
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

FACULDADE DE ENGENHARIA

ENGENHARIA ELÉTRICA - HABILITAÇÃO EM ROBÓTICA E

AUTOMAÇÃO INDUSTRIAL

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automação Industrial Baseado

em Plataforma Web

Juiz de Fora

2025

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automação Industrial Baseado

em Plataforma Web

Trabalho de conclusão de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-
sito para aprovação na disciplina - Trabalho
de Final de Curso.

Orientador: Prof. Dr. Guilherme Márcio Soares

Juiz de Fora

2025

Ficha catalográfica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Andrade, Bernardo Capobiango de.
Gateway MODBUS-MQTT para Sistemas de Automação Industrial

Baseado em Plataforma Web / Bernardo Capobiango de Andrade. – 2025.
79 f. : il.

Orientador: Guilherme Márcio Soares
Trabalho de Conclusão de Curso de Graduação – Universidade Federal de

Juiz de Fora, Faculdade de Engenharia. Engenharia Elétrica - Habilitação
em Robótica e Automação Industrial, 2025.

1. Sistema IOT. 2. MQTT, Docker, Sparkplug. I. Soares,Guilherme M.,
orient. II. Título.

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automação Industrial Baseado
em Plataforma Web

Trabalho de conclusão de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-
sito para aprovação na disciplina - Trabalho
de Final de Curso.

Aprovado em 19 de Março de 2025

BANCA EXAMINADORA

Prof. Dr. Guilherme Márcio Soares - Orientador
Universidade Federal de Juiz de Fora

Prof. Dr. Leandro Rodrigues Manso Silva
Universidade Federal de Juiz de Fora

Dr. Matheus Alberto de Souza
Universidade Federal de Juiz de Fora

Dr. Sérgio Queiroz de Almeida
Companhia de Saneamento Municipal - Cesama

AGRADECIMENTOS

Primeiramente, agradeço a Deus, pela minha vida, e por me permitir ultrapassar

todos os obstáculos encontrados ao longo da graduação e da realização deste trabalho.

Aos meus pais, Adriana e Moysés, que nunca mediram esforços para me ensinar e

proporcionar o maior valor da vida: o amor. Sem vocês como inspiração e ponto de apoio

nada disso seria possível, obrigado por me guiarem e serem exemplos nessa trajetória da

vida.

À minha irmã mais velha Luiza, que sempre me serviu como inspiração e me

guiou no caminho da Engenharia e da vida. Suas dicas, conselhos e amor foram pilares

fundamentais nessa caminhada.

À minha irmã mais nova Júlia, que esteve ao meu lado nessa trajetória, suportando

os dias difíceis e celebrando as conquistas.

À minha avó Maria Inez, que sempre me guiou e cuidou no caminho da empatia e

carinho.

À minha namorada Isadora, que durante a graduação foi meu ponto de apoio,

carinho e suporte em inúmeros momentos, me fazendo ver e resolver as dificuldades com

outros olhos.

Ao grupo PET Elétrica UFJF, em especial o Prof. Danilo Pinto, que transformaram

a minha experiência durante a graduação, ensinando a importância da faculdade além

do campus e os valores essenciais da Engenharia, com os quais muito aprendi e continuo

aprendendo.

Aos amigos que fiz durante a graduação, com os quais a caminhada foi mais

divertida e enriquecedora, me ajudando nos dias mais difíceis.

Aos professores e servidores da UFJF, por proporcionarem um ambiente de educação

pública de qualidade, que todos deveriam ter a oportunidade de vivenciar.

Ao meu orientador Guilherme, suas aulas não apenas ampliaram meus conheci-

mentos mas também me abriram os olhos para a área. Sua dedicação e orientação me

tornaram um engenheiro e pessoa melhor.

RESUMO

Este trabalho apresenta o desenvolvimento de uma aplicação web fullstack para

gerenciamento e encapsulamento de um gateway MQTT/Modbus destinado à CESAMA

(Companhia de Saneamento Municipal). O sistema foi implementado utilizando Python

com FastAPI no backend e React com Vite no frontend, estabelecendo uma arquitetura

moderna e eficiente. A aplicação proporciona uma interface intuitiva para o gerenciamento

dos dispositivos conectados ao gateway, facilitando a integração entre os protocolos MQTT

e Modbus. Através da conteinerização com Docker, o sistema garante fácil implantação

e manutenção em diferentes ambientes. As funcionalidades implementadas simplificam

os processos de configuração, monitoramento e manutenção, garantindo uma experiência

de usuário consistente, acessível e refinada. Este avanço tecnológico representa uma

contribuição significativa para a gestão e modernização da infraestrutura industrial da

CESAMA, alinhando-se aos padrões atuais do mercado.

Palavras-chave: Sistema IIOT. Docker. MQTT. SparkPlug. FastAPI. React.

ABSTRACT

This work presents the development of a fullstack web application for the manage-

ment and encapsulation of an MQTT/Modbus gateway designed for CESAMA (Municipal

Sanitation Company). The system was implemented using Python with FastAPI for the

backend and React with Vite for the frontend, establishing a modern and efficient architec-

ture. The application provides an intuitive interface for managing devices connected to the

gateway, facilitating integration between MQTT and Modbus protocols. Through Docker

containerization, the system ensures easy deployment and maintenance across different

environments. The implemented features simplify the configuration, monitoring, and

maintenance processes while ensuring a consistent, accessible, and refined user experience.

This technological advancement represents a significant contribution to the management

and modernization of CESAMA’s industrial infrastructure, aligning with current market

standards.

Keywords: IIOT System. Docker. MQTT. SparkPlug. FastAPI. React.

LISTA DE ILUSTRAÇÕES

Figura 1 – Arquitetura de um dos usos de casos do vNode. Fonte: [1] 14

Figura 2 – Arquitetura básica do NeuronEX. Fonte: [2] 15

Figura 3 – Diagrama da estrutura pensada para o backend - Fonte: Elaborado pelo

autor. 19

Figura 4 – Diagrama das tabelas e variáveis do banco de dados - Fonte: Elaborado pelo

autor . 25

Figura 5 – Fluxo de autenticação da aplicação - Fonte: Elaborado pelo autor . . . 26

Figura 6 – Estrutura de módulos e rotas do backend - Fonte: Elaborado pelo autor 28

Figura 7 – Comparativo entre ciclo de vida de uma página tradicional e uma SPA - Fonte:

[3] . 37

Figura 8 – Estrutura das pastas e arquivos visualizado pelo editor Visual Studio Code -

Fonte: Elaborado pelo autor . 38

Figura 9 – Stack tecnológica utilizada no desenvolvimento do frontend. Fonte: Elaborado

pelo autor . 40

Figura 10 – Exemplo do fluxo de dados unidirecional do React - Fonte: [4] 41

Figura 11 – Componentes de exemplo do Material UI - Fonte: [5] 43

Figura 12 – Exemplo de passagem de informações para componentes distantes pelo Context

API - Fonte: [6] . 46

Figura 13 – Exemplo de transações pendentes - Fonte: Elaborado pelo autor 47

Figura 14 – Fluxograma de navegação na aplicação - Fonte: Elaborado pelo autor . 48

Figura 15 – Página de login da aplicação - Fonte: Elaborado pelo autor. 49

Figura 16 – Exemplo de erro no login - Fonte: Elaborado pelo autor 49

Figura 17 – Exemplo da página de estações - Fonte: Elaborado pelo autor 50

Figura 18 – Exemplo de navegação entre itens da estação - Fonte: Elaborado pelo au-

tor. 51

Figura 19 – Exemplo da página de configurações - Fonte: Elaborado pelo autor . . 52

Figura 20 – Exemplo da página de usuários - Fonte: Elaborado pelo autor. 53

Figura 21 – Exemplo da página de logs - Fonte: Elaborado pelo autor. 54

Figura 22 – Exemplo de validação do campo de Endereço IP - Fonte: Elaborado pelo

autor . 55

Figura 23 – Snackbar apresentando falha na criação de estação - Fonte: Elaborado pelo

autor. 56

Figura 24 – Snackbar apresentando sucesso nas alterações - Fonte: Elaborado pelo au-

tor . 56

Figura 25 – Visão geral da infraestrutura baseada em Docker - Fonte: Elaborado pelo

autor. 57

Figura 26 – Inicialização do container no terminal - Fonte: Elaborado pelo autor. . 66

Figura 27 – Inicialização do backend no terminal - Fonte: Elaborado pelo autor. . . 66

Figura 28 – Inicialização do frontend no terminal - Fonte: Elaborado pelo autor. . . 67

Figura 29 – Exemplo de requisição de página pelo frontend no terminal - Fonte: Elaborado

pelo autor. 67

Figura 30 – Diagrama de estrutura da simulação - Fonte: Elaborado pelo autor. . . 68

Figura 31 – Configurações da simulação - Fonte: Elaborado pelo autor. 69

Figura 32 – Logs de requisições ao backend no terminal - Fonte: Elaborado pelo autor. 70

Figura 33 – Formulário de cadastro de estação - Fonte: Elaborado pelo autor 71

Figura 34 – Log de cadastro da estação - Fonte: Elaborado pelo autor 71

Figura 35 – Formulário de cadastro de dispositivo - Fonte: Elaborado pelo autor . . 72

Figura 36 – Log de cadastro de dispositivo - Fonte: Elaborado pelo autor 72

Figura 37 – Formulário de cadastro de tag - Fonte: Elaborado pelo autor 73

Figura 38 – Log de cadastro de tag - Fonte: Elaborado pelo autor 73

Figura 39 – Exemplo da barra lateral em visualização do Gerente - Fonte: Elaborado pelo

autor . 74

Figura 40 – Exemplo de estação conectada - Fonte: Elaborado pelo Autor 74

Figura 41 – Exemplo de estação desconectada - Fonte: Elaborado pelo Autor 75

Figura 42 – Log de funcionamento do gateway - Fonte: Elaborado pelo autor 75

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface
CLP Controlador Lógico Programável
IIOT Industrial Internet of Things (Internet das Coisas Industrial)
IOT Internet of Things (Internet das Coisas)
IP Internet Protocol
JWT JSON Web Token
MQTT Message Queuing Telemetry Transport
OPC Open Platform Communications
ORM Object-Relational Mapping
RBAC Role-Based Access Control
REST Representational State Transfer
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
SPA Single Page Application
TCP Transmission Control Protocol
TI Tecnologia da Informação
UI User Interface

SUMÁRIO

1 Introdução . 12

1.1 Gateways de protocolos e atualizações tecnológicas 12

1.2 Motivação e objetivos . 13

1.3 Revisão do estado da técnica . 13

1.3.1 Soluções comerciais . 13

1.3.1.1 vNode . 13

1.3.1.2 NeuronEX . 15

1.3.2 Trabalhos correlatos . 16

1.3.2.1 Conversor Modbus/MQTT utilizando Raspberry Pi 16

1.3.2.2 Implementação de um Sistema Gateway MQTT-Modbus para Abstração de

Redes Industriais . 17

1.3.2.3 Sistema "Meu TCC": Implementação do front-end de uma aplicação web para

controle de tccs utilizando ReactJs . 17

1.3.2.4 Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminação

Utilizando Node-RED, MQTT e Comunicação Modbus em Plataforma Linux

Embarcada . 17

1.3.2.5 Gateway para Integração de Redes Industriais Modbus com Ecossistemas IoT

via Protocolo MQTT . 18

1.4 Organização do trabalho . 18

2 Desenvolvimento . 19

2.1 Backend . 19

2.1.1 Estrutura e responsabilidades do backend 19

2.1.2 Tecnologias . 20

2.1.2.1 Base do projeto . 20

2.1.2.2 Multi-threading . 20

2.1.2.3 Framework - FastAPI . 20

2.1.2.4 Banco de dados e modelagem . 21

2.1.2.5 Segurança e logging . 21

2.1.3 Modelagem do banco de dados . 23

2.1.4 Login e Tokens . 25

2.1.5 Rotas . 27

2.1.5.1 Validação de Permissões nos endpoints 30

2.1.6 Gerenciamento automático dos tópicos MQTT 31

2.1.7 Gerenciamento do Gateway Modbus/MQTT 32

2.1.8 Documentação interativa com Swagger 32

2.1.9 Gerenciamento de Migrações com Alembic 33

2.1.10 Gerenciamento de Logs . 34

2.1.10.1 Arquitetura de Logs . 34

2.1.10.2 Categorização e Níveis de Log . 34

2.1.10.3 Integração com os Componentes do Sistema 35

2.1.10.4 Acesso aos Logs via API . 35

2.1.10.5 Segurança e Integridade . 36

2.2 Frontend . 36

2.2.1 Visão Geral da Arquitetura . 36

2.2.2 Tecnologias e Bibliotecas Utilizadas . 39

2.2.2.1 React . 40

2.2.2.2 Vite . 41

2.2.2.3 Material-UI . 42

2.2.2.4 React Router . 43

2.2.2.5 Axios . 44

2.2.2.6 Context API . 44

2.2.2.7 Bibliotecas Auxiliares . 45

2.2.3 Sistema de Autenticação e Autorização 45

2.2.4 Gerenciamento de Estado . 46

2.2.5 Interface do Usuário . 47

2.2.6 Estrutura de Navegação . 48

2.2.6.1 Página de login . 49

2.2.6.2 Página de estações . 49

2.2.6.3 Página de configurações . 51

2.2.6.4 Página de usuários . 52

2.2.6.5 Página de logs . 53

2.2.7 Comunicação com o Backend . 54

2.2.8 Otimizações de Performance . 55

2.2.9 Tratamento de Erros e Feedback ao Usuário 55

2.2.10 Considerações sobre Experiência do Usuário 56

2.3 Infraestrutura de TI . 57

2.3.1 Conteinerização com Docker . 58

2.3.2 Arquitetura de Contêineres . 58

2.3.2.1 Frontend . 58

2.3.2.2 Backend . 59

2.3.2.3 MQTT Broker . 59

2.3.3 Orquestração com Docker Compose . 59

2.3.4 Considerações sobre Implantação . 61

2.3.5 Implantação em Novo Ambiente . 61

2.3.5.1 Requisitos Preliminares . 62

2.3.5.2 Procedimento de Implantação . 62

2.3.5.3 Operações Comuns de Manutenção . 64

3 Resultados . 66

3.1 Inicialização do sistema . 66

3.1.1 Análise da inicialização do backend . 66

3.1.2 Análise da inicialização do frontend . 67

3.2 Resultados Simulados . 67

3.2.1 Configuração do simulador . 68

3.2.2 Configuração do aplicativo web com os dados do simulador 69

3.2.2.1 Login . 70

3.2.2.2 Cadastro de estação . 70

3.2.2.3 Cadastro de dispositivo . 71

3.2.2.4 Cadastro de tag . 72

3.2.3 Permissionamento de páginas para gerente e visualizador 73

3.2.4 Monitoramento da estação e funcionamento do Gateway encapsulado . . 74

4 Conclusões . 76

4.1 Objetivos alcançados . 76

4.2 Sugestão para Estudos Futuros . 76

REFERÊNCIAS . 77

12

1 Introdução

A indústria 4.0 tem tornado-se cada vez mais presente em sistemas da atuali-

dade, buscando a coleta, armazenamento e análise de dados gerados pelas cadeias de

produção, bem como a integração de sistemas e processos industriais de forma inteligente

e eficiente. Nesse contexto, destaca-se o protocolo MQTT como uma nova alternativa

para a comunicação entre dispositivos, devido à sua simplicidade, baixa complexidade e

alta interoperabilidade. Neste capítulo, serão apresentados alguns conceitos gerais que

mostram como a atualização tecnológica em empresas é importante, como a integração

entre tecnologias, legadas e modernas, pode ser feita, bem como os desafios envolvidos na

transição e quais soluções são adequadas.

1.1 Gateways de protocolos e atualizações tecnológicas

Os gateways de protocolos desempenham um papel crucial na interconexão de

sistemas e dispositivos, especialmente em um cenário industrial moderno em constante

evolução. Eles permitem a comunicação entre diferentes protocolos, facilitando a integração

de tecnologias legadas com soluções modernas, como as que utilizam IoT e MQTT.

Essa capacidade de adaptação é fundamental para empresas que buscam atualizar suas

infraestruturas tecnológicas e melhorar a eficiência operacional.

O gateway de aplicação é utilizado para permitir a comunicação entre diferentes

aplicações ou sistemas de software. Essencialmente, atua como um intermediário entre

os sistemas, traduzindo os protocolos de comunicação utilizados por cada um deles. Isso

permite que aplicações desenvolvidas em diferentes linguagens de programação ou que

utilizem diferentes protocolos, possam se comunicar de forma transparente.

Como exemplo de um cenário industrial moderno, é possível a utilização de um

gateway de aplicação para a integração de diferentes protocolos de comunicação. Em um

caso específico, o exemplo inclui o MODBUS, um protocolo industrial tradicional com

recursos limitados, e o MQTT, um protocolo contemporâneo para IoT, mas a mesma

estratégia é aplicável com quaisquer outros protocolos. A função do gateway consiste na

leitura dos dados em um formato (como MODBUS) e na republicação em outro (como

MQTT), o que resulta em atualização tecnológica no transporte dos dados industriais

sensíveis e importantes, sem dependência dos protocolos selecionados.

Ademais, é possível incrementar um gerenciamento simples, eficiente e moderno

em cima dessa aplicação, tornando o sistema robusto e escalável.

13

1.2 Motivação e objetivos

No setor de distribuição e tratamento de água da cidade de Juiz de Fora, a CESAMA

enfrenta desafios relacionados à comunicação e monitoramento remoto de suas estações de

tratamento e distribuição. A necessidade de modernização das tecnologias de comunicação

industrial sem interrupção no abastecimento de água constitui a principal motivação

deste trabalho. O ambiente atual opera com tecnologias industriais tradicionais, porém

limitadas, o que dificulta a escalabilidade e a manutenção do sistema.

A proposta inclui uma aplicação web fullstack moderna para o gerenciamento,

manutenção e encapsulamento de um Gateway que permite a conexão entre as estações da

planta e o software de supervisão E3. A implementação desta interface visa a substituição

do protocolo industrial tradicional MODBUS por uma solução baseada no protocolo

contemporâneo MQTT, mais adequado para comunicações em ambientes industriais

modernos.

Este trabalho complementa a pesquisa anterior, citada em [7], que aborda aspectos

técnicos da mesma problemática. A integração destas soluções resultará em um sistema

completo para gerenciamento da planta da CESAMA, com capacidade de monitoramento

do estado das conexões sem a necessidade de interrupções no abastecimento de água para

a cidade.

1.3 Revisão do estado da técnica

Uma breve revisão da literatura revela que existem diversas soluções comerciais e

acadêmicas voltadas para a conversão e gerenciamento de dados entre protocolos Modbus

e MQTT.

1.3.1 Soluções comerciais

No mercado, aplicações como o vNode e NeuronEX oferecem soluções robustas

para a conversão de protocolos e gerenciamento dos dados, permitindo, por exemplo,

a integração de dispositivos Modbus a sistemas baseados em MQTT. Essas aplicações

frequentemente fornecem interfaces web para configuração e suporte a padrões como

MQTT Sparkplug.

1.3.1.1 vNode

O vNode [8] é concebido como um Industrial IoT Gateway que possibilita a coleta,

o processamento e a entrega de informações oriundas da planta industrial. Sua arquitetura

modular, que dispensa a necessidade de programação customizada, adota um conceito

plug-and-play, permitindo que os módulos de conectividade sejam configurados de maneira

rápida e intuitiva. Além disso, o vNode é compatível com diversas plataformas operacionais,

14

incluindo sistemas baseados em Linux, Windows e dispositivos embarcados com arquitetura

ARM, o que reforça sua versatilidade em ambientes industriais heterogêneos. A arquitetura

principal de funcionamento pode ser vista na Figura 1.

Figura 1 – Arquitetura de um dos usos de casos do vNode. Fonte: [1]

Para garantir a interoperabilidade entre os dispositivos de campo e os sistemas de

supervisão (SCADA), o vNode integra uma ampla variedade de protocolos industriais, fun-

damentais para a comunicação no ambiente de automação. Entre os principais protocolos

suportados, destacam-se:

• Modbus (TCP/IP e RTU): Protocolo tradicional e amplamente adotado para a

comunicação entre dispositivos eletrônicos de automação.

• OPC (OPC DA e OPC UA): Padrões que permitem a interoperabilidade entre

diferentes sistemas e dispositivos, facilitando a troca de dados em tempo real.

• DNP3: Utilizado principalmente em sistemas de controle de energia e automação

de processos, oferecendo alta confiabilidade em ambientes críticos.

• MQTT: Protocolo leve de mensageria, ideal para a transmissão de dados em redes

com restrição de banda ou alta latência.

• REST: Interface de comunicação que viabiliza a integração com aplicações web e

plataformas de nuvem.

Adicionalmente, o vNode dispõe de módulos específicos para a comunicação com

dispositivos industriais, como os controladores Siemens S7, e permite a coleta de dados a

partir de arquivos em formatos TXT, CSV e XML. Na etapa de entrega, a plataforma se

integra a sistemas de banco de dados (por exemplo, SQL e MongoDB), sistemas SCADA

e até mesmo a serviços de nuvem como AWS, Google Cloud e Azure.

Em síntese, o vNode configura uma solução eficaz para os objetivos deste trabalho,

proporcionando uma integração robusta e integrada para ambientes industriais. Entretanto,

15

por ser um serviço comercializado e fechado, não oferece o mesmo nível de flexibilidade e

controle que uma implementação própria pode alcançar. Ademais, por se tratar de uma

solução paga, os custos envolvidos podem ser exarcebados e proibitivos em determinados

contextos.

1.3.1.2 NeuronEX

A EMQ Technologies é reconhecida mundialmente como a principal fornecedora

de software para infraestrutura de dados IoT open-source. Com uma abordagem nativa

em nuvem, a empresa capacita aplicações IoT à prova de futuro ao oferecer produtos

integrados que conectam, movimentam, processam e integram dados em tempo real – desde

o edge até a nuvem multi-cloud. Seu portfólio é liderado pelo EMQX, uma plataforma de

mensageria MQTT open-source escalável e confiável.

Dentro do portfólio da EMQ, destaca-se o Neuron (também conhecido como Neu-

ronEX [9]), uma solução avançada de Industrial Edge Data Hub projetada para ambientes

industriais. O Neuron é uma ferramenta essencial para a transformação digital, pois

permite o acesso em tempo real e a análise inteligente de dados provenientes de diferentes

dispositivos e sistemas presentes na cadeia produtiva, tais como Controladores Lógicos

Programáveis (CLPs), máquinas CNC, robôs, sistemas SCADA e sensores inteligentes. A

arquitetura básica de utilização do NeuronEX pode ser observada na Figura 2.

Figura 2 – Arquitetura básica do NeuronEX. Fonte: [2]

Uma das principais vantagens do Neuron é sua capacidade de integrar uma am-

pla variedade de protocolos industriais, o que facilita a comunicação entre os diversos

equipamentos e sistemas de produção. Essa integração abrange:

• MQTT: Protocolo leve de mensageria, ideal para a transmissão de dados em redes

com restrição de banda ou alta latência.

• SparkPlugB: Voltado para padronizar a comunicação entre dispositivos industriais,

esse protocolo promove maior interoperabilidade e integração dos dados em ambientes

de produção.

16

• HTTP: Permite a integração com serviços web e a transmissão de dados para

plataformas na nuvem ou centros de dados locais, ampliando as possibilidades de

conexão e análise.

• WebSocket: Protocolo que viabiliza a comunicação bidirecional contínua, essencial

para aplicações que exigem baixa latência e atualizações em tempo real.

Além disso, o Neuron oferece suporte à coleta e processamento de dados por

meio de funcionalidades como filtragem, limpeza, padronização e processamento em fluxo

(streaming). Sua arquitetura modular e flexível possibilita a adaptação tanto a ambientes

on-premises quanto a infraestruturas baseadas em contêineres (Docker, Kubernetes),

contribuindo para uma integração eficiente entre as tecnologias de Informação (TI) e de

Operações (OT).

Em síntese, o Neuron demonstra capacidade para operação em ambientes industriais,

oferecendo funcionalidades de acesso em tempo real e análise de dados. A solução dispõe

de um repositório no GitHub [10], permitindo acesso ao seu código-fonte e à colaboração

da comunidade. Contudo, mesmo sendo open-source, o Neuron impõe um limite de uso de

apenas 30 tags, uma restrição que pode se mostrar incompatível com o escopo de projetos

mais robustos. Essa limitação pode resultar em custos adicionais que, em determinadas

situações, tornam a solução economicamente inviável para o uso pretendido. Além disso,

optar pelo desenvolvimento de uma solução própria pode oferecer maior controle sobre as

funcionalidades necessárias e um potencial de customização superior, permitindo que os

requisitos específicos do projeto sejam atendidos de maneira mais precisa e econômica.

1.3.2 Trabalhos correlatos

No âmbito acadêmico, diversas pesquisas têm se concentrado no desenvolvimento

de soluções de gateway Modbus/MQTT, além de diversos trabalhos que implementam

aplicações web com React. Serão exploradas as propostas feitas em [11, 12, 13, 14, 15].

1.3.2.1 Conversor Modbus/MQTT utilizando Raspberry Pi

Em [11] é apresentado o uso de um Raspberry Pi como conversor entre os protocolos

Modbus e MQTT, para controle de uma planta didática.

O trabalho faz uma revisão sobre os conceitos envolvidos e mostra uma possível

forma de fazer a conversão entre os protocolos. Por fim, apresenta os resultados do

funcionamento e valida o conceito como viável para aplicação industrial.

17

1.3.2.2 Implementação de um Sistema Gateway MQTT-Modbus para Abstração de

Redes Industriais

Em [12] é proposto o desenvolvimento de um gateway que integra redes industriais

legadas, baseadas no protocolo Modbus RTU, ao ecossistema IoT via MQTT. Utilizando

um ESP32 e um broker em JavaScript, o sistema permite que usuários, sem conhecimento

aprofundado de Modbus, controlem e monitorem dispositivos industriais por meio de

requisições JSON. Essa solução abstrai a complexidade do protocolo, implementando

módulos de validação, conversão e sincronização de mensagens, além de oferecer controle de

acesso granular. Testado em ambiente simulado, o gateway demonstra ser uma ferramenta

confiável, escalável e segura para a integração de redes industriais com a Internet das

Coisas.

1.3.2.3 Sistema "Meu TCC": Implementação do front-end de uma aplicação web para

controle de tccs utilizando ReactJs

Em [13] é apresentada a implementação do Front-End de uma aplicação web

denominada "Meu TCC", utilizando tecnologias modernas de desenvolvimento. Baseado

em Javascript e React, o sistema emprega o conceito de Single Page Application (SPA),

onde a interface é dividida em componentes reutilizáveis que são atualizados dinamicamente.

A integração com a biblioteca Material UI proporcionou acesso a elementos pré-construídos

baseados no Material Design da Google, agilizando o desenvolvimento e garantindo

consistência visual.

1.3.2.4 Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminação

Utilizando Node-RED, MQTT e Comunicação Modbus em Plataforma Linux

Embarcada

Em [14] é apresentado um sistema IoT baseado na web para monitoramento

ambiental e controle de iluminação. A solução utiliza uma Raspberry Pi 4B como

plataforma Linux embarcada, hospedando um broker MQTT e um servidor Node-RED para

criar uma interface homem-máquina multiplataforma. Programas Python implementam

múltiplas threads para eficiente troca de dados via protocolos Modbus TCP e MQTT,

permitindo interação contínua entre PLCs e servidores broker. O sistema aproveita

a ferramenta Node-RED para desenvolvimento de uma interface web com recursos de

Publicação/Subscrição MQTT, garantindo comunicação fluida com o servidor.

Através da configuração do servidor HTTP Apache para direcionar ao diretório

web do Node-RED, os pesquisadores conseguiram monitorar efetivamente as condições

laboratoriais e gerenciar o sistema de iluminação. Os resultados experimentais validam a

relação custo-benefício da abordagem na transformação de sistemas de controle tradicionais

18

em sistemas supervisórios baseados na web, ampliando a funcionalidade dos equipamentos

existentes e reforçando a aplicabilidade das soluções IoT em ambientes práticos de pesquisa.

1.3.2.5 Gateway para Integração de Redes Industriais Modbus com Ecossistemas IoT

via Protocolo MQTT

Em [15] é apresentado o desenvolvimento de um gateway que atua como ponte entre

dispositivos industriais baseados no protocolo Modbus e aplicações de Internet das Coisas

(IoT) que utilizam o protocolo MQTT. Implementado em um Raspberry Pi executando

Node.js, o sistema permite que equipamentos industriais legados comuniquem-se direta-

mente com plataformas IoT modernas, viabilizando a coleta e análise de dados em tempo

real. O gateway inclui uma interface web intuitiva para configuração e monitoramento,

eliminando a necessidade de conhecimentos avançados sobre os protocolos envolvidos.

O autor validou o sistema como uma solução de baixo custo para projetos de

automação industrial, conduzindo o trabalho na empresa SCADAHUB, demonstrando sua

eficácia na integração de dispositivos Modbus tradicionais ao ecossistema IoT através do

protocolo MQTT.

1.4 Organização do trabalho

Este trabalho foi dividido em quatro capítulos, de maneira a oferecer uma compre-

ensão clara e sequencial das etapas desenvolvidas, desde a fundamentação teórica até a

apresentação dos resultados práticos.

Inicialmente, a seção de Introdução traz o contexto acerca dos gateways de proto-

colos, aplicações na modernização, e apresenta a motivação que impulsionou a realização

deste estudo, complementada por uma revisão do estado da téncica e análise de trabalhos

correlatos e soluções comerciais existentes para problemáticas semelhantes.

O segundo capítulo foi estruturado em três partes interdependentes: Backend,

Frontend e Infraestutura de TI. Em cada uma é explicada a arquitetura adotada e o

ferramental utilizado, que possibilitaram a implementação do sistema.

O capítulo 3 traz os resultados obtidos ao longo do desenvolvimento, demonstrando

por evidências como logs e capturas de telas, a integração e desempenho do sistema, assim

como a integração com o gateway.

Por fim, o capítulo de Conclusões sintetiza os principais achados do estudo, discu-

tindo os resultados alcançados com relação ao que foi proposto.

19

2 Desenvolvimento

Neste capítulo, será explicado o funcionamento e desenvolvimento do aplicativo

como um todo. Existem três principais etapas: Backend, Frontend e Infraestrutura de

TI. Cada uma delas será explicada em sua respectiva seção, contendo os detalhes de

desenvolvimento, desafios e implementação.

2.1 Backend

O backend do sistema é a parte do aplicativo que roda no servidor, local ou

hospedado na nuvem, gerenciando a lógica do aplicativo, o armazenamento, os serviços e

manipulando os dados necessários. Essa parte do aplicativo também é responsável pela

segurança dos usuários e é quem fornece os dados para a aplicação que interage com o

usuário final.

2.1.1 Estrutura e responsabilidades do backend

No presente trabalho, a responsabilidade é gerenciar estações, dispositivos, tags,

usuários e logs do sistema da CESAMA, assim como encapsular o serviço do gateway

Modbus/MQTT, descrito no trabalho [7]. Ou seja, gerenciar as requisições que o frontend

fará, para manipular, criar ou remover itens do banco de dados.

Com isso em vista, o backend foi estruturado conforme descrito na Figura 3.

Figura 3 – Diagrama da estrutura pensada para o backend - Fonte: Elaborado pelo autor.

20

2.1.2 Tecnologias

Nesse tópico serão apresentadas as tecnologias e ferramentas utilizadas para o

desenvolvimento do backend. Serão listadas as tecnologias base do projeto, o framework

para APIs utilizado, o ferramental para controle do banco de dados e modelagem dos

dados e por fim as ferramentas utilizadas para controle de segurança e geração de logs do

aplicativo.

2.1.2.1 Base do projeto

Para um desenvolvimento ágil, seguro e completo, a linguagem de programação

Python foi a escolhida para essa parte do aplicativo. A escolha se deu, principalmente, por

ser a linguagem utilizada no desenvolvimento do sistema do gateway MQTT/Modbus em

[7]. Assim, o backend pode encapsular o sistema facilmente como um serviço dele.

Para o gerenciamento de pacotes e bibliotecas, a fim de uma boa manutenção e

gerenciamento do projeto, foi utilizado o Poetry, uma ferramenta para gerenciamento

de dependências e pacotes do Python. A ferramenta tem seu código aberto [16]. Com

ela, é possível detalhar em arquivos específicos do projeto quais versões de determinadas

dependências serão usadas, e ao criar um ambiente novo a ferramenta instala tudo em um

ambiente virtual específico para o projeto.

2.1.2.2 Multi-threading

Com a estrutura do backend em vista, foi necessário encontrar uma forma de

desacoplar o gateway do processamento principal do backend. Assim, o sistema poderia

receber e responder requisições, ler e alterar o banco de dados sem interromper ou prejudicar

a execução das tarefas do gateway.

Dessa forma, foi utilizada da biblioteca threading do Python. Ela permite a criação

e gerenciamento de múltiplas threads, que são caminhos de execução independentes dentro

do mesmo processo. Então, diferentes partes do código são executadas concorrentemente.

No caso do projeto, é utilizado da concorrência para executar o backend e o gateway

simultaneamente, sem que um interfira no outro.

2.1.2.3 Framework - FastAPI

Dentro da linguagem foi escolhido o framework web FastAPI para a construção das

APIs. O FastAPI é de código aberto [17], e considerado um dos frameworks mais rápidos

na linguagem, além disso é de fácil e rápida implementação, facilitando o desenvolvimento

para o trabalho. Com isso, foi possível gerenciar rotas para a aplicação de forma fácil e

simples, preocupando apenas com a implementação e manipulação dos dados necessários

[18].

21

2.1.2.4 Banco de dados e modelagem

Para o banco de dados, como a aplicação não é tão grande, com imensos volumes de

dados, foi escolhida uma abordagem mais simples e de fácil implementação. Foi utilizado

um banco de dados local SQLite em um único arquivo database.db.

Entretanto, o projeto não lida com comandos SQL diretos, mas sim utiliza da

técnica Mapeamento Objeto-Relacional (ORM). É uma técnica de programação que vincula

(ou mapeia) objetos a registros de banco de dados. Em outras palavras, um ORM permite

que você interaja com seu banco de dados, como se estivesse trabalhando com objetos

Python. Por essa razão, abstraem-se os registros e comandos SQL e é feita a manipulação

de objetos.

Para o trabalho, foi utilizado o ORM SQLAlchemy [19]. Com ele foi possível

modelar e persistir informações sobre as estações, dispositivos, tags e configurações do

sistema.

Outra problemática é que, ao longo do desenvolvimento o banco de dados vai

modificando-se, novas tabelas e colunas surgem, bem como novos indexadores, relações e

restrições. Com isso, é necessário uma ferramenta para gerenciar as migrações do banco

de dados. As migrações são utilizadas para modificar ou atualizar a estrutura do banco de

dados, permitindo ações como a criação de novas tabelas, a adição de colunas ou a alteração

do tipo de dado de um campo. Elas são fundamentais para manter um histórico das

mudanças realizadas no esquema do banco ao longo do tempo. Além disso, possibilitam a

reversão para uma versão anterior do esquema, caso seja necessário. Para isso, foi utilizado

do Alembic que é uma ferramenta leve para migrações de banco de dados, especialmente

para o SQLAlchemy, uma vez que foi feita pelo mesmo autor [20].

Por último, em um sistema backend é necessário utilizar da validação de dados,

para garantir que os dados passados nas requisições estão corretos, gerar documentações

robustas e tornar o sistema completo e robusto. Para isso, foi utilizada a biblioteca

Pydantic [21], para validação de dados que trabalha perfeitamente com o FastAPI . Com o

Pydantic, você define modelos usando classes tipadas que validam entradas, convertem tipos

e geram documentação JSON. No FastAPI, o Pydantic valida requisições, assegurando

conformidade dos dados antes do processamento. Esta integração melhora a segurança e

facilita o desenvolvimento pela geração automática de documentação via Swagger UI e

ReDoc.

2.1.2.5 Segurança e logging

No contexto do backend, a segurança das informações é extremamente importante.

Nesse cenário, duas coisas básicas são necessárias: autenticação para os endpoints e

encriptar senhas de usuários do sistema.

22

O processo de autenticação verifica a identidade do usuário, enquanto a autorização

determina quais ações esse usuário pode executar. A autenticação é implementada através

do JSON Web Token (JWT) e criam-se regras de autorização para controlar o acesso aos

endpoints. Para o gerenciamento de tokens JWT foi usada a biblioteca PyJWT [22].

O JWT é um padrão (RFC 7519) que define uma maneira compacta e autônoma

de transmitir informações entre as partes de maneira segura. Essas informações são

transmitidas como um objeto JSON que é digitalmente assinado usando um segredo (com

o algoritmo HMAC) ou um par de chaves pública/privada usando RSA ou ECDSA. Ele

consiste em três partes: header, payload e assinatura. Elas são separadas por pontos (.) e,

juntas, formam um token JWT. É importante ressaltar que, apesar de a informação em

um JWT estar codificada, ela não está criptografada. Isso significa que qualquer pessoa

com acesso ao token pode decodificar e ler suas informações. No entanto, sem o segredo

usado para assinar o token, não é possível alterar as informações ou forjar um novo token.

Portanto, não deve-se incluir informações sensíveis ou confidenciais no payload do JWT.

A estrutura do JWT possibilita a inclusão de claims, que são declarações sobre

uma entidade (geralmente o usuário) e informações adicionais úteis para a aplicação. As

claims podem ser categorizadas em três tipos:

• Registered Claims: São claims pré-definidas e recomendadas pelo padrão, como

iss (emissor), sub (assunto), aud (destinatário), exp (tempo de expiração), nbf

(não antes de), iat (data de emissão) e jti (identificador único do token). Essas

claims ajudam a padronizar a validação e a gerência do token.

• Public Claims: São claims que podem ser definidas livremente, mas para evitar

colisões de nomenclatura, devem ser registradas ou conter um identificador único,

como um URI.

• Private Claims: São claims customizadas e definidas pelas partes envolvidas

(emissor e consumidor do token), que carregam informações específicas da aplicação,

como privilégios de acesso, preferências de usuário, entre outros dados.

Na prática, ao gerar um JWT, o desenvolvedor define quais claims serão incluídas

conforme as necessidades do sistema. Por exemplo, a inclusão da claim exp garante que o

token possua um tempo de validade determinado, evitando seu uso prolongado ou indevido.

Outras claims, como uma customizada, podem indicar outras informações, facilitando a

implementação de regras de negócio. Assim, o JWT não apenas assegura a autenticação,

mas também fornece informações essenciais para a aplicação.

Para as senhas dos usuários, foi adodtada a biblioteca pwdlib que permitirá cripto-

grafar adequadamente as senhas [23].

23

Ademais, é de suma importância ter rastreabilidade do sistema, bem como ferra-

mentas para auditoria e verificações de segurança. Dessa forma, faz-se necessário o uso

de tecnologias de logging para registrar operações e informações relevantes do sistema

como um todo. Foi escolhida a biblioteca Daiquiri, um sistema de logging que fornece

rastreabilidade para todas as operações do gateway, registra eventos importantes como

conexões estabelecidas, erros de comunicação e operações de leitura/escrita [24].

2.1.3 Modelagem do banco de dados

A partir da problemática descrita na Seção 1.2, é identificada a estrutura das

estações da CESAMA, partindo da estrutura principal, a estação de tratamento:

• Cada estação possui N dispositivos. (Relação 1:N)

• Cada dispositivo possui N tags de leitura/escrita (Relação 1:N)

Mas, antes de mencionar a modelagem dos dados e como foi pensado o banco

de dados, é preciso listar os tipos de variáveis utilizadas no trabalho. Alguns tipos são

básicos dos bancos de dados, outros são tipos enum onde apenas determinados valores são

permitidos, conforme listado abaixo:

• Tipos primitivos

– Int: Utilizado para armazenar valores inteiros.

– Booleano: Utilizado para armazenar valores lógicos, como flags.

– Varchar: Utilizado para armazenar strings de texto variável.

– Timestamp: Utilizado para armazenar datas e horários, como data de criação

e data de atualização dos registros.

• Tipos enumerados

– UserRole: Define os papéis de usuário no sistema:

∗ admin: Administrador com acesso completo

∗ manager : Gerente com acesso intermediário

∗ viewer : Visualizador de dados com acesso restrito

– Resource: Define os recursos do sistema que podem estar sujeitos a permissões:

∗ station: Estações

∗ device: Dispositivos

∗ tag: Tags de dados

∗ user : Usuários do sistema

24

∗ permission: Permissões de acesso

∗ bridge: Gateway

∗ logs: Registros de log

∗ mqtt_broker_config: Configuração do broker MQTT

– Action: Define as ações possíveis sobre os recursos:

∗ create: Criar

∗ read: Ler

∗ update: Atualizar

∗ delete: Excluir

∗ bridge_action: Ação específica do gateway

• Relações entre tabelas: As relações são implementadas com o uso de chaves

estrangeiras que referenciam identificadores primários:

– station_id: Chave estrangeira que referencia um item da tabela de estações

– device_id: Chave estrangeira que referencia um item da tabela de tags

Com os tipos de dados citados estabelecidos, é possível agora falar da modelagem

das tabelas e relacionamentos dos dados.

Para a publicação dos dados pelo gateway, como citado no trabalho [7], é utilizado

o protocolo Sparkplug para MQTT. Nesse cenário, o edge of node seria exatamente a tag

de leitura/escrita, pois ela é o ponto final da estrutura.

Com todo o citado em vista, o banco de dados da aplicação foi modelado a fim de

conseguir correlacionar todos esses dados estruturados em árvore, onde uma estação tem

N dispositivos e um dispositivo tem N tags.

Então, foi criada uma tabela para as estações, outra para os dispositivos e outra

para as tags. Em cada uma delas, os itens são armazenados de forma independente,

entretanto, existe a correlação entre eles pelo uso de chaves primárias de relacionamentos.

Cada dispositivo contém o id da sua estação correspondente, e cada tag tem o id do seu

dispositivo correspondente. Na configuração do banco, foi feito o relacionamento de forma

que, se o item pai é excluído, o item filho também é.

Ademais, para gerenciamento do sistema foi criada uma tabela de usuários, que

contém os dados básicos de cadastro como login e senha criptografada, mas contém

também o cargo daquele usuário (UserRole). Tal dado é relevante para que seja possível o

gerenciamento de permissões do que cada usuário pode ou não fazer dentro do sistema,

como ler apenas certos itens, atualizá-los ou criá-los e removê-los. Dessa forma, estrutura-se

um sistema completamente controlado pelos administradores, do que os outros cargos

podem ou não executar. Como complemento dessas permissões, foi criada uma tabela de

25

permissões, onde é configurado o recurso do permissionamento (Resource), a ação (Action),

o cargo da permissão cadastrada (UserRole) e um booleano se é ou não permitido o acesso

daquela ação, naquele recurso, por aquele cargo.

Por último, foi criada uma tabela para armazenar as configurações de acesso ao

broker MQTT, a tabela mqtt_broker_config, que é pretendida ter apenas um registro com

os dados de acesso ao broker como usuário e senha.

É possível ter uma visualização mais robusta e completa da modelagem do banco

em um diagrama do mesmo. Este está presente na Figura 4 abaixo.

Figura 4 – Diagrama das tabelas e variáveis do banco de dados - Fonte: Elaborado pelo
autor

Nesse contexto, o SQLAlchemy, mencionado na sub-seção 2.1.2.4 , atua transfor-

mando os dados dessas tabelas em objetos Python. Dessa forma, é possível, por exemplo,

executar uma busca por uma estação e ter um campo desse objeto que carrega automatica-

mente todos os dispositivos vinculados com aquela estação, facilitando a interação com os

dados e uso deles para o Gateway. Visualiza-se assim, a importância do ORM na prática,

e como usufruir dos benefícios, abstraindo a camada do SQL.

2.1.4 Login e Tokens

Nessa sub-seção será abordado como foi feito a parte de login na aplicação, como

o sistema gerencia os tokens para autenticação contínua do usuário e como é feito o

armazenamento seguro das senhas no sistema.

Conforme descrito na sub-seção 2.1.2.5 , foi utilizado o token JWT para realizar a

autenticação nos chamados.

26

Em uma aplicação web, o processo de autenticação geralmente tem um fluxo padrão,

que foi o escolhido para este trabalho, e segue da seguinte maneira:

1. O usuário entra com as suas credenciais no cliente (frontend) e envia para o servidor

em uma rota de geração de token;

2. O servidor verifica as credenciais, buscando pelo usuário no banco de usuários, e, se

estiverem corretas, gera um token JWT e o envia de volta ao cliente;

3. Nas solicitações subsequentes, o cliente deve incluir esse token no cabeçalho de

autorização de suas solicitações HTTP. Como, por exemplo: Authorization: Bearer

<token>;

4. Quando o servidor recebe uma solicitação com um token JWT, ele pode verificar a

assinatura e, se o token é valido e não expirou, ele processa a solicitação do cliente;

5. Caso esteja perto da expiração e o cliente queira renovar o seu token, existe uma

rota para renovação que ele pode fazer uma requisição, passando o token antigo

(ainda válido), e o servidor deve gerar um novo token e retorná-lo;

Este fluxo pode ser também exemplificado pela Figura 5 abaixo.

Figura 5 – Fluxo de autenticação da aplicação - Fonte: Elaborado pelo autor

Com o fluxo de autenticação esclarecido, deve ser explicado o armazenamento

seguro das senhas, antes de explicar como é feito o login e gerenciamento dos tokens.

Para as senhas, conforme citado na sub-seção 2.1.2.5 é utilizada de uma biblioteca

para gerenciar hashs, encriptar e validar hashs. No projeto, foi optado pelas recomendações

padrões da bibliteca para o PasswordHash, assim cria-se o contexto que encripta e valida

os hashs de forma fácil e eficiente.

Então, basicamente o fluxo na aplicação é:

27

1. Ao criar um usuário, é utilizado o contexto da biblioteca para criar um hash da

senha preenchida (simplesmente com o comando pwd_context.hash(password)) e é

armazenado no banco de dados esse hash da senha.

2. Ao executar o login, busca-se o usuário no banco de dados. Então, é utilizado

um comando da biblioteca (pwd_context.verify(plain_password, hashed_password))

para validar se a senha preenchida confere com o hash armazenado. É retornado

verdadeiro ou falso e o login é efetuado ou não.

Dessa forma, é garantida a segurança das senhas do usuário, pois a senha nunca

é salva inteira no banco de dados, apenas um hash criptografado dela, que não pode ser

decriptografado, apenas comparado.

Com o processo de login feito, o sistema então gera um token para o cliente poder

se autenticar nas suas requisições. O login é feito na rota /auth/token - as rotas serão

explicadas na seção 2.1.5 - e retorna o token JWT, conforme já explicado.

Como uma camada a mais de segurança na aplicação, utiliza-se do arquivo .env

para armazenar as variáveis críticas do sistema, como tempo de expiração do token JWT

(informação de payload do token), chave screta para encriptação do token JWT (assinatura

do token) e o algoritmo usado para codificação do token. Assim, é garantido que tais

dados não estejam expostos em código e a assinatura, por exemplo, não seja exposta e

não comprometa os tokens que o cliente recebe e usa.

Para a geração do token JWT, são utilizadas apenas as claims ’sub’ para informar o

username do usuário e ’exp’ para informar o tempo de expiração do token. Para codificar

o token, é utilizada a função encode da biblioteca, passando o payload, a assinatura e o

algoritmo para codificação. Ao final, é retornado o token para o cliente poder utilizar,

caso o login seja realizado com sucesso.

2.1.5 Rotas

Em uma aplicação web, a URL principal funciona como a porta de entrada para o

servidor, definindo a base a partir da qual os diversos caminhos (ou rotas) são estruturados.

Essa URL base, por exemplo http://seuservidor.com, estabelece o ponto de partida

para acessar os recursos e funcionalidades da aplicação, como informações de usuários,

produtos, pedidos e outros serviços essenciais. A partir dela, cada rota adiciona um

segmento que direciona a requisição para uma função específica no backend.

Por exemplo, ao configurar a rota /usuarios para responder a uma requisição

GET, o acesso a http://seuservidor.com/usuarios pode retornar uma lista de usuários

cadastrados. Da mesma forma, a rota /produtos pode ser utilizada para cadastrar,

atualizar ou excluir produtos, dependendo do método HTTP empregado (GET, POST,

PUT, DELETE). Essa abordagem modular, característica do FastAPI, torna o sistema

28

mais organizado e intuitivo, facilitando tanto o desenvolvimento quanto a manutenção e a

escalabilidade do projeto.

A estruturação do backend foi realizada utilizando o APIRouter do FastAPI, o

que possibilitou uma organização modular das rotas. Todos os arquivos que definem os

endpoints foram agrupados na pasta routers, localizada dentro da pasta src. Dessa

forma, cada conjunto de funcionalidades possui seu próprio módulo, o que facilita a

manutenção, o reaproveitamento de código e a escalabilidade do projeto. Um exemplo de

uso é demonstrado em [25], e exemplificado pela Figura 6 abaixo.

Figura 6 – Estrutura de módulos e rotas do backend - Fonte: Elaborado pelo autor

No arquivo app.py, presente na pasta src, o aplicativo principal é instanciado e

as rotas definidas nos módulos da pasta routers são integradas por meio do APIRouter.

Essa abordagem promove uma clara separação entre a lógica de negócio e a interface de

comunicação com o cliente, permitindo que novas funcionalidades sejam adicionadas de

maneira simples e organizada. Além disso, o uso do FastAPI contribui para a geração

automática de uma documentação interativa da API, agilizando os testes e a compreensão

dos recursos expostos, pontos fundamentais para um projeto robusto e de alta qualidade.

No presente projeto, as rotas foram estruturadas da seguinte maneira:

• Autenticação (/auth/*): Contém rotas relacionadas à autenticação e autorização

de usuários. Rotas internas:

– POST /auth/token: Realiza o login de um usuário e retorna um token JWT.

– POST /refresh_token: Atualiza o token JWT de um usuário

• Bridge (/bridge/*): Contém rotas para gerenciamento do Gateway MQTT/Mod-

bus. Rotas internas:

29

– POST /bridge/start: Inicializa o gateway;

– POST /bridge/stop: Para o gateway;

– POST /bridge/restart: Reinicia o gateway;

– GET /bridge/status: Obtém o status do gateway

– GET /bridge/station-status: Obtém o status atual da conexão de todas as

estações

• Dispositivos (/devices/*): Contém rotas para gerenciamento de dispositivos.

Rotas internas:

– POST /devices/: Cria um novo dispositivo.

– GET /devices/{device_id}: Obtém os dados de um dispositivo específico.

– GET /devices/: Lista múltiplos dispositivos com suporte a paginação.

– PUT /devices/{device_id}: Atualiza os dados de um dispositivo específico.

– DELETE /devices/{device_id}: Exclui um dispositivo específico.

• Usuários (/users/*): Contém rotas para gerenciamento de usuários. Rotas

internas:

– POST /users/: Cria um novo usuário.

– GET /users/: Lista múltiplos usuários com suporte a paginação.

– GET /users/{user_id}: Obtém os dados de um usuário específico.

– PUT /users/{user_id}: Atualiza os dados de um usuário específico.

– DELETE /users/{user_id}: Exclui um usuário específico.

• Tags (/tags/*): Contém rotas para gerenciamento de tags. Rotas internas:

– POST /tags/: Cria uma nova tag.

– GET /tags/{tag_id}: Obtém os dados de uma tag específica.

– GET /tags/: Lista múltiplas tags com suporte a paginação.

– PUT /tags/{tag_id}: Atualiza os dados de uma tag específica.

– DELETE /tags/{tag_id}: Exclui uma tag específica.

• Estações (/stations/*): Contém rotas para gerenciamento de estações. Rotas

internas:

– POST /stations/: Cria uma nova estação.

– GET /stations/{station_id}: Obtém os dados de uma estação específica.

– GET /stations/: Lista múltiplas estações com suporte a paginação.

30

– PUT /stations/{station_id}: Atualiza os dados de uma estação específica.

– DELETE /stations/{station_id}: Exclui uma estação específica.

• Permissões (/permissions/*): Contém rotas para gerenciamento de permissões.

Rotas internas:

– POST /permissions/: Cria uma nova permissão.

– GET /permissions/: Lista múltiplas permissões com suporte a paginação.

– GET /permissions/{permission_id}: Obtém os dados de uma permissão

específica.

– PUT /permissions/{permission_id}: Atualiza os dados de uma permissão

específica.

– DELETE /permissions/{permission_id}: Exclui uma permissão específica.

• Broker MQTT (/mqtt_broker/*): Contém rotas para gerenciamento da confi-

guração do broker MQTT. Rotas internas:

– POST /mqtt_broker/: Cria uma nova configuração do broker MQTT.

– GET /mqtt_broker/: Obtém a configuração atual do broker MQTT.

– PUT /mqtt_broker/: Atualiza a configuração do broker MQTT.

• Logs (/logs/*): Contém rotas para acesso e visualização dos logs da aplicação.

Rotas internas:

– GET /logs/categories: Lista todas as categorias de logs disponíveis.

– GET /logs/files/{main_category}/{subcategory}: Lista todos os arquivos

de log disponíveis para uma categoria específica.

– GET /logs/content/{main_category}/{subcategory}/{filename}: Retorna

o conteúdo de um arquivo de log específico.

Assim, a organização das responsabilidades e endpoints fica bem separadas, respei-

tando as requisições HTTP e sendo fácil de manter o sistema. Ainda, existe um sistema

de validação no início de cada endpoint, para garantir que o usuário solicitando tenha

permissão para tal.

2.1.5.1 Validação de Permissões nos endpoints

O sistema implementa um mecanismo de controle de acesso baseado em papéis

(conforme já explicado) através de uma função validate_user, que é invocada em todos

os endpoints antes da execução da operação principal. Esta função verifica se o usuário

autenticado possui as permissões necessárias para realizar a ação solicitada.

31

A função consulta o banco de dados em busca de uma permissão que corresponda

ao trio (recurso, ação, papel do usuário). Caso não exista uma permissão correspondente

ou esta não permita a ação, uma exceção HTTP 403 (Forbidden) é lançada, impedindo o

acesso não autorizado.

Esta abordagem garante a aplicação consistente das políticas de autorização em

todas as operações da API e assim, proporciona uma camada de segurança eficaz e

centralizada para o controle de acesso aos recursos do sistema.

2.1.6 Gerenciamento automático dos tópicos MQTT

No sistema, as tags possuem um campo topic que segue o padrão SparkplugB para

comunicação MQTT. Este campo é crítico para o correto funcionamento da infraestrutura

de comunicação, pois define como os dispositivos e seus dados são descobertos e acessados

na rede.

O padrão SparkplugB utilizado segue uma estrutura que permite a organização

hierárquica das informações e facilita o roteamento de mensagens entre os componentes

do sistema:

spBv1.0/{tipo_estação}/DDATA/{nome_estação}/{nome_dispositivo}/{nome_tag}

Para garantir a consistência dos tópicos, o sistema implementa um mecanismo

automático de gerenciamento que:

1. Gera o tópico para cada nova tag criada, baseando-se nas informações da tag, do

dispositivo associado e da estação à qual o dispositivo pertence.

2. Mantém os tópicos atualizados quando ocorrem alterações em qualquer nível da

hierarquia. Quando uma estação tem seu nome ou tipo alterado, todos os tó-

picos de todas as tags associadas aos dispositivos conectados a esta estação são

automaticamente atualizados.

3. De forma similar, quando um dispositivo tem seu nome modificado, os tópicos de

todas as suas tags são recalculados para refletir a nova nomenclatura.

4. O sistema utiliza eventos de sessão do SQLAlchemy para interceptar operações de

persistência (flush) e garantir que os tópicos estejam sempre sincronizados antes de

qualquer alteração ser efetivamente registrada no banco de dados.

Esta abordagem elimina a necessidade de atualização manual dos tópicos e reduz

significativamente o risco de inconsistências na comunicação MQTT, que poderiam resultar

em falhas na coleta ou distribuição de dados no sistema de supervisão industrial.

32

2.1.7 Gerenciamento do Gateway Modbus/MQTT

O sistema implementa o Gateway Modbus/MQTT que atua como intermediário

na comunicação entre dispositivos industriais e aplicações externas. Para garantir o

correto funcionamento deste componente crítico, foi desenvolvido um mecanismo robusto

de gerenciamento do ciclo de vida do Gateway.

A arquitetura de gerenciamento do Gateway é composta por três componentes

principais: o BridgeManager, uma instância global deste gerenciador, e um gerenciador de

ciclo de vida integrado à aplicação FastAPI. Esta estrutura permite o controle eficiente do

Gateway, facilitando sua inicialização automática, monitoramento de estado e encerramento

controlado.

Durante a inicialização da aplicação, o sistema executa automaticamente o processo

de configuração e inicialização do Gateway através de um contexto assíncrono (lifespan).

Este processo inclui a consulta ao banco de dados para obter as estações configuradas,

juntamente com seus dispositivos e tags associados, além das credenciais do broker MQTT.

Com estes dados, o Gateway é iniciado em uma thread separada, permitindo que opere

independentemente do servidor web principal.

O mecanismo de gerenciamento implementa um padrão thread-safe para controlar o

Gateway, utilizando locks para evitar condições de corrida durante operações críticas. Isto

garante que apenas uma instância do Gateway esteja em execução a qualquer momento,

evitando duplicação de conexões e conflitos de recursos.

Para fins de monitoramento, o sistema mantém informações sobre o status de

conectividade de cada estação configurada, permitindo que os administradores verifiquem

rapidamente o estado operacional do Gateway. Estas informações são acessíveis através de

endpoints dedicados na API, conforme explicitado na sub-seção 2.1.5.

O encerramento controlado do Gateway é outro aspecto importante do gerencia-

mento. Quando a aplicação é finalizada, o sistema garante que todas as conexões sejam

adequadamente encerradas e os recursos liberados, evitando vazamentos de memória e

conexões pendentes.

Uma descrição mais detalhada sobre o funcionamento interno do Gateway Mod-

bus/MQTT, incluindo seus mecanismos de comunicação e processamento de dados, pode

ser encontrada em [7].

2.1.8 Documentação interativa com Swagger

O sistema disponibiliza documentação interativa através do Swagger UI, recurso

integrado ao framework FastAPI. Esta interface permite visualizar, testar e interagir

com todos os endpoints da API sem a necessidade de ferramentas adicionais. Para

acessar a documentação, basta navegar até o caminho /docs da aplicação (por exemplo,

33

http://localhost:8000/docs). A interface apresenta todos os endpoints organizados

por tags, conforme definido nos roteadores da aplicação. Cada endpoint exibe informações

detalhadas sobre:

• Método HTTP utilizado (GET, POST, PUT, DELETE)

• Parâmetros esperados (path, query, body)

• Esquemas de dados de entrada e saída

• Códigos de status possíveis e seus significados

• Requisitos de autenticação

A funcionalidade de "Try it out"permite testar os endpoints diretamente pelo navegador,

preenchendo os parâmetros necessários e visualizando as respostas em tempo real. Para

endpoints que exigem autenticação, é possível utilizar o botão "Authorize"para fornecer

um token JWT válido ou fazer login com usuário e senha. Esta documentação automática

é gerada a partir dos tipos, docstrings e anotações de tipo presentes no código, garan-

tindo que esteja sempre sincronizada com a implementação atual da API. Isto facilita

significativamente o desenvolvimento, testes e integração com outros sistemas.

2.1.9 Gerenciamento de Migrações com Alembic

O sistema utiliza o Alembic, uma ferramenta de migração de banco de dados

para SQLAlchemy, para gerenciar as alterações no esquema do banco de dados de forma

controlada e versionada. As migrações são essenciais para a manutenção da integridade

dos dados durante o ciclo de vida da aplicação, permitindo evoluir o esquema do banco

sem perder dados existentes.

No contexto da aplicação, o Alembic é configurado para trabalhar diretamente

com os modelos de dados definidos no módulo models.py, aproveitando a definição

de metadados fornecida pelo registro de tabelas SQLAlchemy (table_registry). Esta

abordagem garante que qualquer alteração nos modelos, como adição de novas entidades,

modificação de campos existentes ou criação de relacionamentos, seja automaticamente

detectada e incorporada nas migrações.

O processo de migração ocorre em duas etapas principais: primeiramente, o Alembic

compara o estado atual do banco de dados com a definição dos modelos no código, gerando

scripts de migração que representam as diferenças encontradas. Em seguida, estes scripts

são aplicados ao banco de dados, executando as alterações necessárias de forma ordenada

e segura.

Uma característica importante da configuração do Alembic no sistema é a capaci-

dade de funcionar tanto em modo "online"quanto "offline". No modo online, as migrações

34

são executadas diretamente contra um banco de dados em execução, enquanto no modo

offline os scripts são gerados para execução posterior, o que é útil em ambientes de produção

onde o acesso direto ao banco pode ser restrito.

Esta abordagem de gerenciamento de esquema proporciona diversos benefícios:

• Controle de versão do esquema de banco de dados, permitindo rastrear mudanças ao

longo do tempo

• Capacidade de reverter alterações problemáticas através de migrações de downgrade

• Sincronização automática entre o modelo de dados no código e sua representação no

banco

• Facilitação da colaboração entre desenvolvedores, minimizando conflitos de esquema

• Implantação controlada de mudanças em ambientes de produção

O Alembic trabalha em conjunto com o SQLAlchemy para interpretar as classes

mapeadas como Station, Device, Tag e demais entidades, incluindo seus relacionamentos

e restrições, garantindo que o esquema do banco de dados permaneça sempre coerente

com a lógica de negócios implementada na aplicação.

2.1.10 Gerenciamento de Logs

O sistema implementa uma infraestrutura robusta de logs, fundamental para o

monitoramento operacional, diagnóstico de problemas e auditoria das atividades realizadas

na aplicação.

2.1.10.1 Arquitetura de Logs

A arquitetura de logs do sistema segue uma abordagem modular e hierárquica, com

separação clara entre os logs da API REST e os logs do Gateway Modbus/MQTT. Os arqui-

vos de log são organizados em diretórios específicos (/app/logs/api e /app/logs/bridge),

facilitando a localização e gestão por parte dos administradores do sistema. Para cada

componente funcional do backend, é configurado um logger dedicado com rotação diária

de arquivos e período de retenção parametrizável (padrão de 30 dias). Esta estratégia

de rotação previne o crescimento descontrolado dos arquivos de log, mantendo apenas os

registros mais relevantes e recentes.

2.1.10.2 Categorização e Níveis de Log

O sistema implementa uma categorização refinada dos logs através de loggers

específicos para cada módulo:

35

• Logs de API: Registram as operações CRUD realizadas nos endpoints, como

criação, leitura, atualização e exclusão de estações, dispositivos, tags e usuários.

Cada endpoint registra o autor da ação e os detalhes da operação, conforme visto no

módulo de estações.

• Logs do Gateway: Documentam o funcionamento do Gateway Modbus/MQTT,

incluindo conexões estabelecidas, leituras de dados dos dispositivos, publicações em

tópicos MQTT e eventuais erros de comunicação.

• Logs de Estações: Para cada estação configurada, um logger específico é criado

dinamicamente através da função get_station_logger, permitindo o acompanha-

mento individualizado de cada estação industrial.

Os logs utilizam níveis de severidade padronizados (INFO, WARNING, ERROR, CRITI-

CAL) para classificar as mensagens conforme sua importância e urgência.

2.1.10.3 Integração com os Componentes do Sistema

Nos controladores de rota, como exemplificado no módulo de estações, cada operação

CRUD é acompanhada de registros de log que documentam a ação realizada, o usuário

responsável e o resultado da operação. Por exemplo, quando uma estação é criada,

atualizada ou excluída, o sistema registra automaticamente detalhes como o nome da

estação e o usuário que executou a ação.

No Gateway Modbus/MQTT, os logs são utilizados para monitorar o estado das

conexões com as estações industriais, registrar as leituras de dados realizadas e documentar

as publicações nos tópicos MQTT. Cada estação possui seu próprio arquivo de log, o que

permite o diagnóstico preciso de problemas específicos.

2.1.10.4 Acesso aos Logs via API

O sistema disponibiliza um endpoint específico para acesso aos logs, implementado

no roteador logs. Este endpoint permite que o frontend obtenha acesso aos registros de

log para visualização e análise pelo administrador do sistema. As operações disponíveis

incluem:

• Listar os arquivos de log disponíveis

• Recuperar o conteúdo de arquivos de log específicos

• Filtrar logs por data, componente ou nível de severidade

O acesso a estes endpoints é controlado pelo mesmo mecanismo de autorização

utilizado nos demais recursos do sistema, garantindo que apenas usuários com as permissões

36

adequadas possam acessar estas informações sensíveis. A validação de permissões é

realizada através da função validate_user, que verifica se o usuário atual possui o papel

necessário para acessar o recurso LOGS.

2.1.10.5 Segurança e Integridade

O sistema de logs foi projetado considerando aspectos de segurança importantes:

• Sanitização de informações sensíveis antes do registro nos logs

• Controle de acesso baseado em papéis para visualização dos logs

• Preservação da integridade dos registros para fins de auditoria

• Rotação automática para evitar exposição prolongada de dados históricos

O sistema de gerenciamento de logs implementado constitui um componente crítico

para a operação e manutenção da aplicação, proporcionando visibilidade detalhada sobre

todas as atividades realizadas no sistema. A abordagem estruturada e granular adotada

facilita o diagnóstico de problemas, permite o monitoramento proativo do funcionamento do

sistema e fornece uma trilha de auditoria completa para fins de segurança e conformidade.

2.2 Frontend

O desenvolvimento do frontend para o sistema Gateway MODBUS/MQTT constitui

um componente essencial deste projeto, sendo responsável pela interface com a qual os

usuários interagem para gerenciar estações, dispositivos e tags. Esta seção apresenta os

aspectos técnicos e metodológicos empregados na construção da camada de apresentação do

sistema, abordando desde a arquitetura geral até os componentes específicos implementados.

A abordagem adotada prioriza a experiência do usuário, a modularidade do código

e a manutenibilidade, elementos fundamentais para garantir a longevidade e a evolução

do sistema em contextos industriais. As tecnologias selecionadas e as estratégias de

implementação foram criteriosamente escolhidas para atender aos requisitos funcionais

e não-funcionais estabelecidos, considerando o contexto operacional da CESAMA e as

melhores práticas de desenvolvimento web moderno.

2.2.1 Visão Geral da Arquitetura

A arquitetura do frontend foi projetada seguindo o paradigma de Single Page

Application (SPA), no qual o carregamento inicial do aplicativo ocorre uma única vez, e as

subsequentes interações do usuário resultam em atualizações dinâmicas do conteúdo sem

a necessidade de recarregamentos completos da página. A Figura 7 abaixo exemplifica a

37

diferença do ciclo de uma aplicação SPA para uma aplicação tradicional. Na aplicação

tradicional, após cada requisição uma página inteira nova é carregada, já na aplicação SPA,

como já mencionado, ocorre apenas a troca de informações e/ou views/urls já carregadas.

Figura 7 – Comparativo entre ciclo de vida de uma página tradicional e uma SPA - Fonte:
[3]

Esta abordagem proporciona uma experiência mais fluida e responsiva ao usuário

final, aproximando-se da experiência de uso de aplicações desktop tradicionais.

A biblioteca React foi selecionada como fundamento tecnológico principal por

sua eficiência no gerenciamento do ciclo de vida dos componentes e pela renderização

otimizada através do Virtual DOM. A utilização do React possibilita a construção de

interfaces modulares e reativas, onde cada componente encapsula sua própria lógica, estado

e apresentação. Esta característica favorece a manutenibilidade e a testabilidade do código,

aspectos cruciais para sistemas que demandam evolução contínua.

A estruturação do código-fonte segue um modelo organizacional baseado em res-

ponsabilidades funcionais, conforme ilustrado na hierarquia de diretórios:

src/

assets/ # Recursos estáticos (imagens, ícones)

components/ # Componentes UI reutilizáveis

context/ # Provedores de Contexto React

pages/ # Componentes de página

api/ # Configuração e instâncias do Axios

routes/ # Configuração de rotas

theme/ # Configuração do tema Material-UI

Esta organização favorece a separação de responsabilidades, onde cada diretório

agrupa arquivos com propósitos similares. As pastas e arquivos podem ser visualizados na

Figura 8 abaixo.

38

Figura 8 – Estrutura das pastas e arquivos visualizado pelo editor Visual Studio Code -
Fonte: Elaborado pelo autor

O diretório components contém elementos reutilizáveis da interface do usuário,

enquanto pages abriga os componentes que representam visões completas correspondentes

a rotas específicas. O diretório context centraliza os provedores de contexto do React,

fundamentais para o gerenciamento de estado global da aplicação.

Em termos de padrões de design, adotou-se extensivamente o conceito de com-

ponentes funcionais com hooks, uma abordagem moderna do React que substituiu os

componentes baseados em classes. Esta decisão favorece a escrita de código mais con-

ciso, facilita o compartilhamento de lógica entre componentes e otimiza o processo de

renderização. Os principais hooks utilizados incluem:

39

• useState: Para gerenciamento de estado local dos componentes

• useEffect: Para execução de efeitos colaterais sincronizados com o ciclo de vida do

componente

• useContext: Para acesso ao estado global disponibilizado pelos provedores de

contexto

• useCallback: Para memoização de funções, evitando recriações desnecessárias em

renderizações subsequentes

A comunicação com o backend é centralizada através de um cliente HTTP baseado

em Axios, configurado com interceptores para inclusão automática de tokens de autentica-

ção. Este padrão garante que todas as requisições sigam um formato consistente e facilita

a implementação de mecanismos globais de tratamento de erros.

Para o gerenciamento de rotas, implementou-se o React Router, que possibilita a

navegação entre diferentes visões sem recarregamento completo da página.

As rotas são protegidas por um componente de alto nível (ProtectedRoute) que

verifica a autenticação e as permissões do usuário antes de renderizar o conteúdo solicitado.

A arquitetura também incorpora o conceito de "lifting state up"(elevação de estado),

onde o estado compartilhado por múltiplos componentes é mantido no ancestral comum

mais próximo. Este padrão reduz a complexidade do fluxo de dados e facilita o rastreamento

de mudanças de estado durante o desenvolvimento e a depuração.

Em síntese, a arquitetura frontend do sistema Gateway MODBUS/MQTT foi

concebida com foco na modularidade, manutenibilidade e experiência do usuário, utilizando

tecnologias e padrões modernos de desenvolvimento web para criar uma interface robusta,

eficiente e evolutiva. Com base nos arquivos do projeto, será elaborada a subseção sobre

Tecnologias e Bibliotecas Utilizadas, considerando a versão mais recente do React utilizada.

2.2.2 Tecnologias e Bibliotecas Utilizadas

O desenvolvimento do frontend do Gateway MODBUS/MQTT foi fundamentado

em um conjunto criteriosamente selecionado de tecnologias e bibliotecas, escolhidas com

base em sua maturidade, suporte da comunidade, desempenho e adequação aos requisitos

do projeto. As mesmas são brevemente representadas na Figura 9. A seguir, apresenta-se

uma análise detalhada de cada componente tecnológico empregado.

40

Figura 9 – Stack tecnológica utilizada no desenvolvimento do frontend. Fonte: Elaborado
pelo autor

2.2.2.1 React

O React, desenvolvido e mantido pelo Meta (anteriormente Facebook), foi escolhido

como biblioteca principal para a construção da interface devido à sua abordagem declarativa,

que permite a criação de interfaces de usuário complexas a partir de componentes modulares

[26]. Para este projeto, utilizou-se a versão 19, que representa uma das iterações mais

recentes e estáveis da biblioteca. A natureza baseada em componentes do React ofereceu

várias vantagens significativas para o projeto:

• Componentização: A capacidade de dividir a interface em componentes reutilizá-

veis reduziu a duplicação de código e aumentou a manutenibilidade do sistema.

• Virtual DOM: Uma representação em memória da estrutura do DOM (Document

Object Model, a estrutura hierárquica de elementos HTML da página). Enquanto o

DOM real é manipulado diretamente pelo navegador e tem alto custo computacional

em cada atualização, o Virtual DOM atua como uma camada intermediária que

41

permite ao React identificar precisamente quais elementos precisam ser atualizados,

minimizando manipulações no DOM real e resultando em melhor desempenho.

– DOM (Document Object Model): É uma representação estruturada em

forma de árvore de todos os elementos HTML de uma página web. O nave-

gador utiliza esta estrutura para renderizar a página e cada modificação nela

desencadeia uma nova renderização, processo que pode ser computacionalmente

custoso, especialmente em aplicações complexas.

• Fluxo de dados unidirecional: O modelo de fluxo de dados do React, onde as

informações fluem de componentes pais para filhos, torna o código mais previsível e

facilita a depuração. Tal fluxo pode ser exemplificado pela Figura 10 abaixo, onde

o componente "filho"recebe dados do componente "pai", mas pode utilizar alguma

função callback para atualizar o componente "pai".

Figura 10 – Exemplo do fluxo de dados unidirecional do React - Fonte: [4]

• Ecossistema rico: O amplo ecossistema do React proporcionou acesso a diversas

bibliotecas complementares que aceleraram o desenvolvimento.

A versão utilizada introduziu melhorias significativas na API de renderização e

no desempenho geral, particularmente em relação ao gerenciamento de efeitos colaterais

e renderização condicional. Este projeto fez uso extensivo dos Hooks do React, como

useState, useEffect, useContext e useCallback, que representam o paradigma mo-

derno de desenvolvimento em React, facilitando a gestão de estado e ciclo de vida dos

componentes sem a necessidade de classes [27].

2.2.2.2 Vite

O Vite foi adotado como ferramenta de build e servidor de desenvolvimento, em

substituição ao tradicional Create React App, por oferecer vantagens significativas em

termos de desempenho [28]. A configuração do projeto em vite.config.js demonstra

uma implementação minimalista, porém eficaz, desta ferramenta:

• Inicialização instantânea: O Vite, em sua versão 6.0.5, implementa um sistema

de divisão de módulos de aplicação e dependências, permitindo que o servidor de

42

desenvolvimento inicie quase instantaneamente, independentemente do tamanho da

aplicação.

• Hot Module Replacement (HMR): A substituição de módulos em tempo real é

significativamente mais rápida no Vite devido à sua arquitetura baseada em ESM

(ECMAScript Modules).

• Otimizações de produção: Para builds de produção, o Vite utiliza Rollup,

oferecendo excelentes otimizações de tree-shaking e splitting de código.

• Configuração simplificada: A configuração mínima necessária para iniciar o de-

senvolvimento facilitou o setup inicial do projeto, como evidenciado pela configuração

concisa do arquivo vite.config.js.

• Plugin ESLint integrado: A utilização do plugin vite-plugin-eslint permitiu

a verificação de qualidade de código durante o desenvolvimento, aumentando a

confiabilidade e consistência do código produzido.

A experiência de desenvolvimento aprimorada proporcionada pelo Vite resultou em

ciclos de desenvolvimento mais rápidos, especialmente durante a fase de implementação e

testes da interface do usuário.

2.2.2.3 Material-UI

O Material-UI (MUI) foi selecionado como framework de componentes de interface

do usuário [5]. A escolha foi baseada nos seguintes fatores:

• Design System consolidado: Baseado nas diretrizes do Material Design do Google,

o MUI oferece uma linguagem visual consistente e familiar aos usuários.

• Componentes ricos: A biblioteca fornece uma ampla gama de componentes pré-

construídos que atendem às necessidades de interfaces industriais, como tabelas,

diálogos, formulários e navegação.

• Responsividade: Os componentes do MUI são nativamente responsivos, adaptando-

se a diferentes tamanhos de tela sem configuração adicional extensiva.

• Personalização: O sistema de temas do MUI permite a customização consistente

de cores, tipografia e outros aspectos visuais através de configuração centralizada,

como explicitado em [29].

• Acessibilidade: Os componentes seguem as diretrizes WCAG, garantindo que a

interface seja utilizável por pessoas com diferentes necessidades.

43

No projeto, utilizou-se extensivamente componentes como Box, Grid2, Table,

Dialog, Snackbar e Card para estruturar a interface de gerenciamento de estações, dis-

positivos e tags. A biblioteca @mui/icons-material forneceu um conjunto abrangente

de ícones utilizados para enriquecer a experiência do usuário e melhorar a usabilidade da

interface. Alguns dos exemplos dos componentes dados na documentação oficial estão na

Figura 11 abaixo.

(a) Componente Card exemplo (b) Componente Grid exemplo

(c) Componente Table exemplo (d) Componente Dialog exemplo

Figura 11 – Componentes de exemplo do Material UI - Fonte: [5]

2.2.2.4 React Router

Para o gerenciamento de navegação na aplicação, o React Router [30] foi imple-

mentado devido a:

• Roteamento declarativo: Permite definir rotas como componentes React, facili-

tando a organização da navegação.

• Roteamento aninhado: Suporta a criação de layouts aninhados com rotas filhas,

essencial para implementar o padrão de navegação hierárquica do sistema.

• Navegação programática: Oferece APIs para navegação baseada em eventos ou

lógica de negócios.

44

• Parâmetros de rota: Facilita a captura de parâmetros dinâmicos da URL, útil

para exibição contextual de recursos.

• Melhorias de desempenho: A versão 7 introduz otimizações de desempenho

significativas em relação às versões anteriores.

No sistema desenvolvido, o React Router foi fundamental para implementar o

componente ProtectedRoute, que verifica a autenticação e autorização do usuário antes

de renderizar páginas protegidas, redirecionando usuários não autorizados para a página

de login.

2.2.2.5 Axios

O Axios foi escolhido como cliente HTTP para comunicação com a API backend

[31] pelos seguintes fatores:

• API baseada em Promises: Facilita o trabalho com operações assíncronas utili-

zando sintaxe moderna de JavaScript.

• Interceptores: Permite a interceptação de requisições e respostas para manipulação

global, utilizado no projeto para inclusão automática de tokens de autenticação em

cabeçalhos.

• Transformação de dados: Oferece funções para transformação automática de

dados enviados e recebidos.

• Cancelamento de requisições: Suporta o cancelamento de requisições em anda-

mento, útil para evitar atualizações de estado em componentes desmontados.

• Tratamento de erros consistente: Proporciona um formato padronizado para

tratamento de erros HTTP.

No projeto, o Axios foi configurado como uma instância centralizada no diretório

api, com interceptores para autenticação e tratamento uniforme de erros, garantindo uma

comunicação robusta e consistente com o backend.

2.2.2.6 Context API

Para gerenciamento de estado global, optou-se pela Context API nativa do React

em detrimento de bibliotecas externas [32]. Esta escolha foi motivada por:

• Simplicidade: A API de contexto oferece uma solução mais direta para comparti-

lhamento de estado entre componentes distantes na árvore de renderização.

45

• Integração nativa: Sendo parte do próprio React, não introduz dependências

adicionais ou paradigmas conflitantes.

• Suficiência: Para as necessidades de estado global deste projeto, principalmente

relacionadas à autenticação e autorização, a Context API mostrou-se suficiente sem

a complexidade adicional de soluções como Redux.

O projeto utiliza principalmente o AuthContext para gerenciar o estado de au-

tenticação e as permissões do usuário, tornando estas informações acessíveis a qualquer

componente.

2.2.2.7 Bibliotecas Auxiliares

Além das tecnologias principais, o projeto também fez uso de bibliotecas auxiliares

que contribuíram para sua robustez e funcionalidade:

• PropTypes: Utilizada para validação de tipos em tempo de desenvolvimento,

aumentando a confiabilidade dos componentes através da definição clara de suas

interfaces [33].

• File-Saver: Implementada para facilitar o download de arquivos gerados pelo

sistema, como relatórios ou logs [34].

• ESLint: Ferramenta de análise estática que garantiu a qualidade e consistência do

código, configurada com plugins específicos para React (eslint-plugin-react e

eslint-plugin-react-hooks) [35].

A combinação destas tecnologias e bibliotecas resultou em uma base sólida para o

desenvolvimento do frontend do Gateway MODBUS/MQTT, possibilitando a criação de

uma interface de usuário moderna, responsiva e eficiente, alinhada às necessidades dos

usuários finais e aos requisitos técnicos do projeto.

2.2.3 Sistema de Autenticação e Autorização

O sistema implementa autenticação baseada em JSON Web Tokens (JWT), onde

as credenciais do usuário são validadas pelo servidor, que retorna um token contendo

informações sobre identidade e permissões. Este token é armazenado localmente e incluído

automaticamente em todas as requisições subsequentes, permitindo acesso contínuo sem

necessidade de reautenticação frequente.

A gestão do estado de autenticação é centralizada através do Context API do

React, que disponibiliza informações sobre o usuário logado e suas permissões para todos

46

os componentes da aplicação. Esta abordagem simplifica o gerenciamento de sessão e

facilita a adaptação da interface conforme o nível de acesso.

O controle de acesso baseado em papéis (RBAC) estabelece três níveis de usuários:

administradores com acesso irrestrito, gerentes com permissão para gerenciar estações

e dispositivos, e visualizadores com acesso somente leitura. A implementação de rotas

protegidas através do React Router garante que páginas restritas só possam ser acessadas

por usuários com as permissões adequadas.

2.2.4 Gerenciamento de Estado

O gerenciamento de estado da aplicação utiliza uma combinação estratégica da

Context API para estados globais (como autenticação) e o hook useState para estados

locais de componentes. Esta abordagem equilibra a necessidade de compartilhamento

de informações entre componentes distantes com a modularidade e independência de

estados específicos. Na Figura 12 abaixo é exemplificada a passagem de informações entre

componentes distantes a partir de um Contexto (Context API), a partir dele é possível

fornecer dados para componentes distantes, sem necessariamente ter que passar entre os

seus componentes pais.

Figura 12 – Exemplo de passagem de informações para componentes distantes pelo Context
API - Fonte: [6]

Informações críticas como tokens de autenticação são persistidas no localStorage

do navegador, permitindo restauração automática da sessão em recarregamentos ou

reabertura da aplicação. A verificação de validade destes dados durante a inicialização

garante segurança sem comprometer a experiência do usuário.

Na tela de configuração de estações, implementou-se um sistema de "transações

pendentes"onde alterações são mantidas inicialmente apenas na interface, permitindo

ao usuário visualizar o impacto das mudanças antes de confirmar todas em uma única

operação ou descartá-las completamente. Esta abordagem melhora a consistência dos

47

dados e reduz o risco de configurações parciais ou inconsistentes. A Figura 13 demonstra

o modal para confirmar as alterações feitas durante o "modo de edição".

Figura 13 – Exemplo de transações pendentes - Fonte: Elaborado pelo autor

2.2.5 Interface do Usuário

A interface foi construída sobre o Material-UI, implementando um design system

consistente com paleta de cores funcionais e inspiradas na paleta da CESAMA, tipografia

hierárquica e densidade de informação balanceada. Elementos visuais específicos como

indicadores de status e navegação hierárquica foram desenvolvidos para atender às ne-

cessidades particulares do monitoramento industrial. As cores e tipografias utilizadas

foram:

• Cor primária:

– Principal: #32508F

– Clara: #C2E0F6

• Cor secundária:

– Principal: #8F7232

48

• Tipografia: Montserrat, sans-serif

Adotou-se uma abordagem responsiva que adapta layouts e componentes a diferentes

tamanhos de tela, garantindo usabilidade desde estações de trabalho industriais até

dispositivos móveis para monitoramento remoto. Estruturas em grid fluido e pontos de

quebra estratégicos mantêm a consistência visual enquanto otimizam o espaço disponível.

Grande atenção foi dedicada ao feedback visual durante interações, com estados

interativos claramente definidos, animações funcionais que guiam a atenção, e confirma-

ções visuais imediatas que complementam o sistema de notificações. Esta redundância

informativa previne incertezas operacionais, aspecto crucial em ambientes industriais.

2.2.6 Estrutura de Navegação

A navegação do sistema organiza-se em quatro áreas principais acessíveis via menu

lateral: Estações (ponto focal operacional), Usuários e Configurações (áreas administra-

tivas) e Logs (visualização de registros). Esta estruturação estabelece clara separação

entre tarefas cotidianas e administrativas, refletindo diferentes frequências de uso. O fluxo

principal da navegação no sistema pode ser visualizado na Figura 14 abaixo.

Figura 14 – Fluxograma de navegação na aplicação - Fonte: Elaborado pelo autor

Serão apresentadas as principais páginas da aplicação, conforme ilustrado na Figura

14, nas sub-seções a seguir.

49

2.2.6.1 Página de login

A página de login na aplicação é a página para qual qualquer usuário não autenticado

é redirecionado. Nela o intuito era ter uma interação simples com usuário para login via

usuário e senha do sistema. Após efetuado o login, o usuário é redirecionado para a Página

"principal"das estações (/stations). A Figura 15 traz uma captura de tela da página.

A parte do login foi pensada para que o usuário possa ocultar/desocultar a senha

que está sendo digitada.

Figura 15 – Página de login da aplicação - Fonte: Elaborado pelo autor.

Caso as credenciais sejam inválidas (não cadastradas no banco do sistema), um

aviso aparecerá, conforme ilustrado na Figura 16

Figura 16 – Exemplo de erro no login - Fonte: Elaborado pelo autor

2.2.6.2 Página de estações

A página de estações é considerada a página principal, pois nela se agrupam todas

as informações das estações, dispositivos e tags cadastrados nos sistema.

Agora, é possível também observar um padrão (após usuário cadastrado) no qual a

barra lateral existe para navegação do usuário entre as diversas páginas da aplicação e

50

logout, e a parte "principal"da página, que concentra de fato as informações principais

daquela página. Ao navegar de página para página, o que mudará será apenas o conteúdo

"principal". Os exemplos irão esclarecer essa ideia.

A Figura 17 traz uma captura de tela da página de estações, em que pode-se

observar uma tabela principal das Estações, a barra lateral de navegação e um footer com

informações básicas do projeto.

Figura 17 – Exemplo da página de estações - Fonte: Elaborado pelo autor

Dentro da seção de Estações, implementou-se navegação multinível com sistema

de drill-down progressivo, onde o usuário navega da lista de estações para dispositivos

associados e finalmente para tags específicas. Breadcrumbs interativos e integração com

o histórico do navegador facilitam a orientação e o retorno a contextos anteriores. A

Figura 18 demonstra a sequência da navegação multinível, visualizando os dispotivos da

estação "pc", depois as tags do dispositivo "TEMPERATURA_teste". Na parte superior, é

possível clicar nos Breadcrumbs para voltar a qualquer momento para alguma das páginas

anteriores. Ademais, na tabela existem as Ações que permitam que o usuário interaja

com aquela linha da tabela, podendo expandir o item para ver os dispositivos ou tags, ou

editar/excluir aquele item da linha (caso esteja em modo de edição).

51

(a) Página das estações.

(b) Página expandida do dispositivos da estação ’pc’.

(c) Página expandida das tags do dispotivo ’TEMPE-
RATURA_teste’.

Figura 18 – Exemplo de navegação entre itens da estação - Fonte: Elaborado pelo autor.

Para operações complexas, adotou-se navegação modal através de diálogos de edição

e fluxos de confirmação para operações críticas. Esta abordagem isola temporariamente o

contexto durante edições, mantendo o estado da visualização principal intacto e garantindo

retorno preciso ao concluir a operação.

2.2.6.3 Página de configurações

A página de configurações permite ao usuário configurar as credenciais do broker

MQTT e as permissões dos cargos no sistema. Dessa forma, o administrador tem controle

total sobre a aplicação e o gateway. A Figura 19 traz uma captura de tela da página.

52

Figura 19 – Exemplo da página de configurações - Fonte: Elaborado pelo autor

2.2.6.4 Página de usuários

A página de usuários, permite ao administrador configurar os usuários do sistema.

Seja cadastrando novos usuários, editando os existentes ou removendo-os. A Figura 20

traz uma captura de tela da página.

53

Figura 20 – Exemplo da página de usuários - Fonte: Elaborado pelo autor.

2.2.6.5 Página de logs

A página de logs, permite ao usuário visualizar/baixar logs de diferentes categorias

da aplicação, desde logs de alterações de cadastros simples como novas estações cadastradas

ou alteradas, até registros de operações do Gateway Modbus/MQTT, verificando se as

publicações, leituras e conexões estão funcionando ou não. A Figura 21 traz uma captura

de tela da página.

54

Figura 21 – Exemplo da página de logs - Fonte: Elaborado pelo autor.

2.2.7 Comunicação com o Backend

A comunicação com o backend é realizada através de API RESTful utilizando o

cliente Axios, com instância centralizada que padroniza cabeçalhos, transformações de

dados e tratamento de erros. As requisições são organizadas em serviços específicos para

cada domínio da aplicação, com validação em duas etapas para operações críticas.

Implementou-se tratamento abrangente de erros, com mensagens específicas para

falhas previsíveis e sistema de tratamento de exceções em múltiplas camadas para er-

ros inesperados. Durante operações assíncronas, indicadores de progresso e estados de

desabilitação de controles previnem ações duplicadas e fornecem feedback claro.

A arquitetura de comunicação foi otimizada para responsividade em condições

variáveis de rede, com técnicas como agrupamento de requisições, cache local e carregamento

progressivo. Para monitoramento em tempo real, implementou-se polling inteligente que

ajusta a frequência de atualização conforme atividade do usuário e disponibilidade do

55

servidor.

2.2.8 Otimizações de Performance

A performance da interface foi otimizada através de técnicas como memoização

de componentes e funções utilizando useCallback e useMemo, especialmente em listas de

estações, dispositivos e tags. O gerenciamento criterioso do ciclo de vida com implementação

disciplinada do useEffect e carregamento sob demanda de dados hierárquicos contribui

significativamente para a responsividade.

Adotou-se carregamento preguiçoso (lazy loading) para rotas menos frequentes e

avaliação criteriosa de dependências externas, reduzindo o tamanho do pacote inicial e

acelerando a inicialização da aplicação. A ferramenta Vite proporciona divisão de código e

tree shaking adicionais durante o processo de build.

Para contextos industriais específicos, implementou-se frequência adaptativa de

atualização baseada na visibilidade da aplicação, virtualização para listas extensas, e

mecanismos de estabilidade como retry automático e sincronização periódica. Estas

otimizações resultam em interface responsiva e confiável, mesmo em condições operacionais

desafiadoras.

2.2.9 Tratamento de Erros e Feedback ao Usuário

O sistema implementa uma abordagem multicamada para tratamento de erros,

combinando validação preventiva nos formulários com captura e apresentação adequada de

exceções durante operações. Validações em tempo real nos campos de entrada fornecem

feedback imediato sobre problemas potenciais, como valores fora das faixas permitidas

para parâmetros MODBUS, enquanto validações mais complexas são executadas antes da

submissão do formulário. Na Figura 22 é demonstrada a validação do campo de endereço

IP no formulário de criação/edição de uma estação.

Figura 22 – Exemplo de validação do campo de Endereço IP - Fonte: Elaborado pelo autor

Erros de comunicação com o backend ou falhas operacionais são capturados e

apresentados através de um sistema centralizado de notificações baseado no componente

56

Snackbar do Material-UI. As mensagens são categorizadas por severidade (informação,

sucesso, alerta ou erro) com codificação visual por cores e ícones, facilitando a compreensão

rápida da natureza do problema. Para operações críticas como exclusão de estações,

diálogos de confirmação explícita previnem ações irreversíveis acidentais.

Figura 23 – Snackbar apresentando falha na criação de estação - Fonte: Elaborado pelo
autor.

O feedback positivo também recebe atenção especial, com confirmações visuais

para operações bem-sucedidas e indicadores de progresso para ações de longa duração

como reinicialização do gateway. Esta estratégia equilibrada de feedback negativo e

positivo reduz a frustração do usuário, aumenta a confiança no sistema e diminui a curva

de aprendizado, aspectos particularmente importantes em ambientes industriais onde a

eficiência operacional é crítica.

Figura 24 – Snackbar apresentando sucesso nas alterações - Fonte: Elaborado pelo autor

2.2.10 Considerações sobre Experiência do Usuário

A experiência do usuário no sistema Gateway MODBUS/MQTT foi projetada

considerando o contexto operacional industrial, onde clareza, eficiência e consistência

sobrepõem-se a elementos estéticos. Os fluxos de trabalho foram estruturados para

minimizar o número de interações necessárias para tarefas frequentes, como verificação de

status de estações, enquanto operações complexas são subdivididas em etapas lógicas com

estado preservado entre transições.

A consistência visual e comportamental foi priorizada em toda a aplicação, com

padrões de interação uniformes para operações similares e terminologia técnica precisa. Esta

abordagem reduz a carga cognitiva dos operadores, especialmente importante em ambientes

industriais onde o sistema pode ser utilizado por profissionais com diferentes níveis de

familiaridade tecnológica e em condições de atenção dividida com outros equipamentos.

Aspectos de acessibilidade foram considerados através da implementação de con-

traste adequado, tamanhos de fonte ajustáveis e suporte a navegação por teclado. O

57

feedback imediato para ações do usuário, além de sua função informativa, também contribui

para a percepção de responsividade do sistema, criando uma experiência que inspira confi-

ança mesmo quando operações de backend possuem latência inerente. Estas considerações

resultam em uma interface que, embora tecnicamente sofisticada, apresenta-se ao usuário

como uma ferramenta intuitiva e confiável.

2.3 Infraestrutura de TI

A infraestrutura de TI do sistema Gateway MODBUS/MQTT foi projetada visando

facilidade de implantação, portabilidade e manutenção. A adoção de tecnologias de

conteinerização, especificamente o Docker, permitiu encapsular todos os componentes do

sistema em ambientes isolados e reproduzíveis, simplificando significativamente o processo

de desenvolvimento e implantação.

Figura 25 – Visão geral da infraestrutura baseada em Docker - Fonte: Elaborado pelo
autor.

58

2.3.1 Conteinerização com Docker

O Docker foi escolhido como plataforma de conteinerização por proporcionar ambi-

entes leves, portáteis e consistentes para execução dos diferentes componentes do sistema

[36]. Cada serviço da aplicação é executado em um contêiner independente, permitindo iso-

lamento de recursos e dependências específicas, além de facilitar a escalabilidade horizontal

quando necessário.

A conteinerização traz benefícios substanciais para um sistema industrial como o

Gateway MODBUS/MQTT, incluindo:

• Consistência entre ambientes: Elimina o tradicional problema "funciona na minha

máquina", garantindo comportamento idêntico nos ambientes de desenvolvimento,

teste e produção.

• Isolamento de dependências: Cada componente opera com suas próprias biblio-

tecas e dependências, evitando conflitos e simplificando atualizações.

• Otimização de recursos: Os contêineres compartilham o kernel do sistema opera-

cional, resultando em sobrecarga significativamente menor comparada a máquinas

virtuais tradicionais.

2.3.2 Arquitetura de Contêineres

A arquitetura do sistema é composta por três contêineres principais, cada um com

responsabilidades específicas:

2.3.2.1 Frontend

O contêiner do frontend encapsula a aplicação React e utiliza uma abordagem

multi-estágio no Dockerfile para otimizar o tamanho e a performance. No primeiro estágio,

a aplicação é construída em um ambiente Node.js:

FROM node:20-alpine as builder

WORKDIR /app

COPY package*.json ./

RUN npm install

COPY . .

RUN npm run build

No segundo estágio, apenas os artefatos de build são transferidos para um servidor

Nginx leve, responsável por servir a aplicação estática:

59

FROM nginx:alpine

COPY --from=builder /app/dist /usr/share/nginx/html

A configuração personalizada do Nginx implementa redirecionamento apropriado

para aplicações de página única (SPA), garantindo que todas as rotas sejam gerenciadas

corretamente pelo React Router.

2.3.2.2 Backend

O contêiner do backend encapsula a API FastAPI desenvolvida em Python e utiliza

Poetry para gerenciamento de dependências:

FROM python:3.11-slim

RUN pip install "poetry==1.8.2"

COPY pyproject.toml poetry.lock ./

RUN poetry config virtualenvs.create false

RUN poetry install --without dev --no-interaction

Esta configuração garante instalação consistente das dependências e otimização

para ambiente de produção, excluindo pacotes de desenvolvimento. O servidor Uvicorn é

utilizado para execução da aplicação FastAPI, oferecendo alto desempenho para aplicações

assíncronas.

2.3.2.3 MQTT Broker

O terceiro contêiner implementa o broker MQTT utilizando a imagem oficial do

Eclipse Mosquitto, um broker leve e de código aberto que implementa o protocolo MQTT:

mosquitto:

image: eclipse-mosquitto

volumes:

- ./Mosquitto/conf:/mosquitto/config

- ./Mosquitto/data:/mosquitto/data

- ./Mosquitto/log:/mosquitto/log

A configuração é montada a partir do host, permitindo personalização das políticas

de acesso, autenticação e persistência conforme os requisitos específicos da CESAMA.

2.3.3 Orquestração com Docker Compose

O Docker Compose é utilizado para definir e gerenciar a execução dos múltiplos

contêineres que compõem a aplicação [37]. Esta ferramenta simplifica significativamente o

60

processo de desenvolvimento e implantação, permitindo iniciar toda a infraestrutura com

um único comando.

O arquivo docker-compose.yml define a configuração de cada serviço, suas depen-

dências, mapeamentos de porta e volumes:

services:

backend:

build:

context: ./backend

dockerfile: Dockerfile

ports:

- "8000:8000"

volumes:

- ./backend:/app

- ./backend/database.db:/app/database.db

- ./backend/logs:/app/logs

environment:

- DATABASE_URL=sqlite:///database.db

networks:

- app-network

frontend:

build:

context: ./frontend/gateway-front

dockerfile: Dockerfile

ports:

- "3000:3000"

depends_on:

- backend

networks:

- app-network

mosquitto:

image: eclipse-mosquitto

container_name: mosquitto

volumes:

- ./Mosquitto/conf:/mosquitto/config

- ./Mosquitto/data:/mosquitto/data

- ./Mosquitto/log:/mosquitto/log

61

ports:

- "1883:1883"

- "9001:9001"

networks:

- app-network

networks:

app-network:

driver: bridge

Aspectos importantes desta configuração incluem:

• Volumes persistentes: Dados críticos como o banco de dados SQLite e logs são

armazenados em volumes mapeados para o host, garantindo persistência mesmo

após a recriação dos contêineres.

• Rede dedicada: Uma rede bridge isolada (app-network) é criada para comunicação

entre os contêineres, melhorando a segurança e simplificando a descoberta de serviços.

• Definição de dependências: Através da diretiva depends_on, garante-se que

os contêineres sejam iniciados na ordem correta, com o frontend dependendo do

backend.

2.3.4 Considerações sobre Implantação

A infraestrutura baseada em Docker proporciona flexibilidade para implantação em

diversos ambientes, desde servidores on-premises até plataformas de nuvem como máquinas

virtuais.

Os requisitos de hardware são relativamente modestos devido à eficiência dos

contêineres:

• CPU: 2+ cores para operação regular

• Memória: Mínimo de 2GB RAM, recomendado 4GB

• Armazenamento: 20GB+ para sistema, logs e dados

2.3.5 Implantação em Novo Ambiente

A implantação do sistema Gateway MODBUS/MQTT em um novo ambiente é

simplificada através do uso de Docker. A seguir, são apresentados os passos necessários

para executar a aplicação em uma nova máquina, assumindo que Docker e Docker Compose

estejam previamente instalados (instruções de instalação em [38]).

62

2.3.5.1 Requisitos Preliminares

Antes de iniciar a implantação, deve ser verificado se o ambiente atende aos seguintes

requisitos:

• Docker Engine (versão 20.10 ou superior)

• Docker Compose (versão 2.0 ou superior)

• Acesso à internet (para download inicial das imagens)

• Portas 3000 (Frontend), 8000 (Backend) e 1883 (MQTT) disponíveis

2.3.5.2 Procedimento de Implantação

O processo de implantação consiste em cinco etapas simples:

1. Obtenção do Código-Fonte:

O usuário deve clonar o repositório do projeto ou copiar os arquivos para a máquina

de destino:

git clone https://repositorio.do.projeto/gateway-modbus-mqtt.git

cd gateway-modbus-mqtt

2. Configuração do Ambiente:

Criar os diretórios necessários para os volumes persistentes:

mkdir -p Mosquitto/conf Mosquitto/data Mosquitto/log

mkdir -p backend/logs

Configurar o broker MQTT criando o arquivo Mosquitto/conf/mosquitto.conf

com o seguinte conteúdo:

persistence true

persistence_location /mosquitto/data

log_dest file /mosquitto/log/mosquitto.log

listener 1883

Authentication

allow_anonymous false

password_file /mosquitto/config/password.txt

63

Criar também o arquivo de senhas para autenticação do broker MQTT:

Crie um arquivo vazio para senhas

touch Mosquitto/conf/password.txt

Execute o comando dentro do contêiner para adicionar um usuário

Substitua 'usuario' e 'senha' pelos valores desejados

docker compose exec mosquitto mosquitto_passwd -b

/mosquitto/config/password.txt usuario senha

Ou, se o contêiner ainda não estiver em execução, use:

docker run --rm -v $(pwd)/Mosquitto/conf:/mosquitto/config

eclipse-mosquitto \ mosquitto_passwd -b

/mosquitto/config/password.txt usuario senha

Estas configurações habilitam a persistência de dados, registro de logs e, importante

para ambientes de produção, autenticação obrigatória para conexões ao broker

MQTT, aumentando a segurança do sistema.

3. Construção dos Contêineres:

Executar o comando abaixo para construir as imagens Docker definidas no docker-

compose:

docker compose build

Este processo pode levar alguns minutos na primeira execução, pois serão baixadas

as imagens base e instaladas todas as dependências.

4. Inicialização do Sistema:

Iniciar todos os serviços com o comando:

docker compose up -d

A flag -d executa os contêineres em modo destacado (background).

5. Verificação da Execução:

Confirmar se todos os contêineres estão em execução:

64

docker compose ps

Verificar os logs de cada serviço para identificar possíveis problemas:

docker compose logs backend

docker compose logs frontend

docker compose logs mosquitto

Após concluir estes passos, o sistema estará acessível através dos seguintes endereços:

• Frontend: http://localhost:3000 ou http://[IP-DA-MÁQUINA]:3000

• Backend API: http://localhost:8000 ou http://[IP-DA-MÁQUINA]:8000

• MQTT Broker: mqtt://localhost:1883 ou mqtt://[IP-DA-MÁQUINA]:1883

2.3.5.3 Operações Comuns de Manutenção

Para facilitar a administração do sistema em produção, a seguir são listados os

comandos mais comuns para operações de manutenção:

• Parar todos os serviços:

docker compose down

• Reiniciar um serviço específico:

docker compose restart backend

• Visualizar logs em tempo real:

docker compose logs -f

• Atualizar após alterações no código:

docker compose build frontend

docker compose up -d --no-deps frontend

65

Esta configuração facilita tanto ambientes de desenvolvimento quanto de produção,

permitindo que equipes de TI com diferentes níveis de experiência possam gerenciar o

sistema com facilidade.

Esta arquitetura de infraestrutura proporciona um equilíbrio entre robustez opera-

cional e facilidade de manutenção, permitindo que a equipe técnica da CESAMA gerencie

o sistema com recursos mínimos de TI, enquanto mantém a possibilidade de evolução e

escala conforme necessário.

66

3 Resultados

Este capítulo apresenta os resultados obtidos no desenvolvimento e implementação

do sistema Gateway MODBUS/MQTT, demonstrando o funcionamento dos diferentes

componentes da solução e sua integração, dentro de um ambiente simulado.

3.1 Inicialização do sistema

Nesta seção, será demonstrado como o sistema foi inicializado e quais os resultados

obtidos nessa inicialização, bem como os passos iniciais necessários para acessar o aplicativo

web.

Seguindo os passos presentes na Seção 2.3.5.2 , o Docker é utilizado para inicializar

o sistema. Ao executar o comando docker compose up o sistema é executado com os logs

no terminal ativos, para poder visualizar e mostrar os resultados.

Serão analisadas as inicializações separadamente, nas suas respectivas sub-seções a

seguir.

3.1.1 Análise da inicialização do backend

Ao inicializar o sistema, o backend fica disponível na porta 8000 da máquina,

esperando por requisições. O Gateway também é inicializado junto com a aplicação, mas

em uma thread separada.

As Figuras 26 e 27 mostram os logs, no terminal da máquina, de inicialização do

backend.

Figura 26 – Inicialização do container no terminal - Fonte: Elaborado pelo autor.

Figura 27 – Inicialização do backend no terminal - Fonte: Elaborado pelo autor.

67

Figura 28 – Inicialização do frontend no terminal - Fonte: Elaborado pelo autor.

3.1.2 Análise da inicialização do frontend

Ao inicializar o sistema, o frontend fica disponível na porta 3000 da máquina,

servindo a aplicação frontend.

As Figuras 26 e 28 mostram os logs, no terminal da máquina, de inicialização do

frontend.

Ao tentar acessar o sistema na máquina via localhost pela url https://localhost:3000

a aplicação já redireciona para a página de login. Os logs no terminal são mostrados na

Figura 29.

Figura 29 – Exemplo de requisição de página pelo frontend no terminal - Fonte: Elaborado
pelo autor.

3.2 Resultados Simulados

Para poder desenvolver e demonstrar o funcionamento do projeto como um todo,

foi feito o uso de duas máquinas distintas. Uma foi responsável por rodar o container do

aplicativo fullstack de gerenciamento do sistema. A segunda máquina utilizou a versão de

demonstração do software MODBUS Slave, da empresa modbus tools, para simular um

dispositivo escravo sendo acessado remotamente, como se fossem as estações da CESAMA.

A Figura 30 ilustra a arquitetura da simulação, onde o Laptop executa o simulador

MODBUS Slave e o PC executa o container da aplicação.

68

Figura 30 – Diagrama de estrutura da simulação - Fonte: Elaborado pelo autor.

3.2.1 Configuração do simulador

No simulador MODBUS Slave, a configuração é feita como se ele fosse uma estação.

Dentro dele, são configurados diferentes dispositivos com diferentes tags e valores nas tags

para serem lidos.

Para simplificar a demonstração, foram utilizados apenas 4 dispositivos com 5 tags

cada. Cada dispositivo é de um tipo de dado, sendo:

• Coil Status: Tipo 1, Coil Status;

• Mbslave3: Tipo 2, Input Status;

• Mbslave4 : Tipo 3, Holding Register;

• Mbslave5 : Tipo 4, Input Register;

Todas as 5 tags de cada dispositivo foram mantidas com o valor 0.

A Figura 31 mostra a configuração feita dentro do simulador, junto com as nomen-

claturas de cada dispositivo e a configuração de conexão do simulador.

69

(a) Configuração dos escravos simulados. (b) Configuração da conexão Modbus si-
mulada.

Figura 31 – Configurações da simulação - Fonte: Elaborado pelo autor.

3.2.2 Configuração do aplicativo web com os dados do simulador

Feitas as configurações no simulador no Laptop e conectado na rede, é necessário

cadastrar a estação no aplicativo executado no PC, bem como os dispositivos e tags de

cada um. A lista de cadastro segue a seguinte hierarquia:

• Estação: teste_simulado com IP do Laptop e porta 502

– Dispositivos:

– Coil Status

∗ Tags:

∗ tag1

∗ tag2

∗ tag3

∗ tag4

∗ tag5

– Mbslave3

∗ Tags:

∗ tag1

∗ tag2

∗ tag3

70

∗ tag4

∗ tag5

– Mbslave4

∗ Tags:

∗ tag1

∗ tag2

∗ tag3

∗ tag4

∗ tag5

– Mbslave5

∗ Tags:

∗ tag1

∗ tag2

∗ tag3

∗ tag4

∗ tag5

Para configurar o sistema, primeiro é necessário fazer login. Para isso, foi preparado

previamente um usuário no banco de dados com papel de "Administrador"do sistema.

Existe também o exemplo de um usuário "Gerente"do sistema que terá algumas restrições.

3.2.2.1 Login

Após preenchimento das credenciais e confirmação o backend recebe a requisição

de login e retorna com sucesso, além de já buscar pelas estações e status das mesmas para

exibir na página, conforme observado na Figura 32.

Figura 32 – Logs de requisições ao backend no terminal - Fonte: Elaborado pelo autor.

3.2.2.2 Cadastro de estação

Efetuado o login, a aplicação entra na página de estações. Nela, deve-se realizar o

cadastro de uma estação de teste, com as mesmas configurações efetuadas no simulador

(conforme hierarquia na seção 3.2.2). Para isso, basta entrar no modo de edição e ir em

"Criar estação".

A Figura 33 exemplifica o formulário de cadastro.

71

Figura 33 – Formulário de cadastro de estação - Fonte: Elaborado pelo autor

O registro de criação pode ser verificado pelo log das estações, conforme mostrado

na Figura 34.

Figura 34 – Log de cadastro da estação - Fonte: Elaborado pelo autor

3.2.2.3 Cadastro de dispositivo

Após cadastrar a estação, é feito o cadastro de um dispositivo dela. Basta abrir os

dispositivos da estação criada e ir em "Criar dispositivo".

A Figura 35 exemplifica o formulário de cadastro.

O registro de criação pode ser verificado pelo log dos dispositivos, conforme mostrado

na Figura 36.

72

Figura 35 – Formulário de cadastro de dispositivo - Fonte: Elaborado pelo autor

Figura 36 – Log de cadastro de dispositivo - Fonte: Elaborado pelo autor

3.2.2.4 Cadastro de tag

Após cadastrar o dispositivo, é feito o cadastro de uma tag dele. Basta abrir as

tags do dispositivo criado e ir em "Criar tag".

A Figura 37 exemplifica o formulário de cadastro.

O registro de criação pode ser verificado pelo log das tags, conforme mostrado na

Figura 38.

73

Figura 37 – Formulário de cadastro de tag - Fonte: Elaborado pelo autor

Figura 38 – Log de cadastro de tag - Fonte: Elaborado pelo autor

3.2.3 Permissionamento de páginas para gerente e visualizador

Conforme mencionado anteriormente, o acesso às páginas de Configuração e Usuá-

rios é restrito apenas para usuários com papel de Administrador no sistema.

Ao fazer login com um usuário com papel de Gerente, a barra de navegação lateral

mostra apenas as páginas Estações e Logs, conforme mostra a Figura 39.

O comportamento se estende para usuários que tiverem o papel Visualizador.

74

Figura 39 – Exemplo da barra lateral em visualização do Gerente - Fonte: Elaborado pelo
autor

3.2.4 Monitoramento da estação e funcionamento do Gateway encapsulado

Com os dados cadastrados, monitora-se o status da estação cadastrada a partir da

tela de Estações, na coluna Status.

Quando o simulador está conectado e funcionando, um indicador verde mostra que

a conexão está adequada, conforme ilustrado na Figura 40 .

Figura 40 – Exemplo de estação conectada - Fonte: Elaborado pelo Autor

Já quando o simulador é desconectado, o indicador muda para vermelho, mostrando

que a conexão com aquela estação foi perdida, conforme ilustrado na Figura 41.

75

Figura 41 – Exemplo de estação desconectada - Fonte: Elaborado pelo Autor

Ademais, é possível verificar o log da estação, na categoria do bridge (Gateway)

para verificar logs de publicação de dados no broker MQTT e status da conexão Modbus

com a estação. Isto pode ser feito a partir da página de Logs, conforme ilustrado na Figura

42, a partir do registro no tempo "05/03/2025 17:35:12" é possível visualizar a conexão

sendo estabelecida com sucesso e as publicações de dados no broker MQTT sendo feitas

com sucesso.

Figura 42 – Log de funcionamento do gateway - Fonte: Elaborado pelo autor

76

4 Conclusões

O presente trabalho propôs o desenvolvimento de uma aplicação web fullstack para

gerenciamento e encapsulamento de um gateway MQTT/Modbus para a CESAMA. O

sistema foi implementado utilizando Python com FastAPI no backend e React com Vite

no frontend, estabelecendo uma arquitetura moderna e eficiente. Ademais, foi possível

encapsular de forma integrada o gateway desenvolvido em [7].

4.1 Objetivos alcançados

Ao término do desenvolvimento e simulação realizada, é possível concluir que o

aplicativo atendeu plenamente às demandas e expectativas, proporcionando uma interface

intuitiva para o gerenciamento dos dispositivos conectados ao gateway e facilitando a

integração entre os protocolos MQTT e Modbus. As funcionalidades implementadas

permitiram simplificar o processo de configuração, monitoramento e manutenção do

sistema.

A utilização do FastAPI no backend mostrou-se uma escolha acertada, proporci-

onando uma API de alta performance e fácil manutenção, enquanto o React com Vite

no frontend, em conjunto com a biblioteca Material UI para componentes, garantiu uma

experiência de usuário consistente, acessível e esteticamente refinada. A integração do

Material UI permitiu a implementação de uma interface gráfica profissional com compo-

nentes reutilizáveis, acelerando o desenvolvimento e melhorando a usabilidade do sistema.

A arquitetura adotada demonstrou-se escalável e modular, permitindo futuras expansões e

adaptações conforme as necessidades da CESAMA evoluam.

4.2 Sugestão para Estudos Futuros

Como trabalhos futuros, sugere-se a implementação de recursos adicionais de análise

de dados e visualização em tempo real, além da possibilidade de integração com outros

protocolos industriais expandindo a versatilidade do sistema.

Por fim, conclui-se que o desenvolvimento deste aplicativo contribuiu significativa-

mente para a gestão e modernização da planta industrial da CESAMA, representando um

avanço tecnológico importante e adequado com os padrões atuais do mercado.

77

REFERÊNCIAS

1 VNODE. vNode use Cases v2.5. 2022. Disponível em: <https://vnodeautomation.com/
wp-content/uploads/vNode-v121-UseCases-v2.5.pdf>. Acesso em: 15/02/2025.

2 INC, E. T. Neuron Documentation. 2024. Disponível em: <https://docs.emqx.com/en/
neuronex/latest/>. Acesso em: 15/02/2025.

3 USTYMENKO, V. A/B testing on single-page applications with Adobe
Target. 2025. Disponível em: <https://business.adobe.com/blog/how-to/
your-guide-to-successfully-implementing-a-b-testing-in-a-single-page-application>. Acesso
em: 01/03/2025.

4 ARMSTRONG, N. Passing Data From Child to Parent Component
in TypeScript React. 2021. Disponível em: <https://plainenglish.io/blog/
passing-data-from-child-to-parent-component-in-typescript-react>. Acesso em:
03/02/2025.

5 MATERIALUI. Material UI - Overview. 2025. Disponível em: <https:
//mui.com/material-ui/getting-started/>. Acesso em: 15/02/2025.

6 REACT. Passing Data Deeply with Context. 2025. Disponível em: <https://pt-br.react.
dev/learn/passing-data-deeply-with-context#context-an-alternative-to-passing-props>.
Acesso em: 01/03/2025.

7 REIMAO, M. R. Gateway mqtt para sistemas de automação industrial. UFJF, 2024.

8 S.L., V. B. Meet the new vNode v1.21 Powerful Edge Platform For IIoT. 2024.
Disponível em: <https://vnodeautomation.com>. Acesso em: 15/02/2025.

9 INC, E. T. NeuronEX - Industrial Edge Data Hub. 2024. Disponível em:
<https://www.emqx.com/en/products/neuronex>. Acesso em: 15/02/2025.

10 INC, E. T. Neuron Github. 2024. Disponível em: <https://github.com/emqx/neuron>.
Acesso em: 15/02/2025.

11 SOBRINHO, A. M. et al. Conversor embarcado de protocolos modbus/mqtt para rede
iot utilizando raspberry pi. Brazilian Journal of Development, v. 9, n. 6, p. 19327–19337,
2023.

12 SILVA, C.; MUNIZ, F. An iot gateway for modbus and mqtt integration. In: . [S.l.:
s.n.], 2019.

13 MATOS, E. D. V. de. Sistema meu tcc: implementação do front-end de uma
aplicação web para controle de tccs utilizando reactjs. UFSC, 2023. Disponível em:
<https://repositorio.ufsc.br/handle/123456789/248929>.

14 CHEN, C.-Y. et al. Web-based internet of things on environmental and lighting control
and monitoring system using node-red, mqtt and modbus communications within embedded
linux platform. Internet of Things, v. 27, p. 101305, 2024. ISSN 2542-6605. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S2542660524002464>.

78

15 BORDIGNON, G. D. Desenvolvimento de um gateway de protocolo com suporte
a modbus e mqtt. UFSC, 2024. Disponível em: <https://repositorio.ufsc.br/handle/
123456789/256860>.

16 POETRY. Poetry Documentation. 2025. Disponível em: <https://python-poetry.org/
docs/>. Acesso em: 15/02/2025.

17 FASTAPI. FastAPI Source Code. 2025. Disponível em: <https://github.com/fastapi/
fastapi>. Acesso em: 15/02/2025.

18 FASTAPI. FastAPI Documentation. 2025. Disponível em: <https://fastapi.tiangolo.
com/>. Acesso em: 15/02/2025.

19 SQLALCHEMY. The Python SQL Toolkit and Object Relational Mapper. 2025.
Disponível em: <https://www.sqlalchemy.org/>. Acesso em: 15/02/2025.

20 ALEMBIC. A database migrations tool written by the author of SQLAlchemy. 2025.
Disponível em: <https://alembic.sqlalchemy.org/>. Acesso em: 15/02/2025.

21 PYDANTIC. The most widely used data validation library for Python. 2025.
Disponível em: <https://docs.pydantic.dev/latest/>. Acesso em: 15/02/2025.

22 PYJWT. Python library to encode and decode JSON Web Tokens. 2025. Disponível
em: <https://pyjwt.readthedocs.io/en/stable/>. Acesso em: 15/02/2025.

23 PWDLIB. Password hasher helper for the modern Python era. 2025. Disponível em:
<https://frankie567.github.io/pwdlib/>. Acesso em: 15/02/2025.

24 DAIQUIRI. Python logging setup helper. 2025. Disponível em: <https:
//daiquiri.readthedocs.io/en/latest/>. Acesso em: 15/02/2025.

25 FASTAPI. Bigger Applications - Multiple files. 2025. Disponível em: <https:
//fastapi.tiangolo.com/tutorial/bigger-applications/#an-example-file-structure>. Acesso
em: 15/02/2025.

26 META. React Reference Overview. 2025. Disponível em: <https://react.dev/
reference/react>. Acesso em: 15/02/2025.

27 META. Built-in React Hooks. 2025. Disponível em: <https://react.dev/reference/
react/hooks>. Acesso em: 15/02/2025.

28 VITE. Getting Started with Vite. 2025. Disponível em: <https://vite.dev/guide/>.
Acesso em: 15/02/2025.

29 MATERIALUI. Material UI - Theming. 2025. Disponível
em: <https://mui.com/material-ui/customization/theming/?srsltid=
AfmBOorta5ywxHPJnFF8LbkSOUfXreQ1t7dZNkoDCbWUNFIXOEjQNqyv>.
Acesso em: 15/02/2025.

30 ROUTER, R. React Router Home. 2025. Disponível em: <https://reactrouter.com/
home>. Acesso em: 15/02/2025.

31 AXIOS. Axios - Getting Started. 2025. Disponível em: <https://axios-http.com/docs/
intro>. Acesso em: 15/02/2025.

79

32 REACT. Creating a context. 2025. Disponível em: <https://react.dev/reference/
react/createContext>. Acesso em: 15/02/2025.

33 TYPES prop. Runtime type checking for React props and similar objects. 2025.
Disponível em: <https://www.npmjs.com/package/prop-types>. Acesso em: 15/02/2025.

34 SAVER file. Solution to saving files on the client-side. 2025. Disponível em:
<https://www.npmjs.com/package/file-saver>. Acesso em: 15/02/2025.

35 ESLINT. Find and fix problems in your JavasScript code. 2025. Disponível em:
<https://eslint.org/docs/latest/>. Acesso em: 15/02/2025.

36 DOCKER. Docker Docs. 2025. Disponível em: <https://docs.docker.com/>. Acesso
em: 01/03/2025.

37 DOCKER. Docker Compose. 2025. Disponível em: <https://docs.docker.com/
compose/>. Acesso em: 01/03/2025.

38 DOCKER. Get Docker. 2025. Disponível em: <https://docs.docker.com/get-started/
get-docker/>. Acesso em: 01/03/2025.

	Folha de rosto
	FOLHA DE APROVAÇÃO
	AGRADECIMENTOS
	RESUMO
	ABSTRACT
	LISTA DE ILUSTRAÇÕES
	LISTA DE TABELAS
	LISTA DE ABREVIATURAS E SIGLAS
	SUMÁRIO
	Introdução
	Gateways de protocolos e atualizações tecnológicas
	Motivação e objetivos
	Revisão do estado da técnica
	Soluções comerciais
	vNode
	NeuronEX

	Trabalhos correlatos
	Conversor Modbus/MQTT utilizando Raspberry Pi
	Implementação de um Sistema Gateway MQTT-Modbus para Abstração de Redes Industriais
	Sistema "Meu TCC": Implementação do front-end de uma aplicação web para controle de tccs utilizando ReactJs
	Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminação Utilizando Node-RED, MQTT e Comunicação Modbus em Plataforma Linux Embarcada
	Gateway para Integração de Redes Industriais Modbus com Ecossistemas IoT via Protocolo MQTT

	Organização do trabalho

	Desenvolvimento
	Backend
	Estrutura e responsabilidades do backend
	Tecnologias
	Base do projeto
	Multi-threading
	Framework - FastAPI
	Banco de dados e modelagem
	Segurança e logging

	Modelagem do banco de dados
	Login e Tokens
	Rotas
	Validação de Permissões nos endpoints

	Gerenciamento automático dos tópicos MQTT
	Gerenciamento do Gateway Modbus/MQTT
	Documentação interativa com Swagger
	Gerenciamento de Migrações com Alembic
	Gerenciamento de Logs
	Arquitetura de Logs
	Categorização e Níveis de Log
	Integração com os Componentes do Sistema
	Acesso aos Logs via API
	Segurança e Integridade

	Frontend
	Visão Geral da Arquitetura
	Tecnologias e Bibliotecas Utilizadas
	React
	Vite
	Material-UI
	React Router
	Axios
	Context API
	Bibliotecas Auxiliares

	Sistema de Autenticação e Autorização
	Gerenciamento de Estado
	Interface do Usuário
	Estrutura de Navegação
	Página de login
	Página de estações
	Página de configurações
	Página de usuários
	Página de logs

	Comunicação com o Backend
	Otimizações de Performance
	Tratamento de Erros e Feedback ao Usuário
	Considerações sobre Experiência do Usuário

	Infraestrutura de TI
	Conteinerização com Docker
	Arquitetura de Contêineres
	Frontend
	Backend
	MQTT Broker

	Orquestração com Docker Compose
	Considerações sobre Implantação
	Implantação em Novo Ambiente
	Requisitos Preliminares
	Procedimento de Implantação
	Operações Comuns de Manutenção

	Resultados
	Inicialização do sistema
	Análise da inicialização do backend
	Análise da inicialização do frontend

	Resultados Simulados
	Configuração do simulador
	Configuração do aplicativo web com os dados do simulador
	Login
	Cadastro de estação
	Cadastro de dispositivo
	Cadastro de tag

	Permissionamento de páginas para gerente e visualizador
	Monitoramento da estação e funcionamento do Gateway encapsulado

	Conclusões
	Objetivos alcançados
	Sugestão para Estudos Futuros

	REFERÊNCIAS

