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RESUMO

Dados śısmicos são mapeamentos da subsuperf́ıcie terrestre que têm como objetivo repre-

sentar as caracteŕısticas geof́ısicas da região onde eles foram obtidos de forma que possam

ser interpretados. Esses dados podem ocupar centenas de Gigabytes de armazenamento,

motivando sua compressão. Neste trabalho o problema de compressão de dados śısmi-

cos tridimensionais pós-pilha é abordado usando modelos baseados em autocodificadores

profundos. O autocodificador profundo é uma rede neural que permite representar a

maior parte da informação contida em um dado śısmico com um custo menor que sua

representação original. De acordo com nosso conhecimento, este é o primeiro trabalho a

lidar com compressão de dados śısmicos utilizando aprendizado profundo. Dessa forma,

através de aproximações sucessivas, são propostos quatro métodos de compressão de dados

tridimensionais pós-pilha: dois baseados em compressão bidimensional, chamados Método

de Compressão 2D de Dado Śısmico (2DSC) e Método de Compressão 2D de Dado Śıs-

mico usando Multi-resolução (2DSC-MR), e dois baseados em compressão tridimensional,

chamados Método de Compressão 3D de Dado Śısmico (3DSC) e Método de Compressão

3D de Dado Śısmico usando Quantização Vetorial (3DSC-VQ). O método 2DSC é o nosso

método de compressão do dado śısmico mais simples, onde o volume é comprimido a

partir de suas seções bidimensionais. O método 2DSC-MR estende o método anterior

introduzindo a compressão do dado em múltiplas resoluções. O método 3DSC estende

o método 2DSC permitindo a compressão do dado śısmico em sua forma volumétrica,

considerando a similaridade entre seções para representar um volume inteiro com o custo de

apenas uma seção. O método 3DSC-VQ utiliza quantização vetorial para relaxar a etapa

de codificação do método anterior, dando maior liberdade à rede para extrair informação

dos volumes śısmicos. O objetivo deste trabalho é comprimir o dado śısmico a baixas

taxas de bits e com alta qualidade de reconstrução em termos de PSNR e bits-por-voxel

(bpv). Experimentos mostram que os quatro métodos podem comprimir o dado śısmico

fornecendo valores de PSNR acima de 40 dB a taxas de bits abaixo de 1.0 bpv.

Palavras-chave: Compressão de Dado Śısmico. Aprendizado Profundo. Autocodificador.

Dado Śısmico Tridimensional Pós-Pilha. Processamento de Imagem Geof́ısica.





ABSTRACT

Seismic data are surveys from the Earth’s subsurface with the goal of representing the

geophysical characteristics from the region where they were obtained in order to be

interpreted. These data can occupy hundreds of Gigabytes of storage, motivating their

compression. In this work, we approach the problem of three-dimensional post-stack

seismic data using models based on deep autoencoders. The deep autoencoder is a neural

network that allows representing most of the information of a seismic data with a lower

cost in comparison to its original representation. To the best of our knowledge, this is the

first work to deal with seismic compression using deep learning. Four compression methods

for post-stack data are proposed: two based on a bi-dimensional compression, named

2D-based Seismic Data Compression(2DSC) and 2D-based Seismic Data Compression using

Multi-resolution (2DSC-MR), and two based on three-dimensional compression, named

3D-based Seismic Data Compression (3DSC) and 3D-based Seismic Data Compression

using Vector Quantization (3DSC-VQ). The 2DSC is our simplest method for seismic

compression, in which the volume is compressed through its bi-dimensional sections. The

2DSC-MR extends the previous method by introducing the data compression in multiple

resolutions. The 3DSC extends the 2DSC method by allowing the seismic data compression

by using the three-dimensional volume instead of 2D slices. This method considers the

similarity between sections to compress a whole volume with the cost of a single section.

The 3DSC-VQ uses vector quantization aiming to extract more information from the

seismic volumes in the encoding part. Our main goal is to compress the seismic data at

low bit rates, attaining a high quality reconstruction. Experiments show that our methods

can compress seismic data yielding PSNR values over 40 dB and bit rates below 1.0 bpv.

Keywords: Seismic Data Compression. Deep Learning. Autoencoder. 3D Post-Stack

Seismic Data. Geophysical Image Processing.
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1 INTRODUCTION

The first attempts to the oil and gas exploration were marked by laborious and

expensive mappings from the Earth’s subsurface. At that point, oil reservoirs were found

through leaks identified at the ocean and drilling regions with high potential to contain

them. Besides expensive, it led to inaccurate results, making the process of exploration

too slow to be performed. In this sense, it was necessary to develop new techniques aiming

to extract the subsurface information in a cheaper and faster way.

Seismic prospecting is the most important method used by industries. In this

context, seismic surveys are acquired over regions of interest. They are mappings from the

subsurface that reveal the geological structures and properties of the regions where they

were obtained. Figure 1 shows the acquisition process. It is based on the seismic reflection

process where a controlled source of energy is utilized to generate waves that propagate

through the Earth’s interior (EVANS, 1997). These waves are reflected and captured by

sensors, and a processing process is performed to allow their interpretation. According

to Yilmaz (2001), there are three main processing steps: deconvolution, stacking and

migration. However, auxiliary processes can be used in some cases, to improve these steps.

The seismic data can be stored as pre-stack or post-stack data, and the best strategy

depends on the nature of the subsurface, in which analysis from an interpreter is needed.

In general, pre-stack contains a lot of redundant information, while in post-stack these

redundancies are attenuated. In this work, we approach only the compression of 3D

post-stack volumes represented in a matricial form.

Figure 1 – Seismic survey acquisition process.

Sedimentary rock layers

Sea

Hydrophones

Shock waves

Survey ship

Source: created by the author.
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Recently, advances in the quality of acquisition sensors have led to a substantial

increase in data resolution. These surveys can require hundreds of terabytes or even

petabytes of storage, yielding higher resolution signals to process, to store, and to transmit.

The use of effective compressing algorithms plays an important role in seismic processing,

aiming to deal with this increasing data size.

Given a signal, compression can be defined as the task of finding a less costly

representation in terms of storage in comparison to the original. In other words, we are

interested in finding a transformation that maps a signal to a space suitable for compression.

This task can be performed using lossless methods, with perfect signal reconstruction, or

in a lossy way, with a greater reduction in storage by allowing reconstruction distortions.

Since we are focusing on compressing the seismic data at low bit rates, we approach the

seismic compression problem by using lossy compression methods in this work.

The popularity of deep learning algorithms has increased considerably in recent

years due to consistent advances in solving successfully complex Computer Science tasks

such as image classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), person

re-identification (LI et al., 2014), action recognition (CARREIRA; ZISSERMAN, 2017),

and image compression (MENTZER et al., 2018). In Geophysics, these methods have been

used to solve problems such as automatic seismic interpretation, including fault detection

(WU et al., 2019), salt detection (SHI; WU; FOMEL, 2018) and Relative Geological Time

estimation (GENG et al., 2019). To the best of our knowledge, these methods have not

been explored in the seismic data compression field.

The challenge of working with compression for the seismic domain relies on the

difficulty of detaching parts of the signal that represent physical properties from those

that do not. The variances and inconsistencies that may be present in seismic signals

such as noises, interferences, and processing inaccuracies are hard to be captured by

handcrafted approaches. We conjecture that deep learning methods are a viable way

to face this problem since it has shown to deal efficiently with pattern recognition and

image compression. Deep neural networks, mainly the autoencoder-based, are known to

be powerful tools to perform signal compression since they can learn adequately the most

important features.

Against this background, we propose to explore deep learning-based seismic com-

pression methods. Taking into account the progress of deep learning to solve Computer

Vision and Geophysics tasks, we propose to lossy compress 3D post-stack seismic data

through deep neural networks. Our main hypothesis is that these networks can compress

seismic data at low bit rates preserving most of its underlying structural information.

Intending to validate it, we adapt the method proposed by Mentzer et al. (2018). With

competitive performance to the state of the art results, they proposed a general-purpose

image compression approach. Since image and seismic domains are different, the original
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method needs to be adapted. As the post-stack data is represented in a 3D matricial form,

2D and 3D approaches can be designed to perform the seismic compression. Bi-dimensional

methods consider that the volume can be detached into a set of seismic sections similar

to images in which each section is compressed separately. The three-dimensional ones

benefit from the correlation between sections by compressing a volume composed of many

of them. In this work, we propose four models for post-stack seismic data compression:

2D-based Seismic Data Compression (2DSC), 2D-based Seismic Data Compression using

Multi-resolution (2DSC-MR), 3D-based Seismic Data Compression (3DSC) and 3D-based

Seismic Data Compression using Vector Quantization (3DSC-VQ). The 2DSC and 2DSC-

MR methods are based on 2D compression while 3DSC and 3DSC-VQ are based on 3D

compression.

From the evidence that the method proposed by Mentzer et al. (2018) works

well compressing general-purpose images, the most straightforward way to treat the 3D

post-stack seismic data compression is considering the volume as a set of 2D slices. The

2DSC method is proposed by adapting the original model to compress seismic sections.

Although this approach can be sufficient to compress the data, there is still room for

improvement. Considering that the 2DSC method captures information on only one scale,

we propose the 2DSC-MR method. Traditional methods that take only one single scale

as input fail to capture the scale-dependent information. Thus, our second hypothesis is

that the information across scales improves the compression. An architecture similar to

Huang et al. (2019) is used, allowing a multi-resolution compression of the post-stack data.

The idea is to arrange the data in two scales and progressively compress them from coarse

to fine. The multi-resolution structure allows the network to deal with different scales

learning the most important features across them.

A three-dimensional compression is expected to yield better results than a bi-

dimensional approach since there exists a spatial correlation in all post-stack data directions.

The 3D counterpart can learn to capture information in the three directions at the same time.

Thus, our third hypothesis is that three-dimensional models can generate representations

more suitable for 3D post-stack data compression than bi-dimensional approaches. We

propose 3DSC and 3DSC-VQ models aiming to compress directly the seismic volumes. The

3DSC considers the similarity between neighbouring slices, in which the neural network

learns a mapping from three-dimensional volumes into bi-dimensional representations.

However, some seismic volumes can have noises that make their sections quite different and

the depth reduction can lead to high losses. Our fourth hypothesis is that the compression

of the whole volume without depth reductions on encoding can improve the quality reached.

The 3DSC-VQ method compress the whole volume without encoding reductions to prevent

subsampling inaccuracies. The depth dimension is reduced by using vector quantization.

The loss from vector quantization is expected to be lower than from the encoding part.
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1.1 PROBLEM DEFINITION

The problem tackled in this dissertation is the compression of three-dimensional

post-stack seismic surveys using deep learning at low bit rates and with low loss of

information, tending to preserve the underlying structures as much as possible.

In this work, the 3D post-stack seismic data is associated with real amplitude

values. Thus, we can define a seismic volume v ∈ RT×C×I, where I,C,T are related to the

inline (x), crossline (y) and time-depth (z) directions, respectively. The problem of lossy

compressing a three-dimensional seismic data can be defined as follows: given a volume v,

we are interested in finding the functions:

f : RT×C×I → Rn, (1.1)

q : Rn → Cn/v, (1.2)

and

g : Cn/v → RT×C×I, (1.3)

so that g(q(f(v))) ≈ v and C = {c1, . . . , cL}, where C is a countable set of quantization

cells cl ∈ Rv. The goal is to make q(f(v)) less costly in terms of storage than v.

To address this problem, two aspects need to be evaluated. The first is related to

the quality of the reconstruction and the second is related to the cost of representing v
with fewer bits. The quality can be measured with a distortion function. The distortion

can be defined as the cost of representing v using g(q(f(v))). The cost of representing v
with fewer bits is the bit rate (or entropy). The entropy yields the number of bits needed

to represent the information in its compressed form. Both distortion d and entropy r
are minimized in the so-called rate-distortion trade-off d + βr, where β is a scalar that

controls the balance trade-off. We aim to make the rate-distortion trade-off as close to

zero as possible.

Neural networks are known to be function approximators (HORNIK; STINCH-

COMBE; WHITE, 1989) and can be used to approximate f , q and g. In a deep learning

approach, the problem can be tackled by designing a deep architecture that allows the

seismic data compression. The parameters related to the functions f , q and g can be

learned by minimizing the rate-distortion trade-off d +βr through a set of seismic volumes.

1.2 OBJECTIVES

The main objective of this work is to compress three-dimensional post-stack seismic

volumes at low bit rates preserving its qualitative and quantitative aspects as much as

possible using deep learning models.
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As a secondary objective, we intend to perform an individual validation of our

models using real seismic data with different characteristics. Thus, we can experimentally

evaluate the performance of our models under different aspects as the presence of noises

and frequencies related to different underlying geological structures.

Another secondary objective is to compare the four proposed compression methods

according to their compression capability. Besides that, we compare the overall performance

to methods from literature.

1.3 HYPOTHESES

In the last years, we can notice the predominance of methods based on deep

autoencoders to solve signal compression tasks (AGUSTSSON et al., 2019; RIPPEL et

al., 2019; MINNEN; BALLÉ; TODERICI, 2018; TODERICI et al., 2017; THEIS et al.,

2017). They are the most natural way of compressing information since they are a type of

neural network that aims to approximate the identity function. Autoencoders are often

used as dimensionality reducers or signal compressors. With the goal of compressing, it

is composed by an encoder, a quantizer and a decoder that are related to the Equations

(1.1), (1.2) and (1.3), respectively. The encoder maps the input to a latent representation

that it is discretized by the quantizer. The quantizer output is used by the decoder to

reconstruct the input. The goal is to represent information with fewer bits, ensuring the

similarity between the input and its reconstruction.

Aiming to compress images, Mentzer et al. (2018) proposed a method where two

networks are trained simultaneously: a bi-dimensional compressive autoencoder and a

three-dimensional probabilistic model. The first deals with the rate-distortion trade-off,

controlling the distortion between the input and the output and the cost of representing

the input using fewer bits. The second is used to estimate the bit rate associated with the

autoencoder latent representation. Achieving competitive results to the state of the art, it

inspired us to extend this approach to the seismic domain. Since this scheme was designed

to deal with images, we adapt it to work with the post-stack seismic data represented as

3D matrices.

Our main hypothesis is that deep neural networks can compress seismic data at low

bit rates preserving most of its underlying structural information. From the premise that

the 3D post-stack data can be detached into 2D seismic sections, the most straightforward

way to validate our hypothesis is by performing bi-dimensional compression. The model

proposed by Mentzer et al. (2018) was designed for general-purpose image compression

with 3-channels of 8-bit unsigned integers. The seismic sections are numerically represented

as one channel 32-bit floating-points. It is possible to adapt the slices to the network

input, but the quantization from 32-bit floating-points to 8-bit unsigned integers introduces

precision errors that cannot be recovered. Moreover, the model was originally trained
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using a perceptual loss, and it does not preserve quantitative aspects that are important

to the seismic domain. For this reason, we propose the 2DSC method, by adapting the

network and all metrics to work with the post-stack seismic data. Although this approach

is sufficient to compress the data, there is still room for improvement.

In the last years, multi-resolution methods have been used for image compression

(SKODRAS; CHRISTOPOULOS; EBRAHIMI, 2001; NAKANISHI et al., 2018; HUANG

et al., 2019). They work decomposing the signal into different scales such that each one

has its feature extractor. Thus, a scale can provide information that is no easily captured

by others. Our second hypothesis is that the information across scales improves the

compression. Considering that the method proposed by Mentzer et al. (2018) captures

information only on one scale, we propose the 2DSC-MR method, with an architecture

similar to Huang et al. (2019) to allow a 2D multi-resolution compression of the post-stack

data.

The most natural extension of the method proposed by Mentzer et al. (2018)

points towards the 3D data compression. From the premise that there exists spatial

correlation in all post-stack data directions, our third hypothesis is that three-dimensional

models can generate representations more suitable to 3D post-stack data compression

than bi-dimensional approaches. By dealing with volumes, the autoencoder becomes

three-dimensional and the probabilistic model should be four-dimensional. However, due

to memory constraints, a 4D neural network is still not practical. We propose two schemes

to attend this problem without needing an expensive 4D model. The 3DSC method

takes into account the similarity between slices, mapping a volume into a bi-dimensional

representation. There is however a strong simplification in latent space to avoid 4D

networks, and the depth reduction can lead to high losses in latent representations. Our

fourth hypothesis is that the compression of the whole volume without depth reductions

on encoding can improve the quality reached. The 3DSC-VQ uses a higher dimensional

latent representation to improve compression. It reduces the latent representation depth

dimension by using vector quantization. In this scheme, a set of vectorial centroids is

learned and the columns of the volume are replaced by the indices of the nearest centroids.

1.4 RELATED WORK

This section presents the main works from the literature that are a background for

this work. To the best of our knowledge, there is no work in seismic data compression

that exploits deep learning methods. In this sense, the Subsection 1.4.1 describes only

handcrafted approaches for seismic compression. The Subsection 1.4.2 presents deep

learning-based methods for image and video compression.
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1.4.1 Seismic Data Compression

Over the past decades, various compression methods have been proposed to deal

with the amount of information collected from seismic surveys. The first attempts in

seismic data compression considered the evaluation of transform-based methods. In

general, a transform is applied to the seismic data to represent the input using a different

domain and the sparsity and correlation among coefficients are exploited to provide smaller

representations.

A comparative study of the transforms Discrete Fourier Transform (DFT), Discrete

Cosine Transform (DCT), Walsh-Hadamard Transform (WHT) and Karhunen-Loève

Transform (KLT) was proposed by Spanias, Jonsson e Stearns (1991). They used seismic

data from the Norwegian Regional Seismic Array to perform their experiments. For each

transform, the seismic data was compressed for different compression ratios. The DFT and

WHT have higher error compared to the KLT and DCT. Although the KLT has achieved

the smallest error, it is data-dependent and cannot generalize to multiple volumes. DCT

has the best overall performance in terms of robustness and compression ratios.

However, the DCT can lead to blocking effects at high compression rates, a natural

consequence of the individual processing of each block. To deal with block artifacts, a new

method called Local Cosine Transform (LCT) was proposed by Aharoni et al. (1993) to

improve compression. The idea is to apply smooth cutoff functions as a pre-processing step

before performing the DCT such that the data becomes more suitable to be compressed.

A systematical evaluation of compression methods was performed by Averbuch

et al. (2001). They evaluated eight combinations of methods, concerning the transform,

quantization and entropy coding steps. Considering the transform, they evaluated the

Fast Wavelet Transform (FWT) and the LCT. Due to its computational cost, the wavelet

transform offers some advantages over other transforms while the LTC is superior in terms

of signal-noise ratio.

An optimized sub-band coding is proposed by Røsten, Ramstad e Amundsen (2004).

In this work, the input signal is decomposed into a set of sub-bands by a filter bank. These

sub-bands are evaluated so that the energy of the input signal is concentrated/focused

into a small number of sub-bands. They are downsampled, and a quantizer is used to

allow compression using the entropy coding. The decoder performs the inverse, aiming to

reconstruct the original signal.

An approach based on dimensionality reduction is proposed by Nuha et al. (2017). In

their work, the trace dimensions are reduced using a Principal Component Analysis (PCA)

method. They considered the similarity between traces to provide higher compression

rates so that a trace can be approximated by shifting others.

Recently, some methods explored standard video and image compression techniques.
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Liu et al. (2016) proposed to use the Joint Photographic Experts Group Extended Range

(JPEG XR) standard to compress seismic sections represented as 32-bit floating-points.

To this end, they convert the input to a 32-bit integer representation and compress the

resulting image using the JPEG XR. The decoder turns back the representation to floating-

point representation. They also proposed to control the Signal-to-Noise Ratio (SNR) and

rate achieved by the method. This is achieved by adjusting parameters related to the

quantization to achieve the SNR or bit rate target.

Radosavljević et al. (2016) proposed a method that extends the High-Efficiency

Video Coding (HEVC) to compress seismic images. Almost all components of the HEVC

codec (SULLIVAN et al., 2012) were redesigned. They used a lifting-based BinDCT instead

of the DCT to achieve better reconstruction. This method was developed to compress

2D seismic data, and an extension was proposed by Radosavljević et al. (2017) aiming to

explore the redundancy in three-dimensional data. The idea is to consider the 3D seismic

data as a sequence of frames similar to videos. They used a block matching scheme, in

which the motion estimation is computed over the volume. Parameters related to the

quantizer were selected by using Lagrange multipliers.

1.4.2 Deep Learning for Image and Video Compression

Recently, Convolutional Neural Networks (CNN) have achieved impressive results in

many Computer Vision tasks. Among the benefits of the use of CNN’s to solve Computer

Vision tasks, we can highlight their generalization power and ability to learn features from

high amounts of data with little to no human efforts. One of the first attempts to use CNN’s

to image compression was performed by Ballé, Laparra e Simoncelli (2017). They proposed

a method composed of analysis and synthesis modules, in which the analysis is referred to

the encoder and the synthesis to the decoder parts of a convolutional autoencoder. The

synthesis transform is the inverse of the analysis transform. These modules are composed of

convolutional, downsampling/upsampling and Generalized Divisive Normalization (GDN)

(BALLÉ; LAPARRA; SIMONCELLI, 2016) layers. The GDN is used to replace the batch

normalization, since GDN can deal with local joint statistics of natural images, being

spatially adaptive. To deal with the non-differentiability from quantization, during training

they added uniform noise to the output of the encoder allow the network to be optimized

using the Stochastic Gradient Descent (SGD) optimizer. For testing they used rounding.

Their method outperforms the Joint Photographic Experts Group (JPEG) and Joint

Photographic Experts Group 2000 (JPEG2000) codecs in terms of Peak Signal-to-Noise

Ratio (PSNR) and Multi-Scale Structural Similarity (MS-SSIM) metrics.

The previous method was extended using a scale hyperprior to improve the entropy

estimation (BALLÉ et al., 2018). They use a Gaussian scale mixture (GSM) as an

entropy model, where the scale parameters are conditioned to a hyperprior. The idea is to



29

send information concerning the image encoded from the encoder to decoder parts. The

decoder first recovers the scale information and the latent representation, and it is used to

reconstruct the input image. In this sense, the entropy model depends on the input image,

allowing reduced bit rates. This method achieves comparable results to the state of the

art in terms of PSNR and MS-SSIM.

Toderici et al. (2017) proposed a scheme based on Recurrent Neural Networks

(RNN) for the variable rate compression on images without needing to retrain the network.

The idea is to use RNN models to enable a progressive compression of an image, yielding

variable bit rates. The input is encoded, and its latent representation is converted into a

bitstream. The bitstream is encoded using an architecture similar to the one proposed by

Oord, Kalchbrenner e Kavukcuoglu (2016). Their idea is to model the joint distribution

over a pixel of an image using a CNN. The decoder uses it to reconstruct the image. This

process is repeated using the residual between original and reconstructed images. The

compression rate is determined by the number of iterations of the network, in which the

compression of the residual is performed in different contexts.

Theis et al. (2017) proposed a compressive autoencoder system that uses mainly

convolutional layers. To deal with quantization, they replaced the derivatives of the

rounding function so that the quantization is performed as usual in the forward pass, and

in the backward pass, a smooth approximation is used. They also used scale parameters to

deal with variable bit rates without needing to retrain the model. The bit rate estimation

is performed by using GSM with 6 scales in the training. The entropy is estimated by

using Laplace-smoothed histograms. This method achieved similar results to the JPEG in

terms of PSNR, MS-SSIM and Structural Similarity (SSIM).

Taking into account that the visual information in images is spatially variant, Li

et al. (2018) proposed a model that weighs regions according to the detail level. High-

frequency regions tend to demand more bits to be encoded than low-frequency. An

importance map network is used to generate an importance map in which the bit rate

allocation becomes locally adaptive. The latent representation was used to generate a

mask used to weight the encoded information. This method is extended by Li et al. (2019),

a Trimmed Convolutional Network (TCNN) is used to achieve low bit rates, predicting

the current symbols from the previous available. An inclined TCNN is also proposed to

partition the quantized latent representation into inclined planes to perform the decoding

in parallel. This method outperforms state of the art results in terms of PSNR and achieves

good results for MS-SSIM.

One of the first attempts to use Generative Adversarial Networks (GAN) to improve

image compression was performed by Rippel e Bourdev (2017). They used an adversarial

loss to enhance the visual quality of the reconstructed image. In this setting, the encoder-

decoder is the generator, and the discriminator learn to differentiate the original and
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reconstructed images. The feature extraction is based on pyramidal structured CNN’s,

to learn scale-dependent information. The latent representation is quantized using a bit

plane decomposition to achieve further compression. Complementing an autoencoder

with adversarial training, the proposal of Rippel e Bourdev (2017) to image compression

outperforms JPEG, JPEG2000, Better Portable Graphics (BPG) and WebP codecs in

terms of MS-SSIM metric, producing visually agreeable reconstructions for very low bit

rates in real-time.

With competitive performance to state of the art results, Mentzer et al. (2018)

proposed an image compression system based on two networks trained concurrently. They

proposed an autoencoder inspired in the work of Theis et al. (2017) to deal with the

trade-off between entropy and distortion. The entropy is estimated by using a probabilistic

model that combines the proposals (OORD et al., 2016; OORD; KALCHBRENNER;

KAVUKCUOGLU, 2016). They extended the work of Li et al. (2018) to generate an

importance map without needing an extra network, by adding a channel in the last layer

of the encoder. The quantization is performed similarly to the approach of Agustsson et

al. (2017) but using scalars instead.

Habibian et al. (2019) presented a video compression method based on Variational

Autoencoders (VAE). They argue that a stochastic encoder is not beneficial for compression

since any noise added increases the bitrate. The main architecture is based on the

works of Mentzer et al. (2018) and Ballé et al. (2018), using 2D and 3D autoencoders

with a temporarily-gated PixelCNN as prior. The autoencoder used in this work is

closely related to the proposed by us. Besides, extensions to semantic compression and

adaptive compression are presented. Experiments were performed by evaluating 2D and

3D autoencoders and comparisons with state of the art methods shown that the method

performs on par with the codec H.265/HEVC.

1.5 OUTLINE

The remainder of this work is organized as follows. The Chapter 2 presents a

description of the main concepts needed for the comprehension of this work. Chapter 3

describes the proposed methods of this work that are evaluated in the Chapters 4 and 4.6.

Chapter 5 presents the conclusion and future works.
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2 FUNDAMENTALS

This chapter introduces the fundamentals needed for the comprehension of our

work. We present the theory about data compression and the modules that compose it.

We also explain the concepts about deep learning for data compression and the main

structures that constitute the networks used: autoencoder, convolutional neural network

(CNN) and residual blocks. Secondary structures such as batch normalization, softmax and

activation functions are not explained since they are not the focus of our work. Moreover,

it is presented a description of the work of Mentzer et al. (2018), on which we are based.

2.1 DATA COMPRESSION

According to Gonzalez e Wintz (1987), a compression system consists of two main

blocks: an encoder and a decoder. Given a m-dimensional input signal x ∈ Rm, the

encoder E : Rm → Rn, is a transformation that maps x to an encoded representation z,

suitable for compression. The decoder D : Rn → Rm is a transformation that maps back

z to the input space, yielding x̂ as output. If the reconstruction x̂ is equal to the input

x, the compression is called lossless. However, if the reconstruction x̂ approximates the

input, the compression is called lossy and a quantizer block can be added between the

encoder and the decoder to allow higher compression rates. In this work, we are focusing

on lossy compression.

Figure 2 depicts a flowchart for a lossy compression scheme. Given the input data,

the encoding is performed to produce a low-dimensional representation. The quantization

discretizes the coordinates of the encoded representation and a lossless coding strategy

is used to generate a bitstream. The bitstream is lossless decoded and the input is

reconstructed.

Figure 2 – Lossy compression flowchart.

Input data Encoding Quantization Lossless Coding

Compressed
dataLossless DecodingDecodingOutput data

Source: created by the author.

Since z ∈ Rn, infinite elements are needed to represent it with the highest precision.

As it is not possible, the quantizer Q : Rn → Cn/v must solve the problem of representing

a continuous variable using a limited number of elements. The goal is to find a finite
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set C = {c1, . . . , cL}, cl ∈ Rv of quantization cells that accurately represent z. If v = 1,

the quantization is called scalar, where each quantization cell cl corresponds to a scalar

value. The quantization is called vectorial if the quantization cells have vectorial shape,

with v > 1. For lossy compression with a quantizer block, the decoder must be redefined,

becoming D : Cn/v → Rm and yielding the quantized latent representation ẑ as output.

As quantization is irreversible, some distortions can appear on the reconstructed side.

The objective of lossy compression systems is to represent information with fewer

bits than its original form. With this goal, it is necessary the use of mathematical

tools to measure the compression capacity of a system. From the rate-distortion theory

(SHANNON, 1959), the distortion d between the input x and output x̂ and the bit rate

(entropy) r of the encoded information ẑ can jointly be evaluated through the trade-off:

d(x, x̂) + βr(ẑ). (2.1)

At the same time, small distortions and rate are desirable such that the β controls the

trade-off between them.

The distortion d(x, x̂) can be defined as the cost of representing x using x̂. It can be

measured by some metrics such as PSNR or MS-SSIM. Choosing the appropriate metric is

of great importance as it quantifies the type of information that is preserved. A perceptual

metric, such as MS-SSIM, measures the amount of lost information that the human visual

system can capture. Perceptual metrics do not consider the differences between pixel values

from original and reconstructed images, but only their visual similarities. In contrast,

a pixel-wise metric, such as PSNR, measures the distortion between the original and

reconstructed pixel values. Although it can not detect the presence of some visual artifacts,

most of the visual information is preserved for high values of PSNR (> 40 dB). Since we are

interested in compressing the seismic data preserving both its qualitative and quantitative

aspects as much as possible, we chose to use the PSNR metric in this work. The PSNR

(in decibels) between x and x̂ is given by:

d(x, x̂) = PSNR(x, x̂) = 10 · log10
MAX2

MSE(x, x̂) , (2.2)

where MAX is the maximum value possible and MSE is the mean squares error associated

to x and x̂. If x is normalized in the range [0,1], the MAX value used is 1.

The bit rate r(ẑ) of the trade-off is related to the coding cost (or entropy) of the

compressed representation ẑ. From Cover e Thomas (2006), the entropy of a random

variable is defined as a lower bound on the average number of bits required to represent

it. Considering ẑ as a sequence of discrete random variables ẑ = ẑ1, . . . , ẑn and a joint

probability mass function p(ẑ1, . . . , ẑn), the entropy of ẑ is given by:

r(ẑ) = r(ẑ1, . . . , ẑn) = −
∑

ẑ1,...,ẑn

p(ẑ1, . . . , ẑn) log p(ẑ1, . . . , ẑn). (2.3)
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If the log has base 2, the entropy expresses the number of bits, on average, required to

describe ẑ.

2.2 DEEP LEARNING

Deep learning is a Machine Learning subfield that aims to learn approximations

of functions by sequentially stacking many layers in a neural network. A network with

this characteristic is known as a Deep Neural Network (DNN). Its recent success can be

assigned to a set of factors, including the availability of massive datasets and the efficient

GPU computing hardware.

According to Hornik, Stinchcombe e White (1989), neural networks with a single

hidden layer and sigmoidal activations can approximate any function to any degree of

accuracy once sufficient many hidden units are available. However, in many applications,

the performance of deep architectures outperforms the shallow ones. Compared to shallow,

deeper architectures better capture invariant properties of the data, allowing to extract

high order features (MHASKAR; POGGIO, 2016).

The following subsections describe the main structures that compose our networks:

autoencoder, CNN and residual block. The autoencoder defines the architecture used to

solve data compression tasks. Convolutional networks are useful to capture local patterns

that are not possible using the fully connected ones. The residual block allows us to

construct deeper architectures. Jointly, these structures enable us to develop a deep

compression system for post-stack data.

2.2.1 Autoencoder

Autoencoder is the most straightforward way to perform data compression using

artificial neural networks. They are a type of neural network trained to approximate the

identity function (BALLARD, 1987), developed to solve encoder problems (ACKLEY;

HINTON; SEJNOWSKI, 1985) in which data compression is an example. Similarly to a

compression system, autoencoders are composed of encoder and decoder modules.

The autoencoder has an input layer as the encoder and an output layer as the

decoder, where both have the same number of neurons. The hidden layer yields the latent

representation, also known as the bottleneck. This architecture can solve simple problems,

but for challenging tasks, as image compression, a deep autoencoder is more suitable.

Figure 3 shows a deep autoencoder architecture. It has the same base structure, but with

more than one hidden layer. In this case, the latent representation corresponds to the

layer with the smallest dimension.

The deep compressive autoencoder (THEIS et al., 2017) is a variant that has

an additional module aiming to perform quantization. This structure mimics a lossy
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Figure 3 – Deep autoencoder architecture. It is composed by encoder and decoder modules. The
latent representation is often the layer with the smallest dimension.
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compression system in which its three main steps can be represented by the network.

The encoder E, the decoder D, and the quantizer Q are constituted of layers of a neural

network. The loss function £, based on the rate-distortion trade-off, is given by:

£ = d(x,D(Q(E(x)))) + βr(Q(E(x))), (2.4)

where x is the network input. The learning is based on the backpropagation algorithm

and all modules must be differentiable. Since the quantization step is not differentiable

and could not be represented by a neural network, an approximated soft quantization

function is often used. For simplicity, in the remainder of this work, we will refer to a deep

compressive autoencoder as a deep autoencoder.

2.2.2 Convolutional Neural Network

Convolutional networks (LECUN et al., 1990) are feed-forward neural networks in

which their main layers perform the convolution operation. They have proven to be powerful

tools for solving Computer Vision tasks such as image classification (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012) and image compression (TODERICI et al., 2017). Different

from the fully-connected layer, convolutional layers can capture spatial dependencies in

visual data.

Figure 4 illustrates a convolutional layer. Given an image, a filter (also called

kernel) is applied over its pixels. The output is known as a feature map, is the result of the
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application of the filter on the image. The filter slides in the raster scan order with a given

stride value until it reaches the last pixel of the image. Considering the central position of

the filter as the reference, at each location, it is computed the dot product between the

kernel and the input, and the result is attached to the output current position. Each layer

can be composed of multiples filters, and this process is performed for all of them.

Figure 4 – Example of a convolution operation. An input is convolved with a kernel, yielding a
feature map as output.
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The amount by which the filter shifts is the stride. The stride controls how the filter

convolves around the input data. The stride can be useful for dimensionality reduction

purposes since the output feature map dimensions are downscaled by a factor equals to

the stride value. By default, applying a filter to an input yields a feature map with smaller

spatial dimensions than the input. It occurs because the border values are always exposed

to the filter edges. However, producing a feature map with the same dimension of the input

is often desirable. To this end, padding strategies can be applied in which an extra border

is added to the input. Although stride and padding definitions were made separately, it

is important to emphasize that the feature map dimensions consider both at the same

time. Thus, a combination of them can lead to different behavior from those previously

described.

Transposed convolutions can be used to output feature maps larger than the input.

The transposed convolution is a transformation that goes in the opposite direction of

the conventional, equivalent to the gradient calculation for a regular convolution. It is

useful for increasing the output feature map dimensions, where an upsampling function

can be learned by the layer. A transposed convolution can be implemented as a regular

convolution in which the padding is applied aiming to make the feature map dimensions

greater than the input.

Our models are based on deep compressive autoencoders. As the seismic data is

spatially correlated, convolutional layers are employed in the encoder part, by downsampling
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the input to generate a representation suitable for compression. The decoder performs

transposed convolutions to reconstruct the input, learning the upsampling counterpart.

2.2.3 Residual Block

Training deeper networks is a hard task since they are exposed to the degradation

problem, where as the network depth increases, the accuracy becomes saturated. To

address this problem, He et al. (2016) proposed a residual learning framework. Instead

of making the layers learn a function, they fit the residual between input and output.

They verified the hypothesis that it is easier to optimize the residual mapping R(x) than

to optimize the original mapping. Besides that, as the number of layers increases, the

gradient vanishing problem becomes critical. Residual blocks can be used to attenuate

this problem, making possible to train deeper networks. Figure 5 depicts a residual block

structure. The input x feeds the next layer and is also merged with the output of the layer

about some hops away.

Figure 5 – Residual block structure. The input feeds the next layer and is also merged with the
output of the layer about some hops away.
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2.3 CONDITIONAL PROBABILITY MODELS FOR DEEP IMAGE COMPRESSION

This section describes the method that is the basis of our work. With competitive

performance to the state of the art results, Mentzer et al. (2018) proposed a general-

purpose image compression approach based on two networks trained concurrently. A

probabilistic model is used to learn the dependencies between symbols in the autoencoder

latent representation, and an autoencoder uses it for entropy estimation to control the

rate-distortion trade-off. Figure 6 depicts the steps executed in the image compression

scheme proposed by Mentzer et al. (2018) that is also performed in our seismic compression

approach. The input is encoded, it outputs a latent representation and an importance map.
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The latent representation is masked with a mask generated through the importance map.

The masked latent representation is quantized and used by the decoder to reconstruct the

input. The probability model uses the quantized latent representation to estimate the bit

rate used to compress the data. In the end, the metric is evaluated, yielding the quality

and bit rate measures reached in the compression.

Figure 6 – Flowchart of the image compression scheme proposed by Mentzer et al. (2018) that is
also performed in our seismic compression approach.
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The encoder E : Nh×w×3 → Rh/8×w/8×C maps an input image x with spatial

dimensions h × w and 3 color channels to a latent representation z = E(x), where the

value 8 corresponds to the network subsampling factor for spatial dimensions w and h and

the parameter C indicates the number of feature maps of the latent representation. In this

sense, the input volume of dimensions h× w × 3 is mapped into a latent representation

volume of dimensions h/8 × w/8 × C. The quantizer Q : Rh/8×w/8×C → Ch/8×w/8×C

discretizes the entries of z using a set of centroids C = {c1, . . . , cL}, cl ∈ R, yielding

ẑ = Q(z). The decoder D : Ch/8×w/8×C → Nh×w×3 then forms the reconstructed image

x̂ = D(ẑ).

Figure 7 shows the autoencoder architecture proposed by Mentzer et al. (2018)

and that is the basis of our methods. It is composed of an encoder and a decoder. The

“normalize” layer normalizes the input using the mean and variance of the training set

and the “denormalize” performs the inverse operation. From the encoder, “C2D k5 n64 2”

represents the convolution 2D with kernel size 5, 64 filters and stride 2 for both spatial

dimensions w and h. To reduce the input spatial dimensions, the encoder performs two

convolutions with stride 2 followed by 15 residual blocks with skip connection between

every 3. The last layer of the encoder performs a convolution with C + 1 filters, yielding

the latent representation z ∈ Rh/8×w/8×C and an importance map t ∈ Rh/8×w/8×1. It is

important to notice that the number of feature maps in the latent representation directly

implies the bit rate obtained in practice. Small values of C lead to low bit rates, and vice

versa. Then z is masked and quantized and its quantized representation ẑ is used to feed

the decoder side. The decoder mirrors the encoder but performing transposed convolutions

to make output equals input. The transposed convolution is represented as “TC2D”. All

convolutional layers are normalized using batch normalization. The activation function

used is ReLU (NAIR; HINTON, 2010).
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Figure 7 – Detailed encoder and decoder architectures proposed by Mentzer et al. (2018) and
used in our methods.
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Considering that the visual information is spatially variant in an image, an impor-

tance map can be used to spatially reach different regions of the image with different bit

rates. For example, a blue sky can require fewer bits to be reconstructed than a person,

and the remaining bits can be allocated to more detailed regions. Instead of using a

neural network to generate the importance map, Mentzer et al. (2018) adapted the idea

from Li et al. (2018) by adding a single-channel output t ∈ Rh/8×w/8×1 at the last layer

of the encoder, as illustrated in the Figure 8. The importance map learns to weight the

regions that provide the most relevant information for the reconstruction of the image.

The importance map t is expanded into a mask m ∈ Rh/8×w/8×C as follows:

mw′,h′,c′ =


1 if c′ < tw′,h′

(tw′,h′ − c′) if c′ ≤ tw′,h′ ≤ c′ + 1.
0 if c′ + 1 > tw′,h′

(2.5)

At this point, m has values in the interval [0,1]. Since the goal is to produce zero entries

in the latent representation, the mask is binarized and z is masked by a point-wise

multiplication with dme:
z← z� dme . (2.6)
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The ceiling operator d.e is not differentiable, and the identity is used for the backward

pass.

Figure 8 – Example of masking performed between the latent representation and the mask
generated using the importance map.
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Although some latent representation entries become zero, z still needs an infinite

number of elements to be represented and the quantizer needs to discretize z. Inspired by

Agustsson et al. (2017), the quantization step considers that the quantizer is composed of a

finite set C ⊂ R of scalar centroids learned by the autoencoder. The latent representation

entries ẑi are assigned to the nearest centroid as follows:

ẑi = arg mincl∈C ‖zi − cl‖ . (2.7)

Since arg min is not differentiable, the soft quantization:

z̃i =
L∑

l=1

exp(−σ ‖zi − cl‖)∑L
j=1 exp(−σ ‖zi − cj‖)

cl =
L∑

l=1
softmax(−σ ‖zi − cl‖)cl, (2.8)

is used in the backward pass of the backpropagation. The parameter σ controls the

approximation level between z̃i and ẑi.

According to Equation (2.3), it is needed to know the distribution of the latent

representation. A model that combines the proposals (OORD; KALCHBRENNER;

KAVUKCUOGLU, 2016; OORD et al., 2016) was proposed to compute the bit rate used

to compress the autoencoder latent representation. The probability model P is used to

estimate the joint distribution p(ẑ) of the quantized latent representation ẑ.

The latent representation can be stacked into a 3D volume in which the third

dimension is related to the number of channels of the latent space. Let be ẑ indexed in the

raster scan order (row by column by depth). The joint distribution p(ẑ) can be represented

as a product of conditional distributions:

p(ẑ) = p(ẑ1, . . . , ẑn) =
n∏

i=1
p(ẑi|ẑi−1, . . . , ẑ1), (2.9)
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where n = w/8 · h/8 · C.

The problem of learning a conditional distribution can be formulated similarly

as a classification task. Given a sample ẑi and a set of centroids C = {c1, . . . , cL}, we

want to predict the probabilities of a match ẑi to each centroid cl from C according to

their similarity. Thereby, each distribution p(ẑi|ẑi−1, . . . , ẑ1) provides the probability of

classifying ẑi to each one of the L centroids given the previous values.

Although the true entropy p(ẑ) is unknown, the labels ŷ can be calculated through

ẑ and C. The labels ŷ have a one-hot representation for each entry of ẑ in which the value

1 is in the index of its nearest centroid. It can be viewed as a distribution that has no

associated uncertainty and zero entropy. However, the labels can be used to make the

model P learn a distribution that approximates the desired one through a cross-entropy

loss. The cross-entropy yields the average number of bits needed to encode information

using an approximated distribution instead of the true.

A 3D DNN P : Cw/8×h/8×C → Rw/8×h/8×C×L is used to estimate each term

p(ẑi|ẑi−1, . . . , ẑ1):
Pi,l(ẑ) ≈ p(ẑi = cl|ẑi−1, . . . , ẑ1), (2.10)

where Pi,l is the probability of each symbol ẑi to be assigned to each centroid cl of C. Figure

9 shows the architecture of the probabilistic model. As in the autoencoder architecture,

“C3D k3 n24 1” indicates the convolution 3D with kernel 3 and 24 filters and stride 1 for

spatial and depth dimensions. At the last convolutional layer, the number of filters used

is the size of the centroids set. The softmax outputs a distribution for each voxel of the

input volume.

Figure 9 – Detailed Probabilistic Model architecture, also proposed by Mentzer et al. (2018) and
used in our methods.
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Since each distribution p(ẑi|ẑi−1, . . . , ẑ1) depends on the previous values, the network

needs to deal with the conditioning. It can be guaranteed by using specific filters in the
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convolutional layers. Instead of considering all previous values, the conditioning takes into

account only a region around the current voxel. The region is defined by the filter of the

convolution. Mentzer et al. (2018) proposed to use a filter in the first layer of the network

and another in the remaining ones. Figure 10 shows the 3D filter of dimensions 3× 3× 3
for the first (left) and subsequent (right) layers.

Figure 10 – Example of 3D filter of dimensions 3× 3× 3 for the first and subsequent layers. Red
voxels have the value 1 and the gray ones have the value 0.
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Source: created by the author.

The model P is trained with a loss:

£P = d(x, x̂) + βC(ẑ), (2.11)

where:

C(ẑ) := − 1
n

n∑
i=1

L∑
l=1

yi,l logPi,l(ẑ), (2.12)

is the cross entropy loss that expresses the number of bits per pixel required to compress

the latent representation ẑ using P as a probability model. Figure 11 illustrates the bit rate

estimation. Given the labels set y and the estimated distribution P (ẑ), the cross-entropy

is calculated according to Equation 2.12. Notice that the cross-entropy does not depend

on the values of ẑ, but only on the probabilities.

Figure 11 – Bit rate estimation.
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The autoencoder uses the probability model loss to deal with the rate-distortion

trade-off. To control the bit rate obtained, the autoencoder weights P (ẑ) using the mask
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dme. The weighting is a way to easily control the coding cost, by increasing/decreasing

the value of the importance map t for some spatial locations, obtaining fewer/more zero

entries in dme. The loss function of the autoencoder (E,D) and the quantizer Q is given

by:

£E,D,Q = d(xj, x̂j) + βMC(ẑ) +RAE · `2(WAE) +RC · `2(C), (2.13)

where:

MC(ẑ) := − 1
n

n∑
i=1

L∑
l=1
dmieyi,l logPi,l(ẑ), (2.14)

`2 is the regularization loss, the parameter RAE is the autoencoder regularization factor,

WAE is the autoencoder weights matrix and RC is the centroids regularization factor. It is

not added regularization for the probabilistic model. Regularization is used to prevent

model overfitting. The MS-SSIM was used as a distortion function for both losses in

Equations 2.11 and 2.13. The perceptual metric ensures that the output images are visually

agreeable, reducing block artifacts and blur.
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3 PROPOSED METHODS

The main objective of this work is to compress 3D post-stack seismic data using

deep learning models. To this, we need to learn the functions expressed in Equations

(1.1), (1.2) and (1.3) that allow the compression of the seismic data. Since neural networks

are proven to be able to approximate functions, we intend to learn a deep autoencoder

model that mimics a compression system. An encoder, quantizer and decoder are used

to approximate Equations (1.1), (1.2) and (1.3), respectively, by minimizing the rate-

distortion trade-off (Equation 2.1). By extending the work of Mentzer et al. (2018), we

propose four methods to compress the seismic data:

1. 2D-based Seismic Data Compression (2DSC): described in the Subsection 3.1.1, it is

considered as our baseline method, it is equivalent to the straightforward application

of the method proposed by Mentzer et al. (2018) to compress the seismic data. The

main difference is concerning to the data, in which instead of 3-channels of 8-bit

unsigned integers, we compress slices represented as 1-channel 32-bit floating-points.

2. 2D-based Seismic Data Compression using Multi-resolution (2DSC-MR): descri-

bed in Subsection 3.1.2, this method aims to compress seismic sections through

an analysis of the data in multiple resolutions. The original input is downscaled

by a factor of 2 and the result is downscaled again by a factor of 2 to produce 2

scales. They are individually compressed, and their reconstructions are combined in

a residual way.

3. 3D-based Seismic Data Compression (3DSC): described in Subsection 3.2.1, instead

of seismic sections, this method aims to directly compress seismic volumes. A 3D

CNN is used to capture information from the three dimensions at the same time.

Considering the similarity in the neighboring slices that constitute a volume, a set of

them is represented using a latent representation corresponding to compress only

one section.

4. 3D-based Seismic Data Compression using Vector Quantization (3DSC-VQ): des-

cribed in Subsection 3.2.2, this method extends the 3DSC method. We propose to

compress the whole volume without reductions to prevent subsampling inaccuracies.

The vector quantization is used to reduce the computational cost of this approach.

Table 1 presents the main differences between our four approaches and the method

proposed by Mentzer et al. (2018). The main objective of compressing the seismic data is

reached by the 2DSC method. Improvements are added through successive approximations

from the previous methods. From the 2DSC to 2DSC-MR, we incorporate a multi-resolution

architecture in our encoder to extract features from different scales. The 3DSC method
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extends the 2DSC approach, by compressing the volume instead of its bi-dimensional

sections. The 3DSC-VQ extends the previously mentioned 3D method, in which a vector

quantization is performed and a set of indices I is used to reduce the computational cost

of the probabilistic model.

Table 1 – Main differences between the approaches.

Method
Autoencoder

input
domain

Probabilistic
model input

domain
Quantization

Multiple
scales

Distortion
metric

Mentzer et al. (2018) Nh×w×3 Ch/8×w/8×C Scalar No MS-SSIM

2DSC Rh×w×1 Ch/8×w/8×C Scalar No PSNR

2DSC-MR Rh×w×1 Ch/8×w/8×C Scalar Yes PSNR

3DSC Rh×w×d Ch/8×w/8×C Scalar No PSNR

3DSC-VQ Rh×w×d Ih/8×w/8×C Vectorial No PSNR

Source: created by the author.

To compress the seismic data, we can treat it as a set of 2D seismic sections or

directly as a volume. The 2DSC and 2DSC-MR methods are described in Section 3.1.

They are based on bi-dimensional compression, where the volume is detached into a set

of slices. The 3DSC and 3DSC-VQ are presented in Section 3.2. They are related to the

three-dimensional compression, where the data is seen in its volumetric form.

3.1 2D POST-STACK COMPRESSION

Our 2DSC method, described in Subsection 3.1.1, aims to verify the main hypothesis

of this work. The main hypothesis is that deep neural networks can compress seismic data

at low bit rates preserving most of its underlying structural information. This method is

based on bi-dimensional compression, in which a volume is detached into 2D sections and

each one is compressed separately. It is an extension from Mentzer et al. (2018), where

image compression is performed.

The 2DSC-MR approach intends to provide improvements for the previous approach.

From the premise that a scale can yield information that is no easily captured by others,

this method aims to verify the second hypothesis, in which the information across scales

improves the compression. This method extends the 2DSC by adding a multi-resolution

architecture, as described in Subsection 3.1.2.

3.1.1 2D-based Seismic Data Compression (2DSC)

The 2DSC approach is the most straightforward adaptation from the Mentzer et al.

(2018) proposal to the seismic domain. The main difference is that instead of compressing

3-channel 8-bit unsigned integers images, we compress seismic sections represented as
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1-channel 32-bit floating-points. It is possible to adapt the slices to the network input, but

the quantization from 32-bit floating-points to 8-bit unsigned integers introduces a loss of

precision that cannot be recovered. Moreover, the model was originally trained using the

perceptual loss MS-SSIM, and it does not preserve quantitative aspects that are important

to the seismic domain. For this reason, we adapted the network and all metrics to work

with 1-channel 32-bit floating-points seismic data and trained all models from scratch.

Figure 12 shows our autoencoder and probabilistic model architectures. From the

encoder, the parameter nB indicates the number of residual blocks. The parameter nF

is related to the number of filters of the convolutional layers. ka, kb and kc describes

the kernel size of the convolutions in the initial, middle and final parts of the encoder

architecture, respectively. The parameter C is the number of filters of the latent space.

Figure 12 – Detailed architecture of our 2DSC method. It uses the probabilistic model from
Figure 9.
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The input x ∈ Rw×h is normalized using the mean and standard deviation from

the training set. Several convolutional layers are applied aiming to generate a latent

representation z ∈ Rw/8×h/8×C and an importance map t ∈ Rw/8×h/8×1 from the input. As

in the original method, a mask dme is constructed using t and applied to z.
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The same quantizer described in Section 2.3 is used to allow the seismic section

compression. In this scheme, the entries of z are replaced by the nearest centroid value.

It yields a volume ẑ that has at most L different values. This representation fed the

decoder and the probabilistic model. The decoder structure mirrors the encoder aiming to

reconstruct the input. Its last convolutional layer outputs a single channel slice that is

denormalized to generate the output x̂. The probabilistic model is the same from Figure

9, and outputs the joint distribution of ẑ to bit rate estimation.

Different from Mentzer et al. (2018), we use the PSNR metric as distortion function.

In this way, both aspects qualitative and quantitative tend to be preserved. However,

PSNR is a metric that must be maximized, whereas the entropy must be minimized. To

solve this problem, instead of minimizing the PSNR, we minimize δ - PSNR, where δ is a

scalar greater than the PSNR maximum value. The loss functions for autoencoder and

probabilistic model are the same described in Equations 2.13 and 2.11, respectively. We

use MAX = 1.0 in Equation 2.2 for loss evaluation. The first version of this approach

was submitted and accepted to the 81st EAGE Conference and Exhibition (NAVARRO

et al., 2019) and to the 19th International Conference on Computational Science and its

Applications (SCHIAVON et al., 2019).

3.1.2 2D-based Seismic Data Compression using Multi-resolution (2DSC-MR)

Multi-resolution is a concept from the Signal Processing related to decomposing a

signal into similar ones with different resolutions. The interpolation yields an upsampled

signal whereas the decimation downscales the input. With signals in different resolutions,

different information can be extracted from them. From this premise, we propose to extend

the 2DSC method by introducing multiple resolutions information. Methods that take only

one single scale as input fail to capture the scale-dependent information. It is expected

that the independent analysis of multiple scales captures more relevant information than

using only the input resolution.

Inspired by the architecture proposed by Huang et al. (2019), the 2DSC-MR

method extends the 2DSC approach by decomposing the seismic section in three scales

and combining them in a residual way to generate the latent representation. It allows

the network to deal with different scales learning the most important features across

them. Figure 13 shows the multi-resolution architecture proposed by Huang et al. (2019)

that inspired us. The input is downscaled by a factor of 2 to generate two more inputs.

The input scales are progressively encoded, from coarse (Xk/4) to fine (Xk), and their

reconstructions are combined with the next scale input. The residual scheme benefits

the information that was not observed in the previously encoded scale. The intermediary

latent representations are combined to generate the output bitstream.

Different from Huang et al. (2019), we perform the scaling by using filtering. In
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Figure 13 – Multi-resolution architecture proposed by Huang et al. (2019). The multi-resolution
scheme captures the most important features across them.

Source: extracted from Huang et al. (2019).

this setting, the network learns the filters that are more suitable for this task. As shown

in Figure 14, given an input, a convolutional layer is used to learn a filter bank. The

filter bank is weighted by a Squeeze-Excitation (SE) block (HU; SHEN; SUN, 2018).

The SE block is composed of a global average pooling layer, that computes the global

average of each feature map from the input, followed by two fully connected layers. The

idea is to benefit the filters that provide more relevant information before performing

the dimensionality reduction. This operation is done by using a convolutional layer that

outputs the downscaled (left) or upscaled (right) input. The downscaling uses regular

convolutions, whereas the upscaling works with transposed ones. The term n(nF ) indicates

the number of filters learned by the convolutional layers and the size of the fully connected

outputs.

Figure 14 – Downscaling (left) and upscaling (right) blocks. The main difference is the use of
convolutional layer for downscaling and transposed convolutions for upscaling.
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Source: created by the author.

Figure 15 illustrates our multi-resolution architecture. Similarly to Huang et al.
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(2019), the original input x ∈ Rw×h is downscaled by a factor of 2 and the result is

downscaled again by a factor of 2 to produce 3 final scales s1 ∈ Rw×h, s2 ∈ Rw/2×h/2 and

s4 ∈ Rw/4×h/4. The scales are progressively encoded, from coarse (s4) to fine (s1), and their

reconstructions ŝ1, ŝ2 and ŝ4 are combined in a residual scheme. The latent representations

z1, z2 and z4 ∈ Rw/8×h/8×C are concatenated instead of separately being encoded. A 1× 1
convolutional layer is applied to select the C more representative feature maps from all

scales. This avoids manually selecting the number of filters for each scale and yields a

single final latent representation z ∈ Rw/8×h/8×C . An additional convolutional layer is

used to generate the importance map from z. With the importance map and the latent

representation computed, the remaining steps are performed as in the 2DSC approach.

Figure 15 – Detailed architecture of our 2DSC-MR method. We use three different resolutions,
the original input, one downscaled by a factor of 2 and one downscaled twice by a factor of
2. The smaller scales are encoded and combined in a residual manner. All intermediary latent
representation are concatenated. The decoder and probabilistic model are the same from the

2DSC method.
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3.2 3D POST-STACK COMPRESSION

Although it is possible to compress post-stack seismic data through its bi-dimensional

slices, the most natural way is considering the data as a volume. The 3D compression

considers the spatial correlation in all directions, and it is expected to achieve lower bit

rates at least comparable to bi-dimensional approaches. We propose to extend our 2DSC

approach to compress volumes instead of slices. By dealing with volumes, the autoencoder

becomes three-dimensional and the probabilistic model should be four-dimensional. Howe-

ver, due to memory constraints, a 4D neural network is still not practical. We propose

two schemes to address this problem without needing a 4D probabilistic model.

The 3DSC method, described in Subsection 3.2.1, aims to verify our third hypothesis.

It states that three-dimensional models can generate representations more suitable to 3D

post-stack data compression than bi-dimensional approaches. This method performs a

reduction in the depth dimension through the encoder. The volume is encoded into a

latent representation that corresponds to the compression of only one section.

The 3DSC-VQ approach extends the 3DSC method. The depth reduction in the

3DSC method can lead to high losses in latent representations. Our 3DSC-VQ method,

described in Subsection 3.2.2, intends to verify our fourth hypothesis. The fourth hypothesis

is that the compression of the whole volume without sample depth reductions can improve

the quality reached. In this sense, the depth size of the latent representation has the

same depth size of the input sample. To use the same probabilistic model from the 2DSC

approach we propose to reduce the depth dimension by using vector quantization. The

loss from vector quantization is expected to be lower than the encoding part.

3.2.1 3D-based Seismic Data Compression (3DSC)

Seismic surveys are mappings from the subsurface that describe the geological

structures present in the region where they were acquired. We can consider that there

exists a similarity between neighboring slices since they describe spatially very close regions.

In some cases, the difference between sections is subtle. In this context, it is reasonable to

consider that a set of local slices could be represented by only one of them.

Our 3DSC approach extends the 2DSC by using 3D inputs instead of bi-dimensional

sections. This method benefits from the similarity from slices in a region. The idea is

to perform a depth reduction through convolutional layers so that a set of slices can be

encoded with the cost of only one. The latent representation reached for the whole volume

has the same dimensions from the latent representation for a single slice compression.

The 3DSC architecture is similar to the 2DSC. The main difference concerns

the convolutional layers, in which 3D convolutions are performed. In this setting, the

spatial correlation in all directions is considered. Figure 16 shows the details of our 3DSC
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architecture. Notice that the same structure from the 2DSC is maintained. The input

volume x ∈ Rw×h×d is normalized and encoded through several convolutional layers. The

first two perform convolutions with stride 2 in all directions, reducing the dimensions by a

factor of 4. If the volume is composed of more than 4 slices, the last layer of the encoder

uses a depth stride of d/4. It ensures that the feature map depth becomes 1 at the latent

representation z ∈ Rw×h×C . The decoder mirrors the encoder. The masking, quantization

and bit rate estimation steps are performed as in the 2DSC approach.

Figure 16 – Detailed architecture of our 3DSC. It is the same base architecture of our 2DSC
method, but with 3D convolutions.
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3.2.2 3D-based Seismic Data Compression using Vector Quantization (3DSC-VQ)

The mapping from d slices to only one as in the previous method can lead to high

losses. We propose the 3DSC-VQ to deal with this scenario. The idea is to compress a

volume without depth reductions on the encoder. In comparison to the 3DSC, this method

yields a higher dimensional latent space. We propose to use vector quantization to reduce

the computational cost, avoiding the use of a 4D probabilistic model. By using vector
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quantization, we can better preserve information across slices once sufficient centroids are

available.

Considering x ∈ Rw×h×d as an input volume, the encoder is similar to 3DSC method.

The difference is in the stride, in which the vectorial approach does not perform reductions

in the depth dimension of the input, yielding an encoded representation z ∈ Rw/8×h/8×d×C .

As in Mentzer et al. (2018), the importance map t ∈ Rw/8×h/8×d×1 is used to generate a

mask. However, is not possible to use Equation 2.5, as t has an extra dimension. The

mask m ∈ Rw/8×h/8×d×C is generated as follows:

mw′,h′,d′,c′ =


1 if c′ < tw′,h′,d′

(tw′,h′,d′ − c′) if c′ ≤ tw′,h′,d′ ≤ c′ + 1.
0 if c′ + 1 > tw′,h′,d′

(3.1)

As in Equation 2.6, m is binarized and a point-wise multiplication is performed between

dme and z. In this setting, the importance map is not used with the goal of weighting

across regions, as in the previous methods. Instead, it is used to reduce the complexity of

the latent space, by introducing zero values in some entries.

The vector quantization is performed as in Figure 17. We reshape z into a matrix

Z = [~z1, · · · , ~zn], so that ~zi ∈ Rd and n = w/8 · h/8 · C. The idea is to quantize each

~zi according to a set of vectorial centroids C = {~c1, · · · ,~cL} of centroids, where ~cl ∈ Rd.

The quantizer Q : Rw/8×h/8×d×C → Cw/8×h/8×C maps z into a quantized representation ẑD

by using Equation 2.7 and its soft quantization is performed through Equation 2.8. The

quantized latent representation ẑD can be used by the decoder to reconstruct the output

volume x̂ ∈ Rw×h×d. The decoder mirrors the encoder architecture.

Figure 17 – Vector quantization scheme. Each vector is replaced by its nearest centroid to yield
ẑD and the index of the nearest centroid is used to yield a volume ẑP that is used to feed the

probability model.

3 1 5 2 4 0

Latent	

Representation	�

Quantized	Latent	

Representation	� ̂ �

Quantized	Latent	
Representation	� ̂ �

�0 �1 �2 �3 �4 �5

Centroids	Set	

QUANTIZER

PR
O
BA
BI
LI
TY

M
O
D
EL

D
EC
O
D
ER

Source: created by the author.



52

To compute the bit rate estimation over ẑD, a 4D probabilistic model is needed.

However, due to memory constraints, it is still impracticable. To generate a volume that

can feed the 3D probabilistic model we propose to replace each vector ~zi by the index l of

the nearest centroid ~cl. It is performed aiming to generate a volume ẑP that keeps the

relationship between the feature maps that constitute the latent representation and that

can feed the 3D probabilistic model. Similarly to Equations 2.7 and 2.8, each ~zi can be

replaced by the index of its nearest centroid as follows:

ẑP i = arg minl∈C ‖~zi − ~cl‖ , (3.2)

and its soft quantization

z̃P i =
L∑

l=1

exp(−σ ‖~zi − ~cl‖)∑L
j=1 exp(−σ ‖~zi − ~cj‖)

l =
L∑

l=1
softmax(−σ ‖~zi − ~cl‖)l, (3.3)

is performed in the backward pass of the backpropagation. Hence, ẑP ∈ Iw/8×h/8×C , where

I = {1, . . . , L} is the set of indices of C. Since I ⊂ R, ẑP can feed the model P described

in Section 2.3 without loss of generality.

Since the mask dme has d times more elements than the quantized latent represen-

tation ẑP , the autoencoder loss function from Equation 2.13 cannot be used. Then, the

loss function of the autoencoder and quantizer is given by:

£E,D,Q = d(xj, x̂j) + βC(ẑ) +RAE · `2(WAE) +RC · `2(C), (3.4)

where C is the same cross entropy loss from Equation 2.12. `2 is the regularization loss, the

parameter RAE is the autoencoder regularization factor, WAE is the autoencoder weights

matrix and RC is the centroids regularization factor.

Figure 18 shows the architecture used in this method. It is very similar to the

3DSC approach. The main difference is that the encoder and decoder layers have stride 1

for the depth dimension. The last layer of the encoder outputs an importance map that is

used to weight the latent representation z. The quantizer is responsible to assign each

vector from Z to its nearest centroid. The decoder uses it to reconstruct the input. A

volume that contains the index from the nearest centroid is used by the probability model

to compute the bit rate estimation.
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Figure 18 – Detailed architecture of our 3DSC-VQ. The main difference to the previous method
is the stride from convolutional layers (in red) and the probabilistic model input.
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4 EXPERIMENTAL RESULTS SPECIFIC FOR EACH METHOD

This chapter provides the details about the seismic data, protocols and experiments

performed for each method separately. We proposed four methods: 2DSC, 2DSC-MR,

3DSC and 3DSC-VQ. Each one has intrinsic details that require us to evaluate its hyper-

parameters individually. Section 4.2 describes the proposed training and inference protocols

that allow seismic compression. Section 4.3 describes the common setup for all methods.

Experiments based on the 2D autoencoders are described in Section 4.4 and based on 3D

are described in Section 4.5.

4.1 3D POST-STACK SEISMIC DATA

The 3D post-stack seismic data is represented as a 32-bit floating point representa-

tion matrix v ∈ RI×C×T, in which I is related to the inline survey direction, constituted

of planes (y, z), C is the crossline direction, with (x, z) planes and T is the time-depth

direction, composed of (x, y) planes.

Figure 19 illustrates the three possible views of a seismic volume. The inline and

crossline directions are similar, as they describe the front and left views of the volume. The

time-depth direction is related to the top view of the volume and is often very different

from the others.

Figure 19 – Inline (left), crossline (middle) and time-depth (right) views for the Netherlands
F3-Block seismic data. Notice that the time-depth is very different from the others.

Source: created by the author.

4.2 TRAINING AND INFERENCE PROCEDURE

This section describes training and inference schemes that allow compressing

seismic volumes using the previously described methods. Figure 20 illustrates the training

procedure proposed by this work. As a pre-processing step, the volumes are normalized

to the [0,1] interval using its minimum and maximum values. It is needed because the
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seismic data is quantized with 32-bit floating-points and its range values are wider and

the min-max values are arbitrary across different volumes. To make possible the training

of a model capable of compressing different seismic surveys, we need to put all of them at

the same conditions.

Figure 20 – Flowchart of our training procedure. We first pre-process all our datasets with a
min-max normalization. Then the training proceeds producing each batch and sending it to
the autoencoder. After evaluating the loss, the weights are adjusted with the backpropagation

algorithm. These steps are repeated until a fixed number of iterations is reached.
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The batch generation step is performed by extracting a set of samples from the

seismic volume. For 2D approaches, we extract slices, and for 3D, sub-volumes. The

samples can be extracted from the inline (x ), crossline (y) or time-depth (z ) directions.

Samples from all directions can be used to train the network at the same time. In the case

of a training set composed of various datasets, we attempt to reduce the dataset bias by

building the batch with samples from all of them at the same amount. The number of

samples of a dataset can vary, and smaller datasets provide repeated samples.

The batch generation for 2D models is performed by extracting random crops of

size h × w in an arbitrary direction. In contrast, three-dimensional approaches do not

consider a random extraction of crops due to memory constraints. The batch generation

step for 3D approaches is performed as depicted in Figure 21. Initially, we extract a set

of sub-volumes from the whole seismic volume v ∈ RT×C×I. The sub-volumes can be

extracted by considering the inline, crossline and time-depth directions along the axes

x, y and z, respectively. For inline sub-volumes, for instance, the samples are formed of d

bi-dimensional crops of size h× w extracted along the x axis. Similarly, for crossline and

time-depth are composed of samples along the axes y and z, respectively.
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Figure 21 – Batch generation step for 3D models. The volume is detached in a set of sub-volumes
that are randomly selected to generate the batch.
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To extract sub-volumes from the inline direction, we consider the volume indexed

according to the raster scan order in which the row is the y axis, the column is the z axis

and the depth is the x axis. Using this order, we extract all non-overlapping sub-volumes

of size h × w × d. If some dimension T,C, or I of the volume is not divisible by the

corresponding dimension h,w, or d in the sub-volume, it is allowed the smallest overlapping

sub-volume containing the remaining voxels. Figure 21 shows an example in which the

dimension C is not divisible by w. In this sense, the last sub-volumes extracted (blue)

have w − (C mod w) columns overlapping the previous sub-volume extracted (green). An

analogous process is used to extract crossline and time-depth samples.

The batch is generated by randomly selecting sub-volumes extracted from the

input volume. In the case of a training set composed of various datasets, we attempt

to reduce the dataset bias by building the batch with samples from all of them at the

same amount. The number of samples of a dataset can vary, and smaller datasets provide

repeated samples.

The encoder is fed with the batch and a mask is applied to the encoded output

to spatially attend different regions of the data with different bit rates. The masked

representation is quantized, and it is used by the probabilistic model to estimate the joint

probability of the quantized latent representation. The decoder reconstructs the input.
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With the input reconstructed, the loss function is evaluated and it is used to

adjust the network weights. We train our models using the PSNR metric as the distortion

function. In this way, both aspects qualitative and quantitative tend to be preserved. The

training step is repeated until the maximum number of iterations is reached.

The inference is performed according to the scheme shown in Figure 22. Considering

a trained network, the seismic volume is normalized. Slices of size T × C are extracted

for 2D approaches, and volumes of size T × C × d for the 3D inference. If their spatial

dimensions are not divisible by the network subsampling factor, they are padded with a

border extension. We propose the symmetric border extension since it better preserves the

frequencies of the seismic volume. The autoencoder is fed with the volume and both input

and output are unpadded to guarantee coherence of the metric evaluation. The volumes

are denormalized to reconstruct the compressed seismic volume and the error between the

original and reconstructed volumes is evaluated.

Figure 22 – Flowchart of our inference procedure. The testing volume is first min-max normalized.
Then we extract samples across the inline or crossline directions. A padding operation is
performed in case the volume size is not divisible by the subsampling factor. These samples are
passed through the autoencoder and after all samples reconstructed, the volume is reconstructed

and denormalized.
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Source: created by the author.

A possible end-user pipeline can be as follows: the network is trained from scratch

with the seismic volume. In a generalist approach, the training data is a volume (or multiple

volumes) that can generalize well the testing domain. In this case, the volume of interest

to be compressed is not used to train the network. In a specialized compression scheme,

the volume used to train is the same to be compressed. The training step considers a

percentage γ ∈ [0, 100] from all sub-volumes extracted from the input data. The parameter

γ can be arbitrary or even 100%. After training, the compression is performed in the

whole volume of interest. The compressed representation is stored as well as the decoder

weights. To decompress, the decoder weights are recovered and the inverse transformation

is applied.
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4.3 SETUP FOR ALL METHODS

To evaluate our proposed methods, we perform experiments in eight 3D post-

stack seismic volumes, with distinct characteristics, selected from the SEG Open Data

repository (SEG, 2019). We refer the reader to details such as size and grid dimension

in Table 2. The grid dimensions are reported using the inline × crossline × time-depth

order. The compression difficulty was chosen according to observations of the presence

of high and low frequencies on these surveys. Surveys with the predominance of low

frequencies are considered easy, and the difficulty level increases according to the presence

of high frequencies. Our methods were implemented using the TensorFlow framework,

and all experiments performed on NVIDIA Tesla V100 GPUs with 32GB and 16GB. The

reconstruction quality is reported as PSNR in decibels (dB) due to its sensibility to small

error variations, and compression rate as bits-per-voxel (bpv), expressing the average

number of bits necessary to represent each amplitude value of the volume.

Table 2 – Uncompressed dataset properties.

Dataset Size (GB) Grid Dimension (voxels) Compression Difficulty

Kahu3D 5.8 (584× 1695× 1498) low
Kerry3D 0.8 (226× 711× 1218) high

Netherlands F3-Block 1.2 (631× 951× 463) medium
Opunake3D 2.6 (501× 988× 1301) low
Parihaka3D 3.7 (920× 1124× 874) low

Penobscot3D 0.6 (401× 301× 1251) low
Poseidon3D 1.4 (301× 967× 1176) high
Waihapa3D 0.3 (201× 291× 1238) medium

Source: created by the author.

Figure 23 depicts example slices for all surveys taken in the inline direction. The

presence of many high frequencies regions in the surveys Kerry3D and Poseidon3D makes

them difficult to compress. The Netherlands F3-Block and Waihapa3D surveys have a

balance between low and high frequencies. The Kahu3D, Opunake3D, Parihaka3D and

Penobscot3D are more homogeneous, with only a few regions with high frequencies.

To evaluate our methods, we empirically split our seismic volumes into three sets,

according to the difficulty level. The first is the training set, composed of the Parihaka3D,

Poseidon3D and Netherlands F3-Block surveys, in which each survey has a difficulty level.

The second contains the Kerry3D and is used to find the best hyper-parameter setting and

also as validation during the training. The remaining post-stack data are used for testing.

Due to their similarity, we use the inline and crossline directions alongside to train

our models. Since the time-depth direction is too different from the previous ones, we
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Figure 23 – Examples of inline sections extracted from the surveys of the Table 1. From left to
right, from top to down: Kahu3D, Kerry3D, Netherlands F3-Block, Opunake3D, Parihaka3D,

Penobscot3D, Poseidon3D, Waihapa3D.

Source: created by the author.

chose not to use it, as the top view is often too noisy compared with the other planes,

causing the network to not converge. The batch is built with samples from all of them, at

the same amount. The validation and testing steps consider only the inline samples.

For each method, we perform individual experiments, aiming to define its best

parameter setting. Some of them were defined for all tests to allow comparison. As we

need to compare the methods over the same bit rate, we define β = 100. This parameter

controls the trade-off between distortion and bit rate. We also set δ = 100 and σ = 1. We

train our models for 30 epochs using the Adam optimizer with a batch composed of 30

samples. The model with the smallest validation loss during the training step is saved.

As proposed by Mentzer et al. (2018), to train our models to a target bit rate rt,

a clipping is used on the entropy term to force the bit rate target to be reached. The

max(βr(ẑ), rt) is used instead of βr(ẑ) in Equation 2.13 when optimizing the autoencoder.

As we need to compare objectively, we set rt = 1.0 bpv. We select the parameters that

provide the best PSNR, excluding the results with bpv beyond 120% of the target value rt.

In fact, this margin is enough to deal with differences arising from network initialization.

It is possible that a network obtains a high PSNR but cannot converge to the desired

bit rate. Thus, the comparison between compression rates of different networks needs an
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acceptance criterion for the obtained bpv. We chose to exclude from comparisons the

results having

bpv > 1.2 · rt, (4.1)

since they become inadequate even with a high PSNR.

For the probability model P, we fixed the architecture as the same proposed by

Mentzer et al. (2018). We assume that the parameters determined by Mentzer et al. (2018)

are suitable for seismic compression. In our experiments, we use the Adam optimizer with

a learning rate of 8× 10−5 and a step decay of 0.05 for every 10 epochs.

4.4 2D POST-STACK COMPRESSION

This section describes the experiments related to 2D seismic compression. To

evaluate the 2DSC and 2DSC-MR methods, we train our models with a crop size of

160× 160 pixels. The initial learning rate is 8× 10−5 with a weight decay of 0.05 every 10

epochs.

4.4.1 2D-based Seismic Data Compression (2DSC)

In Section 4.4.1.1 we present the experiments performed to find the best parameters

setting and in Section 4.4.1.2 we present the method performance evaluation on testing

surveys.

4.4.1.1 Parameters Setting

A sequence of experiments was performed to find the best parameters for the 2DSC

method according to Table 3. A grid-search over all of them would require more than

30000 models to train. The simplest model requires about 5 hours to be completed in

a Tesla V100 GPU with 16GB of memory. It would be impractical, and so we evaluate

them progressively according to their sensibility, starting from the least sensible. Results

reported are from the inference over the validation set, composed of inline sections from

the Kerry3D survey.

The first experiment intends to evaluate the regularization factor of the autoencoder

RAE and centroids RC. The regularization is used to reduce the model overfitting. We

train our model to achieve the bit rate target of rt = 1.0 bpv. We set nB = 15, nF = 128,

ka = 5, kb = 3, kc = 5, C = 64, L = 50 and CIR = [−10, 10). The CIR parameter is

the initial range for the centroids initialization. L centroids are randomly sampled from

CIR. From the results presented in Table 4, we notice that smaller RC values favor the

compression rate, with a slightly better reconstruction quality. The RAE, however does

not have a meaningful impact. Using RC = 0.01 and RAE = 0.005 the method achieves a

PSNR of 38.27 dB using 1.09 bpv.
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Table 3 – Parameters evaluated for the 2DSC method.

Parameters Description Values

RAE Autoencoder regularization factor 0.05, 0.005, 0.0005
RC Centroids regularization factor 1.0, 0.1, 0.01
nB Number of residual blocks 15, 18
nF Number of filters in the convolutional layers 64, 128, 192
ka Kernel size 5, 7
kb Kernel size 3, 5
kc Kernel size 5, 7

CIR Centroids initial range [-1, 1), [-5, 5), [-10, 10)
C Number of channels in the latent space 8, 16, 32, 64, 128
L Centroids set size 6, 12, 24, 50, 100

Source: created by the author.

Table 4 – Regularization parameter evaluation for 2DSC method. Cells with darker colors
meaning a better result.

RC RAE PSNR bpv
0.01 0.0005 37.65 1.01
0.01 0.005 38.27 1.09
0.01 0.05 38.22 1.07
0.1 0.0005 38.76 1.23
0.1 0.005 37.42 1.24
0.1 0.05 38.24 1.14
1.0 0.0005 37.47 1.42
1.0 0.005 34.88 1.32
1.0 0.05 37.23 1.62

Source: created by the author.

The second experiment aims to evaluate the number of residual blocks nB, the

number of filters in the convolutional layers nF and the kernel sizes ka, kb and kc that

describes our 2DSC architecture. Table 5 shows the results for the architecture setting.

Notice that better results are provided by small kernel sizes. It implies that the method

benefits from highly local features. The number of residual blocks did not have a meaningful

impact on the metrics, just like the width of the network. It indicates that the network is

already above the capacity necessary for the problem. The best overall result is found with

nB = 18, nF = 64, ka = 5, kb = 3 and kc = 5, with a PSNR of 38.97 dB and 1.11 bpv.

With the network parameters defined, the next step is to exploit the impact of the

centroids initialization. It is important since a bad initialization can hinder convergence

and lead to an arbitrary centroid set, in which some of them can become equal. The

CIR parameter is related to the range in which the centroids set is initialized. A set

of L random values is chosen in the range of CIR. Table 6 shows the CIR parameter

comparison. It is noticeable that as the interval increases, the distortion becomes small.
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Table 5 – Architecture parameter evaluation for 2DSC method. The grayscale indicates the top
3 values that provided the best overall result, with darker colors meaning a better result.

nB nF ka kb kc PSNR bpv nB nF ka kb kc PSNR bpv
15 64 5 3 5 38.02 1.04 18 64 5 3 5 38.97 1.11
15 64 5 3 7 37.26 1.03 18 64 5 3 7 38.37 1.05
15 64 5 5 5 37.22 1.15 18 64 5 5 5 37.48 1.17
15 64 5 5 7 37.70 1.09 18 64 5 5 7 37.75 1.20
15 64 7 3 5 37.80 1.08 18 64 7 3 5 37.70 1.09
15 64 7 3 7 37.18 1.02 18 64 7 3 7 37.40 1.07
15 64 7 5 5 37.65 1.10 18 64 7 5 5 36.80 1.09
15 64 7 5 7 36.39 1.04 18 64 7 5 7 37.58 1.15
15 128 5 3 5 38.27 1.09 18 128 5 3 5 37.65 1.07
15 128 5 3 7 38.00 1.13 18 128 5 3 7 37.15 1.14
15 128 5 5 5 38.35 1.12 18 128 5 5 5 37.17 1.08
15 128 5 5 7 37.93 1.10 18 128 5 5 7 37.49 1.09
15 128 7 3 5 37.88 1.09 18 128 7 3 5 37.34 1.12
15 128 7 3 7 38.06 1.11 18 128 7 3 7 37.86 1.09
15 128 7 5 5 37.49 1.15 18 128 7 5 5 37.16 1.10
15 128 7 5 7 37.37 1.10 18 128 7 5 7 36.33 1.07
15 192 5 3 5 38.47 1.12 18 192 5 3 5 38.73 1.12
15 192 5 3 7 38.02 1.10 18 192 5 3 7 37.63 1.11
15 192 5 5 5 37.17 1.10 18 192 5 5 5 37.41 1.07
15 192 5 5 7 37.92 1.06 18 192 5 5 7 36.54 1.09
15 192 7 3 5 38.16 1.09 18 192 7 3 5 37.55 1.06
15 192 7 3 7 37.01 1.10 18 192 7 3 7 37.82 1.10
15 192 7 5 5 37.31 1.08 18 192 7 5 5 36.63 0.98
15 192 7 5 7 36.24 1.11 18 192 7 5 7 37.34 1.07

Source: created by the author.

The initialization in a small interval yields closer centroids, and some of them tend to

converge to the same point at the final training steps. In contrast, large intervals do not

provide proportional improvement, and we set CIR = [−10, 10) as the range of choice.

Table 6 – Centroids initialization range evaluation for 2DSC method. Small ranges lead to closer
centroids.

CIR PSNR bpv
[−1, 1) 35.77 1.07
[−5, 5) 38.13 1.08
[-10,10) 38.97 1.11

Source: created by the author.

The next experiment aims to evaluate the impact of the number of centroids L

and the number of channels C in the latent space that is related to the bit rate obtained.

Figure 24 shows the curve PSNR × bpv for all combinations of L and C, represented

by color and markers, respectively. We can see that the number of channels C controls

the bit rate. We can notice that, as the number of channels increases, the bit rate also

increases by the same factor, which is expected as they are directly related. The number of

centroids L has no significant impact on the bit rate, but the PSNR benefits from a higher
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number of centroids. Then, the increment on the number of centroids only translates into

an improvement of quality when paired with a high number of channels. For a bit rate

target rt = 1.0 bpv, the best performance is reached by using C = 64 and L = 50, with

a bit rate of 1.11 bpv and a PSNR of 38.97 dB. We define C = 64 and L = 50 for next

experiments since we are using rt = 1.0 bpv. It is important to emphasize that for higher

or lower bit rates a different parameter set can be more suitable. For example, we cannot

reach a bit rate of 0.1 bpv using 64 channels in the latent space. In this case, L = 12 and

C = 8 would provide better results.

Figure 24 – Evaluation of the number of centroids L and number of channels C for 2DSC method
represented by color and markers, respectively. The gray area is the region above the margin
threshold (1.2 bpv) of acceptable bpv (Eq. 4.1). Better results are closest to the top-left corner.
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4.4.1.2 Model Evaluation on Testing Surveys

With the best parameter setting determined, we can evaluate the testing surveys.

We trained different models for 8 different bit rates target rt = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5,

3.0 and 3.5 bpv, aiming to evaluate the method performance. Figure 25 shows the results

of the 2DSC method for testing sets Kahu3D, Opunake3D, Penobscot3D and Waihapa3D.

We can see that using the parameters found in the previous subsection the method reached

bit rates higher than 0.4 bpv. This is a limitation from this parameter set, as they were

adjusted to fit the bit rate target rt = 1.0 bpv. By using fewer feature maps in the latent

space it is possible to achieve smaller bit rates. We can notice that in general, the method

has difficulty adjusting the bit rate target. As rt increases, the difference between the

bit rate targets and obtained is enhanced. It probably occurs due to the rate-distortion

trade-off. For a bit rate target higher than 2.5 bpv, the method attempts to adjust the
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target even if it reflects in a distortion loss. It can be attenuated by using a small value

for β. In this sense, the method benefits the distortion instead of the bit rate, and the

curve becomes stable. However, for a very small β, it is not possible to control the bit

rate and the method will reach the highest possible PSNR value.

Figure 25 – PSNR × bpv curve for 2DSC method for testing datasets over different bit rates.
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The best performance is reached for surveys with fewer details, i.e. with small high

frequency presence. The Kahu3D, Opunake3D and Penobscot3D achieved higher PSNR

values even using a bit rate next to 0.5 bpv. It is due to the presence of homogeneous

regions in these data. In particular, for Opunake3D dataset, there exist a few regions of

high frequencies, reaching a PSNR of 46.05 dB using 0.45 bpv. In contrast, the Waihapa3D

has noisy regions that difficult the compression. Even under these conditions, the method

achieved a PSNR higher than 40 dB using 1.12 bpv for this survey.

The second experiment intends to evaluate the compression capabilities of the

method under different conditions. With this goal, we propose to use the leave-one-in

protocol (TRIPPA et al., 2015). The leave-one-in is the opposite of the leave-one-out

protocol, in which one dataset is used for training and the remaining sets are used for

testing. To this end, we select the first 10% slices from the training data for validation.

From Table 7, we can notice that the generalization capability of our 2DSC method

is directly conditioned to the training set choice. Homogeneous surveys (Opunake3D

and Penobscot3D), with a predominance of low frequencies, do not provide enough

information to reach good performance, leading to network overfitting. Kahu3D and

Parihaka3D, Netherlands F3-Block and Waihapa3D surveys have both high and low

frequencies, achieving reasonable results for all testing sets. The Waihapa3D achieves good

PSNR values, but the bit rate is considerably greater than using the other surveys. The
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highest loss often occurs for noisy data. Very difficult surveys (Kerry3D and Poseidon3D)

are good training data, as they can achieve good performance even for very simple volumes.

However, they are difficult to be compressed by using other surveys as the training set.

In general, the performance is related to the presence of high and low frequencies in

the training set. Balanced training sets can generalize in different situations. As the

experiments show, higher PSNR values are reached when trained and tested on the same

survey. It is expected, as specialized networks will adjust the weights to the training data.

An exception is found on the Opunake3D. For this data, the best result uses Parihaka3D

as the training set. We believe that it occurs because there exist only a few regions

of high-frequency in the Opunake3D data. The number of samples with homogeneous

regions is greater than with noisy regions and the network adapts to learn the predominant

information. In general, these results indicate that our 2DSC method achieves good

performance even under different conditions. In a generalist situation, the method overall

performance is good.

Table 7 – Leave-one-in protocol results for the 2DSC. In bold the best result for each test survey.
Painted cells indicate the top 3 best results for each testing survey, with darker colors meaning a
better result. We consider only results below the margin threshold (1.2 bpv) of acceptable bpv

(Eq. 4.1).

Train
Test

Opunake3D Penobscot3D Kahu3D Parihaka3D Waihapa3D N. F3-Block Kerry3D Poseidon3D

Opunake3D 50.39/0.99 28.63/1.14 20.42/1.29 25.04/1.08 11.24/1.72 17.34/1.15 9.45/1.87 9.20/2.00
Penobscot3D 22.95/1.04 48.07/1.22 31.66/1.26 15.80/1.13 37.51/1.43 13.97/1.15 12.50/1.54 8.37/1.59

Kahu3D 47.27/1.08 45.78/1.10 47.68/1.00 43.72/1.06 46.05/1.14 36.21/1.17 32.43/1.29 29.64/1.50
Parihaka3D 50.44/0.77 46.00/1.00 39.21/1.02 50.02/1.00 40.26/1.34 39.07/1.07 35.83/1.48 32.01/1.33
Waihapa3D 42.56/1.88 43.29/1.77 46.52/1.39 38.80/1.68 46.59/1.40 34.00/1.69 33.34/1.5 28.77/1.85
N. F3-Block 46.90/0.78 44.90/0.86 35.90/0.91 45.75/0.87 30.15/1.02 40.30/1.01 33.22/1.19 33.06/1.27

Kerry3D 40.43/1.12 42.17/1.16 46.34/1.03 38.95/1.03 44.84/1.15 35.00/1.06 39.98/1.23 33.84/1.32
Poseidon3D 45.12/0.86 43.19/0.78 40.81/0.69 44.26/0.71 40.74/0.88 38.98/0.96 37.00/0.96 38.40/0.76

Source: created by the author.

4.4.2 2D-based Seismic Data Compression using Multi-resolution (2DSC-MR)

In Section 4.4.2.1 we present the experiments performed to find the best parameters

setting and in Section 4.4.2.2 we present the method performance evaluation on testing

surveys.

4.4.2.1 Parameters Setting

To evaluate the 2DSC-MR method we perform a sequence of experiments to find the

best parameters setting. Due to the similarity to 2DSC method, we fixed the parameters

that are less sensible to architecture changes. We set the centroids regularization factor

RC = 0.01, autoencoder regularization factor RAE = 0.005, kernel sizes ka = 5, kb = 3,

kc = 5 and the range in which the centroids set is initialized CIR = [−10, 10) as the same
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discovered in the previous experiments for all tests. We evaluate the parameters from

Table 8 for this method.

Table 8 – Parameters evaluated for the 2DSC-MR method.

Parameters Description Values

nB Number of residual blocks 3, 6, 9, 12, 15, 18
nF Number of filter in the convolutional layers 64, 128, 192, 256
C Number of channels in the latent space 8, 16, 32, 64, 128
L Centroids set size 6, 12, 24, 50, 100

Source: created by the author.

The 2DSC method is composed of a reduced number of layers if compared to the

2DSC-MR method. From the results shown in Table 3, it is reasonable to suppose that the

multi-resolution model also does not need very deeper architectures to extract the seismic

information. Our first experiment aims to evaluate the optimal number for the network

depth, by varying the number of residual blocks nB. We fixed the number of filters in the

convolutional layers nF = 64, the number of channels in the latent space C = 64 and the

number of centroids L = 50 for this experiment. We evaluate nB for 3, 6, 9, 12, 15 and 18

residual blocks. The results are shown in Table 9. A higher number of residual blocks do

not improve the performance of the method, and the best result is reached for nB = 3.

Note that with nB = 18 we have a good result as well, with the best bpv and reasonably

good PSNR.

Table 9 – Number of residual blocks evaluation for 2DSC-MR method.

nB PSNR bpv

3 38.26 1.07
6 37.44 1.03
9 38.14 1.12
12 37.71 1.06
15 37.45 1.09
18 37.83 1.02

Source: created by the author.

A second experiment is performed aiming to evaluate the parameter nF related

to the width of the network. In comparison to the 2DSC, since the number of residual

blocks has been reduced, it is expected that the optimal number of filters nF changes

as well. Table 10 shows the results for 64, 128, 192 and 256 filters. The best width is

nF = 256, yielding a slightly better bpv and PSNR than nF = 64, but the computational

cost of 64 filters is much lower than 256. A model with 256 filters requires approximately

17 hours to train, whereas with 64 filters it requires 12 hours. The improvement is very

slight compared to the increase in computational cost. For the next experiments, we set

nF = 64, as it provides good results at a lower cost.
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Table 10 – Results for the evaluation of the number of filters in the convolutional layers for
2DSC-MR method.

nF PSNR bpv

64 38.26 1.07
128 37.06 1.18
192 37.69 1.04
256 38.33 1.05

Source: created by the author.

The next experiment intends to investigate how the method behaves for a different

number of centroids L and channels C in the latent space. Figure 26 exhibits the PSNR

and bpv results for all combinations of L and C for a bit rate target rt = 1.0 bpv. As in

the 2DSC method, the number of channels controls the overall result. As it increases, the

bit rate also increases by the same factor. For small values of C, better results are reached

using 12 centroids. For values higher than 1.0 bpv, it is better to use 50 centroids. The

increment on the number of centroids only translates into an improvement of quality when

paired with a high number of channels. The best overall performance is reached using

C = 64 and L = 50, with a PSNR of 38.26 dB using 1.07 bpv.

Figure 26 – Evaluation of the number of centroids L and number of channels C for 2DSC-MR
method represented by color and markers, respectively. The gray area is the region above the
margin threshold (1.2 bpv) of acceptable bpv (Eq. 4.1). Better results are closest to the top-left

corner.
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4.4.2.2 Model Evaluation on Testing Surveys

Initially, we intend to evaluate the testing surveys over different bit rates with the

same parameters found in the previous section. To this end, we trained 8 different models

with variable bit rates target rt = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 bpv and inferred

using the testing surveys. Results can be viewed in Figure 27. As in the 2DSC approach,

the multi-scale also cannot achieve very low bit rates, since the parameters were adjusted

to fit the bit rate target of 1.0 bpv. The performance for all testing sets is similar, with

the PSNR increasing until a bit rate of 2.5 bpv, and remaining considerably stable from

this point. The exception is Opunake3D. The increase in the bit rate target does not

necessarily imply an increase in PSNR. For this data, the method achieves good quality

using fewer bits.

Figure 27 – PSNR × bpv curve for 2DSC-MR method for testing datasets over different bit rates.
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To evaluate our model on different conditions, we use the leave-one-in protocol. As

in the 2DSC method, we train models using only one survey and perform inference using

the others. We select the first 10% slices from the training data for validation. Table 11

shows the results of the leave-one-in protocol. We can notice that the method performance

is highly dependent on the training set. The 2DSC-MR approach is beneficial for lower

frequency training sets, mainly for Opunake3D and Penobscot3D. In contrast to Table 7,

the 2DSC-MR method reached higher PSNR values by using these datasets as training. We

believe that it occurs due to the downscaling and upscaling blocks. The scaling highlights

the differences of frequencies in these data, reducing the model overfitting. However,

for noisy testing surveys, such as Kerry3D and Poseidon3D, the PSNR achieved in both

approaches is not enough to consider that the relevant original information was preserved.
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In general, better results are achieved by training on surveys with the same difficulty level

of the testing set.

Table 11 – Leave-one-in protocol results for the 2DSC-MR. Painted cells indicate the top 3 best
results for each testing survey, with darker colors meaning a better result. We consider only

results below the margin threshold (1.2 bpv) of acceptable bpv (Eq. 4.1).

Train
Test

Opunake3D Penobscot3D Kahu3D Parihaka3D Waihapa3D N. F3-Block Kerry3D Poseidon3D

Opunake3D 51.50/1.01 42.02/1.18 36.47/1.41 39.31/1.00 27.85/1.77 31.24/1.16 25.60/2.42 23.25/2.48
Penobscot3D 45.94/1.23 48.79/1.23 45.12/1.36 21.27/1.06 36.54/1.26 18.34/1.03 16.71/1.04 18.57/0.54

Kahu3D 46.55/1.18 45.47/1.13 46.01/1.00 44.49/1.04 48.84/1.10 24.80/0.89 16.64/0.97 14.92/0.97
Parihaka3D 51.90/0.95 45.47/1.07 46.80/1.08 49.38/0.99 39.61/1.23 38.82/1.14 23.60/1.05 16.34/1.12
Waihapa3D 38.47/1.53 39.53/1.40 44.84/1.46 37.64/1.27 45.93/1.45 33.33/1.39 33.00/1.33 28.16/1.55
N. F3-Block 47.04/0.83 44.90/0.92 37.75/1.04 46.06/0.93 30.38/1.21 39.76/1.02 31.95/1.29 32.28/1.33

Kerry3D 42.49/1.03 43.03/1.06 45.83/1.04 40.91/1.20 45.02/1.22 36.45/1.24 38.04/1.21 31.76/1.27
Poseidon3D 41.83/0.59 38.67/0.56 39.76/0.68 40.63/0.81 40.64/1.14 37.26/1.07 36.23/0.98 37.93/0.95

Source: created by the author.

4.5 3D POST-STACK COMPRESSION

The 3D post-stack compression is different from the 2D approaches and requires an

evaluation of its training parameters. We train our models with a crop size of 160×160×d.

For all tests we fixed the regularization parameters for the centroids RC = 0.01, and for

the autoencoder RAE = 0.005, and the kernel sizes ka = 5, kb = 3, kc = 5 as the same

from the 2DSC. They were fixed as they did not provide a meaningful impact on the 2DSC

model. Moreover, slight changes were made in the 2DSC model to allow 3D compressions

and we assume that these parameters remain suitable for the next models.

4.5.1 3D-based Seismic Data Compression (3DSC)

In Section 4.5.1.1 we present the experiments performed to find the best parameters

setting and in Section 4.5.1.2 we present the method performance evaluation on testing

surveys.

4.5.1.1 Parameters Setting

To find the best parameters for the 3DSC method, a set of experiments was

performed. As in the 2DSC approach, a grid search over the same parameters from Table

3 would require training more than 30000 models. The simplest model requires about

8 hours to be trained. Consequently, we reduce the parameter space by fixing some of

them and evaluating the most important, according to Table 12. In this sense, we define

the best value for the parameters set throughout a sequence of experiments. For all tests

we fixed the parameter CIR = [−10, 10) as the same from the 2DSC since this method

does not provide any change in the quantization step. We train our models with an initial

learning rate of 8× 10−5.
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Table 12 – Parameters evaluated for 3DSC method.

Parameters Description Values

nB Number of residual blocks 3, 6, 9, 12, 15, 18
nF Number of filter in the convolutional layers 64, 128, 192
C Number of channels in the latent space 8, 16, 32, 64, 128
L Centroids set size 6, 12, 24, 50, 100
d Input depth size 4, 8, 16

Source: created by the author.

Initially, we want to evaluate the parameters related to the architecture of the

3DSC approach. Our first experiment intends to determine the deep and width of the

encoder and decoder parts of the network. In this setting, we perform experiments with 3,

6, 9, 12, 15 and 18 residual blocks and 64, 128, and 192 filters in the convolutional layers.

We fixed L = 50 centroids, C = 64 channels in the latent space and the input depth size

as d = 4. From Table 13, we can notice that the main difference comes from the use of

more than 64 filters in the convolutional layers. From 64 to 128 filters, the improvement is

considerable in most of the cases. However, from 128 to 192, the same not occur. The

number of residual blocks has no meaningful impact on the results. It implies that the

3DSC method also does not need a very deep network to compress the seismic volume.

Training deeper networks demand bigger training sets. Even with a training set composed

of a small number of samples, with only 3 residual blocks, the 3DSC method reaches good

results. In this sense, we set nF = 128 an nB = 3 in next experiments.

Table 13 – Architecture parameter evaluation for 3DSC method. The grayscale indicates the
values that achieved good results.

nB nF PSNR bvp nB nF PSNR bvp
3 64 32.93 1.20 12 64 34.52 1.18
3 128 36.59 1.19 12 128 34.59 1.25
3 192 35.00 1.18 12 192 33.70 1.25
6 64 33.04 1.27 15 64 33.20 1.32
6 128 36.35 1.21 15 128 36.41 1.20
6 192 36.11 1.18 15 192 35.20 1.22
9 64 32.47 1.28 18 64 34.66 1.24
9 128 36.25 1.18 18 128 35.43 1.23
9 192 35.38 1.21 18 192 36.15 1.20

Source: created by the author.

The next experiment aims to find the best number of centroids L and the number

of channels C of the latent space. We perform experiments using L = 6, 12, 25, 50 and

100, and using C = 8, 16, 32, 64, 128. Figure 28 shows the results for all combinations

of L and C, represented using colors and markers, respectively. The bit rate is highly

dependent on the number of channels so that both increases by the same factor. However,
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the PSNR has no significant increase by using a high number of channels. This suggests

that our 3DSC model performs better for lower bit rates. In general, as the number of

centroids increases, it also increases the PSNR and bit rate until they become stable. The

improvement in increasing the number of centroids is highlighted using a higher number of

channels in the latent space. The better overall result is found with L = 50 and C = 64,

with a PSNR of 36.59 dB and 1.19 bpv.

Figure 28 – Evaluation of the number of centroids L and number of channels C for 3DSC method
represented by color and markers, respectively. The gray area is the region above the margin
threshold (1.2 bpv) of acceptable bpv (Eq. 4.1). Better results are closest to the top-left corner.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
bpv

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

P
S

N
R

 (
d

B
)

L=6

L=12

L=25

L=50

L=100

C=8

C=16

C=32

C=64

C=128

Source: created by the author.

To evaluate how the depth of the input volume affects the method performance we

perform experiments by using d = 4, 8 and 16 slices. Table 14 shows that as the depth

increases, the bit rate decreases considerably. It is expected, as we are mapping more slices

to a latent representation equivalent to the encoding of only one. However, the PSNR does

not decrease at the same factor, and reasonable results are achieved by using more slices.

The main loss occurs in the Waihapa3D survey, due to the presence of high frequencies,

but even on these conditions, the difference from 4 and 16 slices is about only 4.22 dB.

We set d = 4 for the next experiments since it provides the best overall result.

Table 14 – Input depth size evaluation for 3DSC method.

PSNR/bpv Kahu3D Opunake3D Penobscot3D Waihapa3D
d = 4 42.75/1.10 46.89/1.05 45.36/1.05 40.93/1.16
d = 8 41.77/0.70 43.59/0.71 44.78/0.71 40.00/0.70
d = 16 38.43/0.35 46.43/0.35 42.54/0.35 36.71/0.35

Source: created by the author.
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4.5.1.2 Model Evaluation on Testing Surveys

With the parameters from the previous section, we intend to evaluate our model

over different bit rates. We train 8 models with bit rate target rt = 0.1, 0.5, 1.0, 1.5, 2.0,

2.5, 3.0 and 3.5 bpv. According to the results from Figure 29, the 3DSC method can

achieve very low bit rates for all testing surveys. As the target increases, the PSNR also

increases until becomes stable with a bit rate of 1.4 bpv. It shows that 3DSC deals better

with smaller bit rates, but the performance does not worsen as they increase. In general,

for all surveys, the method achieves reasonable results, even with a bit rate of 0.1 bpv.

Figure 29 – PSNR × bpv curve for 3DSC method for testing datasets over different bit rates.
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The next experiment intends to evaluate the 3DSC model over different surveys.

We use the same parameters found in the previous section. The leave-one-in protocol is

employed, such that all surveys are used individually for training, and the remaining ones

are used for testing. We select the first 10% samples from the training set for validation.

From the analysis of Table 15 it is noticeable that, in most of the cases, the method reached

bit rates higher than the considered threshold from Equation 4.1. To achieve a bit rate of

1.0 bpv in practice, the model needs to set the bit rate target smaller than 1.0 bpv. In

this sense, we evaluate these results taking into account only the PSNR reached. We can

notice that the 3DSC method can achieve PSNR values higher than 40 dB for most of the

surveys. The exception is the Kerry3D, Netherlands F3-Block and the Poseidon3D. The

performance of the 3DSC approach for higher frequency data is not enough to consider, in

a generalist approach, that the underlying structures from these data were preserved.

4.5.2 3D-based Seismic Data Compression using Vector Quantization (3DSC-VQ)

In Section 4.5.2.1 we present the experiments performed to find the best parameters

setting and in Section 4.5.2.2 we present the method performance evaluation on testing
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Table 15 – Leave-one-in protocol results for the 3DSC method. Painted cells indicate the top 3
best results, with darker colors meaning a better result.

Train
Test

Opunake3D Penobscot3D Kahu3D Parihaka3D Waihapa3D N. F3-Block Kerry3D Poseidon3D

Opunake3D 41.59/1.20 41.11/1.25 38.22/1.40 38.87/1.27 33.30/1.65 33.84/1.30 28.70/1.75 26.67/1.83
Penobscot3D 36.40/1.37 35.69/1.30 37.59/1.37 28.77/1.40 39.50/1.36 27.98/1.39 25.72/1.43 23.05/1.50

Kahu3D 46.13/1.28 40.07/1.24 41.19/1.16 40.84/1.26 43.79/1.24 34.34/1.25 30.46/1.34 27.87/1.39
Parihaka3D 51.69/1.21 47.15/1.20 46.86/1.25 49.04/1.10 44.11/1.29 37.89/1.22 34.29/1.32 30.76/1.33
Waihapa3D 43.33/1.37 43.40/1.36 40.00/1.36 38.88/1.37 39.78/1.29 33.40/1.36 30.55/1.36 27.88/1.39
N. F3-Block 49.56/1.36 45.66/1.33 43.71/1.36 46.28/1.35 44.20/1.33 36.31/1.24 33.90/1.35 31.29/1.34

Kerry3D 43.01/1.35 42.94/1.31 43.58/1.34 39.89/1.33 42.14/1.30 34.73/1.30 33.00/1.17 30.50/1.34
Poseidon3D 46.41/1.31 43.18/1.30 43.27/1.31 43.28/1.31 42.89/1.30 36.13/1.29 36.13/1.29 42.24/1.18

Source: created by the author.

surveys.

4.5.2.1 Parameters Setting

Although the 3DSC-VQ method is similar to the 3DSC approach, the former

is not a straightforward generalization of the latter. Analogously to the 3DSC, the

vectorial approach requires to modify the depth stride from their convolutional layers in

the autoencoder. In this sense, some parameters from the previous method may not fit in

this case, and we perform experiments varying the parameters according to Table 16.

Table 16 – Parameters evaluated for 3DSC-VQ method.

Parameters Description Values
CIR Centroids initial range [−1, 1), [−5, 5), [−10, 10)
nB Number of residual blocks 3, 6, 9, 12
nF Number of filter in the convolutional layers 64, 128
C Number of channels in the latent space 8, 16, 32, 64, 128
L Centroids set size 6, 12, 24, 50, 100
d Input depth size 4, 8, 16

Source: created by the author.

The main difference is related to the vectorial centroids, in which their initialization

must ensure that they become different during the training. The method does not converge

with a simple random sampling from the CIR for each centroid entry. We propose to

initialize by sampling u evenly spaced values from CIR. We perform a combination with

replacement over the u values to generate a set of centroids of length d. From this set, we

randomly sample the L initial centroids.

The training set also needed some changes. Different from previous methods,

the 3DSC-VQ does not converge with the Poseidon3D as part of the training set. To

evidentiate this, we perform tests combining the training surveys. We fixed the number

of residual blocks as nB = 1, number of channels in the convolutional layers nF = 64,

number of centroids L = 50, number of channels in latent space C = 64, input depth
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dimension d = 4 and u = 6, and CIR = [−1, 1). We train our models with an initial

learning rate of 8× 10−4. Table 17 shows that the combinations of surveys and the PSNR

and bit rates obtained for each one. We can see that for any combination in which the

Poseidon3D is part of the training set, the method does not converge. In this sense, the

next experiments were performed by using only the Parihaka3D and Netherlands F3-Block

as training surveys.

Table 17 – Training survey combination for 3DSC-VQ method.

Dataset PSNR bpv
Parihaka3D + N. F3-Block 34.79 0.84
Parihaka3D + Poseidon3D 25.33 0.97
N. F3-Block + Poseidon3D 25.33 0.86

Parihaka3D + N. F3-Block + Poseidon3D 25.29 0.68

Source: created by the author.

In our first experiment, we intend to evaluate the centroids initialization. We

evaluate the ranges [−1, 1), [−5, 5) and [−10, 10) for CIR. We can notice from the results

of Table 18 that different from previous approaches, smaller ranges are beneficial for the

3DSC-VQ method. It occurs because the initialization ensures that the centroids will be

different, but for larger ranges they can become too different, making convergence difficult.

Table 18 – Results from varying ranges of CIR for 3DSC-VQ method.

CIR PSNR bpv
[-1,1) 34.79 0.84

[−5, 5) 34.13 0.93
[−10, 10) 33.74 0.99

Source: created by the author.

To adjust the architecture parameters, we perform the same experiments from the

3DSC approach. Initially, the parameters from the previous experiments were fixed. We

evaluate the number of residual blocks nB for the values 3, 6, 9 and 12 and the number

of filters of the convolutional layers nF using 64 and 128. Results are shown in Table 19.

Considering the number of filters nF , there is no considerable improvement from 64 to 128

filters. The number of residual blocks nB yields a meaningful increase in the bit rate that

is not reflected in the PSNR. The best overall performance is reached by using 3 blocks

and 64 filters. In this sense, we set nB = 3 and nF = 64 for next experiments.

The next experiment intends to evaluate how the number of centroids L and

the number of channels in the latent space C impact the results. Figure 30 shows the

curve PSNR × bpv for all combinations of L and C, represented by color and markers,

respectively. We can notice that for small values of C, as the number of centroids increases,

the bit rate also increases, while the PSNR is slightly affected. This shows that the

3DSC-VQ method performs better for lower bit rates. As in the previous methods, the
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Table 19 – Architecture parameter evaluation for 3DSC-VQ method. The grayscale indicates the
values that achieved good results.

nB nF PSNR bpv
3 64 34.79 0.84
3 128 34.23 0.90
6 64 34.78 0.92
6 128 34.42 0.97
9 64 32.84 0.92
9 128 34.35 0.97
12 64 34.71 0.96
12 128 34.67 0.98

Source: created by the author.

number of channels also implies in the bit rate obtained, proportionally, by a factor of 2.

The highest PSNR until a bit rate of 1.2 bpv is reached using L = 50 and C = 64, with

34.79 dB and 0.84 bpv.

Figure 30 – Evaluation of the number of centroids L and number of channels C for 3DSC-VQ
method represented by color and markers, respectively. The gray area is the region above the
margin threshold (1.2 bpv) of acceptable bpv (Eq. 4.1). Better results are closest to the top-left

corner.
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Aiming to evaluate the performance of the method over different input depth sizes,

we perform experiments by using d = 4, 8 and 16 slices. From Table 20 we can notice that

the increase in the number of slices affects negatively the quality obtained. We believe that

as the depth increases, more centroids are needed to deal with the number of combinations

of possible vectors. The bit rate is slightly affected, and there is no benefit in using a

depth size with more slices than 4. Thus, we set d = 4 for the next experiments.
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Table 20 – Input depth size evaluation for 3DSC-VQ method.

PSNR/bpv Kahu3D Opunake3D Penobscot3D Waihapa3D
d = 4 45.25/0.98 49.19/0.97 46.37/0.95 41.68/1.02
d = 8 42.65/0.92 48.74/0.94 44.90/0.95 39.36/0.94
d = 16 38.37/0.95 44.14/0.78 41.77/0.79 35.77/0.88

Source: created by the author.

4.5.2.2 Model Evaluation on Testing Surveys

We trained 8 different models for bit rates target rt = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

and 3.5 bpv, aiming to evaluate the performance of the method over different conditions.

Figure 31 shows the 3DSC-VQ method performance for all testing sets. We can notice that

this method is better for bit rates smaller than 1.5 bpv. For higher bit rates, the PSNR

does not increase, becoming considerably stable from 1.5 bpv. The method benefits from

the spatial correlation to achieve higher PSNR values at a small cost. The performance is

better for low-frequency surveys, as Opunake3D and Penobscot3D. However, even for the

Waihapa3D, it achieves PSNR values higher than 40 dB using 1.0 bpv. In general, this

method does not fit the bit rate target, but the quality does not deteriorate as the target

increases.

Figure 31 – PSNR × bpv curve for 3DSC-VQ method for testing datasets over different bit rates.
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As in the previous approaches, we evaluate our 3DSC-VQ method on different

surveys by using the leave-one-in protocol. Similarly to the previous methods, we train one

model for each survey and evaluate the remaining ones. We select the first 10% samples

from the training set for validation. We use the same parameters from the previous section.

Table 21 shows the results for all datasets. Different from 2D approaches, the dependency

of the method over the training set is attenuated by using the 3DSC-VQ model. All

surveys have good performance as a training set, but better results are still reached by
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training on similar surveys. In general, the method achieves PSNR values higher than

40 dB for most of them. However, for Kerry3D, Netherlands F3-Block and Poseidon3D

the PSNR achieved is not enough to consider that the relevant original information was

preserved. We believe that the third dimension introduces noises from these surveys that

lead to an increase in the reconstruction error.

Table 21 – Leave-one-in protocol results for the 3DSC-VQ method. Painted cells indicate the top
3 best results, with darker colors meaning a better result. We consider only results below the

margin threshold (1.2 bpv) of acceptable bpv (Eq. 4.1).

Train
Test

Opunake3D Penobscot3D Kahu3D Parihaka3D Waihapa3D N. F3-Block Kerry3D Poseidon3D

Opunake3D 43.20/0.97 41.67/0.94 36.23/0.92 39.46/0.96 30.98/0.55 34.67/0.96 27.89/0.92 26.57/0.90
Penobscot3D 41.76/0.93 34.84/0.99 39.00/0.89 35.93/0.94 35.82/0.94 31.64/0.97 28.72/1.03 25.68/1.08

Kahu3D 45.52/0.86 44.96/0.90 41.82/0.97 40.67/0.96 42.87/0.97 34.82/0.97 31.88/1.22 27.75/1.22
Parihaka3D 49.39/0.94 45.53/0.95 44.39/0.97 47.86/0.94 40.81/0.98 37.10/1.00 32.76/1.03 29.72/1.03
Waihapa3D 40.54/0.97 40.71/0.94 40.80/0.96 36.55/1.00 39.17/0.98 32.52/1.02 30.15/1.10 27.23/1.10
N. F3-Block 45.45/1.07 43.23/0.98 43.43/0.98 44.38/0.96 39.77/0.98 36.00/0.99 33.13/0.98 29.80/1.01

Kerry3D 43.13/0.83 41.98/0.94 45.36/1.00 41.12/0.92 43.34/0.96 36.64/0.69 35.81/0.96 30.58/0.95
Poseidon3D 42.78/0.88 41.54/0.89 40.19/0.90 40.43/0.90 38.76/0.93 35.75/0.90 32.52/0.92 36.51/0.88

Source: created by the author.

4.6 COMPARISON RESULTS

This section provides a comparison between our four proposed methods 2DSC,

2DSC-MR, 3DSC, 3DSC-VQ and the JPEG2000 codec. In the previous sections, we

discovered the best hyper-parameters setting for each method by performing individual

experiments for a bit rate target rt = 1.0 bpv. Besides, we noticed that the training set

did not allow a comparison of all methods by using the same results from Chapter 4. As

the Poseidon3D did not allow the convergence of the 3DSC-VQ method, for the next

experiments we remove it from the training set and use only the Netherlands F3-Block

and Parihaka3D surveys to train our models. We set the Kerry3D for validation and the

remaining surveys Kahu3D, Opunake3D, Penobscot3D, Poseidon3D and Waihapa3D are

used for testing.

Aiming to compare all methods, we train different models for 5 different bit rate

targets rt = 0.1, 0.5, 1.0, 2.0 and 3.0 bpv using the same training and inference procedures

described in Section 4.2. Figure 32 shows the curve PSNR × bpv for all methods, for

the testing surveys Kahu3D (Fig. 32a), Opunake3D (Fig. 32b), Penobscot3D (Fig. 32c),

Poseidon3D (Fig. 32d) and Waihapa3D (Fig. 32e), respectively. Each subfigure shows

the performance of each method in each survey for each bit rate target at an average of 3

rounds. Lines indicate the standard deviation for PSNR (vertical) and bpv (horizontal).
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Figure 32 – Method comparison for all testing surveys. Reported results correspond to an average
of 3 rounds. Lines in the vertical and horizontal directions indicate the standard deviation for

PSNR and bpv, respectively.

Source: created by the author.
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4.6.1 2DSC and 2DSC-MR Methods Comparison

Results from Figure 32 show that our methods can compress the volume using

seismic sections at low bit rates with good PSNR. This result confirms our main hypothesis.

In this sense, the main objective of this work is achieved even by using the simplest

method. We can see that the 2DSC can reach bit rates around to 0.5 bpv with PSNR

values close to 40 dB or more. For high bit rates, the method becomes less stable, with

considerable variations in terms of PSNR and bit rate. We believe that it is due to the

balance of the trade-off, in which the method tries to adjust to the bit rate target even

it has already exceeded its compression limit. In general, the performance of the 2DSC

method is reasonable for all seismic surveys.

Although the 2DSC is capable of compressing seismic sections, we conjectured that

the information across scales from a multi-resolution approach improves the compression.

Intending to verify it, we proposed the 2DSC-MR method, by decomposing the seismic

section into two more scales and compressing them in a residual scheme. From Figure 32,

we can see that, in general, the 2DSC method outperforms the 2DSC-MR. It evidences

that in this case, most of the information can be captured using a simpler approach. For

higher bit rates, next to 3.5 bpv, the 2DSC-MR can surpass the 2DSC for Opunake3D.

This survey is more homogeneous, with only a few regions with high-frequency. It indicates

that the multi-resolution can be beneficial for scenarios in which it is desirable to achieve

high PSNR for low-frequency surveys. In this case, the 2DSC method might have reached

its upper bound for PSNR, whereas the 2DSC-MR approach can still extract information

from the data. More tests would be needed to explore this scenario, as well as a new

parameter evaluation, but this is not our focus on this work.

4.6.2 3DSC and 3DSC-VQ Methods Comparison

From the analysis of Figure 32, we can see that for most of the surveys the 3DSC

surpasses the 3DSC-VQ method. It seems to be a paradox since the representative power

of the 3DSC-VQ is higher than the 3DSC. The encodings provided by 3DSC-VQ were

expected to be more representative than those of 3DSC. We believe that it is due to the

number of channels C of the latent representation. With more channels, the 3DSC-VQ

has more vectors to encode, and the accuracy of the representation can be deteriorated.

On the other hand, the 3DSC benefits from these channels to provide more accurate

representations. We conjecture that in situations with a restricted number of channels in

latent representation the 3DSC-VQ surpasses the 3DSC method. In this sense, we perform

an experiment by using rt = 1.0 bpv and C = 32 channels in the latent space. Table 22

shows the comparison between the 3DSC and 3DSC-VQ for all testing datasets. The mean

and standard deviation reported for each survey refers to an average of 3 runs. We can

notice that, on average, the 3DSC-VQ surpasses the 3DSC for all surveys in terms of PSNR
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and bit rate. It implies that for scenarios in which the bit rate is controlled by the number

of centroids and it is desirable a smaller bit rate, the 3DSC-VQ is preferable than the

3DSC for seismic compression. The 3DSC-VQ benefits from the small number of vectors

to learn more accurate centroids. Although a more detailed evaluation from this scenario

is needed, this result validates our fourth hypothesis, which states that the compression of

the whole volume without depth reductions can improve the quality reached.

Table 22 – 3DSC and 3DSC-VQ methods comparison for all testing surveys, regarding PSNR
and bpv, respectively. Reported results are the mean and standard deviation from 3 rounds for a

bit rate target rt = 1.0 bpv.

Method Kahu3D Opunake3D Penobscot3D Poseidon3D Waihapa3D

3DSC
41.29 ± 1.11
0.62 ± 0.05

44.08 ± 0.41
0.62 ± 0.04

43.19 ± 0.24
0.60 ± 0.05

29.01 ± 0.58
0.62 ± 0.05

39.44 ± 1.04
0.62 ± 0.04

3DSC-VQ
43.00 ± 0.45
0.46 ± 0.02

48.11 ± 0.65
0.46 ± 0.03

44.39 ± 0.34
0.46 ± 0.03

29.74 ± 0.34
0.47 ± 0.02

39.62 ± 0.38
0.47 ± 0.01

Source: created by the author.

4.6.3 Discussion about 2D and 3D Approaches

Although bi-dimensional approaches have shown that they can compress the seismic

data with good performance, smaller bit rates can be achieved by using three-dimensional

models. From the analysis of Figure 32 we can see that in a comparison of our methods, for

most of the surveys, the 3DSC method outperforms the 2DSC, 2DSC-MR and 3DSC-VQ

for all surveys except for Poseidon3D. This verifies our third hypothesis, such that the 3D

approach can generate representations more suitable for compression than 2D ones. In

particular, for Poseidon3D, the 3DSC cannot reach the same PSNR from 2D approaches.

The 3D convolution can extract spatial correlation in all directions, and for noisy surveys

the interferences from all directions are considered, increasing the reconstruction error.

The method achieves its upper bound by using fewer bits compared to previous approaches,

and after 1.5 bpv there is no meaningful improvement in the PSNR.

Through the analysis from Figure 32 it is noticeable that no method always provides

the best result in all situations. According to the objective, an approach can be more

advantageous than another. In a generalist approach, the 3DSC is the better method for

seismic compression since it achieves low bit rates with high PSNR values. Compared to

other approaches, this method is more stable, yielding outputs with a smaller variance

in terms of PSNR and bpv for all bit rate targets. However, the method performance

is highly related to the seismic survey to be compressed. We notice that for Kahu3D,

Opunake3D, Penobscot3D and Waihapa3D, until a bit rate of 1.5 bpv, the 3DSC provides

better results. From this point the 3DSC is limited and bi-dimensional approaches can be

used to achieve higher PSNR values. There is a slight improvement in PSNR and it may
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not be advantageous considering the number of bits spent on this task. For Poseidon3D

the results show that the predominance of high frequencies leads to reconstructions with

considerable loss of information. Bi-dimensional approaches are more suitable to deal with

high frequencies. Noisy surveys need a specific model to deal with its interferences since

in a generalist approach it is difficult to achieve PSNR higher than 40 dB.

Figure 33 depicts a visual comparison of the relative error for all methods for a slice

of the Waihapa3D survey. We can notice that for all methods, most of the information is

recovered with a PSNR about 41 dB, with the main error peaks occurring in high-frequency

regions. The 2DSC provides a more structured error than other methods. Visually, we can

notice that some frequencies are ignored. The 2DSC-MR provides a better relative error,

with a balance between high and low frequencies. This error is closest to the expected.

Better methods provide errors similar to the white noise. The 3DSC and 3DSC-VQ are

intermediary, and the 3DSC-VQ surpasses the 3DSC in terms of visual quality.

Figure 33 – Comparative result of a reconstruction section from the Waihapa3D survey. The
high quality represented by a high PSNR value reflects visually in the reconstruction. From
left to right: original slice, 2DSC (41.22 dB /1.10 bpv), 2DSC-MR (42.07 dB /1.60 bpv), 3DSC

(41.72 dB /1.27 bpv), 3DSC-VQ (41.34 dB /0.81 bpv).

Source: created by the author.

4.6.4 JPEG2000 Comparison

We cannot perform a comparison to methods of literature for seismic compression

since the data used by them is not available. In general, most of the methods focus

on compressing 2D seismic data, that differs from our approach and cannot be directly

compared. The method proposed by Radosavljević et al. (2017) is the closest to ours, in

which 3D seismic data is compressed. However, the data used in their experiments is private,

and the source code is not available. Thus, we perform a comparison with the JPEG2000

codec. Although the JPEG2000 was not developed to deal with the seismic domain, it can
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be used to compress seismic images since it is available and does not need additional efforts

to be used. To this end, we convert the volume to 8-bit unsigned integers and extract

each section to be compressed individually. The reconstructed image is converted to the

original range and the PSNR is calculated over the 32-bit floating-point representation.

From Figure 32, we can notice that most our methods do not outperform the JPEG2000.

Moreover, compared to our methods, the JPEG has a more stable and predictable behavior

in terms of PSNR and bpv. We believe that it occurs because the seismic surveys used in

this work were quantized in 8-bit unsigned integers and synthetically converted to 32-bit

floating-point. In this sense, our methods are working below the capability, since the

volumes do not use all 32 bits of the network. It is expected that in this situation the

JPEG2000 provides better results as the codec was designed to image domain. Even under

these conditions, the 3DSC can outperform the JPEG2000 for very low bit rates. Table 23

shows that for a bit rate target rt = 0.1 bpv our method surpasses the codec for Opunake3D

and Penobscot3D surveys. It evidences that in scenarios of extreme compression, the

3DSC benefits from the correlation present on these surveys to achieve high PSNR values

at a low bit rate.

Table 23 – Comparison of 3DSC and JPEG2000 for all testing surveys, regarding PSNR and bpv,
respectively. Reported results are the mean and standard deviation from 3 rounds for a bit rate

target rt = 0.1 bpv.

PSNR/bpv Kahu3D Opunake3D Penobscot3D Poseidon3D Waihapa3D

3DSC
38.47± 5.42e−1
0.13± 1.71e−2

43.60± 9.60e−1
0.09± 2.12e−2

41.77± 3.37e−1
0.12± 2.21e−2

27.56± 1.46e−1
0.11± 1.53e−2

35.10± 9.93e−1
0.14± 1.81e−2

JPEG2000
39.23± 4.17e−4
0.10± 1.12e−5

43.16± 1.08e−3
0.10± 2.68e−5

40.02± 4.31e−4
0.10± 1.49e−5

27.67± 5.66e−5
0.10± 2.87e−6

35.62± 7.58e−4
0.10± 2.09e−5

Source: created by the author.

To evaluate the 3DSC qualitatively, we reconstruct the same seismic section from

the Waihapa3D survey at different bit rates, as shown in Figure 34. We can see that

as the PSNR increases, the differences between the original and reconstructed slices are

decreased. For PSNR smaller than 40 dB (Figs. 34a and 34b), some distortions are added

and the high-frequencies are attenuated. For PSNR above to 40 dB (Fig. 34d) most of

the information is preserved, with some distortion in noisy regions. With a PSNR higher

than 43 dB (Figs. 34e and 34f), we can assume that the reconstruction errors are visually

attenuated.

In short, the main advantage of our method is the flexibility of learning from data.

It is possible to create general or specific models from the data to be compressed, which

is not reasonable to be done by using handcrafted approaches. Besides, it is possible to

perform fine-tuning in a generalist model so that it can improve results at a lower cost

compared to training the network from scratch. Seismic data compression differs from

image compression task, since that the objective of an image compressor is to be more
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Figure 34 – Qualitative result for 3DSC method for a slice of Waihapa3D.

Source: created by the author.

generalist as possible and the seismic data compressor can have not this need. Considering

that the seismic data occupies about hundreds of gigabytes of storage, we ask about the

possibility of training specific models for each survey intending to get higher accuracy

in terms of bit rate and PSNR. Experiments show that better models are obtained by

training on the same testing data or data with similar characteristics. Table 15 shows that

for the Poseidon3D, only a specific model would reach the minimum acceptable PSNR

to achieve most of the information retrieved by the decoder. Hypothetically, if this data

occupied 100GB, at a 1:27 compression rate from Table 15, only 4GB would be needed to

store it. To store the network coefficients for the 3DSC model, about 34MB of storage

would be required, which is much smaller than the data size. On the other hand, training

a specific network requires available hardware and time for training. Considering that it is

not necessary to train on all 100GB of data to achieve good results, it is reasonable to

assume that specific models, in which a model is trained for each survey, can be more

suitable to deal with the compression of the seismic data than a generalist approach, in

which a single model is used to compress different surveys.



5 CONCLUSIONS AND FUTURE WORK

In this work, we presented a deep learning approach to 3D post-stack seismic

compression. We proposed four methods, two based on bi-dimensional compression, called

2DSC and 2DSC-MR, and two based on three-dimensional compression, called 3DSC and

3DSC-VQ. These methods consist of adaptations of a compression method designed for

general-purpose images to the seismic domain. They are composed of two networks, an

autoencoder for dealing with the rate-distortion trade-off and a 3D probabilistic model,

for entropy estimation. The bit rate of the compressed volume is controlled by hyper-

parameter tuning. We performed individual experiments for each method to find the best

hyper-parameters setting for a compression rate of 1.0 bpv.

Experimental results show that the 2DSC method achieved PSNR values higher

than 40 dB with a bit rate next to 1.0 bpv for most of the testing surveys. In general, the

performance is degraded for higher frequency data, but even under these conditions it is

possible to improve the quality by using more bits. Better results are achieved by training

on surveys with the same characteristics of the test set. However, even under a generalist

situation, the method achieves good results if the training set has a balance between high

and low frequencies samples.

The 2DSC-MR was designed from the hypothesis that the information across

multiple resolutions can improve the compression. Our tests evidenced that the 2DSC

method outperforms the 2DSC-MR approach. However, the 3DSC-MR presented the

possibility of improvement for higher bit rates. For a training set composed of only a few

regions of high-frequency, the multi-resolution can reduce the model overfitting, improving

the compression of surveys with a balance of high and low frequencies. Thus, further

investigation about multi-resolution using neural networks in the compression problem is

needed.

The 3DSC method extended the 2DSC to deal with volumes instead of slices.

Experimental results show that even with a depth reduction on the input samples, this

method can compress the seismic data using fewer bit rates than the bi-dimensional ones.

For most of surveys the 3DSC surpasses all methods for bit rates smaller than 1.0 bpv.

However, for high-frequency data, the method did not achieve reasonable PSNR values,

even for high bit rates. In this case, 2D approaches are more suitable to compress noisy

information.

The 3DSC-VQ extended the 3DSC method by considering a higher dimensional

latent representation. In this sense, the representative capacity of this method was expected

to be superior to the 3DSC. Experiments show that the 3DSC-VQ method outperforms

the 3DSC only in scenarios in which the number of channels of the latent space is small.

The 3DSC-VQ benefits from the small number of vectors to learn more accurate centroids.
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Further investigations on new ways to avoid 4D convolutions are needed.

Overall, the performance of the methods was good even in a generalist scenario.

For models trained in sets with a balance between high and low frequencies it is possible

to compress different surveys, achieving high PSNR values. Better results can be obtained

by training on the same testing survey. Experiments show that no method provides the

best result for all situations. A method can be more beneficial for a situation than others,

and it depends on the data and the objective to be reached. Due to the local nature of

the methods, the reported results were not dependent on the size of the input data. The

3DSC provides better results for most of the cases. However, for noisy surveys or when

bit rates above 1.0 are desired, the 2D approaches are more adequate, as they can reach

a better reconstruction quality. The main advantage of our methods is the flexibility of

learning from data. It is possible to compress the seismic survey in a generalist or specific

approach, which is not reasonable by using handcrafted approaches. Specific models can

be trained to achieve high PSNR and smaller bit rates. In comparison to JPEG2000, our

methods were worse for all surveys. However, for seismic data with low frequencies, the

3DSC method was able to outperform the JPEG2000 for a bit rate target of 0.1 bpv.

As future work, we intend to investigate the performance of our method over seismic

surveys sampled in 32-bit floating-points. We also intend to evaluate the multi-resolution

approach for high bit rates, as it presented possibilities of improvement. Other ways

to compress the seismic data avoiding a 4D probabilistic model can be explored. The

fine-tuning of the whole network, or of the centroids only, can provide improvement in

terms of accuracy and bit rate at a lower cost than training the network from scratch. As

the pre-stack is a massive data, there exists a demand for their compression. We intend to

address it in a future work, for instance, considering pre- and post-stack models to improve

both data encoding. In addition, expert analysis is of great importance, for example, to

develop specialized loss functions for the seismic domain.
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