependability information for the moment, but it could be extended to

be compatible with other UML/SysML modeling environments, e.g., Eclipse Capella 2.

Since UML and UML profiles are based on XMI standardized format, the portability

between di�erent solutions should be straightforward. Section 5.1 provides an overview of

CRITVAR-MTE architecture. 5.2 describes the variability resolution algorithms. Finally,

5.3 presents a summary of this chapter.

5.1 CRITVAR Model Transformation Engine Architecture

The CRITVAR model transformation engine supports the automatic derivation of a

configuration model based on the feature selection expressed in an instance of the product

family feature model. The transformation engine was implemented in Python using

the ElementTree (ORG., 2020) library for querying XMI and UML models. PyParsing

(PYPARSING, 2020) module was used for parsing element property variability expressions.

Figure 27 provides an overview of CRITVAR Model Transformation Engine

(CRITVAR-MTE) architecture. CRITVAR-MTE requires the following input artefacts: a

base model from the targeting Model Editor, e.g., CHESS-ML (Papyrus) with CRITVAR-

ML variability annotations, one product family feature model, and one or a set of product

configuration feature models produced by a variability modeling tool, e.g., BVR (HAUGEN;

ØGÅRD, 2014), pure::variants (PURE-SYSTEMS, 2021).
1 CRITVAR-MTE Download: https://github.com/bressan3/CRITVAR-MTE-Public
2 https://www.eclipse.org/capella/
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Figure 27 - CRITVAR Model Transformation Engine Component Diagram

The CRITVAR-MTE::Variability Model Parser (Figure 27) is responsible for

parsing the product configuration feature models and pass the information to the Base

Model Pruner resolving variability into the base model based on the selection features

expressed in the input Product Configuration feature model(s). The Base Model Pruner

is detailed in section 5.2. The current implementation of CRITVAR-MTE::Variability

Model Parser is compatible with pure::variants and BVR variability models, i.e., product

family and configuration models, and CRITVAR-MTE::Base Model Pruner supports the

resolution of variability into CHESS UML/SysML base models enriched with CHESS-

FLA dependability annotations via CRITVAR-MTE::CHESS FLA Extension. CHESS-

FLA Extension supports variability resolution (pruning) into fptc (Failure Propagation

Transformation Calculus) rules based on the interfaces (i.e., CHESS-ML component input

and output ports and their connections) present into the configured (product) model.

The CRITVAR Model Transformation Engine can be extended to enable com-

patibility with other variability modeling solutions (Custom variability model parser

component), e.g., FeatureIDE (MEINICKE et al., 2017), and base models (Custom Base

Model Pruner component), e.g., MATLAB Simulink (MATHWORKS, 2021) models en-

riched with HiP-HOPS (PAPADOPOULOS et al., 2011) failure annotations extensions

(Custom Extension). CRITVAR-MTE provides standardized interfaces (see Figure 28),

e.g., via abstract classes, which can be extended with concrete implementations to enable

compatibility with third part variability models (VariabilityModel class), base models

(BaseModelParser class), and base model extensions (CRITVARExtensions class).
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Figure 28 - CRITVAR Model Transformation Engine Class Diagram

CRITVAR-MTE::VariabilityModel class provides getVariants and getActiveFeatures

abstract methods, which should be implemented by concrete classes to support the parsing

of third part variability models. The current implementation of CRITVAR-MTE provides

support for parsing BVR VSpec models, and pure::variants feature (.xfm) and variant

description (.vdm) models. Other extensions of VariabilityModel class can be implemented

to support the parsing of other third part variability models, e.g., FeatureIDE (MEINICKE

et al., 2017). The support for parsing FeatureIDE feature model can be implemented in

future releases of CRITVAR-MTE.

CRITVAR-MTE::BaseModelParser has baseModelPath and root attributes, and

it provides pruneElements(variant) and pruneProperties(variant) abstract methods to

be implemented by concrete classes to enable variability resolution (pruning) into the

targeting base model in conformance with feature selection expressed into a variant

feature model (e.g., VSpec, .vdm model). baseModelPath represents the base model

file path, and root is a nested composite data structure to manipulate the input base

model file. A base model is a model that contains core, optional, and alternative el-

ements, which can be combined to derive two or more di�erent configurations (vari-

ants). A UML Class Diagram, SysML Block Definition and Internal Block diagrams
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with core and alternative elements are examples of base models. Concrete implementa-

tions of BaseModelParser.pruneElements(variant) support the resolution of variability

into base model elements, e.g., UML::Class, UML::Association. Implementations of

BaseModelParser.prunePro-perties(variant) enable variability resolution into model ele-

ment property and their values, e.g., property name from an UML::Class or UML::Port and

its value, which may change from a system variant to another. UMLBaseModelParser is a

concrete implementation of BaseModelParser that supports the resolution of variability

into CHESS (MAZZINI et al., 2016) and Papyrus (ECLIPSE FOUNDATION, 2017) UML

and SysML standard diagrams.

CRITVAR-MTE::CRITVARExtensions is an abstract class that should be imple-

mented to enable the resolution of variability into model elements, properties, property

values specified using specific extensions from the core base model language, e.g., CHESS-

FLA failure logic and stochastic annotations into elements from a CHESS ML Block

Definition Diagram. CRITVAR-MTE::CRITVARExtensions extends BaseModelParser

where implementations for pruneElements(variant) and pruneProperties(variant) should be

provided by concrete classes, to enable variability resolution into elements and properties

specified using an extension (e.g., CHESS-FLA) from the core base model language (e.g.,

CHESS ML).

CRITVAR-MTE::FLAParser is a concrete implementation of CRIVARExtensions

abstract class that supports variability resolution into fragments of CHESS-FLA failure

logic annotations (Failure Propagation Transformation Calculus rules) attached to CHESS

ML components and linked to component ports, e.g., in.omission -> out.omission, out-

Backup.omission rule linked to an instance (partA) of ComponentA (see Figure 7) and

its ports. The out-Backup linked to an partB component instance input port is an

optional element that could be present or absent in a product configuration according

to feature selection.In the example from Figure 7, when Backup feature is not selected,

partA.out-Backup output port and its connections, and the out-Backup.omission fragment

from the FTPC rule are removed from model after variability resolution and product

derivation. CRTIVAR-MTE::FLAParser supports parsing and pruning of CHESS ML

models annotated with FPTC rules based on feature selection expressed in the product

feature model. Concrete implementations of CRITVARExtensions abstract class to

support the resolution of variability into stochastic (SimpleStochasticBehaviorParser class)

annotations and elements from error model state machines (ErrorModelParser class)

attached to CHESS ML components will be provided in future releases of CRITVAR-MTE.

The current implementation of CRITVAR-MTE supports variability resolution into CHESS

ML and Papyrus UML models enriched with dependability (functional safety and security)

information.

CRITVAR-MTE::BaseModelParser and CRITVARExtensions can also be extended

to enable the resolution of variability into base models and extensions from di�erent
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languages provided by di�erent vendors. In future, we intend to extend CRITVAR-MTE

to enable variability resolution into MATLAB/Simulink (MATHWORKS, 2021) models

enriched with HiP-HOPS (PAPADOPOULOS et al., 2011) dependability annotations,

ANSYS Medini (ANSYS, 2020a) system model enriched with safety and cyber-security

information, and OSATE AADL (DELANGE, 2016) models and their Error Annex

(FEILER, 2013) error state machine diagrams.

5.2 CRITVAR Model Transformation Engine Algorithms

This section describes the concrete implementations for CRITVAR-MTE::BaseModel-

Parser prune elements and prune properties (see Figure 28) methods. Prune elements

algorithm supports the resolution of variability into UML/SysML base model elements

annotated with CRITVAR-ML «ElementVariationPoint» stereotype. Prune properties

enables the resolution of variability at model element property values surrounded by

#BeginVP #EndVP annotations.

5.2.1 Model Element Transformation Algorithm

The pruning elements algorithm, shown in Listing 1, resolves variability in CHESS

ML (UML and SysML) base model elements annotated with «CriticalElementExistence»

variation point stereotypes.

Model elements mapped by CriticalElementExistence are resolved according to

function pruneModelElements described in 1. The function receives the base model (model)

and the its configurations (configs) as inputs.

The configs parameter comprises of a dictionary of lists where each entry is a

configuration. For each entry representing a configuration in the dictionary, there is a

list containing the names of the features that have been activated for that particular

configuration.

Initially, the algorithm iterates through each entry representing a configuration

in the configs dictionary (line 2). Then, the algorithm assigns the model contents to the

variable prunnedModel (line 3). For each config, the algorithm iterates through each

elementVariationPoint in the prunnedModel (line 4).

A criticalElementExistence contains a feature expression and annotated model

elements. If the feature expression in the current criticalElementExistence is true when com-

pared to the features in the current config (line 5), e.g., criticalElementExistence.Features

= “Feature1 AND NOT Feature2” and config = [Feature1], then the current criticalEle-

mentExistence shall stay in the config and therefore the algorithm iterates into the next

criticalElementExistence (line 6). Else (line 7), the current criticalElementExistence is

removed from the model alongside all its annotated model elements and dependencies of
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those elements (line 8).

Once the algorithm is done iterating through all criticalElementExistence and

transforming the model according to the current config, the algorithm writes the resulting

prunnedModel to a file (line 11). Then the algorithm repeats the same set of steps once

again for the next config. A new file containing the configurations, is created for each

config.

Algorithm 1: Pruning of model elements annotated with CriticalEle-

mentExistence variation point comments. Inputs: base model, configu-

ration feature models configs.

1 Function pruneModelElements(model, configs):

2 foreach config œ configs do

3 prunnedModel = model;

4 foreach criticalElementExistence œ prunnedModel do

5 if checkExpr(config, criticalElementExistence.Features) then

6 next();

7 else

8 removeWithDeps(criticalElementExistence);

9 end

10 end

11 end

12 return;

13

5.2.2 Element Property Transformation Algorithm

Model elements mapped by DependabilityPropertyValueAssignment are resolved

according to functions pruneModelPropertiesDirect() and pruneModelPropertiesCom-

ment() described in Algorithms Y and Z. pruneModelPropertiesDirect() is responsible for

pruning model properties annotated directly as show in Figure 9 a). pruneModelProperti-

esComment() is responsible to address properties annotated via the DependabilityProp-

ertyAssignment stereotype as depicted in Figure 9 b).

Both Algorithms and receive the base model (model) and the its configurations

(configs) as inputs. A detailed description of these input parameters is given in the previous

section.

The first action for both algorithms, is to iterate though each config provided as

input to their respective functions. Then, the algorithm assigns the model contents to the

variable prunnedModel.

In , the function iterates through each DependabilityPropertyValueAssignment
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comments in the model (line 4), i.e., propertyVariationPoint attribute in the algorithm.

Then, we call the pruneExpression() function (line 5) to prune the expression within

the propertyVariationPoint, (based on the features included in the current config). The

pruning occurs based on the rules shown in Figure 8.

At last, the function writes the appropriate property of all elements annotated by

the current propertyVariationPoint, with the value of prunedExpression, via annotateProp-

erty() (line 6). Once done iterating through all propertyVariationPoints, the function

writes the transformed model into a file (line 8). The same process is repeated for the

remaining configs.

Algorithm 2: Pruning of model elements annotated with Dependabili-

tyPropertyAssignment comments

1 Function pruneModelProperties(model, configs):

2 foreach config œ configs do

3 prunnedModel = model;

4 foreach propertyVariationPoint œ prunnedModel do

5 prunedExpression = pruneExpression(config,

propertyVariationPoint.expression);

6 annotateProperty(prunedExpression,

propertyVariationPoint.annotatedElements);

7 end

8 write(prunnedModel, config + ".uml");

9 end

10

In Algorithm 3, the function iterates through each element in the model (line 4).

For each property in the element, it parses it and verifies if it complies with the grammar

illustrated in Section 3.5.2 (line 6). If so, then we assign the property with the value

returned by pruneExpression() (line 7). Else, the algorithm iterates into the next property.

As in the other algorithms, once done iterating through all elements, the function writes

the transformed model into a file (line 8). The same process is repeated for the remaining

configs.
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Algorithm 3: Pruning of model properties annotated directly

1 Function pruneModelProperties(model, configs):

2 foreach config œ configs do

3 prunnedModel = model;

4 foreach element œ prunnedModel do

5 foreach property œ element.properties do

6 if isEnrichedWithVariability(property.value) then

7 property.value = pruneExpression(property.value);

8 else

9 next();

10 end

11 end

12 end

13 write(prunnedModel, config + ".uml");

14 end

15 return;

16

5.3 DISCUSSION

This section has described the CRITVAR Model Transformation Engine. The

CRITVAR Model Transformation Engine currently works with UML/SysML base models

annotated with the CRITVAR stereotypes. Extension points can be written to accommo-

date other types of system, dependability and variability modeling tools.

Section 5.1 provided an overview of the CRITVAR MTE architecture and section

5.2 provided the descriptions of the inner workings of the Element and Element Property

variability transformation algorithms provided as part of the CRITVAR MTE.

In the following section we present the CRITVAR Process which combines tra-

ditional product lines and safety/security analysis processes together to support the

dependability analysis of dependable systems.
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6 THE CRITVAR SYSTEMATIC PROCESS - METHOD

With the objective of answering RQ3: How model-based safety and cybersecurity

co-analyses can be integrated within product line processes?, this chapter introduces the

CRITVAR method, which is a process to support variant management and the systematic

reuse of safety and security model artifacts. The CRITVAR Method is built upon the

DEPendable-SPLE (OLIVEIRA, Andre Luiz de; BRAGA, R. T. V.; MASIERO, P. C.;

PAPADOPOULOS, et al., 2018) methodology and it provides a systematic process that

introduces dependability engineering and analysis activities within traditional Software

Product Line Domain and Application engineering phases. The process supports variant

management and the systematic reuse of SysML models enriched with dependability

information for reliability and safety analysis, and threat analysis and risk assessment as

illustrated in Figure 29. The CRITVAR Method relies on the integration between CHESS,

Papyrus UML, and CRITVAR, and it is based on the activities prescribed by the ISO

26262 (ISO, 2018) safety and ISO/SAE 21434 (ISO, 2021) cybersecurity standards.

The Section provides an overview of CRITVAR Process main Phases (Domain

Engineering and Application Engineering) to support variant management and the system-

atic reuse of system models for dependability analysis. Section 6.1.1 details the Domain

Engineering Phase, with its three main activities: Domain Analysis, Domain Design and

Implementation, and Domain Management. 6.2 presents the Application Engineering

Phase, and its three main activities: Product Requirements Engineering, Product Design

and Implementation, and Product Analysis. Finally, Section 5.3 provides the discussion of

this chapter.

Figure 29 - The CRITVAR Systematic Process
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6.1 CRITVAR PROCESS: DOMAIN ENGINEERING

This phase encompasses three main sub-phases: Domain Analysis, Domain Design

and Implementation, and Product Management.

6.1.1 Domain Analysis

• Inputs: Domain knowledge and requirements;

• Output: Feature model;

• Description: This is the starting point of the Domain Engineering phase covering

the specification of product line features, their relationships, and constraints using a

feature model editor e.g., BVR VSpec or pure::variants. The feature model contains

system and usage context features i.e., characteristics of the operating environment,

how and where a system feature can be used (KANG, K. C. et al., 1998). The

feature model provides higher-level abstractions to manage and trace variation across

di�erent product variants.

The Domain Analysis comprises two activities: Specification of Product Line

Requirements (Feature Model) and Identification of Scenarios for HARA/TARA.

6.1.1.1 Specification of Product Line Requirements

• Inputs: Domain knowledge and requirements;

• Outputs: Feature model;

• Description: Specification of product line features, their relationships, and con-

straints using a feature model.

6.1.1.2 Identification of Scenarios for HARA/TARA

• Inputs: Feature model.

• Outputs: Scenarios for HARA/TARA and refined feature model.

• Description: Identify the di�erent scenarios for HARA and TARA that can happen

across the di�erent configurations. Refine the feature model if necessary.

6.1.2 Domain Design and Implementation

• Inputs: Feature model;

• Outputs: base model containing architectural and dependability information.
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• Description: The system and context variation points and their variants, relation-

ships, and constraints, stored in the feature model, drive product line design. The

realization of system features in the design is specified as blocks, parts, flow ports,

connectors, and properties when using SysML. The realization of system and usage

context features and their relationships into dependability information is specified

as annotations in the elements of the design. For example, when using the CHESS

dependability analysis tool, security annotations, e.g., threats and failure logic e.g.,

FLABehavior and SimpleStochasticBehavior model annotations, can be attached to

design components using the CHESS-ML stereotypes.

This sub-phase has three main activities: Specification of Base Architectural Model,

Specification of the Base Model Hazards and Threats, and Specification of the Base Model

Failure Behaviour.

6.1.2.1 Specification of Base Architectural Model

• Inputs: High-level description of the system including functionality and interfaces

to other systems. Feature model resulting from the previous step.

• Outputs: Architectural model of the system.

• Description: In this activity, we specify the architectural model of the system

including components, interfaces, information flow, and behavior.

6.1.2.2 Specification of Base Model Threats and Hazards

• Inputs: Architectural model of the system.

• Outputs: Hazards and Threats.

• Description: In this step, we identify the hazards and threats that apply to the

system based on the architectural model defined in the previous step.

6.1.2.3 Specification of Base Model Failure and Security Threat Behavior

• Inputs: Architectural model of the system, hazards, and cybersecurity threats.

• Outputs: Component dependability information including failure behavior and

attack paths.

• Description: In this step, we identify how individual components in the architecture

contribute to system-level threats and hazards.



82

6.1.3 Domain Management

The Domain Management sub-phase has one activity, the specification of mappings

between Base Model Elements/Dependability Information and features.

• Inputs: Feature and base models containing architectural and dependability infor-

mation;

• Outputs: Base model enriched with CRITVAR variation points i.e., variability

information, linking features to model elements and dependability information;

• Description: During the Domain Management sub-phase, links between domain

features and their realization into architectural and dependability models are estab-

lished using CRITVAR ElementVariationPoints and PropertyVariationPoints. This

activity covers the definition of variation points containing elements and information

that vary across product variants and their links to domain features.

6.2 CRITVAR PROCESS: APPLICATION ENGINEERING

This Phase includes the same sub-phases performed throughout the Domain Engi-

neering phase from the product perspective. It encompasses three sub-phases: Product

Requirements Engineering, Product Design and Implementation, and Product Analysis.

6.2.1 Product Analysis

• Inputs: product requirements and the domain feature model;

• Outputs: Resolution models containing the product configurations and their imple-

mented features;

• Description: In this sub-phase the application engineer configures the resolution

model by selecting the domain features that address product requirements. If required,

the application engineer may also identify newer product-specific HARA/TARA

scenarios.

This sub-phase has two activities: Product Configuration/Resolution and Identifi-

cation of Scenarios for Product HARA/TARA.

6.2.1.1 Product Configuration/Resolution

• Inputs: product requirements and the domain feature model;

• Outputs: Resolution models containing the product configurations and their imple-

mented features;
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• Description: In this activity the application engineer configures the resolution

model by selecting the domain features that address product requirements.

6.2.1.2 Identification of Scenarios for Product HARA/TARA

• Inputs: Product configurations.

• Outputs: Product-specific scenarios for HARA/TARA.

• Description: Identify additional HARA/TARA scenarios for an individual product

variant.

6.2.2 Product Design and Implementation

• Inputs: base model containing architectural, dependability, and variability informa-

tion. Resolution models;

• Outputs: product models containing the selected architectural elements and de-

pendability information

• Description: Once the products are fully configured, the resolution and base models

are fed into the CRITVAR Model Transformation Engine, and the product-specific

models are generated. The models are produced according to the features selected

in the resolution model. Once a new product is derived, new architectural elements

or dependability information can be added to the model if needed. If necessary, the

application engineer may also extend the model with additional product-specific

threats, hazards, and component failure behaviors.

This sub-phase comprises the following activities: Product Derivation and Cus-

tomization, Specification of Product Safety Hazards and Security Threats, and Specification

of Product Failure Behaviour.

6.2.2.1 Product Derivation and Customization

• Inputs: base model containing architectural, dependability and variability informa-

tion. Resolution models;

• Outputs: product models containing the selected architectural elements and de-

pendability information

• Description: Once the products have been fully configured, the resolution and

base models are fed into the CRITVAR Model Transformation Engine, and the

product-specific models are generated. The models are produced according to the

features selected in the resolution model.
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6.2.2.2 Specification of Product Safety Hazards and Security Threats

• Inputs: Architectural model of the configured system.

• Outputs: Additional product-specific Threats and Hazards.

• Description: In this step, we identify additional hazards and security threats that

apply to the configured system based on the configured architectural model defined.

6.2.2.3 Specification of Product Failure Behavior

• Inputs: Architectural model of the configured system, threats and hazards.

• Outputs: Additional product-specific component dependability information includ-

ing failure behavior and attack paths.

• Description: In this step, we identify additional information on how individual

components in the architecture contribute to system-level threats and hazards of

configured products.

6.2.3 Product Analysis

This sub-phase comprises one activity: Product Reliability, Failure Logic, FTA,

and FMEA synthesis.

6.2.3.1 Product Reliability, Failure Logic, FTA, and FMEA Synthesis

• Inputs: product models;

• Outputs: product reliability, failure logic, Fault Tree, FMEA, and threat analysis

and risk assessment (TARA) results;

• Description: The product models derived by the CRITVAR Model Transformation

Engine, can be fed into the CHESS-FLA, CHESS-SBA plugins for obtaining failure

logic and state-based analysis.

6.3 SUMMARY

This chapter described the CRITVAR method. The CRITVAR process is built upon

the traditional product line engineering processes, introducing additional dependability

engineering activities in the flow.
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7 EVALUATION

In this chapter, we evaluate the proposed CRITVAR methodology and model

transformation engine on a Highly Automated Driving (HAD) vehicle system from the

automotive domain. The evaluation was performed through a comparative study in which

we compared the application of our methodology with similar variability modeling and

management solutions (i.e., pure::variants and BVR). The evaluation is organized in the

following sections: planning, design, preparation of the execution workflow, execution,

data collection, and threats to validity.

7.1 PLANNING

We considered the reference architecture of a variant-intensive Highly Automated

Driving (HAD) Vehicle (MUNK; NORDMANN, 2020) to address Advanced driver-

assistance systems use-cases. The reason for choosing the HAD in this evaluation is

because ADAS systems typically involve both safety and security concerns.

The HAD Vehicle may include up to four cameras, an automated powertrain,

and steering systems. Its cameras and automated systems are both connected to a

central vehicle computer which is reused across all vehicle variants. The vehicle computer

sends commands to the powertrain and steering systems when automatic cruise control

and automatic steering are implemented. These commands are calculated based on the

information captured by the vehicle cameras and used to control its longitudinal and

lateral movements.

For the case study, we chose the OpenCert CHESS Client - AMASS Tool Platform

Prototype1. AMASS comprises an European wide open tool platform, to address the

design and the dependability analysis of contemporary critical systems (VARA et al., 2019).

The platform is a result of a joint e�ort involving certification authorities, component

suppliers, manufacturers, research institutions, and tool vendors. It serves as an extension

of previous successful EU projects, and it integrates state-of-the-art model-based design

(i.e. Papyrus2), variability management (i.e. BVR (VASILEVSKIY et al., 2015)), failure

modeling (i.e. CHESS (MAZZINI et al., 2016)) and dependability analysis solutions (i.e.

CHESS Failure Logic (Gallina2012AArchitectures) and CHESS State-Based Analyses
3 (MONTECCHI; GALLINA, 2017)).

The first variability modeling and management solution considered in our study is

BVR, a language (HAUGEN, 2014a) and open source tool bundle to support variability

management activities (e.g. feature modeling, mapping between features and external
1 https://www.eclipse.org/opencert/downloads/
2 https://www.eclipse.org/papyrus/
3 https://github.com/montex/CHESS-SBA
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model fragments and product resolution/configuration) (VASILEVSKIY et al., 2015).

The main reason for choosing BVR for our comparative study, lies in the fact that

it is open-source and already comes bundled with a mature model-based design and

dependability analysis solution (i.e. AMASS Tool Platform). Furthermore, BVR has also

been previously applied in di�erent occasions to manage variability within safety process

(JAVED; GALLINA, 2018) and safety-critical models (JAVED; GALLINA; CARLSSON,

2019). The BVR Tool Bundle comprises a set of independent and standalone editors.

The VSpec model editor supports the definition of VSpec (feature) models according to

the BVR language. BVR extends traditional feature modeling with new concepts such

as multiplicity, constraints, and variables. The Realization model editor provides an

interface for mapping domain features into external model fragments through fragment

substitutions containing placements and replacements. Fragment substitutions when

activated by a feature, remove the elements within its placements and replace them with

model fragments in its replacements. The resolution model editor supports the instantiation

and configuration of feature models by setting features as true or false. The resolution

model is used by the BVR model transformation engine for automatically transforming

the base model according to the selected features.

Since CRITVAR only provides a modeling language to support the mapping

between model artifacts and features and a model transformation engine, the BVR VSpec

and Resolution model editors were used alongside it, to support feature modeling and to

provide the CRITVAR Model Transformation Engine with component configurations.

The second variability management solution considered was pure::variants and its

plugin connector for EMF (Eclipse Modeling Framework) models. Similar to CRITVAR,

pure::variants also works with the idea of 150% variability in which model fragments,

are either activated or deleted from the final configured models, according to feature

selection. Pure::variants provides a Feature Model editor in which features, variables,

constraints and multiplicities can be specified. The Mappings Editor provides an interface

for linking domain features (or feature expressions) with model element fragments (using

"conditions") and property values (using "calculations"). At last, the Variants Editor

enables the configuration of new model variants through the selection of features from

the domain feature model. Variant models are further used by the pure::variants Model

Transformation Engine to generate configured 100% models.

7.2 STUDY DESIGN

We structured the evaluation using the Goals-Questions-Metrics (GQM) approach

(BASILI; CALDIERA; ROMBACH, 1994):
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Analyze CRITVAR, BVR and pure::variants for the purpose of evaluating software

variability management techniques with respect to their ability to reduce the gap between

variability constructs and dependability artefacts, and ensuring the derivation of correct

system models enriched with dependability information from the point of view of the

product line engineer in the context of variant-intensive critical systems.

Table 1 illustrates the goals, questions, and metrics that guided our evaluation

aiming at answering the RQ4 "Which software variant management technique is most

effective and efficient in supporting product line engineers in managing the diversity into

safety and security artifacts throughout variability realization?", raised in the introduction.

.

Table 1 – Evaluation Goals, Questions and Metrics

G1: Reduce the gap between variability constructs and dependability models.
Q1: How much e�ort is needed for expressing variability in dependability

in the domain variability model?
M1: Number of variability constructs (i.e., features and constraints)

in the feature model.
Q2: How much e�ort is needed to map variability constructs to dependability

artifacts?
M2: Number element mappings.
M3: Number of dependability annotation mappings.

G2: Ensuring the derivation of correct configuration models with dependability
information.

Q3: How correct is the derived product configuration model with respect
to feature selection?
M4: Variant models are complete (Boolean).

M1 captures the number of feature model elements concerns features, constraints

and variables. M2 considers the number of elements used for mapping features to model

elements. In BVR these mapping are expressed via placements, replacements, fragment

substitutions. In pure::variants, the mappings are done through conditions. In CRITVAR,

mappings to model elements are done using ElementVariationPoints. M3 considers the

number of mappings used to map variability to fine grained dependability information.

In pure::variants, such mapping is done using Calculations. In CRITVAR, dependability

annotation mappings are expressed via the #BeginVP #EndVP tags. M4 is a boolean

variable that is TRUE if the variant models are complete and FALSE case the contrary.

7.3 EXECUTION WORKFLOW

The factor under analysis in our evaluation is variability management techniques

in the context of dependability artifacts. We considered three treatments i.e., CRITVAR,



88

BVR and pure::variants, for managing variability in the design and functional safety of

the HAD vehicle described in Section 7.1. Although the chosen variability management

techniques di�er from each other in a few aspects, we considered the same HAD vehicle

SysML system model for all three treatments throughout the evaluation process.

Due to the aforementioned limitations of the BVR Tool Bundle regarding the

lack of support for mapping variability constructs (BVR VSpecs) to safety annotations

expressed as model element properties, we considered a base model without dependability

annotations when using BVR. Thus, system components had to be enriched with their

corresponding dependability annotations after product derivation.

It is important to highlight however that it is theoretically possible to create base

models enriched with dependability information and derive complete annotated models

from them, when applying BVR. Doing so however, requires us to replicate elements,

according to each di�erent dependability annotation they may present, and use the BVR

Realization editor, for mapping features to their realization into model elements with

variable dependability information. When applying this strategy in the HAD Vehicle

model, we obtained a domain model with 98 SysML base model elements and 81 variability

constructs, i.e. feature model elements such as features and constraints. The HAD vehicle

SysML model used in our study comprises 37 base model elements. Thus, we did not

consider the modeling strategy of replicating model elements to mitigate the construction

validity threat related to the usage of di�erent versions of HAD vehicle SysML model with

di�erent degrees of complexity in our comparative study.

In CRITVAR and pure::variants, both architectural elements and element properties,

i.e., component failure annotations, were specified in the base model. In CRITVAR,

architectural elements were mapped using comments with the ElementVariationPoint

stereotype. Moreover, the variability within dependability annotations were specified using

#BeginVP and #EndVP tags inside property values.

In pure::variants, mappings between base model fragments and domain features

were specified as conditions with the support of pure::variants Mappings Editor. Variability

in dependability annotations was specified by creating new variables in the Feature Model

and calculations in the Mapping Editor. The values of these variables were assigned using

pure::variants Simple Constraint Language (pvSCL) conditionals. Such conditionals were

used to guarantee that variables are assigned with their appropriate values, according to

the feature selection. These values are then retrieved by calculations in the Mappings

Model and propagated to the configuration model after product derivation.

The HAD vehicle SysML system model was enriched with dependability annota-

tions using the SysML profile extensions provided by the CHESS toolset. The specification

of variability in the HAD vehicle SysML model using CRITVAR, BVR, and pure::variants

tools was carried out by the author of this dissertation. The metrics were collected sepa-
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rately by di�erent people and had their values compared to detect any major discrepancies.

All metrics were manually collected considering the HAD vehicle feature model and HAD

vehicle SysML configuration model.

7.4 DATA COLLECTION

The HAD Vehicle system architecture is ought to be implemented in vehicles

allowed to operate in a number of di�erent scenarios. The HAD Vehicle model was

specified following the CRITVAR Systematic Process presented in Section 7.3.

7.4.1 Domain Engineering Phase

7.4.1.1 Domain Analysis

The HAD Vehicle system has the following variation points: the vehicle’s Weight and

Operation Context, Operation Mode, Camera Settings and Manufacturer and Computer

Manufacturer illustrated in the feature model from Figure 30. Changes in the feature

selection may be propagated throughout HAD Vehicle design and safety annotations. The

vehicles can operate under three environments: Street, Road or both. The HAD Vehicle

system can be deployed in a vehicle with maximum 3.5 tons (Light) or in a truck (Heavy).

Figure 30 - The HAD Vehicle feature model

7.4.1.2 Domain Design and Implementation and Product Management

The HAD Vehicle can operate autonomously (Monitored feature), manually or

with the assistance of the driver. In the latter, either HAD Vehicle’s longitudinal or

lateral movements are controlled by the driver. When in Manual mode, both steering

and longitudinal movements are controlled by the driver. In this specific case, the Vehicle

Computer is only responsible for alerting the driver in case the cameras detect any situation

that requires further attention, e.g., the driver is too close to another vehicle. A HAD

Vehicle system variant can include one of the two Vehicle Computers provided by two

di�erent manufacturers. Clients can configure their HAD Vehicle with cameras from two
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Figure 31 - The HAD Vehicle Block Definition Diagram with CRITVAR annotations

di�erent manufacturers and choose between a Front and Rear, Side Cameras, or both

camera settings.

The HAD Vehicle architecture was specified using SysML Block Definition (BDD)

and Internal Block (IBD) Diagrams. Figure 31 shows an excerpt of the base HAD

Vehicle BDD containing its variation points and model elements. The dotted lines

denote the annotatedElements of the AutoAcceleration ElementVariationPoint is activated

whenever the AutoAcceleration feature is selected. When activated, the AutoAcceleration

VariationPoint keeps the Powertrain Block, the longitudinalMovement FlowPort and any

instances of the Powertrain in an HAD Vehicle configuration. Vehicle components safety

information were specified using CHESS SimpleStochasticBehavior and FLABehavior

element stereotypes (MAZZINI et al., 2016). The SimpleStochasticBehavior stereotype

was used to describe random faults and their consequences, i.e., how random failures

propagate throughout components. The FLABehavior stereotype is applied to describe

how components react to incoming failures and failure propagation.

Figure 32 shows the base IBD of the HAD Vehicle. The components camer-

aFront and cameraRear are kept in the transformed model only if the feature Camer-

aFrontANDRear is selected. Similarly, cameraLeft and cameraRight are kept if the feature

CameraSides is selected.

Figure 33 shows the Vehicle Computer SimpleStochasticBehavior failure anno-

tations with CRITVAR mappings. Figure 34 shows an excerpt of the pvSCL variable

conditional, used to specify variability in failure annotations within the Vehicle Computer

using pure::variants. The failureOccurrence property takes a probability distribution (e.g.

linear, deterministic, weibull) and describes the probability of occurrence of a random

hardware failure. Whenever the CompManufacturer1 feature is selected, the probability
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Figure 32 - The HAD Vehicle Internal Block Diagram with CRITVAR annotations

Figure 33 - Vehicle Computer stochastic annotations using CRITVAR

distribution describing the Vehicle Computer failureOcurrence will be det(1.0e-6). Oth-

erwise, if CompManufacturer2 is selected, then the computer failureOcurrence is reduced

to det(1.0e-8).

As for deterministic failures, all components in the architecture propagate failure

modes forward through their output ports if all their input ports fail. Deterministic

failures and their propagation logic were defined using fptc rules via the FLABehavior

stereotype. Since the input and output ports of the VehicleComputer vary depending on

the variant, its fptc rules also contain variability. For example, ports torque and angle are

removed from the VehicleComputer fptc rules if the feature Manual is selected. Figure 35

shows the pure::variants variability annotations in the VehicleComputer fptc annotations.

Since CRITVAR automatically handles variability in fptc rules, annotating the rules with

variability was not necessary as in pure::variants.

With respect to security, in the HAD Vehicle, each component poses a potential

attack surface. For the threat analysis, we have defined our trust boundaries around the

VehicleComputer, Steering and Powertrain components. Table 2 displays the model assets,

their security properties and stakeholders. The assets are also identified in Figure 32 and

tagged with the «ErrorModelBehavior» CHESS stereotype:
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Figure 34 - Vehicle Computer stochastic annotations using pure::variants

Figure 35 - Vehicle Computer fptc annotations using pure::variants

Table 2 – HAD Assets and Security Properties

Asset Property Stakeholder
Video Feed Confidentiality Pedestrians, vehicle occupants
Video Feed Integrity Vehicle occupants and pedestrians
Video Feed Availability Vehicle occupants and pedestrians

Torque Integrity Vehicle occupants and pedestrians
Torque Availability Vehicle occupants and pedestrians
Angle Integrity Vehicle occupants and pedestrians
Angle Availability Vehicle occupants and pedestrians
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Table 3 – HAD Threats and Damage Scenarios

Threat Damage Scenario
Disclosure of Video Feed Invasion of privacy of pedestrians and vehicle owners

Tampering of Video Feed
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

Denial of Service of Video Feed
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

Tampering of Torque
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

Denial of Service of Torque
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

Tampering of Angle
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

Denial of Service of Angle
Collision with other vehicle, pedestrian;

Injury of vehicle occupant

The video feed is transmitted from the Cameras to the VehicleComputer and must

address the Confidentiality, Integrity and Availability security properties. The video feed

may contain pedestrians’ faces and vehicle plates. Thus, disclosure of the video feed to an

unauthorized party, can a�ect the privacy of pedestrians and other vehicle owners. Delivery

of corrupted or failure to deliver the video feed to the VehicleComputer impact the vehicle

occupants, pedestrians and other vehicle owners. For example, a corrupted video feed can

trigger the VehicleComputer to calculate the incorrect torque to the Powertrain or angle

to the Steering system and therefore, cause an accident involving the vehicle occupants,

other vehicles and pedestrians.

The other two assets are the Torque and Angle signals produced by the VehicleCom-

puter. Since both assets do not contain any sensitive or personal information as the Video

Feed, they should only address integrity and availability. Failure to generate a precise

torque or angle signals due to a deliberate attack, e.g., caused by malware software running

in the VehicleComputer, can lead to an accident impacting the vehicle and other vehicle

occupants and pedestrians. Table 3 lists the threats and potential damage scenarios such

threats can unfold. The threats were derived based on the STRIDE model (MICROSOFT,

2009).

Each asset identified in the model was mapped to an ErrorModel containing threats

and their e�ects on safety as shown in Figure 36. The Video Feed asset starts o� in an

uncompromised state. A Denial of Service attack to the asset leads to the Denial of Service

of the Video feed threat. Such threat produces an omission failure on the Video Feed

data being transferred between the Camera and Vehicle Computer. A masquerade attack,

e.g., through a process or user using a fake identity, can be used to disclose the video

stream. Moreover, attackers may also explore vulnerabilities in the implementation and

tamper with the video feed. Tampering of the video feed may lead to a value failure, e.g.,
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Figure 36 - Video Feed threat model

corruption or of the video feed to the Vehicle Computer.

7.4.2 Application Engineering Phase

The models generated in each strategy are publicly available on 4. Table 4 displays

the gathered metrics for each treatment.

Table 4 – Metric results for each considered treatment. Legend: M1 - Number of variability
constructs; M2 - Number of element mappings; M3 - Number of dependability annotation
mappings; M4 - Variant models are complete

Treatment M1 M2 M3 M4
CRITVAR 28 4 2 True

pure::variants 28 4 3 False
BVR 28 10 - False

7.5 DATA ANALYSIS AND RESULTS

Here, we answer the questions related to the evaluation goals, which are based on

the data analysis from Table 4. We will answer to the research questions using our results

from the GQM approach.
4 https://drive.google.com/drive/u/2/folders/1IXm3YEvFm2hcnKUJVIBtJNTy0DtDtAW9

https://drive.google.com/drive/u/2/folders/1IXm3YEvFm2hcnKUJVIBtJNTy0DtDtAW9
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7.5.1 RQ1 - How to represent the variability of functional safety and cyberse-

curity models?

In our approach, we represented variability in safety information via annotations

directly into the model instead of mapping features to UML fragments in reference models.

Some additional advantages from our approach regarding RQ1 are discussed below.

Answer to Q1 - How much effort is needed for expressing variability in

dependability in the domain variability model?: The number of feature model ele-

ments (M1:) was the same on CRITVAR, pure::variants and BVR. Thus, all tools required

the same e�ort in terms of the specification of the domain feature model. Answer to

Q2 - How much effort is needed to map variability constructs to dependability

artifacts?: Compared to BVR, CRITVAR and pure::variants maintain a lower number of

mappings between features and model elements, i.e., M3. Regarding dependability anno-

tations, CRITVAR requires a lower number of mappings when compared to pure::variants

thanks to the CRITVAR MTE FLA extension. BVR does not support the specification of

mappings between domain features and fine grained dependability information.

We conclude that CRITVAR combines the positive aspects from BVR and pure::variants

with respect to mapping domain features to model elements. At the same time, CRITVAR

also enables variability specification at a more fine-grained level compared to pure::variants.

CRITVAR reduces the number of mappings between variability constructs and model

elements when compared to BVR and the number of mappings between features and

annotations when compared to pure::variants.

7.5.2 RQ2 - How derive product safety information from a variability model?

Our novel transformation approach produces a correct and complete system model

containing all the necessary dependability information necessary to perform higher-level

dependability analysis and according to the product requirements. We do this using the

system model with variability annotations as outcome of RQ1 which is given as input for

the transformation engine. An additional outcome of this RQ is discussed below.

Answer to Q3 - How correct is the derived product configuration model

with respect to feature selection?: CRITVAR ensures the generation of complete

SysML models with dependability annotations. Therefore, the HAD Vehicle SysML models

derived by CRITVAR is ready for product-specific dependability analysis. Since BVR

does not support variability specification in dependability annotations, BVR product

configuration models should be annotated after the execution of BVR engine prior to

dependability analysis.

The pure::variants transformation engine does not automatically handle element

dependencies when transforming the model like the CRITVAR MTE does. This requires

the product line engineer to manually tag all element dependencies prior to transformation,
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e.g. connector linking two component ports that vary, in order to generate a complete

model. However, for certain SysML constructs, e.g., Parts of a Block being trimmed out

of the product model, the pure::variants transformation engine fails when removing a

dependency of a block that has been previously removed by the engine itself. Therefore,

certain model elements, shall be removed manually after model transformation.

7.6 THREATS TO VALIDITY

The validity of the analysis is subject to construct, internal and external threats.

We identified the following threats to the construct validity: (i) the possibility the selected

metrics are not complete to generalize the results. We mitigated this threat by providing

metrics M2 - Number of element mappings and M3 - Number of dependability annotation

mappings to quantify the e�ort to map variability constructs to both model elements

and dependability properties attached to model elements. We have also considered the

completeness of the product models generated by each tool through M4 - Variant models

are complete; ii) the evaluation is limited to a single object, the HAD Vehicle model. We

mitigate this threat by choosing a case study that combines both system design with

dependability analysis using modern model-based techniques. We recognize that this

threat could a�ect the generalization of our results.

Regarding the internal validity, since we did not consider the time users took to map

variability constructs to functional safety information, the metric set may not be complete

enough to fully demonstrate the reduction in the gap between variability constructs and

dependability information. In order to mitigate this threat, we used a metric to quantify

the user e�ort in terms of the number of required mappings to model elements and

dependability annotations. We also intend to further conduct an experimental study with

users to assess e�ciency of CRITVAR-ML in supporting the specification of mappings

between features and safety artifacts.

We identified the following external validity threats: interaction of selection and

treatment: i) the subject considered in the evaluation could not be a fully representative

of the population we aimed to generalize the results. We tried to mitigate this threat

by choosing a subject who had previous experience with the application of product line

engineering activities and all the considered treatments. When it comes to the interaction

of setting and treatment ii) one of the treatments considered in the evaluation, i.e.,

BVR, may not fully represent solutions that are being currently adopted in the industry.

Therefore, we have also considered pure::variants, a commercial variability management

tool widely used in the industry.
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8 CONCLUSIONS AND FUTURE WORK

In this work, we presented CRITVAR: a modeling language, model transformation

engine and process to address variability in safety and cybersecurity model artifacts.

CRITVAR has been driven by the challenges and gaps identified in existing approaches:

CH1) Integrating model-based safety and cybersecurity co-analyses within product line

processes; CH2) Reducing the gap between variability constructs and finer-grained

functional safety and cybersecurity analysis information expressed as annotations attached

to MOF-compliant system models; CH3) Enabling the systematic reuse of system models

enriched with functional safety and cybersecurity analysis information; and CH4) Ensuring

the derivation of correct and complete system models enriched with functional safety and

cybersecurity information from a variability (feature) model.

As contributions, this work provides the following:

• CRITVAR-ML: A variability realization modeling language built upon CVL to

support the mapping of domain variability into dependability models at coarse and

fine-grained levels;

• CRITVAR MTE: A model transformation tool compatible with MOF-compliant

models, e.g., UML and SysML, and state-of-the-art variability management solutions,

i.e., pure::variants and BVR;

• CRITVAR Process: An extension of functional safety, cybersecurity and product

line processes to support the management of variability in dependability models.

As benefits, CRITVAR successfully addresses challenges CH1 through CH4 revisited

earlier in this chapter. CH1) Integrating model-based safety and cybersecurity co-analyses

within product line processes, is addressed by the CRITVAR process which provides a

systematic way to address safety, security and variability concerns in alignment with

system-level threat and safety analysis activities from the ISO 26262 and SAE/ISO 21434.

As for CH2) Reducing the gap between variability constructs and finer-grained

functional safety and cybersecurity analysis information expressed as annotations attached

to MOF-compliant system models, CRITVAR-ML reduces the gap between variability

constructs and finer-grained dependability information. Such reduction can be observed

in two fronts: i) ability to specify variability within finer-grained model dependability

information, e.g., FPTC annotations; and ii) reduction in the number of mappings between

features and model artifacts when compared to existing variability management solutions,

i.e., pure::variants and BVR.

CH3) Enabling the systematic reuse of system models enriched with functional

safety and cybersecurity analysis information is addressed again by the CRITVAR process.
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CRITVAR-ML and CRITVAR-MTE are both enablers to the systematic reuse of depend-

ability models. CRITVAR-ML supports the CRITVAR process by providing a notation

for variability resolution. CRITVAR-MTE provides a tool for performing the realization

of variability and product-specific dependability analysis. Moreover, CRITVAR-MTE also

ensures the derivation of complete and correct dependability models thus, addressing CH4)

Ensuring the derivation of correct and complete system models enriched with functional

safety and cybersecurity information from a variability (feature) model.

However, as in other approaches evaluated in this work, CRITVAR also su�ers

from a limitations. Current limitations of CRITVAR can be classified into two groups:

limitations with respect to compatibility and; limitations with respect to evaluation.

Limitations with respect to compatibility in CRITVAR include the: lack of support

for additional model-based solutions, e.g., Simulink, SCADE Architect, Medini Analyze,

AADL, and; additional variability modeling solutions, e.g., FeatureIDE. However, these

limitations can be easily addressed due the extensible nature of CRITVAR-MTE. New

adaptors can be implemented and integrated into CRITVAR-MTE to add support for new

model-based and variability management solutions.

Limitations with respect to evaluation include: lack of evaluation to understand

the benefits of the CRITVAR-ML notation over similar variability realization languages

and solutions, e.g., BVR, pure::variants and; lack of evaluation of the CRITVAR process

in an industrial context.

Given the aforementioned limitations on the compatibility of CRITVAR, we intend

to extend the compatibility of CRITVAR by: i) Creating adaptors to address Matlab

Simulink models enriched with dependability annotations from HiP-HOPS; ii) Creating

adaptors to address AADL models enriched with Error Annex dependability information;

iii) Creating adaptors to support additional variability management tools such as Fea-

tureIDE. Moreover, based on the limitations with respect to the evaluation of CRITVAR,

we intend to: iv) Perform a comparative evaluation of the CRITVAR-ML notation to

measure its e�ciency over state-of-the-art realization modeling notations such as the one

implemented in pure::variants and; v) Perform an evaluation of the CRITVAR process in

an industrial context.
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