UNIVERSIDADE FEDERAL DE JUIZ DE FORA
FACULDADE DE ENGENHARIA

ENGENHARIA ELETRICA - HABILITACAO EM ROBOTICA E
AUTOMACAO INDUSTRIAL

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automacao Industrial Baseado
em Plataforma Web

Juiz de Fora

2025

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automacao Industrial Baseado

em Plataforma Web

Trabalho de conclusao de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-

sito para aprovacao na disciplina - Trabalho
de Final de Curso.

Orientador: Prof. Dr. Guilherme MA4rcio Soares

Juiz de Fora

2025

Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Andrade, Bernardo Capobiango de.
Gateway MODBUS-MQTT para Sistemas de Automacao Industrial
Baseado em Plataforma Web / Bernardo Capobiango de Andrade. — 2025.
79 f. il

Orientador: Guilherme Mércio Soares

Trabalho de Conclusao de Curso de Graduagao — Universidade Federal de
Juiz de Fora, Faculdade de Engenharia. Engenharia Elétrica - Habilitagdo
em Robética e Automagdo Industrial, 2025.

1. Sistema IOT. 2. MQTT, Docker, Sparkplug. I. Soares,Guilherme M.,
orient. II. Titulo.

Bernardo Capobiango de Andrade

Gateway MODBUS-MQTT para Sistemas de Automacao Industrial Baseado
em Plataforma Web

Trabalho de conclusao de curso apresentado
ao Departamento de Energia Elétrica da Uni-
versidade Federal de Juiz de Fora como requi-

sito para aprovacao na disciplina - Trabalho
de Final de Curso.

Aprovado em 19 de Margo de 2025

BANCA EXAMINADORA

Prof. Dr. Guilherme Marcio Soares - Orientador
Universidade Federal de Juiz de Fora

Prof. Dr. Leandro Rodrigues Manso Silva
Universidade Federal de Juiz de Fora

Dr. Matheus Alberto de Souza
Universidade Federal de Juiz de Fora

Dr. Sérgio Queiroz de Almeida
Companhia de Saneamento Municipal - Cesama

AGRADECIMENTOS

Primeiramente, agradeco a Deus, pela minha vida, e por me permitir ultrapassar

todos os obstaculos encontrados ao longo da graduacao e da realizacao deste trabalho.

Aos meus pais, Adriana e Moysés, que nunca mediram esforcos para me ensinar e
proporcionar o maior valor da vida: o amor. Sem vocés como inspira¢ao e ponto de apoio
nada disso seria possivel, obrigado por me guiarem e serem exemplos nessa trajetéria da

vida.

A minha irma mais velha Luiza, que sempre me serviu como inspiracdo e me
guiou no caminho da Engenharia e da vida. Suas dicas, conselhos e amor foram pilares

fundamentais nessa caminhada.

A minha irma mais nova Julia, que esteve ao meu lado nessa trajetoria, suportando

os dias dificeis e celebrando as conquistas.

A minha avé Maria Inez, que sempre me guiou e cuidou no caminho da empatia e

carinho.

A minha namorada Isadora, que durante a graduacao foi meu ponto de apoio,
carinho e suporte em inimeros momentos, me fazendo ver e resolver as dificuldades com

outros olhos.

Ao grupo PET Elétrica UFJF, em especial o Prof. Danilo Pinto, que transformaram
a minha experiéncia durante a graduacao, ensinando a importancia da faculdade além
do campus e os valores essenciais da Engenharia, com os quais muito aprendi e continuo

aprendendo.

Aos amigos que fiz durante a graduacgdo, com os quais a caminhada foi mais

divertida e enriquecedora, me ajudando nos dias mais dificeis.

Aos professores e servidores da UFJF, por proporcionarem um ambiente de educagao

publica de qualidade, que todos deveriam ter a oportunidade de vivenciar.

Ao meu orientador Guilherme, suas aulas nao apenas ampliaram meus conheci-
mentos mas também me abriram os olhos para a drea. Sua dedicacao e orientacao me

tornaram um engenheiro e pessoa melhor.

RESUMO

Este trabalho apresenta o desenvolvimento de uma aplicagao web fullstack para
gerenciamento e encapsulamento de um gateway MQTT /Modbus destinado & CESAMA
(Companhia de Saneamento Municipal). O sistema foi implementado utilizando Python
com FastAPI no backend e React com Vite no frontend, estabelecendo uma arquitetura
moderna e eficiente. A aplicagdo proporciona uma interface intuitiva para o gerenciamento
dos dispositivos conectados ao gateway, facilitando a integracao entre os protocolos MQTT
e Modbus. Através da conteinerizacao com Docker, o sistema garante facil implantagao
e manutencao em diferentes ambientes. As funcionalidades implementadas simplificam
os processos de configuracao, monitoramento e manutenc¢ao, garantindo uma experiéncia
de usuario consistente, acessivel e refinada. Este avanco tecnolégico representa uma
contribuicao significativa para a gestao e modernizacdo da infraestrutura industrial da

CESAMA, alinhando-se aos padroes atuais do mercado.

Palavras-chave: Sistema IIOT. Docker. MQTT. SparkPlug. FastAPI. React.

ABSTRACT

This work presents the development of a fullstack web application for the manage-
ment and encapsulation of an MQTT /Modbus gateway designed for CESAMA (Municipal
Sanitation Company). The system was implemented using Python with FastAPI for the
backend and React with Vite for the frontend, establishing a modern and efficient architec-
ture. The application provides an intuitive interface for managing devices connected to the
gateway, facilitating integration between MQTT and Modbus protocols. Through Docker
containerization, the system ensures easy deployment and maintenance across different
environments. The implemented features simplify the configuration, monitoring, and
maintenance processes while ensuring a consistent, accessible, and refined user experience.
This technological advancement represents a significant contribution to the management
and modernization of CESAMA’s industrial infrastructure, aligning with current market

standards.

Keywords: IIOT System. Docker. MQTT. SparkPlug. FastAPI. React.

LISTA DE ILUSTRACOES

Figura 1 — Arquitetura de um dos usos de casos do vNode. Fonte: [1] 14
Figura 2 — Arquitetura basica do NeuronEX. Fonte: [2] 15
Figura 3 — Diagrama da estrutura pensada para o backend - Fonte: Elaborado pelo

autor. ..o oL 19
Figura 4 — Diagrama das tabelas e varidveis do banco de dados - Fonte: Elaborado pelo

autor 25
Figura 5 — Fluxo de autenticacao da aplicacao - Fonte: Elaborado pelo autor . . . 26
Figura 6 — Estrutura de médulos e rotas do backend - Fonte: Elaborado pelo autor 28
Figura 7 — Comparativo entre ciclo de vida de uma pagina tradicional e uma SPA - Fonte:

[B] o 37

Figura 8 — Estrutura das pastas e arquivos visualizado pelo editor Visual Studio Code -

Fonte: Elaborado peloautor 38
Figura 9 — Stack tecnoldgica utilizada no desenvolvimento do frontend. Fonte: Elaborado
peloautoro 40
Figura 10 — Exemplo do fluxo de dados unidirecional do React - Fonte: [4] 41
Figura 11 — Componentes de exemplo do Material UI - Fonte: [5] 43
Figura 12 — Exemplo de passagem de informagoes para componentes distantes pelo Context
API-Fonte: [6] 46
Figura 13 — Exemplo de transagoes pendentes - Fonte: Elaborado pelo autor 47

Figura 14 — Fluxograma de navegacao na aplicagao - Fonte: Elaborado pelo autor . 48

Figura 15 — Pagina de login da aplicacao - Fonte: Elaborado pelo autor. 49
Figura 16 — Exemplo de erro no login - Fonte: Elaborado pelo autor 49
Figura 17 — Exemplo da pagina de estacoes - Fonte: Elaborado pelo autor 50
Figura 18 — Exemplo de navegacao entre itens da estacao - Fonte: Elaborado pelo au-

BOT. . o 51
Figura 19 — Exemplo da pagina de configuracoes - Fonte: Elaborado pelo autor . . 52
Figura 20 — Exemplo da pagina de usuérios - Fonte: Elaborado pelo autor. 53
Figura 21 — Exemplo da pagina de logs - Fonte: Elaborado pelo autor. 54

Figura 22 — Exemplo de validacao do campo de Endereco IP - Fonte: Elaborado pelo
autor oL e 59

Figura 23 — Snackbar apresentando falha na criacao de estagao - Fonte: Elaborado pelo

autor. ..o oL L 56
Figura 24 — Snackbar apresentando sucesso nas altera¢oes - Fonte: Elaborado pelo au-
tOr . . L e e 56

Figura 25 — Visao geral da infraestrutura baseada em Docker - Fonte: Elaborado pelo
autor. . .. oL e e e 57

Figura 26 — Inicializagao do container no terminal - Fonte: Elaborado pelo autor. . 66

Figura 27 — Inicializacao do backend no terminal - Fonte: Elaborado pelo autor. . . 66
Figura 28 — Inicializagdo do frontend no terminal - Fonte: Elaborado pelo autor. . . 67

Figura 29 — Exemplo de requisicao de pagina pelo frontend no terminal - Fonte: Elaborado

peloautor. 67
Figura 30 — Diagrama de estrutura da simulacao - Fonte: Elaborado pelo autor. . . 68
Figura 31 — Configurac¢oes da simulacao - Fonte: Elaborado pelo autor. 69

Figura 32 — Logs de requisi¢oes ao backend no terminal - Fonte: Elaborado pelo autor. 70

Figura 33 — Formulario de cadastro de estacao - Fonte: Elaborado pelo autor. . . . 71
Figura 34 — Log de cadastro da estacao - Fonte: Elaborado pelo autor 71
Figura 35 — Formulario de cadastro de dispositivo - Fonte: Elaborado pelo autor . . 72
Figura 36 — Log de cadastro de dispositivo - Fonte: Elaborado pelo autor 72
Figura 37 — Formulario de cadastro de tag - Fonte: Elaborado pelo autor 73
Figura 38 — Log de cadastro de tag - Fonte: Elaborado pelo autor 73
Figura 39 — Exemplo da barra lateral em visualizagdo do Gerente - Fonte: Elaborado pelo

autor e 74
Figura 40 — Exemplo de estagdo conectada - Fonte: Elaborado pelo Autor 74
Figura 41 — Exemplo de estacao desconectada - Fonte: Elaborado pelo Autor. . . . 75

Figura 42 — Log de funcionamento do gateway - Fonte: Elaborado pelo autor. . . . 75

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

CLP Controlador Logico Programavel

IIOT Industrial Internet of Things (Internet das Coisas Industrial)
I0T Internet of Things (Internet das Coisas)
IP Internet Protocol

JWT JSON Web Token

MQTT Message Queuing Telemetry Transport
OPC Open Platform Communications

ORM Object-Relational Mapping

RBAC Role-Based Access Control

REST Representational State Transfer

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition
SPA Single Page Application

TCP Transmission Control Protocol

TI Tecnologia da Informacao

Ul User Interface

1.1

1.2

1.3
1.3.1
1.8.1.1
1.3.1.2
1.3.2
1.83.2.1
1.3.2.2

1.3.2.3

1.3.2.4

1.3.2.5

1.4

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.5
2.1.3
2.1.4
2.1.5
2.1.5.1
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10

SUMARIO

Introducao e e e e e e e e 12
Gateways de protocolos e atualizacoes tecnolégicas 12
Motivacao e objetivos 13
Revisao do estado da técnicao 13
Solugdes comerciais 13
vNode 13
NeuronEX 15
Trabalhos correlatos 16
Conversor Modbus/MQTT utilizando Raspberry P1 16
Implementacao de um Sistema Gateway MQTT-Modbus para Abstracao de
Redes Industriais 17

Sistema "Meu TCC": Implementacao do front-end de uma aplicacao web para
controle de tces utilizando ReactJso 17
Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminagao
Utilizando Node-RED, MQTT e Comunicacao Modbus em Plataforma Linux

Embarcada 17
Gateway para Integracdo de Redes Industriais Modbus com Ecossistemas IoT
via Protocolo MQTT 18
Organizacgao do trabalho o L 18
Desenvolvimento 0 ... 19
Backend 19
Estrutura e responsabilidades do backend 19
Tecnologias 20
Base do projetoo 20
Multi-threading 20
Framework - FastAPI 20
Banco de dados e modelagem 21
Seguranca e loggingo 21
Modelagem do banco de dados L. 23
Login e Tokens 25
Rotas 27
Validagdao de Permissoes nos endpoints 30
Gerenciamento automatico dos topicos MQTT 31
Gerenciamento do Gateway Modbus/MQTT 32
Documentacao interativa com Swagger 32
Gerenciamento de Migragoes com Alembic 33

Gerenciamento de Logs 34

2.1.10.1
2.1.10.2
2.1.10.3
2.1.10.
2.1.10.5
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.8
2.2.2.
2.2.2.5
2.2.2.6
2.2.2.7
2.2.3
2.2.4
2.2.5
2.2.6
2.2.6.1
2.2.6.2
2.2.6.3
2.2.6.
2.2.6.5
2.2.7
2.2.8
2.2.9
2.2.10
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.3
2.3.4
2.3.5
2.9.5.1
2.8.5.2

Arquitetura de Logso 34

Categorizacao e Niveisde Log 34
Integragao com os Componentes do Sistema 35
Acesso aos Logs via APT 35
Seguranca e Integridade oL 36
Frontend 36
Visao Geral da Arquitetura 36
Tecnologias e Bibliotecas Utilizadas 39
React o . 40
Vite . . . o 41
Material-UL. 42
React Router 43
AXIOS . . L 44
Context API 44
Bibliotecas Auxiliares 45
Sistema de Autenticagao e Autorizacdo 45
Gerenciamento de Estado oL 46
Interface do Usudrio 47
Estrutura de Navegacdo 48
Paginadelogin 49
Pagina de estagoes 49
Pagina de configuragoéeso 51
Pagina de usuarios 52
Paginadelogs 53
Comunicagdo com o Backend 54
Otimizagoes de Performance 55
Tratamento de Erros e Feedback ao Usuario 55
Consideragoes sobre Experiéncia do Usuério. 56
Infraestruturade TT00 oo 57
Conteinerizacdo com Docker 58
Arquitetura de Contéineres 58
Frontend 58
Backend 59
MQTT Broker 59
Orquestragdo com Docker Compose 59
Consideragoes sobre Implantagao 61
Implantacao em Novo Ambiente 61
Requisitos Preliminares L. 62

Procedimento de Implantacao 62

2.3.5.3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.9
3.2.2.4
3.2.3
3.2.4

4.1
4.2

Operacoes Comuns de Manutencao 64

Resultados e e 66
Inicializagao do sistemao 66
Analise da inicializagdo do backend 66
Analise da inicializagdo do frontend L. 67
Resultados Simulados L 67
Configuragao do simulador L. 68
Configuragao do aplicativo web com os dados do simulador 69
Login e 70
Cadastro de estacao 70
Cadastro de dispositivo 71
Cadastrode tag 72
Permissionamento de paginas para gerente e visualizador 73
Monitoramento da estagao e funcionamento do Gateway encapsulado . . 74
Conclustes v v v v i e e e e e e e e e e e e e e e e e e 76
Objetivos alcangados 76
Sugestao para Estudos Futuros 76

REFERENCIAS . . . o v o e e e e e e e e e s e e s e e 77

12
1 Introducao

A industria 4.0 tem tornado-se cada vez mais presente em sistemas da atuali-
dade, buscando a coleta, armazenamento e andlise de dados gerados pelas cadeias de
producgao, bem como a integracao de sistemas e processos industriais de forma inteligente
e eficiente. Nesse contexto, destaca-se o protocolo MQTT como uma nova alternativa
para a comunicagao entre dispositivos, devido a sua simplicidade, baixa complexidade e
alta interoperabilidade. Neste capitulo, serao apresentados alguns conceitos gerais que
mostram como a atualizag¢ao tecnolégica em empresas é importante, como a integragao
entre tecnologias, legadas e modernas, pode ser feita, bem como os desafios envolvidos na

transicao e quais solucoes sao adequadas.

1.1 Gateways de protocolos e atualizagoes tecnologicas

Os gateways de protocolos desempenham um papel crucial na interconexao de
sistemas e dispositivos, especialmente em um cenario industrial moderno em constante
evolugao. Eles permitem a comunicacao entre diferentes protocolos, facilitando a integracao
de tecnologias legadas com solu¢bes modernas, como as que utilizam [oT e MQTT.
Essa capacidade de adaptacao é fundamental para empresas que buscam atualizar suas

infraestruturas tecnologicas e melhorar a eficiéncia operacional.

O gateway de aplicagao é utilizado para permitir a comunicagao entre diferentes
aplicagoes ou sistemas de software. Essencialmente, atua como um intermediario entre
os sistemas, traduzindo os protocolos de comunicagao utilizados por cada um deles. Isso
permite que aplicagoes desenvolvidas em diferentes linguagens de programacao ou que

utilizem diferentes protocolos, possam se comunicar de forma transparente.

Como exemplo de um cenéario industrial moderno, é possivel a utilizacdo de um
gateway de aplicacao para a integragao de diferentes protocolos de comunicacdo. Em um
caso especifico, o exemplo inclui o MODBUS, um protocolo industrial tradicional com
recursos limitados, e o MQTT, um protocolo contemporaneo para IoT, mas a mesma
estratégia é aplicavel com quaisquer outros protocolos. A funcao do gateway consiste na
leitura dos dados em um formato (como MODBUS) e na republicagdo em outro (como
MQTT), o que resulta em atualizacao tecnolégica no transporte dos dados industriais

sensiveis e importantes, sem dependéncia dos protocolos selecionados.

Ademais, é possivel incrementar um gerenciamento simples, eficiente e moderno

em cima dessa aplicagao, tornando o sistema robusto e escalavel.

13

1.2 Motivacao e objetivos

No setor de distribuigao e tratamento de agua da cidade de Juiz de Fora, a CESAMA
enfrenta desafios relacionados a comunicacao e monitoramento remoto de suas estagoes de
tratamento e distribuicdo. A necessidade de modernizacao das tecnologias de comunicacao
industrial sem interrupcao no abastecimento de agua constitui a principal motivagao
deste trabalho. O ambiente atual opera com tecnologias industriais tradicionais, porém

limitadas, o que dificulta a escalabilidade e a manutencao do sistema.

A proposta inclui uma aplicagdo web fullstack moderna para o gerenciamento,
manutencao e encapsulamento de um Gateway que permite a conexao entre as estacoes da
planta e o software de supervisao E3. A implementacao desta interface visa a substituicao
do protocolo industrial tradicional MODBUS por uma solugao baseada no protocolo
contemporaneo MQTT, mais adequado para comunicagbes em ambientes industriais

modernos.

Este trabalho complementa a pesquisa anterior, citada em [7], que aborda aspectos
técnicos da mesma problematica. A integracao destas solugoes resultard em um sistema
completo para gerenciamento da planta da CESAMA, com capacidade de monitoramento
do estado das conexoes sem a necessidade de interrupg¢oes no abastecimento de dgua para

a cidade.

1.3 Revisdo do estado da técnica

Uma breve revisao da literatura revela que existem diversas solugoes comerciais e

académicas voltadas para a conversao e gerenciamento de dados entre protocolos Modbus
e MQTT.

1.3.1 Solugoes comerciais

No mercado, aplicagdes como o vNode e NeuronEX oferecem solugoes robustas
para a conversao de protocolos e gerenciamento dos dados, permitindo, por exemplo,
a integragao de dispositivos Modbus a sistemas baseados em MQTT. Essas aplicagoes

frequentemente fornecem interfaces web para configuragao e suporte a padrdes como
MQTT Sparkplug.

1.3.1.1 vNode

O vNode [8] é concebido como um Industrial IoT Gateway que possibilita a coleta,
o processamento e a entrega de informagoes oriundas da planta industrial. Sua arquitetura
modular, que dispensa a necessidade de programacao customizada, adota um conceito
plug-and-play, permitindo que os modulos de conectividade sejam configurados de maneira

rapida e intuitiva. Além disso, o vNode é compativel com diversas plataformas operacionais,

14

incluindo sistemas baseados em Linux, Windows e dispositivos embarcados com arquitetura
ARM, o que reforca sua versatilidade em ambientes industriais heterogéneos. A arquitetura

principal de funcionamento pode ser vista na Figura 1.

=
- OPC Server | I
1[1]]

A1 ——
- s, T |
A1) L“S%_‘J

SIEMENS 57

‘cmhu.

Figura 1 — Arquitetura de um dos usos de casos do vNode. Fonte: [1]

Para garantir a interoperabilidade entre os dispositivos de campo e os sistemas de
supervisao (SCADA), o vNode integra uma ampla variedade de protocolos industriais, fun-
damentais para a comunicac¢ao no ambiente de automacao. Entre os principais protocolos

suportados, destacam-se:

« Modbus (TCP/IP e RTU): Protocolo tradicional e amplamente adotado para a

comunicag¢ao entre dispositivos eletronicos de automacao.

« OPC (OPC DA e OPC UA): Padroes que permitem a interoperabilidade entre

diferentes sistemas e dispositivos, facilitando a troca de dados em tempo real.

« DNP3: Utilizado principalmente em sistemas de controle de energia e automagao

de processos, oferecendo alta confiabilidade em ambientes criticos.

e MQTT: Protocolo leve de mensageria, ideal para a transmissao de dados em redes

com restricao de banda ou alta laténcia.

o« REST: Interface de comunicacao que viabiliza a integragao com aplicagoes web e

plataformas de nuvem.

Adicionalmente, o vNode dispoe de mdédulos especificos para a comunicacao com
dispositivos industriais, como os controladores Siemens S7, e permite a coleta de dados a
partir de arquivos em formatos TXT, CSV e XML. Na etapa de entrega, a plataforma se
integra a sistemas de banco de dados (por exemplo, SQL e MongoDB), sistemas SCADA

e até mesmo a servicos de nuvem como AWS, Google Cloud e Azure.

Em sintese, o vNode configura uma solucao eficaz para os objetivos deste trabalho,

proporcionando uma integragao robusta e integrada para ambientes industriais. Entretanto,

15

por ser um servico comercializado e fechado, nao oferece o mesmo nivel de flexibilidade e
controle que uma implementacao propria pode alcancar. Ademais, por se tratar de uma
solugao paga, os custos envolvidos podem ser exarcebados e proibitivos em determinados

contextos.

1.5.1.2 NeuronEX

A EMQ) Technologies é reconhecida mundialmente como a principal fornecedora
de software para infraestrutura de dados IoT open-source. Com uma abordagem nativa
em nuvem, a empresa capacita aplicagoes IoT a prova de futuro ao oferecer produtos
integrados que conectam, movimentam, processam e integram dados em tempo real — desde
o edge até a nuvem multi-cloud. Seu portfélio é liderado pelo EMQ@QX, uma plataforma de

mensageria MQTT open-source escalavel e confiavel.

Dentro do portfélio da EMQ), destaca-se o Neuron (também conhecido como Neu-
ronEX [9]), uma solucdo avangada de Industrial Edge Data Hub projetada para ambientes
industriais. O Neuron é uma ferramenta essencial para a transformacao digital, pois
permite o acesso em tempo real e a analise inteligente de dados provenientes de diferentes
dispositivos e sistemas presentes na cadeia produtiva, tais como Controladores Logicos
Programéveis (CLPs), méquinas CNC, robds, sistemas SCADA e sensores inteligentes. A

arquitetura basica de utilizacdo do NeuronEX pode ser observada na Figura 2.

%)), NeuronEx

Management

Data Collection Data Analysis Data Delivery
= 1T Platfarm

HTTRIHTTFS Analytics

SMaTT

El DCE . .
{mestyan) Windows . . Wabsorket F

i ualization
[o . . .

Applications

Figura 2 — Arquitetura basica do NeuronEX. Fonte: [2]

Uma das principais vantagens do Neuron ¢é sua capacidade de integrar uma am-
pla variedade de protocolos industriais, o que facilita a comunicac¢ao entre os diversos

equipamentos e sistemas de produgao. Essa integracao abrange:

o MQTT: Protocolo leve de mensageria, ideal para a transmissao de dados em redes

com restricao de banda ou alta laténcia.

« SparkPlugB: Voltado para padronizar a comunicacao entre dispositivos industriais,
esse protocolo promove maior interoperabilidade e integracao dos dados em ambientes

de produgao.

16

o HTTP: Permite a integracao com servigos web e a transmissao de dados para
plataformas na nuvem ou centros de dados locais, ampliando as possibilidades de

conexao e analise.

« WebSocket: Protocolo que viabiliza a comunicacao bidirecional continua, essencial

para aplicagoes que exigem baixa laténcia e atualizagoes em tempo real.

Além disso, o Neuron oferece suporte a coleta e processamento de dados por
meio de funcionalidades como filtragem, limpeza, padronizacao e processamento em fluxo
(streaming). Sua arquitetura modular e flexivel possibilita a adaptac¢do tanto a ambientes
on-premises quanto a infraestruturas baseadas em contéineres (Docker, Kubernetes),
contribuindo para uma integragao eficiente entre as tecnologias de Informagao (T1) e de
Operagoes (OT).

Em sintese, o Neuron demonstra capacidade para operacao em ambientes industriais,
oferecendo funcionalidades de acesso em tempo real e analise de dados. A solucao dispoe
de um repositério no GitHub [10], permitindo acesso ao seu codigo-fonte e & colaboragao
da comunidade. Contudo, mesmo sendo open-source, o Neuron impde um limite de uso de
apenas 30 tags, uma restricao que pode se mostrar incompativel com o escopo de projetos
mais robustos. Essa limitacao pode resultar em custos adicionais que, em determinadas
situacoes, tornam a solucdo economicamente inviavel para o uso pretendido. Além disso,
optar pelo desenvolvimento de uma solugao prépria pode oferecer maior controle sobre as
funcionalidades necessarias e um potencial de customizacao superior, permitindo que os

requisitos especificos do projeto sejam atendidos de maneira mais precisa e econdmica.

1.3.2 Trabalhos correlatos

No ambito académico, diversas pesquisas tém se concentrado no desenvolvimento
de solugoes de gateway Modbus/MQTT, além de diversos trabalhos que implementam

aplicagoes web com React. Serao exploradas as propostas feitas em [11, 12, 13, 14, 15].

1.3.2.1 Conversor Modbus/MQTT utilizando Raspberry Pi

Em [11] é apresentado o uso de um Raspberry Pi como conversor entre os protocolos

Modbus e MQT'T, para controle de uma planta didatica.

O trabalho faz uma revisao sobre os conceitos envolvidos e mostra uma possivel
forma de fazer a conversao entre os protocolos. Por fim, apresenta os resultados do

funcionamento e valida o conceito como viavel para aplicacao industrial.

17

1.3.2.2 Implementacao de um Sistema Gateway MQTT-Modbus para Abstracao de

Redes Industriais

Em [12] é proposto o desenvolvimento de um gateway que integra redes industriais
legadas, baseadas no protocolo Modbus RTU, ao ecossistema [oT via MQTT. Utilizando
um ESP32 e um broker em JavaScript, o sistema permite que usuarios, sem conhecimento
aprofundado de Modbus, controlem e monitorem dispositivos industriais por meio de
requisi¢oes JSON. Essa solucao abstrai a complexidade do protocolo, implementando
modulos de validagao, conversao e sincronizacao de mensagens, além de oferecer controle de
acesso granular. Testado em ambiente simulado, o gateway demonstra ser uma ferramenta
confidavel, escalavel e segura para a integracao de redes industriais com a Internet das

Coisas.

1.3.2.3 Sistema "Meu TCC": Implementacao do front-end de uma aplicacao web para

controle de tces utilizando ReactJs

Em [13] é apresentada a implementagao do Front-End de uma aplicacdo web
denominada "Meu TCC", utilizando tecnologias modernas de desenvolvimento. Baseado
em Javascript e React, o sistema emprega o conceito de Single Page Application (SPA),
onde a interface é dividida em componentes reutilizaveis que sdo atualizados dinamicamente.
A integracdo com a biblioteca Material Ul proporcionou acesso a elementos pré-construidos
baseados no Material Design da Google, agilizando o desenvolvimento e garantindo

consisténcia visual.

1.3.2.4 Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminacao
Utilizando Node-RED, MQTT e Comunicacao Modbus em Plataforma Linux

Embarcada

Em [14] é apresentado um sistema IoT baseado na web para monitoramento
ambiental e controle de iluminacao. A solugdao utiliza uma Raspberry Pi 4B como
plataforma Linux embarcada, hospedando um broker MQTT e um servidor Node-RED para
criar uma interface homem-maquina multiplataforma. Programas Python implementam
multiplas threads para eficiente troca de dados via protocolos Modbus TCP e MQTT,
permitindo interacao continua entre PLCs e servidores broker. O sistema aproveita
a ferramenta Node-RED para desenvolvimento de uma interface web com recursos de

Publicacao/Subscrigago MQTT, garantindo comunicacao fluida com o servidor.

Através da configuragao do servidor HTTP Apache para direcionar ao diretorio
web do Node-RED, os pesquisadores conseguiram monitorar efetivamente as condigoes
laboratoriais e gerenciar o sistema de iluminacao. Os resultados experimentais validam a

relagdo custo-beneficio da abordagem na transformacao de sistemas de controle tradicionais

18

em sistemas supervisoérios baseados na web, ampliando a funcionalidade dos equipamentos

existentes e reforcando a aplicabilidade das solugoes [oT em ambientes praticos de pesquisa.

1.3.2.5 Gateway para Integragao de Redes Industriais Modbus com Ecossistemas [oT
via Protocolo MQTT

Em [15] é apresentado o desenvolvimento de um gateway que atua como ponte entre
dispositivos industriais baseados no protocolo Modbus e aplica¢oes de Internet das Coisas
(IoT) que utilizam o protocolo MQTT. Implementado em um Raspberry Pi executando
Node.js, o sistema permite que equipamentos industriais legados comuniquem-se direta-
mente com plataformas IoT modernas, viabilizando a coleta e analise de dados em tempo
real. O gateway inclui uma interface web intuitiva para configuracao e monitoramento,

eliminando a necessidade de conhecimentos avancados sobre os protocolos envolvidos.

O autor validou o sistema como uma solu¢do de baixo custo para projetos de
automacao industrial, conduzindo o trabalho na empresa SCADAHUB, demonstrando sua
eficacia na integracao de dispositivos Modbus tradicionais ao ecossistema [oT através do
protocolo MQTT.

1.4 Organizacao do trabalho

Este trabalho foi dividido em quatro capitulos, de maneira a oferecer uma compre-
ensao clara e sequencial das etapas desenvolvidas, desde a fundamentacao tedrica até a

apresentacao dos resultados praticos.

Inicialmente, a se¢do de Introducao traz o contexto acerca dos gateways de proto-
colos, aplicagdoes na modernizacao, e apresenta a motivagao que impulsionou a realizacao
deste estudo, complementada por uma revisao do estado da téncica e andlise de trabalhos

correlatos e solugoes comerciais existentes para problematicas semelhantes.

O segundo capitulo foi estruturado em trés partes interdependentes: Backend,
Frontend e Infraestutura de TI. Em cada uma ¢ explicada a arquitetura adotada e o

ferramental utilizado, que possibilitaram a implementacao do sistema.

O capitulo 3 traz os resultados obtidos ao longo do desenvolvimento, demonstrando
por evidéncias como logs e capturas de telas, a integracao e desempenho do sistema, assim

como a integracao com o gateway.

Por fim, o capitulo de Conclusoes sintetiza os principais achados do estudo, discu-

tindo os resultados alcangados com relagao ao que foi proposto.

19
2 Desenvolvimento

Neste capitulo, sera explicado o funcionamento e desenvolvimento do aplicativo
como um todo. Existem trés principais etapas: Backend, Frontend e Infraestrutura de
TI. Cada uma delas sera explicada em sua respectiva se¢do, contendo os detalhes de

desenvolvimento, desafios e implementacao.

2.1 Backend

O backend do sistema é a parte do aplicativo que roda no servidor, local ou
hospedado na nuvem, gerenciando a légica do aplicativo, o armazenamento, os servigos e
manipulando os dados necessarios. Essa parte do aplicativo também é responsavel pela
seguranca dos usudrios e ¢ quem fornece os dados para a aplicacdo que interage com o

usudrio final.

2.1.1 Estrutura e responsabilidades do backend

No presente trabalho, a responsabilidade é gerenciar estagoes, dispositivos, tags,
usuarios e logs do sistema da CESAMA, assim como encapsular o servico do gateway
Modbus/MQTT, descrito no trabalho [7]. Ou seja, gerenciar as requisi¢oes que o frontend

fara, para manipular, criar ou remover itens do banco de dados.

Com isso em vista, o backend foi estruturado conforme descrito na Figura 3.

Requisicao HTTP

Backend

Router recebe requisigao na rota

Schemas validam itens da requisigao

Validagao de usuario

Operacao

l

Requisicao para obter/alterar dados do banco Requisigao para agir/obter itens do Gateway

Deciséo

ORM y Modbus/MQTT

Base de dados
SQLite

Resposta HTTP

Figura 3 — Diagrama da estrutura pensada para o backend - Fonte: Elaborado pelo autor.

20

2.1.2 Tecnologias

Nesse topico serao apresentadas as tecnologias e ferramentas utilizadas para o
desenvolvimento do backend. Serao listadas as tecnologias base do projeto, o framework
para APIs utilizado, o ferramental para controle do banco de dados e modelagem dos
dados e por fim as ferramentas utilizadas para controle de seguranca e geracao de logs do

aplicativo.

2.1.2.1 Base do projeto

Para um desenvolvimento agil, seguro e completo, a linguagem de programacao
Python foi a escolhida para essa parte do aplicativo. A escolha se deu, principalmente, por
ser a linguagem utilizada no desenvolvimento do sistema do gateway MQTT/Modbus em

[7]. Assim, o backend pode encapsular o sistema facilmente como um servigo dele.

Para o gerenciamento de pacotes e bibliotecas, a fim de uma boa manutencao e
gerenciamento do projeto, foi utilizado o Poetry, uma ferramenta para gerenciamento
de dependéncias e pacotes do Python. A ferramenta tem seu cédigo aberto [16]. Com
ela, é possivel detalhar em arquivos especificos do projeto quais versdes de determinadas
dependéncias serao usadas, e ao criar um ambiente novo a ferramenta instala tudo em um

ambiente virtual especifico para o projeto.

2.1.2.2 Multi-threading

Com a estrutura do backend em vista, foi necessiario encontrar uma forma de
desacoplar o gateway do processamento principal do backend. Assim, o sistema poderia
receber e responder requisicoes, ler e alterar o banco de dados sem interromper ou prejudicar

a execugao das tarefas do gateway.

Dessa forma, foi utilizada da biblioteca threading do Python. Ela permite a criacao
e gerenciamento de multiplas threads, que sao caminhos de execugao independentes dentro
do mesmo processo. Entao, diferentes partes do cédigo sao executadas concorrentemente.
No caso do projeto, é utilizado da concorréncia para executar o backend e o gateway

simultaneamente, sem que um interfira no outro.

2.1.2.83 Framework - FastAPI

Dentro da linguagem foi escolhido o framework web FustAPI para a construcao das
APIs. O FastAPI é de c6digo aberto [17], e considerado um dos frameworks mais rapidos
na linguagem, além disso ¢ de facil e rapida implementacao, facilitando o desenvolvimento
para o trabalho. Com isso, foi possivel gerenciar rotas para a aplicagao de forma facil e
simples, preocupando apenas com a implementacao e manipulacao dos dados necessarios
[18].

21

2.1.2.4 Banco de dados e modelagem

Para o banco de dados, como a aplicagdo nao é tdo grande, com imensos volumes de
dados, foi escolhida uma abordagem mais simples e de facil implementagao. Foi utilizado

um banco de dados local SQLite em um tnico arquivo database.db.

Entretanto, o projeto nao lida com comandos SQL diretos, mas sim utiliza da
técnica Mapeamento Objeto-Relacional (ORM). E uma técnica de programacao que vincula
(ou mapeia) objetos a registros de banco de dados. Em outras palavras, um ORM permite
que voceé interaja com seu banco de dados, como se estivesse trabalhando com objetos
Python. Por essa razao, abstraem-se os registros e comandos SQL e ¢é feita a manipulagao

de objetos.
Para o trabalho, foi utilizado o ORM SQLAlchemy [19]. Com ele foi possivel

modelar e persistir informagoes sobre as estac¢oes, dispositivos, tags e configuracoes do

sistema.

Outra problematica é que, ao longo do desenvolvimento o banco de dados vai
modificando-se, novas tabelas e colunas surgem, bem como novos indexadores, relagoes e
restrigoes. Com isso, ¢ necessario uma ferramenta para gerenciar as migragoes do banco
de dados. As migracoes sao utilizadas para modificar ou atualizar a estrutura do banco de
dados, permitindo agoes como a criagao de novas tabelas, a adi¢ao de colunas ou a alteracao
do tipo de dado de um campo. Elas sao fundamentais para manter um histérico das
mudangas realizadas no esquema do banco ao longo do tempo. Além disso, possibilitam a
reversao para uma versao anterior do esquema, caso seja necessario. Para isso, foi utilizado
do Alembic que é uma ferramenta leve para migracoes de banco de dados, especialmente

para o SQLAlchemy, uma vez que foi feita pelo mesmo autor [20].

Por 1ltimo, em um sistema backend é necessario utilizar da validacao de dados,
para garantir que os dados passados nas requisicoes estao corretos, gerar documentacoes
robustas e tornar o sistema completo e robusto. Para isso, foi utilizada a biblioteca
Pydantic [21], para validagao de dados que trabalha perfeitamente com o FastAPI . Com o
Pydantic, vocé define modelos usando classes tipadas que validam entradas, convertem tipos
e geram documentacao JSON. No FastAPI, o Pydantic valida requisi¢oes, assegurando
conformidade dos dados antes do processamento. Esta integragao melhora a seguranca e

facilita o desenvolvimento pela geracao automatica de documentacao via Swagger Ul e
ReDoc.

2.1.2.5 Seguranca e logging

No contexto do backend, a seguranga das informagoes ¢ extremamente importante.
Nesse cenario, duas coisas basicas sao necessarias: autenticacao para os endpoints e

encriptar senhas de usudarios do sistema.

22

O processo de autenticacao verifica a identidade do usuario, enquanto a autorizagao
determina quais acoes esse usuario pode executar. A autenticagdo é implementada através
do JSON Web Token (JWT) e criam-se regras de autorizacdo para controlar o acesso aos

endpoints. Para o gerenciamento de tokens JWT foi usada a biblioteca PyJWT [22].

O JWT é um padrao (RFC 7519) que define uma maneira compacta e auténoma
de transmitir informacoes entre as partes de maneira segura. Essas informacoes sao
transmitidas como um objeto JSON que é digitalmente assinado usando um segredo (com
o algoritmo HMAC) ou um par de chaves publica/privada usando RSA ou ECDSA. Ele
consiste em trés partes: header, payload e assinatura. Elas sdo separadas por pontos (.) e,
juntas, formam um token JWT. E importante ressaltar que, apesar de a informacio em
um JWT estar codificada, ela nao esta criptografada. Isso significa que qualquer pessoa
com acesso ao token pode decodificar e ler suas informagoes. No entanto, sem o segredo
usado para assinar o token, nao é possivel alterar as informagdes ou forjar um novo token.

Portanto, nao deve-se incluir informagoes sensiveis ou confidenciais no payload do JWT.

A estrutura do JW'T possibilita a inclusao de claims, que sao declaragoes sobre
uma entidade (geralmente o usudrio) e informagoes adicionais tteis para a aplicacdo. As

claims podem ser categorizadas em trés tipos:

» Registered Claims: Sao claims pré-definidas e recomendadas pelo padrao, como
iss (emissor), sub (assunto), aud (destinatédrio), exp (tempo de expiragdo), nbf
(ndo antes de), iat (data de emissdo) e jti (identificador tinico do token). Essas

claims ajudam a padronizar a validacao e a geréncia do token.

e Public Claims: Sao claims que podem ser definidas livremente, mas para evitar
colisdes de nomenclatura, devem ser registradas ou conter um identificador tnico,

como um URI.

o Private Claims: Sao claims customizadas e definidas pelas partes envolvidas
(emissor e consumidor do token), que carregam informagoes especificas da aplicagao,

como privilégios de acesso, preferéncias de usuario, entre outros dados.

Na pratica, ao gerar um JWT, o desenvolvedor define quais claims serdao incluidas
conforme as necessidades do sistema. Por exemplo, a inclusao da claim exp garante que o
token possua um tempo de validade determinado, evitando seu uso prolongado ou indevido.
Outras claims, como uma customizada, podem indicar outras informagoes, facilitando a
implementacao de regras de negocio. Assim, o JWT nao apenas assegura a autenticagao,

mas também fornece informagoes essenciais para a aplicagao.

Para as senhas dos usuarios, foi adodtada a biblioteca pwdlib que permitira cripto-

grafar adequadamente as senhas [23].

23

Ademais, é de suma importancia ter rastreabilidade do sistema, bem como ferra-
mentas para auditoria e verificagoes de seguranca. Dessa forma, faz-se necessario o uso
de tecnologias de logging para registrar operagoes e informacoes relevantes do sistema
como um todo. Foi escolhida a biblioteca Daiquiri, um sistema de logging que fornece
rastreabilidade para todas as operacoes do gateway, registra eventos importantes como

conexdes estabelecidas, erros de comunicagao e operagoes de leitura/escrita [24].

2.1.3 Modelagem do banco de dados

A partir da problemdtica descrita na Secao 1.2, é identificada a estrutura das

estacoes da CESAMA, partindo da estrutura principal, a estagdo de tratamento:

« Cada estagao possui N dispositivos. (Relagao 1:N)

« Cada dispositivo possui N tags de leitura/escrita (Relagao 1:N)

Mas, antes de mencionar a modelagem dos dados e como foi pensado o banco
de dados, é preciso listar os tipos de variaveis utilizadas no trabalho. Alguns tipos sao
basicos dos bancos de dados, outros sao tipos enum onde apenas determinados valores sao

permitidos, conforme listado abaixo:

o Tipos primitivos

— Int: Utilizado para armazenar valores inteiros.

— Booleano: Utilizado para armazenar valores logicos, como flags.

— Varchar: Utilizado para armazenar strings de texto varidvel.

— Timestamp: Utilizado para armazenar datas e horarios, como data de criacdo
e data de atualizacao dos registros.

o Tipos enumerados

— UserRole: Define os papéis de usuario no sistema:

x admin: Administrador com acesso completo
x manager: Gerente com acesso intermediario

* viewer: Visualizador de dados com acesso restrito

— Resource: Define os recursos do sistema que podem estar sujeitos a permissoes:

*

station: Estacoes

*

device: Dispositivos

*

tag: Tags de dados

x user: Usuarios do sistema

24

x permaission: Permissoes de acesso

*

bridge: Gateway

* logs: Registros de log

x mqtt_broker _config: Configuracdo do broker MQTT
— Action: Define as a¢oes possiveis sobre os recursos:

* create: Criar

x read: Ler

*

update: Atualizar

delete: Excluir

*

x bridge__action: Acao especifica do gateway

+ Relacgoes entre tabelas: As relagdes sao implementadas com o uso de chaves

estrangeiras que referenciam identificadores primarios:

— station__id: Chave estrangeira que referencia um item da tabela de estacoes

— device_id: Chave estrangeira que referencia um item da tabela de tags

Com os tipos de dados citados estabelecidos, é possivel agora falar da modelagem

das tabelas e relacionamentos dos dados.

Para a publicagao dos dados pelo gateway, como citado no trabalho [7], é utilizado
o protocolo Sparkplug para MQTT. Nesse cenario, o edge of node seria exatamente a tag

de leitura/escrita, pois ela é o ponto final da estrutura.

Com todo o citado em vista, o banco de dados da aplicacao foi modelado a fim de
conseguir correlacionar todos esses dados estruturados em arvore, onde uma estacao tem

N dispositivos e um dispositivo tem N tags.

Entao, foi criada uma tabela para as estagoes, outra para os dispositivos e outra
para as tags. Em cada uma delas, os itens sao armazenados de forma independente,
entretanto, existe a correlagdo entre eles pelo uso de chaves primarias de relacionamentos.
Cada dispositivo contém o id da sua estacao correspondente, e cada tag tem o id do seu
dispositivo correspondente. Na configuracao do banco, foi feito o relacionamento de forma

que, se o item pai é excluido, o item filho também é.

Ademais, para gerenciamento do sistema foi criada uma tabela de usuérios, que
contém os dados bésicos de cadastro como login e senha criptografada, mas contém
também o cargo daquele usuario (UserRole). Tal dado é relevante para que seja possivel o
gerenciamento de permissoes do que cada usuario pode ou nao fazer dentro do sistema,
como ler apenas certos itens, atualiza-los ou crid-los e remové-los. Dessa forma, estrutura-se
um sistema completamente controlado pelos administradores, do que os outros cargos

podem ou nao executar. Como complemento dessas permissoes, foi criada uma tabela de

25

permissoes, onde é configurado o recurso do permissionamento (Resource), a agado (Action),
o cargo da permissio cadastrada (UserRole) e um booleano se é ou ndo permitido o acesso

daquela agao, naquele recurso, por aquele cargo.

Por 1ltimo, foi criada uma tabela para armazenar as configuracoes de acesso ao
broker MQT'T, a tabela mgtt_broker_config, que é pretendida ter apenas um registro com

os dados de acesso ao broker como usuario e senha.

E possivel ter uma visualizacdo mais robusta e completa da modelagem do banco

em um diagrama do mesmo. Este estd presente na Figura 4 abaixo.

id & nt id 2 int id & nit
LsE nar ‘NN USETMEME nar NN resource B E MN

passworg L NH passward L NN

name by

type A

N

NN type NN

KNk

Nk

created at t WK

updatad at bl 0 L1

Figura 4 — Diagrama das tabelas e variaveis do banco de dados - Fonte: Elaborado pelo
autor

Nesse contexto, o SQLAlchemy, mencionado na sub-secao 2.1.2.4, atua transfor-
mando os dados dessas tabelas em objetos Python. Dessa forma, é possivel, por exemplo,
executar uma busca por uma estacao e ter um campo desse objeto que carrega automatica-
mente todos os dispositivos vinculados com aquela estagao, facilitando a interagao com os
dados e uso deles para o Gateway. Visualiza-se assim, a importancia do ORM na prética,

e como usufruir dos beneficios, abstraindo a camada do SQL.

2.1.4 Login e Tokens

Nessa sub-secao serda abordado como foi feito a parte de login na aplica¢ao, como
o sistema gerencia os tokens para autentica¢do continua do usudrio e como é feito o

armazenamento seguro das senhas no sistema.

Conforme descrito na sub-secao 2.1.2.5, foi utilizado o token JWT para realizar a

autenticacao nos chamados.

26

Em uma aplicacdo web, o processo de autenticagao geralmente tem um fluxo padrao,

que foi o escolhido para este trabalho, e segue da seguinte maneira:

1. O usudrio entra com as suas credenciais no cliente (frontend) e envia para o servidor

em uma rota de geracao de token;

2. O servidor verifica as credenciais, buscando pelo usuario no banco de usuéarios, e, se

estiverem corretas, gera um token JWT e o envia de volta ao cliente;

3. Nas solicitagoes subsequentes, o cliente deve incluir esse token no cabecalho de
autorizagao de suas solicitagoes HT'TP. Como, por exemplo: Authorization: Bearer
<token>;

4. Quando o servidor recebe uma solicitacdo com um token JW'T, ele pode verificar a

assinatura e, se o token é valido e nao expirou, ele processa a solicitagao do cliente;

5. Caso esteja perto da expiracao e o cliente queira renovar o seu token, existe uma
rota para renovacao que ele pode fazer uma requisi¢do, passando o token antigo

(ainda vélido), e o servidor deve gerar um novo token e retorna-lo;

Este fluxo pode ser também exemplificado pela Figura 5 abaixo.

[P . L Verifica
wia cr (e-mail e senha) G AT

Envia token JWT

Servidor
Cliente (backend)
(frontend)
Verifica
Envia solicitagado com token JWT no cabecalho de autorizagao——-| token e processa

solicitagdo

Pede rer ¢do do token JWT————————>|

Envia novo token JWT:

Figura 5 — Fluxo de autenticacao da aplicacao - Fonte: Elaborado pelo autor

Com o fluxo de autenticacao esclarecido, deve ser explicado o armazenamento

seguro das senhas, antes de explicar como é feito o login e gerenciamento dos tokens.

Para as senhas, conforme citado na sub-segao 2.1.2.5 ¢ utilizada de uma biblioteca
para gerenciar hashs, encriptar e validar hashs. No projeto, foi optado pelas recomendacoes
padroes da bibliteca para o PasswordHash, assim cria-se o contexto que encripta e valida

0s hashs de forma facil e eficiente.

Entao, basicamente o fluxo na aplicagao é:

27

1. Ao criar um usudrio, é utilizado o contexto da biblioteca para criar um hash da
senha preenchida (simplesmente com o comando pwd__context.hash(password)) e é

armazenado no banco de dados esse hash da senha.

2. Ao executar o login, busca-se o usuario no banco de dados. Entao, é utilizado
um comando da biblioteca (pwd__context.verify(plain__password, hashed_password))
para validar se a senha preenchida confere com o hash armazenado. E retornado

verdadeiro ou falso e o login é efetuado ou nao.

Dessa forma, é garantida a seguranca das senhas do usuario, pois a senha nunca
é salva inteira no banco de dados, apenas um hash criptografado dela, que nao pode ser

decriptografado, apenas comparado.

Com o processo de login feito, o sistema entao gera um token para o cliente poder
se autenticar nas suas requisigoes. O login é feito na rota /auth/token - as rotas serdo

explicadas na sec¢ao 2.1.5 - e retorna o token JW'T, conforme ja explicado.

Como uma camada a mais de seguranga na aplicacao, utiliza-se do arquivo .env
para armazenar as variaveis criticas do sistema, como tempo de expiracao do token JWT
(informagao de payload do token), chave screta para encriptagao do token JWT (assinatura
do token) e o algoritmo usado para codificagdo do token. Assim, é garantido que tais
dados nao estejam expostos em coddigo e a assinatura, por exemplo, nao seja exposta e

nao comprometa os tokens que o cliente recebe e usa.

Para a geracao do token JW'T, sao utilizadas apenas as claims ’sub’ para informar o
username do usuario e ’exp’ para informar o tempo de expiracao do token. Para codificar
o token, é utilizada a funcao encode da biblioteca, passando o payload, a assinatura e o
algoritmo para codificagao. Ao final, é retornado o token para o cliente poder utilizar,

caso o login seja realizado com sucesso.

2.1.5 Rotas

Em uma aplicagao web, a URL principal funciona como a porta de entrada para o
servidor, definindo a base a partir da qual os diversos caminhos (ou rotas) sdo estruturados.
Essa URL base, por exemplo http://seuservidor.com, estabelece o ponto de partida
para acessar os recursos e funcionalidades da aplicacao, como informacgoes de usuarios,
produtos, pedidos e outros servigos essenciais. A partir dela, cada rota adiciona um

segmento que direciona a requisicao para uma funcao especifica no backend.

Por exemplo, ao configurar a rota /usuarios para responder a uma requisicao
GET, o acesso a http://seuservidor.com/usuarios pode retornar uma lista de usudrios
cadastrados. Da mesma forma, a rota /produtos pode ser utilizada para cadastrar,
atualizar ou excluir produtos, dependendo do método HTTP empregado (GET, POST,
PUT, DELETE). Essa abordagem modular, caracteristica do FastAPI, torna o sistema

28

mais organizado e intuitivo, facilitando tanto o desenvolvimento quanto a manutengao e a

escalabilidade do projeto.

A estruturacao do backend foi realizada utilizando o APIRouter do FastAPI, o
que possibilitou uma organizacao modular das rotas. Todos os arquivos que definem os
endpoints foram agrupados na pasta routers, localizada dentro da pasta src. Dessa
forma, cada conjunto de funcionalidades possui seu préprio modulo, o que facilita a
manutencao, o reaproveitamento de cédigo e a escalabilidade do projeto. Um exemplo de

uso é demonstrado em [25], e exemplificado pela Figura 6 abaixo.

App

Endpoints - Rotas

Médulo main Router Auth Router Permissions
/src/app.py [routers/auth.py /routers/permissions.py
Router Bridge Router Stations
Jrouters/bridge.py [routers/stations.py
Qutros médulos com Router Devices Router Tags

utilitarios e fungdes [routers/devices.py [routers/tags.py

Router Logs Router Users
[routers/logs.py [routers/users.py

Router MQTT Broker Config
[routers/matt_broker.py

Figura 6 — Estrutura de médulos e rotas do backend - Fonte: Elaborado pelo autor

No arquivo app.py, presente na pasta src, o aplicativo principal ¢ instanciado e
as rotas definidas nos modulos da pasta routers sao integradas por meio do APIRouter.
Essa abordagem promove uma clara separacao entre a logica de negocio e a interface de
comunicac¢ao com o cliente, permitindo que novas funcionalidades sejam adicionadas de
maneira simples e organizada. Além disso, o uso do FastAPI contribui para a geracao
automatica de uma documentacao interativa da API, agilizando os testes e a compreensao

dos recursos expostos, pontos fundamentais para um projeto robusto e de alta qualidade.

No presente projeto, as rotas foram estruturadas da seguinte maneira:

« Autenticacdo (/auth/*): Contém rotas relacionadas a autenticagdo e autorizacao

de usuarios. Rotas internas:

— POST /auth/token: Realiza o login de um usuéario e retorna um token JWT.

— POST /refresh_token: Atualiza o token JWT de um usuario

« Bridge (/bridge/*): Contém rotas para gerenciamento do Gateway MQTT /Mod-

bus. Rotas internas:

29

— POST /bridge/start: Inicializa o gateway;
— POST /bridge/stop: Para o gateway;

— POST /bridge/restart: Reinicia o gateway;

GET /bridge/status: Obtém o status do gateway

GET /bridge/station-status: Obtém o status atual da conexao de todas as

estacoes

« Dispositivos (/devices/*): Contém rotas para gerenciamento de dispositivos.
Rotas internas:
— POST /devices/: Cria um novo dispositivo.
— GET /devices/{device_id}: Obtém os dados de um dispositivo especifico.
— GET /devices/: Lista multiplos dispositivos com suporte a paginacgao.

— PUT /devices/{device_id}: Atualiza os dados de um dispositivo especifico.

DELETE /devices/{device_id}: Exclui um dispositivo especifico.

o Usuarios (/users/*): Contém rotas para gerenciamento de usuérios. Rotas

internas:

— POST /users/: Cria um novo usuario.

GET /users/: Lista multiplos usudrios com suporte a paginacao.

GET /users/{user_id}: Obtém os dados de um usuério especifico.

PUT /users/{user_id}: Atualiza os dados de um usuario especifico.

DELETE /users/{user_id}: Exclui um usuario especifico.

« Tags (/tags/*): Contém rotas para gerenciamento de tags. Rotas internas:

POST /tags/: Cria uma nova tag.

GET /tags/{tag_id}: Obtém os dados de uma tag especifica.

GET /tags/: Lista multiplas tags com suporte a paginacao.
— PUT /tags/{tag_id}: Atualiza os dados de uma tag especifica.
— DELETE /tags/{tag_id}: Exclui uma tag especifica.
« Estacgoes (/stations/*): Contém rotas para gerenciamento de estagoes. Rotas
internas:
— POST /stations/: Cria uma nova estacao.
— GET /stations/{station_id}: Obtém os dados de uma estagao especifica.

— GET /stations/: Lista miultiplas estacoes com suporte a paginagao.

30

— PUT /stations/{station_id}: Atualiza os dados de uma estacao especifica.
— DELETE /stations/{station_id}: Exclui uma estagao especifica.
« Permissées (/permissions/*): Contém rotas para gerenciamento de permissoes.
Rotas internas:
— POST /permissions/: Cria uma nova permissao.
— GET /permissions/: Lista multiplas permissoes com suporte a paginacao.

— GET /permissions/{permission_id}: Obtém os dados de uma permissao

especifica.

— PUT /permissions/{permission_id}: Atualiza os dados de uma permissao

especifica.

DELETE /permissions/{permission_id}: Exclui uma permissao especifica.

e Broker MQTT (/mqtt__broker/*): Contém rotas para gerenciamento da confi-
guragao do broker MQTT. Rotas internas:
— POST /mqtt_broker/: Cria uma nova configuragdo do broker MQTT.
— GET /mgtt_broker/: Obtém a configuracao atual do broker MQTT.
— PUT /mqtt_broker/: Atualiza a configuracao do broker MQTT.
e Logs (/logs/*): Contém rotas para acesso e visualizagdo dos logs da aplicagao.
Rotas internas:
— GET /logs/categories: Lista todas as categorias de logs disponiveis.

— GET /logs/files/{main_categoryl}/{subcategory}: Lista todos os arquivos

de log disponiveis para uma categoria especifica.

— GET /logs/content/{main_category}/{subcategory}/{filename}: Retorna

o conteudo de um arquivo de log especifico.

Assim, a organizacao das responsabilidades e endpoints fica bem separadas, respei-
tando as requisicoes HTTP e sendo facil de manter o sistema. Ainda, existe um sistema
de validagao no inicio de cada endpoint, para garantir que o usuario solicitando tenha

permissao para tal.

2.1.5.1 Validagao de Permissoes nos endpoints

O sistema implementa um mecanismo de controle de acesso baseado em papéis
(conforme ja explicado) através de uma fungdo validate_user, que é invocada em todos
os endpoints antes da execucao da operacgao principal. Esta funcao verifica se o usuario

autenticado possui as permissoes necessarias para realizar a agao solicitada.

31

A funcao consulta o banco de dados em busca de uma permissao que corresponda
ao trio (recurso, agao, papel do usuario). Caso ndo exista uma permissao correspondente
ou esta nao permita a agdo, uma exce¢do HTTP 403 (Forbidden) é langada, impedindo o

acesso nao autorizado.

Esta abordagem garante a aplicacao consistente das politicas de autorizacao em
todas as operacoes da API e assim, proporciona uma camada de seguranca eficaz e

centralizada para o controle de acesso aos recursos do sistema.

2.1.6 Gerenciamento automatico dos topicos MQTT

No sistema, as tags possuem um campo topic que segue o padrao SparkplugB para
comunicagao MQTT. Este campo é critico para o correto funcionamento da infraestrutura
de comunicacao, pois define como os dispositivos e seus dados sao descobertos e acessados

na rede.

O padrao SparkplugB utilizado segue uma estrutura que permite a organizacao
hierarquica das informacgoes e facilita o roteamento de mensagens entre os componentes

do sistema:
spBv1.0/{tipo_estagdo}/DDATA/{nome_estagdo}/{nome_dispositivol}/{nome_tag}

Para garantir a consisténcia dos tépicos, o sistema implementa um mecanismo

automatico de gerenciamento que:

1. Gera o tépico para cada nova tag criada, baseando-se nas informagoes da tag, do

dispositivo associado e da estagao a qual o dispositivo pertence.

2. Mantém os topicos atualizados quando ocorrem alteragoes em qualquer nivel da
hierarquia. Quando uma estacdo tem seu nome ou tipo alterado, todos os té-
picos de todas as tags associadas aos dispositivos conectados a esta estagdo sao

automaticamente atualizados.

3. De forma similar, quando um dispositivo tem seu nome modificado, os topicos de

todas as suas tags sao recalculados para refletir a nova nomenclatura.

4. O sistema utiliza eventos de sessao do SQLAlchemy para interceptar operagoes de
persisténcia (flush) e garantir que os tépicos estejam sempre sincronizados antes de

qualquer alteracao ser efetivamente registrada no banco de dados.

Esta abordagem elimina a necessidade de atualizagdo manual dos tépicos e reduz
significativamente o risco de inconsisténcias na comunicacao MQTT, que poderiam resultar

em falhas na coleta ou distribuicao de dados no sistema de supervisao industrial.

32

2.1.7 Gerenciamento do Gateway Modbus/MQTT

O sistema implementa o Gateway Modbus/MQTT que atua como intermediario
na comunicacao entre dispositivos industriais e aplicagoes externas. Para garantir o
correto funcionamento deste componente critico, foi desenvolvido um mecanismo robusto

de gerenciamento do ciclo de vida do Gateway.

A arquitetura de gerenciamento do Gateway é composta por trés componentes
principais: o BridgeManager, uma instancia global deste gerenciador, e um gerenciador de
ciclo de vida integrado a aplicacao FastAPI. Esta estrutura permite o controle eficiente do
Gateway, facilitando sua inicializa¢do automatica, monitoramento de estado e encerramento

controlado.

Durante a inicializacao da aplicacao, o sistema executa automaticamente o processo
de configuragao e inicializacdo do Gateway através de um contexto assincrono (lifespan).
Este processo inclui a consulta ao banco de dados para obter as estagoes configuradas,
juntamente com seus dispositivos e tags associados, além das credenciais do broker MQTT.
Com estes dados, o Gateway ¢ iniciado em uma thread separada, permitindo que opere

independentemente do servidor web principal.

O mecanismo de gerenciamento implementa um padrao thread-safe para controlar o
Gateway, utilizando locks para evitar condi¢oes de corrida durante operacoes criticas. Isto
garante que apenas uma instancia do Gateway esteja em execucao a qualquer momento,

evitando duplicacao de conexoes e conflitos de recursos.

Para fins de monitoramento, o sistema mantém informacoes sobre o status de
conectividade de cada estacao configurada, permitindo que os administradores verifiquem
rapidamente o estado operacional do Gateway. Estas informacoes sao acessiveis através de

endpoints dedicados na API, conforme explicitado na sub-secao 2.1.5.

O encerramento controlado do Gateway é outro aspecto importante do gerencia-
mento. Quando a aplicagao é finalizada, o sistema garante que todas as conexoes sejam
adequadamente encerradas e os recursos liberados, evitando vazamentos de memoria e

conexoes pendentes.

Uma descrigao mais detalhada sobre o funcionamento interno do Gateway Mod-
bus/MQTT, incluindo seus mecanismos de comunicagao e processamento de dados, pode

ser encontrada em [7].

2.1.8 Documentagao interativa com Swagger

O sistema disponibiliza documentacao interativa através do Swagger UI, recurso
integrado ao framework FastAPI. Esta interface permite visualizar, testar e interagir
com todos os endpoints da API sem a necessidade de ferramentas adicionais. Para

acessar a documentagao, basta navegar até o caminho /docs da aplicacdo (por exemplo,

33

http://localhost:8000/docs). A interface apresenta todos os endpoints organizados
por tags, conforme definido nos roteadores da aplicacdo. Cada endpoint exibe informacoes
detalhadas sobre:

« Método HTTP utilizado (GET, POST, PUT, DELETE)
» Pardmetros esperados (path, query, body)

o Esquemas de dados de entrada e saida

Codigos de status possiveis e seus significados

» Requisitos de autenticacao

A funcionalidade de "Try it out"permite testar os endpoints diretamente pelo navegador,
preenchendo os parametros necessarios e visualizando as respostas em tempo real. Para
endpoints que exigem autenticagao, € possivel utilizar o botao "Authorize"para fornecer
um token JWT valido ou fazer login com usuario e senha. Esta documentacao automatica
é gerada a partir dos tipos, docstrings e anotacoes de tipo presentes no codigo, garan-
tindo que esteja sempre sincronizada com a implementacao atual da API. Isto facilita

significativamente o desenvolvimento, testes e integracao com outros sistemas.

2.1.9 Gerenciamento de Migragoes com Alembic

O sistema utiliza o Alembic, uma ferramenta de migracao de banco de dados
para SQLAlchemy, para gerenciar as alteragoes no esquema do banco de dados de forma
controlada e versionada. As migracoes sao essenciais para a manutencao da integridade
dos dados durante o ciclo de vida da aplicacao, permitindo evoluir o esquema do banco

sem perder dados existentes.

No contexto da aplicagao, o Alembic é configurado para trabalhar diretamente
com os modelos de dados definidos no moédulo models.py, aproveitando a defini¢ao
de metadados fornecida pelo registro de tabelas SQLAlchemy (table_registry). Esta
abordagem garante que qualquer alteracao nos modelos, como adi¢cdo de novas entidades,
modificacdo de campos existentes ou criacao de relacionamentos, seja automaticamente

detectada e incorporada nas migragoes.

O processo de migragao ocorre em duas etapas principais: primeiramente, o Alembic
compara o estado atual do banco de dados com a definicao dos modelos no coédigo, gerando
scripts de migracao que representam as diferencas encontradas. Em seguida, estes scripts
sao aplicados ao banco de dados, executando as alteragoes necessarias de forma ordenada

e segura.

Uma caracteristica importante da configuragado do Alembic no sistema ¢ a capaci-

dade de funcionar tanto em modo "online'quanto "offline'. No modo online, as migragoes

34

sao executadas diretamente contra um banco de dados em execucao, enquanto no modo
offline os scripts sao gerados para execucao posterior, o que ¢ util em ambientes de produgao

onde o acesso direto ao banco pode ser restrito.

Esta abordagem de gerenciamento de esquema proporciona diversos beneficios:

o Controle de versao do esquema de banco de dados, permitindo rastrear mudancas ao

longo do tempo
« Capacidade de reverter alteragdes problematicas através de migragoes de downgrade

« Sincronizagdo automatica entre o modelo de dados no coédigo e sua representacao no

banco
o Facilitacao da colaboragao entre desenvolvedores, minimizando conflitos de esquema

o Implantagao controlada de mudancas em ambientes de producgao

O Alembic trabalha em conjunto com o SQLAlchemy para interpretar as classes
mapeadas como Station, Device, Tag e demais entidades, incluindo seus relacionamentos
e restrigoes, garantindo que o esquema do banco de dados permanega sempre coerente

com a légica de negdcios implementada na aplicacao.

2.1.10 Gerenciamento de Logs

O sistema implementa uma infraestrutura robusta de logs, fundamental para o
monitoramento operacional, diagnostico de problemas e auditoria das atividades realizadas

na aplicacao.

2.1.10.1 Arquitetura de Logs

A arquitetura de logs do sistema segue uma abordagem modular e hierarquica, com
separagao clara entre os logs da API REST e os logs do Gateway Modbus/MQTT. Os arqui-
vos de log sdo organizados em diretorios especificos (/app/logs/api e /app/logs/bridge),
facilitando a localizacao e gestao por parte dos administradores do sistema. Para cada
componente funcional do backend, é configurado um logger dedicado com rotagao diaria
de arquivos e periodo de retengdo parametrizavel (padrao de 30 dias). Esta estratégia
de rotagao previne o crescimento descontrolado dos arquivos de log, mantendo apenas os

registros mais relevantes e recentes.

2.1.10.2 Categorizacao e Niveis de Log

O sistema implementa uma categorizacao refinada dos logs através de loggers

especificos para cada moédulo:

35

o Logs de API: Registram as operagoes CRUD realizadas nos endpoints, como
criagao, leitura, atualizacao e exclusao de estacoes, dispositivos, tags e usuarios.
Cada endpoint registra o autor da acao e os detalhes da operagao, conforme visto no

modulo de estagoes.

« Logs do Gateway: Documentam o funcionamento do Gateway Modbus/MQTT,
incluindo conexoes estabelecidas, leituras de dados dos dispositivos, publicagoes em

topicos MQTT e eventuais erros de comunicacao.

» Logs de Estacoes: Para cada estacao configurada, um logger especifico é criado
dinamicamente através da fungdo get_station_logger, permitindo o acompanha-

mento individualizado de cada estacao industrial.

Os logs utilizam niveis de severidade padronizados (INFO, WARNING, ERROR, CRITI-

CAL) para classificar as mensagens conforme sua importancia e urgéncia.

2.1.10.3 Integragao com os Componentes do Sistema

Nos controladores de rota, como exemplificado no médulo de estagdes, cada operacao
CRUD é acompanhada de registros de log que documentam a agao realizada, o usuario
responsavel e o resultado da operacao. Por exemplo, quando uma estacao ¢ criada,
atualizada ou excluida, o sistema registra automaticamente detalhes como o nome da

estacao e o usuario que executou a acao.

No Gateway Modbus/MQTT, os logs sao utilizados para monitorar o estado das
conexoes com as estacoes industriais, registrar as leituras de dados realizadas e documentar
as publicagoes nos topicos MQTT. Cada estacdo possui seu préprio arquivo de log, o que

permite o diagnodstico preciso de problemas especificos.

2.1.10.4 Acesso aos Logs via API

O sistema disponibiliza um endpoint especifico para acesso aos logs, implementado
no roteador logs. Este endpoint permite que o frontend obtenha acesso aos registros de
log para visualizacao e analise pelo administrador do sistema. As operacoes disponiveis

incluem:

» Listar os arquivos de log disponiveis
o Recuperar o conteudo de arquivos de log especificos

o Filtrar logs por data, componente ou nivel de severidade

O acesso a estes endpoints é controlado pelo mesmo mecanismo de autorizacao

utilizado nos demais recursos do sistema, garantindo que apenas usuarios com as permissoes

36

adequadas possam acessar estas informagoes sensiveis. A validacdo de permissoes é
realizada através da funcao validate user, que verifica se o usuario atual possui o papel

necessario para acessar o recurso LOGS.

2.1.10.5 Seguranca e Integridade

O sistema de logs foi projetado considerando aspectos de seguranca importantes:

» Sanitizacao de informacgoes sensiveis antes do registro nos logs

Controle de acesso baseado em papéis para visualizagao dos logs
o Preservacao da integridade dos registros para fins de auditoria

» Rotacao automatica para evitar exposicao prolongada de dados histéricos

O sistema de gerenciamento de logs implementado constitui um componente critico
para a operacao e manutencao da aplicacao, proporcionando visibilidade detalhada sobre
todas as atividades realizadas no sistema. A abordagem estruturada e granular adotada
facilita o diagndstico de problemas, permite o monitoramento proativo do funcionamento do

sistema e fornece uma trilha de auditoria completa para fins de seguranca e conformidade.

2.2 Frontend

O desenvolvimento do frontend para o sistema Gateway MODBUS/MQTT constitui
um componente essencial deste projeto, sendo responsavel pela interface com a qual os
usuarios interagem para gerenciar estagoes, dispositivos e tags. Esta secao apresenta os
aspectos técnicos e metodologicos empregados na construgao da camada de apresentacao do

sistema, abordando desde a arquitetura geral até os componentes especificos implementados.

A abordagem adotada prioriza a experiéncia do usuario, a modularidade do cédigo
e a manutenibilidade, elementos fundamentais para garantir a longevidade e a evolucao
do sistema em contextos industriais. As tecnologias selecionadas e as estratégias de
implementagao foram criteriosamente escolhidas para atender aos requisitos funcionais
e nao-funcionais estabelecidos, considerando o contexto operacional da CESAMA e as

melhores praticas de desenvolvimento web moderno.

2.2.1 Visao Geral da Arquitetura

A arquitetura do frontend foi projetada seguindo o paradigma de Single Page
Application (SPA), no qual o carregamento inicial do aplicativo ocorre uma tnica vez, e as
subsequentes interagoes do usuario resultam em atualiza¢des dinamicas do contetido sem

a necessidade de recarregamentos completos da pagina. A Figura 7 abaixo exemplifica a

37

diferenca do ciclo de uma aplicacdo SPA para uma aplicacao tradicional. Na aplicagao
tradicional, ap6s cada requisicao uma pagina inteira nova é carregada, ja na aplicagdo SPA,

como j& mencionado, ocorre apenas a troca de informagdes e/ou views/urls ja carregadas.

Traditional page lifecycle SPA lifecycle
Initial request Initial request
HTML HTML
2 Client (] server 2 Client (] server
From POST AJAX
HTML JSON

Figura 7 — Comparativo entre ciclo de vida de uma pégina tradicional e uma SPA - Fonte:

3]

Esta abordagem proporciona uma experiéncia mais fluida e responsiva ao usuario

final, aproximando-se da experiéncia de uso de aplicagoes desktop tradicionais.

A biblioteca React foi selecionada como fundamento tecnoldgico principal por
sua eficiéncia no gerenciamento do ciclo de vida dos componentes e pela renderizacao
otimizada através do Virtual DOM. A utilizagao do React possibilita a construgao de
interfaces modulares e reativas, onde cada componente encapsula sua propria logica, estado
e apresentacdo. Esta caracteristica favorece a manutenibilidade e a testabilidade do codigo,

aspectos cruciais para sistemas que demandam evolugao continua.

A estruturagao do cédigo-fonte segue um modelo organizacional baseado em res-

ponsabilidades funcionais, conforme ilustrado na hierarquia de diretérios:

src/

assets/ # Recursos estaticos (imagens, icones)
components/ # Componentes UI reutiliziveis
context/ # Provedores de Contexto React

pages/ # Componentes de pagina

api/ # Configuragdo e insténcias do Axios
routes/ # Configuracdo de rotas

theme/ # Configuragdo do tema Material-UI

Esta organizacgao favorece a separacao de responsabilidades, onde cada diretério
agrupa arquivos com propositos similares. As pastas e arquivos podem ser visualizados na

Figura 8 abaixo.

38

v/ GATEWAY-FRONT
> j noc
> W public
N/ g src
v &8 api
JS axios.js
> IE assets
v @@ components
DeviceEditForm.jsx
Devicelist.jsx
Footer.jsx
Layout.jsx
> LogViewer.jsx
StationEditForm.jsx
StationList.jsx
> TagEditForm.jsx
#b TagList.jsx
v @ context
Js AuthContext.js
> AuthContext.jsx
v @@ pages

£ Configurations.jsx

Login.jsx

Logs.jsx

> main.jsx

Js theme.js
.eslintrc.json
.gitignore

& Dockerfile
eslint.config.js
index.html
package-lock.json
package.json
README.md

W vite.config.js

Figura 8 — Estrutura das pastas e arquivos visualizado pelo editor Visual Studio Code -
Fonte: Elaborado pelo autor

O diretoério components contém elementos reutilizaveis da interface do usuério,
enquanto pages abriga os componentes que representam visoes completas correspondentes
a rotas especificas. O diretério context centraliza os provedores de contexto do React,

fundamentais para o gerenciamento de estado global da aplicagao.

Em termos de padroes de design, adotou-se extensivamente o conceito de com-
ponentes funcionais com hooks, uma abordagem moderna do React que substituiu os
componentes baseados em classes. Esta decisao favorece a escrita de codigo mais con-
ciso, facilita o compartilhamento de légica entre componentes e otimiza o processo de

renderizacao. Os principais hooks utilizados incluem:

39

» useState: Para gerenciamento de estado local dos componentes

« useEffect: Para execucao de efeitos colaterais sincronizados com o ciclo de vida do

componente

o useContext: Para acesso ao estado global disponibilizado pelos provedores de

contexto

o useCallback: Para memoizacao de fungoes, evitando recriagoes desnecessarias em

renderizagoes subsequentes

A comunicacao com o backend é centralizada através de um cliente HT'TP baseado
em Axios, configurado com interceptores para inclusao automatica de tokens de autentica-
cao. Este padrao garante que todas as requisi¢oes sigam um formato consistente e facilita

a implementagao de mecanismos globais de tratamento de erros.

Para o gerenciamento de rotas, implementou-se o React Router, que possibilita a

navegacao entre diferentes visdes sem recarregamento completo da pagina.

As rotas sao protegidas por um componente de alto nivel (ProtectedRoute) que

verifica a autenticacao e as permissoes do usuario antes de renderizar o contetido solicitado.

A arquitetura também incorpora o conceito de "lifting state up'(elevacao de estado),
onde o estado compartilhado por multiplos componentes é mantido no ancestral comum
mais préximo. Este padrao reduz a complexidade do fluxo de dados e facilita o rastreamento

de mudancas de estado durante o desenvolvimento e a depuracao.

Em sintese, a arquitetura frontend do sistema Gateway MODBUS/MQTT foi
concebida com foco na modularidade, manutenibilidade e experiéncia do usuario, utilizando
tecnologias e padroes modernos de desenvolvimento web para criar uma interface robusta,
eficiente e evolutiva. Com base nos arquivos do projeto, sera elaborada a subsecado sobre

Tecnologias e Bibliotecas Utilizadas, considerando a versao mais recente do React utilizada.

2.2.2 Tecnologias e Bibliotecas Utilizadas

O desenvolvimento do frontend do Gateway MODBUS/MQTT foi fundamentado
em um conjunto criteriosamente selecionado de tecnologias e bibliotecas, escolhidas com
base em sua maturidade, suporte da comunidade, desempenho e adequacao aos requisitos
do projeto. As mesmas sdo brevemente representadas na Figura 9. A seguir, apresenta-se

uma analise detalhada de cada componente tecnolégico empregado.

40

Frontend Stack

React 19 Vite

Material Ul

AX10OS

Axios

0')0

React

Router ESLint

Figura 9 — Stack tecnoldgica utilizada no desenvolvimento do frontend. Fonte: Elaborado
pelo autor

2.2.2.1 React

O React, desenvolvido e mantido pelo Meta (anteriormente Facebook), foi escolhido
como biblioteca principal para a construgao da interface devido a sua abordagem declarativa,
que permite a criacao de interfaces de usuario complexas a partir de componentes modulares
[26]. Para este projeto, utilizou-se a versao 19, que representa uma das itera¢oes mais
recentes e estaveis da biblioteca. A natureza baseada em componentes do React ofereceu

varias vantagens significativas para o projeto:

o Componentizacao: A capacidade de dividir a interface em componentes reutiliza-

veis reduziu a duplicagao de cédigo e aumentou a manutenibilidade do sistema.

e Virtual DOM: Uma representacdo em memoria da estrutura do DOM (Document
Object Model, a estrutura hierarquica de elementos HTML da pégina). Enquanto o
DOM real é manipulado diretamente pelo navegador e tem alto custo computacional

em cada atualizacdo, o Virtual DOM atua como uma camada intermedidria que

41

permite ao React identificar precisamente quais elementos precisam ser atualizados,

minimizando manipulacoes no DOM real e resultando em melhor desempenho.

— DOM (Document Object Model): E uma representacio estruturada em
forma de arvore de todos os elementos HTML de uma pagina web. O nave-
gador utiliza esta estrutura para renderizar a pagina e cada modificagao nela
desencadeia uma nova renderizacao, processo que pode ser computacionalmente

custoso, especialmente em aplicagdoes complexas.

e Fluxo de dados unidirecional: O modelo de fluxo de dados do React, onde as
informacoes fluem de componentes pais para filhos, torna o c6digo mais previsivel e
facilita a depuragao. Tal fluxo pode ser exemplificado pela Figura 10 abaixo, onde
o componente "filho"recebe dados do componente "pai', mas pode utilizar alguma

funcao callback para atualizar o componente "pai'.

Parent Component

Child Component

Figura 10 — Exemplo do fluxo de dados unidirecional do React - Fonte: [4]

o Ecossistema rico: O amplo ecossistema do React proporcionou acesso a diversas

bibliotecas complementares que aceleraram o desenvolvimento.

A versao utilizada introduziu melhorias significativas na API de renderizacao e
no desempenho geral, particularmente em relacdo ao gerenciamento de efeitos colaterais
e renderizacao condicional. Este projeto fez uso extensivo dos Hooks do React, como
useState, useEffect, useContext e useCallback, que representam o paradigma mo-
derno de desenvolvimento em React, facilitando a gestao de estado e ciclo de vida dos

componentes sem a necessidade de classes [27].

2.2.2.2 Vite

O Vite foi adotado como ferramenta de build e servidor de desenvolvimento, em
substituicao ao tradicional Create React App, por oferecer vantagens significativas em
termos de desempenho [28]. A configuragao do projeto em vite.config.js demonstra

uma implementagdo minimalista, porém eficaz, desta ferramenta:

» Inicializacao instantanea: O Vite, em sua versao 6.0.5, implementa um sistema

de divisao de modulos de aplicacao e dependéncias, permitindo que o servidor de

42

desenvolvimento inicie quase instantaneamente, independentemente do tamanho da

aplicacao.

« Hot Module Replacement (HMR): A substitui¢io de médulos em tempo real é
significativamente mais rapida no Vite devido a sua arquitetura baseada em ESM
(ECMAScript Modules).

e Otimizacoes de produgao: Para builds de producao, o Vite utiliza Rollup,

oferecendo excelentes otimizacgoes de tree-shaking e splitting de codigo.

« Configuracao simplificada: A configuracao minima necessaria para iniciar o de-
senvolvimento facilitou o setup inicial do projeto, como evidenciado pela configuracao

concisa do arquivo vite.config. js.

e Plugin ESLint integrado: A utilizacdao do plugin vite-plugin-eslint permitiu
a verificacdo de qualidade de cédigo durante o desenvolvimento, aumentando a

confiabilidade e consisténcia do cdédigo produzido.

A experiéncia de desenvolvimento aprimorada proporcionada pelo Vite resultou em
ciclos de desenvolvimento mais rapidos, especialmente durante a fase de implementacao e

testes da interface do usuério.

2.2.2.3 Material-Ul

O Material-UI (MUI) foi selecionado como framework de componentes de interface

do usuério [5]. A escolha foi baseada nos seguintes fatores:

» Design System consolidado: Baseado nas diretrizes do Material Design do Google,

o MUTI oferece uma linguagem visual consistente e familiar aos usuarios.

« Componentes ricos: A biblioteca fornece uma ampla gama de componentes pré-
construidos que atendem as necessidades de interfaces industriais, como tabelas,

didlogos, formulérios e navegacao.

» Responsividade: Os componentes do MUI sao nativamente responsivos, adaptando-

se a diferentes tamanhos de tela sem configuragao adicional extensiva.

« Personalizagao: O sistema de temas do MUI permite a customizagao consistente
de cores, tipografia e outros aspectos visuais através de configuracao centralizada,

como explicitado em [29].

o Acessibilidade: Os componentes seguem as diretrizes WCAG, garantindo que a

interface seja utilizavel por pessoas com diferentes necessidades.

43

No projeto, utilizou-se extensivamente componentes como Box, Grid2, Table,

Dialog, Snackbar e Card para estruturar a interface de gerenciamento de estacoes, dis-

positivos e tags. A biblioteca @mui/icons-material forneceu um conjunto abrangente

de icones utilizados para enriquecer a experiéncia do usuério e melhorar a usabilidade da

interface. Alguns dos exemplos dos componentes dados na documentacao oficial estao na

Figura 11 abaixo.

Word of the Day

be-nev-o-lent
adjective

well meaning and kindly.
“a benevolent smile”

LEARN MORE

(a) Componente Card exemplo

Dessert (100g serving) Calories Fat (g) Carbs (g)

Frozen yoghurt 159 6 2

Ice cream sandwich 237 9 37

Eclair 262 16 24

Cupcake 305 37 67

Gingerbread 356 16 49

Protein (g)

(c) Componente Table exemplo

size=8 size=4

size=4. size=8

(b) Componente Grid exemplo

Subscribe

To subscribe to this website, please enter your email address here. We will
send updates occasionally.

Email Address *

CANCEL SUBSCRIBE

(d) Componente Dialog exemplo

Figura 11 — Componentes de exemplo do Material Ul - Fonte: [5]

2.2.2.4 React Router

Para o gerenciamento de navegagao na aplicacdo, o React Router [30] foi imple-

mentado devido a:

 Roteamento declarativo: Permite definir rotas como componentes React, facili-

tando a organizacao da navegacao.

 Roteamento aninhado: Suporta a criagdo de layouts aninhados com rotas filhas,

essencial para implementar o padrao de navegagao hierarquica do sistema.

« Navegacao programatica: Oferece APIs para navegacao baseada em eventos ou

logica de negdcios.

44

« Parametros de rota: Facilita a captura de pardmetros dinamicos da URL, ttil

para exibicao contextual de recursos.

o Melhorias de desempenho: A versao 7 introduz otimizagoes de desempenho

significativas em relagao as versoes anteriores.

No sistema desenvolvido, o React Router foi fundamental para implementar o
componente ProtectedRoute, que verifica a autenticagao e autorizacdo do usuario antes
de renderizar paginas protegidas, redirecionando usuarios nao autorizados para a pagina

de login.
2.2.2.5 Axios
O Axios foi escolhido como cliente HT'TP para comunicagdo com a API backend

[31] pelos seguintes fatores:

o API baseada em Promises: Facilita o trabalho com operagoes assincronas utili-

zando sintaxe moderna de JavaScript.

o Interceptores: Permite a interceptagao de requisi¢oes e respostas para manipulagao
global, utilizado no projeto para inclusao automatica de tokens de autenticacao em

cabecalhos.

o Transformacao de dados: Oferece funcgoes para transformacao automatica de

dados enviados e recebidos.

o Cancelamento de requisi¢oes: Suporta o cancelamento de requisi¢oes em anda-

mento, util para evitar atualizacoes de estado em componentes desmontados.
« Tratamento de erros consistente: Proporciona um formato padronizado para

tratamento de erros HTTP.

No projeto, o Axios foi configurado como uma instancia centralizada no diretorio
api, com interceptores para autenticacao e tratamento uniforme de erros, garantindo uma

comunicag¢ao robusta e consistente com o backend.

2.2.2.6 Context API

Para gerenciamento de estado global, optou-se pela Context API nativa do React

em detrimento de bibliotecas externas [32]. Esta escolha foi motivada por:

« Simplicidade: A API de contexto oferece uma solucao mais direta para comparti-

lhamento de estado entre componentes distantes na arvore de renderizacao.

45

« Integracao nativa: Sendo parte do préprio React, nao introduz dependéncias

adicionais ou paradigmas conflitantes.

o Suficiéncia: Para as necessidades de estado global deste projeto, principalmente
relacionadas a autenticacao e autorizagao, a Context API mostrou-se suficiente sem

a complexidade adicional de solu¢ées como Redux.

O projeto utiliza principalmente o AuthContext para gerenciar o estado de au-
tenticacao e as permissoes do usuario, tornando estas informagoes acessiveis a qualquer

componente.

2.2.2.7 Bibliotecas Auxiliares

Além das tecnologias principais, o projeto também fez uso de bibliotecas auxiliares

que contribuiram para sua robustez e funcionalidade:

e PropTypes: Utilizada para validacao de tipos em tempo de desenvolvimento,
aumentando a confiabilidade dos componentes através da definicao clara de suas

interfaces [33].

o File-Saver: Implementada para facilitar o download de arquivos gerados pelo

sistema, como relatérios ou logs [34].

o ESLint: Ferramenta de analise estatica que garantiu a qualidade e consisténcia do
codigo, configurada com plugins especificos para React (eslint-plugin-react e

eslint-plugin-react-hooks) [35].

A combinacao destas tecnologias e bibliotecas resultou em uma base sélida para o
desenvolvimento do frontend do Gateway MODBUS/MQTT, possibilitando a criacao de
uma interface de usudrio moderna, responsiva e eficiente, alinhada as necessidades dos

usudrios finais e aos requisitos técnicos do projeto.

2.2.3 Sistema de Autenticacdo e Autorizagao

O sistema implementa autenticagdo baseada em JSON Web Tokens (JWT), onde
as credenciais do usuario sao validadas pelo servidor, que retorna um token contendo
informacoes sobre identidade e permissoes. Este token é armazenado localmente e incluido
automaticamente em todas as requisi¢oes subsequentes, permitindo acesso continuo sem

necessidade de reautenticagao frequente.

A gestao do estado de autenticagao é centralizada através do Context API do

React, que disponibiliza informagoes sobre o usuario logado e suas permissoes para todos

46

os componentes da aplicagao. Esta abordagem simplifica o gerenciamento de sessao e

facilita a adaptacdo da interface conforme o nivel de acesso.

O controle de acesso baseado em papéis (RBAC) estabelece trés niveis de usudrios:
administradores com acesso irrestrito, gerentes com permissao para gerenciar estagoes
e dispositivos, e visualizadores com acesso somente leitura. A implementacao de rotas
protegidas através do React Router garante que paginas restritas s6 possam ser acessadas

por usudarios com as permissoes adequadas.

2.2.4 Gerenciamento de Estado

O gerenciamento de estado da aplicacao utiliza uma combinacao estratégica da
Context API para estados globais (como autenticagdo) e o hook useState para estados
locais de componentes. Esta abordagem equilibra a necessidade de compartilhamento
de informacoes entre componentes distantes com a modularidade e independéncia de
estados especificos. Na Figura 12 abaixo é exemplificada a passagem de informacoes entre
componentes distantes a partir de um Contexto (Context APT), a partir dele é possivel
fornecer dados para componentes distantes, sem necessariamente ter que passar entre os

seus componentes pais.

Figura 12 — Exemplo de passagem de informagoes para componentes distantes pelo Context
API - Fonte: [6]

Informacoes criticas como tokens de autenticagao sao persistidas no localStorage
do navegador, permitindo restauracdo automatica da sessdo em recarregamentos ou
reabertura da aplicagdo. A verificagao de validade destes dados durante a inicializacao

garante segurancga sem comprometer a experiéncia do usudrio.

Na tela de configuracao de estacoes, implementou-se um sistema de "transagoes
pendentes'onde alteragoes sao mantidas inicialmente apenas na interface, permitindo
ao usuario visualizar o impacto das mudancas antes de confirmar todas em uma tnica

operagao ou descarta-las completamente. Esta abordagem melhora a consisténcia dos

47

dados e reduz o risco de configuragdes parciais ou inconsistentes. A Figura 13 demonstra

o modal para confirmar as alteracoes feitas durante o "modo de edicao".

Confirmar alteragées

Vocé esta prestes a confirmar as alteragoes listadas abaixo.

o sera reiniciali; para as G tomarem efeito.

Atualizando estacdo pc

« port: 502 -> 503

Criando estag3o teste_pc

* name: teste_pc
« type: TEST

« addr: 192.168.68.118
* port: 502

CANCELAR CONFIRMAR

Figura 13 — Exemplo de transagoes pendentes - Fonte: Elaborado pelo autor

2.2.5 Interface do Usuario

A interface foi construida sobre o Material-UI, implementando um design system
consistente com paleta de cores funcionais e inspiradas na paleta da CESAMA, tipografia
hierarquica e densidade de informagao balanceada. Elementos visuais especificos como
indicadores de status e navegacao hierarquica foram desenvolvidos para atender as ne-
cessidades particulares do monitoramento industrial. As cores e tipografias utilizadas

foram:

e Cor primaria:

— Principal: #32508F
— Clara: #C2E0F6

e Cor secundaria:

— Principal: #8F7232

48

» Tipografia: Montserrat, sans-serif

Adotou-se uma abordagem responsiva que adapta layouts e componentes a diferentes
tamanhos de tela, garantindo usabilidade desde estagoes de trabalho industriais até
dispositivos moéveis para monitoramento remoto. Estruturas em grid fluido e pontos de

quebra estratégicos mantém a consisténcia visual enquanto otimizam o espago disponivel.

Grande atengao foi dedicada ao feedback visual durante interagoes, com estados
interativos claramente definidos, animagoes funcionais que guiam a atenc¢ao, e confirma-
¢oOes visuais imediatas que complementam o sistema de notificagoes. Esta redundancia

informativa previne incertezas operacionais, aspecto crucial em ambientes industriais.

2.2.6 Estrutura de Navegacao

A navegagao do sistema organiza-se em quatro areas principais acessiveis via menu
lateral: Estacoes (ponto focal operacional), Usudrios e Configuragbes (dreas administra-
tivas) e Logs (visualizagao de registros). Esta estruturagio estabelece clara separagao
entre tarefas cotidianas e administrativas, refletindo diferentes frequéncias de uso. O fluxo

principal da navegacao no sistema pode ser visualizado na Figura 14 abaixo.

Usuario
acessaa o .
aplicagao Pégina de login

Esta logado ? Nao—>‘ (/login)

Simﬁ L—Login efemaao—J

Single Page Application principal

|

Pagina de estagdes (/stations)

Usa barra
lateral para navegar
entre as outras

seEhes Navega pelas estagées, dispositivos e tags

Pagina de configuragées (/configurations)

Token de acesso
expira (ndo renovado)
ou usuario desloga

Muda configuragées do broker MQTT
Altera tabela de permissées por cargo

Pagina de usuérios (/users)

Gerencia os usuarios do sistema, criando,

editando ou removendo na tabela de usudrios

Pagina de logs (/logs)

—————»/ Navega pelos logs do sistema, filtrando pela
categoria principal e subcategorias. Pode
visualizar e baixar logs

Figura 14 — Fluxograma de navegacao na aplicacao - Fonte: Elaborado pelo autor

Serao apresentadas as principais paginas da aplicagao, conforme ilustrado na Figura

14, nas sub-secoes a seguir.

49

2.2.6.1 Pagina de login

A pégina de login na aplicacao é a pagina para qual qualquer usuario nao autenticado
¢é redirecionado. Nela o intuito era ter uma interagao simples com usuario para login via
usuario e senha do sistema. Apds efetuado o login, o usuario é redirecionado para a Pagina

"principal'das estagoes (/stations). A Figura 15 traz uma captura de tela da pégina.

A parte do login foi pensada para que o usudrio possa ocultar/desocultar a senha
que esta sendo digitada.

Login
#i. Scesama
Fro Ttz dgua é vida Usuario
Gateway MODBUS/MQTT
(o]

Figura 15 — Péagina de login da aplicacao - Fonte: Elaborado pelo autor.

Caso as credenciais sejam invalidas (nao cadastradas no banco do sistema), um

aviso aparecera, conforme ilustrado na Figura 16

Login

suario

usuario ‘
Senha

senhaUsuaric © ‘
."L'H‘ZHE nvalidas

Figura 16 — Exemplo de erro no login - Fonte: Elaborado pelo autor

2.2.6.2 Pagina de estacoes
A pégina de estacoes é considerada a pagina principal, pois nela se agrupam todas
as informacoes das estacgoes, dispositivos e tags cadastrados nos sistema.

Agora, é possivel também observar um padrao (ap6s usuario cadastrado) no qual a

barra lateral existe para navegacao do usuério entre as diversas paginas da aplicacao e

20

logout, e a parte "principal"da pagina, que concentra de fato as informacoes principais
daquela pagina. Ao navegar de pagina para pagina, o que mudara serd apenas o conteudo

"principal". Os exemplos irdo esclarecer essa ideia.

A Figura 17 traz uma captura de tela da pagina de estagdes, em que pode-se
observar uma tabela principal das Estacoes, a barra lateral de navegacao e um footer com

informagoes basicas do projeto.

Jcesama
dgua é vida
EstacOes
! Estagbes
Pesquisar Estacdes pelo nome
£ Configuracdes Q
&% Usudrios
Nome Status Tipo Endereco IP Porta Acdes
E Logs
pc ° TEST 192168.68118 502 o
por Andrade e Marcelo Rocha
. Interface e gateway feitos em Trabalhos de Conclusdo de Curso
(B Sair « Supervisdo: Prof. Guilherme Marcio e Dr. Matheus Alberto de Souza

Figura 17 — Exemplo da pagina de estacoes - Fonte: Elaborado pelo autor

Dentro da secao de Estagoes, implementou-se navegagao multinivel com sistema
de drill-down progressivo, onde o usuario navega da lista de estagoes para dispositivos
associados e finalmente para tags especificas. Breadcrumbs interativos e integracdo com
o histérico do navegador facilitam a orientacdo e o retorno a contextos anteriores. A
Figura 18 demonstra a sequéncia da navegagao multinivel, visualizando os dispotivos da
estacao "pc', depois as tags do dispositivo "TEMPERATURA _teste". Na parte superior, é
possivel clicar nos Breadcrumbs para voltar a qualquer momento para alguma das paginas
anteriores. Ademais, na tabela existem as A¢des que permitam que o usuario interaja
com aquela linha da tabela, podendo expandir o item para ver os dispositivos ou tags, ou

editar/excluir aquele item da linha (caso esteja em modo de edi¢ao).

51

Estacdes

ENTRAR NO MODO DE EDIGAO

Estacdes

Nome Status Tipo Enderego IP Porta

pc . TEST 192168.68118 502

[.
(a) Pagina das estagoes.
Dispositivos de pc
Q
Nome Periodo de Leitura unit 1D Tipo Endereco Modbus Tamanho Agdes
TEMPERATURA _teste 30 1 3 X 3 ,‘

Listar Tags

(b) Pagina expandida do dispositivos da estagao 'pc’.

Tags de TEMPERATURA teste

Q

Nome Tipo Tamanhe Agbes

TEMPERATURAT intl6 1

TEMPERATURA 2 intle 1

(c) Pagina expandida das tags do dispotivo "TEMPE-
RATURA teste’

Figura 18 — Exemplo de navegacao entre itens da estacao - Fonte: Elaborado pelo autor.

Para operagoes complexas, adotou-se navegacao modal através de didlogos de edi¢ao
e fluxos de confirmagcao para operagoes criticas. Esta abordagem isola temporariamente o

contexto durante edi¢gdes, mantendo o estado da visualizacao principal intacto e garantindo
retorno preciso ao concluir a operacao.

2.2.6.3 Pagina de configuragoes

A pégina de configuragoes permite ao usudrio configurar as credenciais do broker
MQTT e as permissoes dos cargos no sistema. Dessa forma, o administrador tem controle

total sobre a aplicagdo e o gateway. A Figura 19 traz uma captura de tela da pagina.

52

Scesama o
dgua ¢ vida Configuracdes
A Estacdes Configuracao do Broker MQTT

@ Configuragées

- Usuarios

userl

senha

E Logs ‘

EDITAR CONFIGURAGAO

Configuracéo de Permissdes

Selecione o Papel

Visualizador - EDITAR PERMISSOES

Recurso Agdo Permitido

station read [)

device read

[}

tag read ®

Figura 19 — Exemplo da pagina de configuragoes - Fonte: Elaborado pelo autor

2.2.6.4 Péagina de usudrios

A péagina de usuarios, permite ao administrador configurar os usuérios do sistema.
Seja cadastrando novos usuarios, editando os existentes ou removendo-os. A Figura 20

traz uma captura de tela da pagina.

93

Jcesama g .
f Estagbes Nome de Usuario Papel Agbes

& Configuracdes _
becandrade Administrador VA |

an Usuarios

=] Logs managerl Gerente Van |

matheus Visualizador VN |

‘ﬁ f por e Marcelo Rocha
> Sair J e feitos em de de Curso

Figura 20 — Exemplo da pagina de usuarios - Fonte: Elaborado pelo autor.

2.2.6.5 Pagina de logs

A pégina de logs, permite ao usuério visualizar/baixar logs de diferentes categorias
da aplicacao, desde logs de alteragoes de cadastros simples como novas estacoes cadastradas
ou alteradas, até registros de operagoes do Gateway Modbus/MQTT, verificando se as
publicacdes, leituras e conexdes estao funcionando ou nao. A Figura 21 traz uma captura

de tela da péagina.

o4

"CESAMA Visualizador de Logs

dgua é vida

Categoria Principa

A Estacdes Logs bridge .
o] Configuragoes Subcategoria
Estacdes .

an Usuarios

Arquivo de Log
Lo
pe.log.2025-02-05 z

[INFO] ©5/62/2025 17:02:52 station pc -> Conexdo Modbus estabelecida com sucesso para estacdo pc
[INFO] ©5/62/2025 17:04:09 station_pc -> Conexdo Modbus estabelecida com sucesso para estagdo pc
[INFO] ©5/02/2625 17:16:39 station_pc -> Conexdo Modbus estabelecida com sucesso para estacao pc
[INFO] 05/02/2025 17:16:39 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value: ©

[INFO] ©5/02/2025 17:16:39 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 2, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 2, Value: ©

[INFO] ©5/02/2025 17:17:09 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value: ©

[INFO] ©5/02/2025 17:17:09 station _pc -> Publicacdo bem-sucedida - Device: TEMPERATURA _teste, Tag:
TEMPERATURA 2, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 2, Value: ©

[INFO] ©5/02/2025 17:17:39 station pc -> Publicacao bem-sucedida - Device: TEMPERATURA _teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value

[INFO] 05/62/2025 17:17:39 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA _teste, Tag:
TEMPERATURA 2, Topic: spBv1l.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 2, Value

[INFO] ©5/62/2025 17:18:09 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA _teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value:

[INFO] ©5/62/2025 17:18:09 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA _teste, Tag:
TEMPERATURA 2, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 2, Value: ©

[INFO] 05/02/2025 17:47:46 station pc -> Conexdo Modbus estabelecida com sucesso para estagdo pc
[INFO] 05/02/2025 17:47:46 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value: ©

[INFO] 05/02/2025 17:47:46 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 2, Topic: spBvl. B/TEST/DDATA/pC/TEMPERATURA ‘teste/TEMPERATURA 2, Value: 0

[INFO] ©5/02/2025 17:48:16 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:
TEMPERATURA 1, Topic: spBv1.0/TEST/DDATA/pc/TEMPERATURA teste/TEMPERATURA 1, Value: ©

[INFO] ©5/02/2025 17:48:16 station pc -> Publicacdo bem-sucedida - Device: TEMPERATURA teste, Tag:

por e Marcelo Rocha
e feitos em de C de Curso
‘ro Supervisdo: Prof. Guilherme Marcio e Dr. Matheus Alberto de Souza

> Sair

Figura 21 — Exemplo da pagina de logs - Fonte: Elaborado pelo autor.

2.2.7 Comunicagao com o Backend

A comunicagdo com o backend é realizada através de API RESTful utilizando o
cliente Axios, com instancia centralizada que padroniza cabegalhos, transformacoes de
dados e tratamento de erros. As requisi¢oes sdo organizadas em servigos especificos para

cada dominio da aplicacao, com validagao em duas etapas para operacoes criticas.

Implementou-se tratamento abrangente de erros, com mensagens especificas para
falhas previsiveis e sistema de tratamento de excegoes em miultiplas camadas para er-
ros inesperados. Durante operagoes assincronas, indicadores de progresso e estados de

desabilitagdo de controles previnem acgoes duplicadas e fornecem feedback claro.

A arquitetura de comunicacao foi otimizada para responsividade em condi¢oes
variaveis de rede, com técnicas como agrupamento de requisi¢oes, cache local e carregamento
progressivo. Para monitoramento em tempo real, implementou-se polling inteligente que

ajusta a frequéncia de atualizagdo conforme atividade do usuério e disponibilidade do

95

servidor.

2.2.8 Otimizagoes de Performance

A performance da interface foi otimizada através de técnicas como memoizacao
de componentes e fungoes utilizando useCallback e useMemo, especialmente em listas de
estagoes, dispositivos e tags. O gerenciamento criterioso do ciclo de vida com implementacao
disciplinada do useEffect e carregamento sob demanda de dados hierdrquicos contribui

significativamente para a responsividade.

Adotou-se carregamento preguicoso (lazy loading) para rotas menos frequentes e
avaliagao criteriosa de dependéncias externas, reduzindo o tamanho do pacote inicial e
acelerando a inicializacao da aplicagdo. A ferramenta Vite proporciona divisao de codigo e

tree shaking adicionais durante o processo de build.

Para contextos industriais especificos, implementou-se frequéncia adaptativa de
atualizacdo baseada na visibilidade da aplicagao, virtualizagao para listas extensas, e
mecanismos de estabilidade como retry automatico e sincronizacao peridédica. FEstas
otimizagoes resultam em interface responsiva e confidvel, mesmo em condigoes operacionais

desafiadoras.

2.2.9 Tratamento de Erros e Feedback ao Usuario

O sistema implementa uma abordagem multicamada para tratamento de erros,
combinando validagao preventiva nos formularios com captura e apresentacao adequada de
excecoes durante operacoes. Validacoes em tempo real nos campos de entrada fornecem
feedback imediato sobre problemas potenciais, como valores fora das faixas permitidas
para parametros MODBUS, enquanto validagoes mais complexas sao executadas antes da
submissao do formulario. Na Figura 22 é demonstrada a validacao do campo de endereco

IP no formulério de criagao/edi¢ao de uma estagao.

"CESAMA

dagua é vida

Editar Estagdo

Nor

CCONFIRMAR ALTERAGOES DESCARTAR ALTERACOES

& Configuracdes o

&% Usuarios

B Logs TEST

[193 034

Figura 22 — Exemplo de validacao do campo de Endereco IP - Fonte: Elaborado pelo autor

Erros de comunicagao com o backend ou falhas operacionais sao capturados e

apresentados através de um sistema centralizado de notificacdes baseado no componente

56

Snackbar do Material-UI. As mensagens sao categorizadas por severidade (informagao,
sucesso, alerta ou erro) com codificagao visual por cores e icones, facilitando a compreensao
rapida da natureza do problema. Para operagoes criticas como exclusao de estagoes,

didlogos de confirmacao explicita previnem acoes irreversiveis acidentais.

A Algumas operacdes falharam. O gateway nao sera reiniciado. X

Operacoes berm-sucedidas:

Operacoes com falha:
Criacao de station: teste

Figura 23 — Snackbar apresentando falha na criagao de estacao - Fonte: Elaborado pelo
autor.

O feedback positivo também recebe atencao especial, com confirmagoes visuais
para operacoes bem-sucedidas e indicadores de progresso para ac¢oes de longa duracao
como reinicializacdo do gateway. Esta estratégia equilibrada de feedback negativo e
positivo reduz a frustragdo do usuério, aumenta a confianga no sistema e diminui a curva
de aprendizado, aspectos particularmente importantes em ambientes industriais onde a

eficiéncia operacional é critica.

@ Todas as alteracoes foram aplicadas com sucesso e o bridge foi reiniciado. X

Figura 24 — Snackbar apresentando sucesso nas alteracoes - Fonte: Elaborado pelo autor

2.2.10 Consideracoes sobre Experiéncia do Usuario

A experiéncia do usudrio no sistema Gateway MODBUS/MQTT foi projetada
considerando o contexto operacional industrial, onde clareza, eficiéncia e consisténcia
sobrepoem-se a elementos estéticos. Os fluxos de trabalho foram estruturados para
minimizar o nimero de interagdes necessarias para tarefas frequentes, como verificagao de
status de estacoes, enquanto operagoes complexas sao subdivididas em etapas logicas com

estado preservado entre transicoes.

A consisténcia visual e comportamental foi priorizada em toda a aplicacao, com
padroes de interagao uniformes para operagoes similares e terminologia técnica precisa. Esta
abordagem reduz a carga cognitiva dos operadores, especialmente importante em ambientes
industriais onde o sistema pode ser utilizado por profissionais com diferentes niveis de

familiaridade tecnolégica e em condigoes de atencao dividida com outros equipamentos.

Aspectos de acessibilidade foram considerados através da implementacao de con-

traste adequado, tamanhos de fonte ajustaveis e suporte a navegacao por teclado. O

o7

feedback imediato para agoes do usuario, além de sua funcao informativa, também contribui
para a percepc¢ao de responsividade do sistema, criando uma experiéncia que inspira confi-
anca mesmo quando operacoes de backend possuem laténcia inerente. Estas consideragoes
resultam em uma interface que, embora tecnicamente sofisticada, apresenta-se ao usuario

como uma ferramenta intuitiva e confidvel.

2.3 Infraestrutura de TI

A infraestrutura de TT do sistema Gateway MODBUS/MQTT foi projetada visando
facilidade de implantacao, portabilidade e manutencao. A adocdo de tecnologias de
conteinerizacao, especificamente o Docker, permitiu encapsular todos os componentes do
sistema em ambientes isolados e reproduziveis, simplificando significativamente o processo

de desenvolvimento e implantacao.

&> docker

Frontend
(Porta 3000)

1

Requisicoes HTTP Resposta a requisi¢ao

Backend
Porta (8000)
Avalia se
requisigao é para o
banco ou Gateway
Gateway Modbus/MQTT —| Banco de dados
A |

Publicacao e subscricao em topicos
v

Broker MQTT

Figura 25 — Visao geral da infraestrutura baseada em Docker - Fonte: Elaborado pelo
autor.

o8

2.3.1 Conteinerizacao com Docker

O Docker foi escolhido como plataforma de conteinerizacao por proporcionar ambi-
entes leves, portateis e consistentes para execugao dos diferentes componentes do sistema
[36]. Cada servigo da aplicagao é executado em um contéiner independente, permitindo iso-
lamento de recursos e dependéncias especificas, além de facilitar a escalabilidade horizontal

quando necessario.

A conteinerizagao traz beneficios substanciais para um sistema industrial como o

Gateway MODBUS/MQTT, incluindo:

« Consisténcia entre ambientes: Elimina o tradicional problema "funciona na minha
maquina', garantindo comportamento idéntico nos ambientes de desenvolvimento,

teste e producao.

o Isolamento de dependéncias: Cada componente opera com suas préoprias biblio-

tecas e dependéncias, evitando conflitos e simplificando atualizagoes.

e Otimizagao de recursos: Os contéineres compartilham o kernel do sistema opera-
cional, resultando em sobrecarga significativamente menor comparada a maquinas

virtuais tradicionais.

2.3.2 Arquitetura de Contéineres

A arquitetura do sistema é composta por trés contéineres principais, cada um com

responsabilidades especificas:

2.83.2.1 Frontend

O contéiner do frontend encapsula a aplicagdo React e utiliza uma abordagem
multi-estagio no Dockerfile para otimizar o tamanho e a performance. No primeiro estagio,

a aplicacao é construida em um ambiente Node.js:

FROM node:20-alpine as builder
WORKDIR /app

COPY package*.json ./

RUN npm install

COPY .

RUN npm run build

No segundo estagio, apenas os artefatos de build sao transferidos para um servidor

Nginx leve, responsavel por servir a aplicagdo estatica:

99

FROM nginx:alpine
COPY --from=builder /app/dist /usr/share/nginx/html

A configuracao personalizada do Nginx implementa redirecionamento apropriado
para aplicagoes de pagina tnica (SPA), garantindo que todas as rotas sejam gerenciadas

corretamente pelo React Router.

2.83.2.2 Backend

O contéiner do backend encapsula a API FastAPI desenvolvida em Python e utiliza

Poetry para gerenciamento de dependéncias:

FROM python:3.11-slim

RUN pip install "poetry==1.8.2"

COPY pyproject.toml poetry.lock ./

RUN poetry config virtualenvs.create false

RUN poetry install --without dev —--no-interaction

Esta configuracao garante instalagao consistente das dependéncias e otimizacao
para ambiente de producao, excluindo pacotes de desenvolvimento. O servidor Uvicorn é
utilizado para execucao da aplicacao FastAPI, oferecendo alto desempenho para aplicagoes

assincronas.

2.3.2.3 MQTT Broker

O terceiro contéiner implementa o broker MQTT utilizando a imagem oficial do

Eclipse Mosquitto, um broker leve e de codigo aberto que implementa o protocolo MQTT:

mosquitto:
image: eclipse-mosquitto
volumes:
- ./Mosquitto/conf:/mosquitto/config
- ./Mosquitto/data:/mosquitto/data
- ./Mosquitto/log:/mosquitto/log

A configuracao é montada a partir do host, permitindo personalizacao das politicas
de acesso, autenticacio e persisténcia conforme os requisitos especificos da CESAMA.
2.3.3 Orquestragao com Docker Compose

O Docker Compose ¢ utilizado para definir e gerenciar a execug¢ao dos multiplos

contéineres que compoem a aplicacao [37]. Esta ferramenta simplifica significativamente o

60

processo de desenvolvimento e implantacao, permitindo iniciar toda a infraestrutura com

um unico comando

O arquivo docker-compose.yml define a configuragao de cada servico, suas depen-

déncias, mapeamentos de porta e volumes:

services:
backend:
build:
context: ./backend
dockerfile: Dockerfile
ports:
- "8000:8000"
volumes:
- ./backend:/app
- ./backend/database.db:/app/database.db
- ./backend/logs:/app/logs
environment:
- DATABASE_URL=sqlite:///database.db
networks:

- app-network

frontend:

build:
context: ./frontend/gateway-front
dockerfile: Dockerfile

ports:
- "3000:3000"

depends_on:
- backend

networks:

- app—network

mosquitto:
image: eclipse-mosquitto
container_name: mosquitto
volumes:
- ./Mosquitto/conf:/mosquitto/config
- ./Mosquitto/data:/mosquitto/data
- ./Mosquitto/log:/mosquitto/log

61

ports:
- "1883:1883"
- "9001:9001"
networks:

- app-network

networks:
app-network:

driver: bridge
Aspectos importantes desta configuracao incluem:

« Volumes persistentes: Dados criticos como o banco de dados SQLite e logs sao
armazenados em volumes mapeados para o host, garantindo persisténcia mesmo

apés a recriacao dos contéineres.

» Rede dedicada: Uma rede bridge isolada (app-network) é criada para comunicagao

entre os contéineres, melhorando a seguranga e simplificando a descoberta de servigos.

o Definicdo de dependéncias: Através da diretiva depends_on, garante-se que
os contéineres sejam iniciados na ordem correta, com o frontend dependendo do
backend.

2.3.4 Consideracoes sobre Implantacgao

A infraestrutura baseada em Docker proporciona flexibilidade para implantacao em
diversos ambientes, desde servidores on-premises até plataformas de nuvem como maquinas

virtuais.

Os requisitos de hardware sao relativamente modestos devido a eficiéncia dos

contéineres:
o CPU: 2+ cores para operacao regular

o Memoria: Minimo de 2GB RAM, recomendado 4GB

« Armazenamento: 20GB+ para sistema, logs e dados

2.3.5 Implantagdo em Novo Ambiente

A implantagao do sistema Gateway MODBUS/MQTT em um novo ambiente é
simplificada através do uso de Docker. A seguir, sdo apresentados os passos necessarios
para executar a aplicagdo em uma nova maquina, assumindo que Docker e Docker Compose

estejam previamente instalados (instrugoes de instalagao em [38]).

62

2.3.5.1 Requisitos Preliminares

Antes de iniciar a implantacao, deve ser verificado se o ambiente atende aos seguintes

requisitos:

Docker Engine (versao 20.10 ou superior)
» Docker Compose (versao 2.0 ou superior)

o Acesso a internet (para download inicial das imagens)

Portas 3000 (Frontend), 8000 (Backend) e 1883 (MQTT) disponiveis

2.3.5.2 Procedimento de Implantacao

O processo de implantagao consiste em cinco etapas simples:

1. Obtencao do Cédigo-Fonte:

O usuario deve clonar o repositério do projeto ou copiar os arquivos para a maquina

de destino:

git clone https://repositorio.do.projeto/gateway-modbus-mqtt.git
cd gateway-modbus-mqtt

2. Configuracao do Ambiente:

Criar os diretérios necessarios para os volumes persistentes:

mkdir -p Mosquitto/conf Mosquitto/data Mosquitto/log
mkdir -p backend/logs

Configurar o broker MQTT criando o arquivo Mosquitto/conf/mosquitto.conf

com o seguinte conteudo:

persistence true
persistence_location /mosquitto/data

log_dest file /mosquitto/log/mosquitto.log

listener 1883
Authentication
allow_anonymous false

password_file /mosquitto/config/password.txt

63

Criar também o arquivo de senhas para autenticacao do broker MQTT:

Crie um arquivo vazio para senhas

touch Mosquitto/conf/password.txt

Execute o comando dentro do contéiner para adicionar um usudrio
Substitua 'usuario' e 'senha' pelos valores desejados
docker compose exec mosquitto mosquitto_passwd -b

/mosquitto/config/password.txt usuario senha

Ou, se o contéiner ainda ndo estiver em execugdo, use:
docker run --rm -v $(pwd)/Mosquitto/conf:/mosquitto/config
eclipse-mosquitto \ mosquitto_passwd -b

/mosquitto/config/password.txt usuario senha

Estas configuragdes habilitam a persisténcia de dados, registro de logs e, importante
para ambientes de producao, autenticagdo obrigatéria para conexoes ao broker

MQTT, aumentando a seguranca do sistema.

3. Construgao dos Contéineres:

Executar o comando abaixo para construir as imagens Docker definidas no docker-

compose:

docker compose build

Este processo pode levar alguns minutos na primeira execugao, pois serao baixadas

as imagens base e instaladas todas as dependéncias.
4. Inicializacao do Sistema:

Iniciar todos os servigcos com o comando:

docker compose up -d

A flag -d executa os contéineres em modo destacado (background).

5. Verificacao da Execucao:

Confirmar se todos os contéineres estao em execucao:

64

docker compose ps

Verificar os logs de cada servigo para identificar possiveis problemas:

docker compose logs backend
docker compose logs frontend

docker compose logs mosquitto

Apos concluir estes passos, o sistema estara acessivel através dos seguintes enderecos:

 Frontend: http://localhost:3000 ou http://[IP-DA-MAQUINA] :3000
« Backend API: http://localhost:8000 ou http://[IP-DA-MAQUINA] : 8000

e MQTT Broker: mqtt://localhost:1883 ou mqtt://[IP-DA-MAQUINA] : 1883

2.3.5.3 Operagoes Comuns de Manutencao

Para facilitar a administracao do sistema em producao, a seguir sao listados os

comandos mais comuns para operacoes de manutencao:

Parar todos os servigos:

docker compose down

« Reiniciar um servigo especifico:

docker compose restart backend

e Visualizar logs em tempo real:

docker compose logs -f

o Atualizar apés alteragoes no cédigo:

docker compose build frontend

docker compose up -d ——no-deps frontend

65

Esta configuragao facilita tanto ambientes de desenvolvimento quanto de producao,
permitindo que equipes de TI com diferentes niveis de experiéncia possam gerenciar o
sistema com facilidade.

Esta arquitetura de infraestrutura proporciona um equilibrio entre robustez opera-
cional e facilidade de manutencao, permitindo que a equipe técnica da CESAMA gerencie

o sistema com recursos minimos de TI, enquanto mantém a possibilidade de evolucao e

escala conforme necessario.

66
3 Resultados

Este capitulo apresenta os resultados obtidos no desenvolvimento e implementacao
do sistema Gateway MODBUS/MQTT, demonstrando o funcionamento dos diferentes

componentes da solugao e sua integracao, dentro de um ambiente simulado.

3.1 Inicializagdo do sistema

Nesta secao, serd demonstrado como o sistema foi inicializado e quais os resultados
obtidos nessa inicializacao, bem como os passos iniciais necessarios para acessar o aplicativo

web.

Seguindo os passos presentes na Secao 2.3.5.2, o Docker é utilizado para inicializar
o sistema. Ao executar o comando docker compose up o sistema é executado com os logs

no terminal ativos, para poder visualizar e mostrar os resultados.

Serao analisadas as inicializagoes separadamente, nas suas respectivas sub-se¢oes a

seguir.

3.1.1 Anaélise da inicializacao do backend

Ao inicializar o sistema, o backend fica disponivel na porta 8000 da maquina,
esperando por requisigoes. O Gateway também ¢ inicializado junto com a aplicagdo, mas

em uma thread separada.

As Figuras 26 e 27 mostram os logs, no terminal da maquina, de inicializacdo do

backend.

~/Documentos/UFJF/TCC/GatewayModbusMQTT/gatewaymodbusmqtt —————— SCROLL: 35/35

+C to quit)

do do bridge

Figura 27 — Inicializacao do backend no terminal - Fonte: Elaborado pelo autor.

67

n-on—ipvi
entrypoint.
cker-entrypoint

ed version

9 (Alpine 13.2.1_git20216309)

048576

Figura 28 — Inicializacao do frontend no terminal - Fonte: Elaborado pelo autor.

3.1.2 Anélise da inicializacao do frontend

Ao inicializar o sistema, o frontend fica disponivel na porta 3000 da maquina,

servindo a aplicagao frontend.

As Figuras 26 e 28 mostram os logs, no terminal da maquina, de inicializagao do
frontend.

Ao tentar acessar o sistema na méaquina via localhost pela url https://localhost:3000

a aplicagao ja redireciona para a pagina de login. Os logs no terminal sao mostrados na
Figura 29.

0000] "GET /login HTTP/1.1

Figura 29 — Exemplo de requisi¢do de pagina pelo frontend no terminal - Fonte: Elaborado
pelo autor.

3.2 Resultados Simulados

Para poder desenvolver e demonstrar o funcionamento do projeto como um todo,
foi feito o uso de duas maquinas distintas. Uma foi responsavel por rodar o container do
aplicativo fullstack de gerenciamento do sistema. A segunda maquina utilizou a versao de
demonstracao do software MODBUS Slave, da empresa modbus tools, para simular um
dispositivo escravo sendo acessado remotamente, como se fossem as estagoes da CESAMA.
A Figura 30 ilustra a arquitetura da simulagao, onde o Laptop executa o simulador

MODBUS Slave e o PC executa o container da aplicacao.

68

& docker
Backend
Frontend -
Modbus e
Gateway T RTUoverTCP }hﬂ:;ﬂ.vb:r = s
/
Y
Broker
MQTT

Executa

Executa

] y

Lapto
pPC pieR

Figura 30 — Diagrama de estrutura da simulagao - Fonte: Elaborado pelo autor.

3.2.1 Configuracao do simulador

No simulador MODBUS Slave, a configuracao ¢é feita como se ele fosse uma estacao.
Dentro dele, sao configurados diferentes dispositivos com diferentes tags e valores nas tags

para serem lidos.

Para simplificar a demonstragao, foram utilizados apenas 4 dispositivos com 5 tags

cada. Cada dispositivo é de um tipo de dado, sendo:

Coil Status: Tipo 1, Coil Status;

o Mbslave3: Tipo 2, Input Status;

o Mbslave4 : Tipo 3, Holding Register;
o Mbslave5 : Tipo 4, Input Register;

Todas as 5 tags de cada dispositivo foram mantidas com o valor 0.

A Figura 31 mostra a configuragao feita dentro do simulador, junto com as nomen-

claturas de cada dispositivo e a configuracao de conexao do simulador.

69

£¥ Modbus Slave - Mbslave5
File Edit Connection Setup Display View Window Help

DEEa (= 2 Connection Setup X
[coil Status.mbs [SER] | EIvbstaves (E =P
iD=1:F=01 iD=2F=02 Connection
todbus RTIU Ower TCRIP ~
Alias| 00001 Alias| 00001 - =
1 o H Cancel
2 L o z | 0 Setial Settings
j 0 3 0
4 0 4 0 COMI1 5
B ; : ™
S00Baud o e
RTL AICI
& Data hits ne
[5 Mbslaved ElElEd) = E=RETE Flaw Contral
[D=3F=03 [D=4:F=04 Even Parity B D3R oTa RTS Taggle
Alias| 00001 Alias| 00001 1 .
B = 1 Stop Bit ~ [m=] BTS disable delay
2 | 0 2 0
3 0 3 0
4 | 0 & 0 TCP/IP Server
3 9 5 o IP Address Fon
192.168.658.118 w b0z
B Any Addrass [« =¥
u Ignaore Unit 1D OIP\;E

(a) Configuracao dos escravos simulados. (b) Configuracdo da conexao Modbus si-
mulada.

Figura 31 — Configuragoes da simulagao - Fonte: Elaborado pelo autor.

3.2.2 Configuragao do aplicativo web com os dados do simulador

Feitas as configuragoes no simulador no Laptop e conectado na rede, é necessario
cadastrar a estagao no aplicativo executado no PC, bem como os dispositivos e tags de
cada um. A lista de cadastro segue a seguinte hierarquia:

o Estacgao: teste simulado com IP do Laptop e porta 502

— Dispositivos:
— Coil Status
x Tags:
* tagl
* tag2
x tag3
* tagd
* tagh
— Mbslave3
x Tags:
x tagl
* tag2
* tagd

70

x tagd
x tagh
— Mbslaved

x Tags:

*

tagl
* tag2

*

tag3
x tagd
* tagh

— Mbslaveb
x Tags:
* tagl

*

tag2
tag3d
tag4

*

*

* tagh

Para configurar o sistema, primeiro é necessario fazer login. Para isso, foi preparado
previamente um usuario no banco de dados com papel de "Administrador'do sistema.

Existe também o exemplo de um usuario "Gerente"do sistema que tera algumas restrigoes.

3.2.2.1 Login

Apés preenchimento das credenciais e confirmacao o backend recebe a requisi¢ao
de login e retorna com sucesso, além de ja buscar pelas estagoes e status das mesmas para

exibir na pagina, conforme observado na Figura 32.

INFO: 72.19.0.1: ST / / e P/1.1" 200 OK
INFO: 2 AR OPTIC ef: _token HTTP/1.1" 2i
INFO: gop L S t| fresh_token HTTP/1.1"

INFO: i 2 € OPTIO HTTR/1.1" 2@
INFO: 172.19.0.1:43412 - " /station-status HTTP/1.1" 200 OK

Figura 32 — Logs de requisi¢des ao backend no terminal - Fonte: Elaborado pelo autor.

3.2.2.2 Cadastro de estacao

Efetuado o login, a aplicacdo entra na pagina de estacoes. Nela, deve-se realizar o
cadastro de uma estacao de teste, com as mesmas configuragoes efetuadas no simulador
(conforme hierarquia na se¢do 3.2.2). Para isso, basta entrar no modo de edigao e ir em

"Criar estagao".

A Figura 33 exemplifica o formulario de cadastro.

71

Scesama -
dgua é vida
Editar Estacao
A Estacées
Nome*
@ Configuragdes teste_simulado
an Usuarios Tipo*
TEST
E Logs
Enderego IP*
192.168.68.118
Porta*
502

Figura 33 — Formulario de cadastro de estacao - Fonte: Elaborado pelo autor

O registro de criacao pode ser verificado pelo log das estagoes, conforme mostrado
na Figura 34.

"CESAMA

dgua é vida Visualizador de Logs

f Estactes Logs aplicacao -

@ Configuracdes

- Usuarios

stations.log

[INFO] 04/03/2025 22:08:58 stations -> Estacao pc DELETADA pelo usuario becandrade de id 1
[INFO] 04/03/2025 22:13:53 stations -> Estacdo teste_simulado CRIADA pelo usudrio becandrade de id 1

Figura 34 — Log de cadastro da estagao - Fonte: Elaborado pelo autor

3.2.2.8 Cadastro de dispositivo

Apos cadastrar a estacdo, é feito o cadastro de um dispositivo dela. Basta abrir os
dispositivos da estacgao criada e ir em "Criar dispositivo".

A Figura 35 exemplifica o formulario de cadastro.

O registro de criagao pode ser verificado pelo log dos dispositivos, conforme mostrado
na Figura 36.

72

0

"CESAMA :

dgua é vida

tacoes / teste simulado CONFIRMAR ALTERACOES DESCARTAR ALTERAGOES

Editar Dispositivo

a® Estacées
Nome

@ Configuragdes Coil_Status
an Usuarios Periodo de Leitura
b5 |
E Logs
Unit ID

Tipo

1

Enderego Modbus

1

Tamanho

5
SALVAR CANCELAR

Figura 35 — Formulario de cadastro de dispositivo - Fonte: Elaborado pelo autor

"CESAMA

dgua é vida Visualizador de Logs

Categoria Principal

" Estacdes

Logs aplicagdo .
Q Configuraces
Subcategoria
- Usuarios Dispositivos .
devices.log .

VISUALIZAR LOG ¥ BAIXARLOG

[INFO] ©5/03/2025 16:02:27 devices -> Dispositivo Coil Status atualizado na estacio teste simulado pelo usuario
becandrade (ID: 1). Alteragdes: name: dispositivo simulado -> Coil Status, type: 3 -> 1, size: 2 ->

[INFO] ©5/03/2025 16:02:27 devices -> Dispositivo MbSlave3 criado na estacdo teste simulado pelo usuério
becandrade (ID: 1)

[INFO] ©5/03/2025 16:02:27 devices -> Dispositivo Mbslave4 criado na estagdo teste simulado pelo usuério
becandrade (ID:

[INFO] ©5/03/2025 16:02:27 devices -> Dispositivo Mbslave5 criado na estacao teste simulado pelo usuario
becandrade (ID: 1)

Figura 36 — Log de cadastro de dispositivo - Fonte: Elaborado pelo autor

3.2.2.4 Cadastro de tag

Apods cadastrar o dispositivo, é feito o cadastro de uma tag dele. Basta abrir as
tags do dispositivo criado e ir em "Criar tag'.

A Figura 37 exemplifica o formulario de cadastro.

O registro de criagdo pode ser verificado pelo log das tags, conforme mostrado na
Figura 38.

73

foesama v
Editar Tag

~ Estagdes

Nome
¥ Configuragdes —
&% Usuarios

Tipo
8 Logs intle

SALVAR CANCELAR

Figura 37 — Formulario de cadastro de tag - Fonte: Elaborado pelo autor

CESAMA

‘ dgua é vida Visualizador de Logs

Categoria Principa

L Estacoes Logs aplicagcdo v

@ Configuragdes

ah Usuarios

Logs Arquivo de Log

tags.log J

VISUALIZAR LOG ¥ BAIXAR LOG

[INFO] 05/03/2025 16:02:27 tags -> Tag Coil 2 CRIADA no dispositivo Coil Status da estagao teste simulado pelo
usuario becandrade de id 1

[INFO] ©5/03/2025 16:02:27 tags -> Tag Coil 3 CRIADA no dispositivo Coil Status da estacdo teste simulado pelo
usuario becandrade de id 1
[INFO] ©5/63/2025 16:02:27
usuario becandrade de id 1
[INFO] ©5/63/2025 16:02:27 tags -> Tag Coil 5 CRIADA no dispositivo Coil Status da estacdo teste simulado pelo
usuario becandrade de id 1

[INFO] ©5/03/2025 16:65:00 tags -> Tag tagl CRIADA no dispositivo MbSlave3 da estacdo teste simulado pelo usuario
becandrade de id 1

[INFO] ©5/03/2025 16:05:00 tags -> Tag tag2 CRIADA no dispositivo MbSlave3 da estacéo teste simulado pelo usuario
becandrade de id 1

[INFO] ©5/03/2025 16:05:00 tags -> Tag tag3 CRIADA no dispositivo MbSlave3 da estacdo teste simulado pelo usuario
becandrade de id 1

[INFO] 05/03/2025 16:05:00 tags -> Tag tagd CRIADA no dispositivo MbSlave3 da estacdo teste simulado pelo usuario
becandrade de id 1
[INFO] ©5/63/2025 16:
becandrade de id 1
[INFO] ©5/03/2025 16:
becandrade de id 1
[INFO] ©5/03/2025 16:
becandrade de id 1
[INFO] 05/03/2025 16:05:00 tags -> Tag tag3 CRIADA no dispositivo Mbslave4 da estacdo teste simulado pelo usuario
becandrade de id 1

[INFO] ©5/03/2025 16:05:00 tags -> Tag tagd CRIADA no dispositivo Mbslave4 da estacdo teste simulado pelo usuario
becandrade de id 1

[INFO] ©5/03/2025 16:05:00 tags -> Tag tag5 CRIADA no dispositivo Mbslave4 da estacéo teste simulado pelo usuario

tags -> Tag Coil 4 CRIADA no dispositivo Coil Status da estacdo teste simulado pelo

)

:00 tags -> Tag tag5 CRIADA no dispositivo MbSlave3 da estacdo teste simulado pelo usuario

°

:00 tags -> Tag tagl CRIADA no dispositivo Mbslave4 da estacado teste simulado pelo usuario

°

:00 tags -> Tag tag2 CRIADA no dispositivo Mbslaved da estagdo teste simulado pelo usuario

Figura 38 — Log de cadastro de tag - Fonte: Elaborado pelo autor

3.2.3 Permissionamento de paginas para gerente e visualizador
Conforme mencionado anteriormente, o acesso as paginas de Configuragao e Usua-
rios é restrito apenas para usuarios com papel de Administrador no sistema.

Ao fazer login com um usuario com papel de Gerente, a barra de navegacao lateral

mostra apenas as paginas Estagoes e Logs, conforme mostra a Figura 39.

O comportamento se estende para usuarios que tiverem o papel Visualizador.

74

"CESAMA

dagua é vida

A Estacbes

E Logs

Figura 39 — Exemplo da barra lateral em visualizacao do Gerente - Fonte: Elaborado pelo
autor

3.2.4 Monitoramento da estacao e funcionamento do Gateway encapsulado
Com os dados cadastrados, monitora-se o status da estagdo cadastrada a partir da
tela de Estagoes, na coluna Status.

Quando o simulador esta conectado e funcionando, um indicador verde mostra que

a conexao esta adequada, conforme ilustrado na Figura 40 .

Jeesama ...
;

¥ Configuragdes

&% Usuarios

E Logs Nome Status Tipo Endereco IP Porta Agbes

teste_simulado ° TEST 19216868118 502 o

Figura 40 — Exemplo de estagao conectada - Fonte: Elaborado pelo Autor

Ja quando o simulador é desconectado, o indicador muda para vermelho, mostrando

que a conexao com aquela estacao foi perdida, conforme ilustrado na Figura 41.

75

Joesama ..

Estagdes

Pesquisar Estacdes pelo nome

® Estagbes

Configuragbes n

o & ,
Usudrios

B logs Nome Status Tipo Endereco IP Porta Agdes

teste_simulado L] TEST 192168.68118 502 o

Figura 41 — Exemplo de estacao desconectada - Fonte: Elaborado pelo Autor

Ademais, é possivel verificar o log da estacao, na categoria do bridge (Gateway)
para verificar logs de publicagdo de dados no broker MQT'T e status da conexdo Modbus
com a estacao. Isto pode ser feito a partir da pagina de Logs, conforme ilustrado na Figura
42, a partir do registro no tempo "05/03/2025 17:35:12" é possivel visualizar a conexao
sendo estabelecida com sucesso e as publicagoes de dados no broker MQTT sendo feitas

COIIl SucCesso.

"CESAMA Visualizador de Logs

agua é vida

A Estagdes Logs bridge
@ Configuragdes tegoria

Estagdes
Usudrios

.
_ teste simuladaiog he

SpBVL.0/TEST/DDATA/ teste_simulado/MbSlave3/tags, Value: False

station teste sinulado -> Publicagao bem-sucedida - Device: MbSlave3, Tag: tags, Topic
SPRVLO/TEST/DDATA/teste_simulado/Mbslaved/tags, Valve:

station teste sinulado -> Publicacao bem-sucedida - Device: Mbslaved, Tag: tags, Topic
station teste sinulado - 0 ben-sucedida - Device: MbslaveS, Tag: tag5, Topic: spBvl.0/TEST/DDATA/teste sinulado/MbslaveS/tag5,
Ciation teste Similods > Publicoca bom sucedion | Dovice: Corl Seatus: Tago Coil b Topicy Spbyi.0/TEST/DDATA/Totte. SumitodsCont ShatubiCost 3, Value: False
station teste simulado -> Publicacdo ben-sucedida - Device: Coll Status, Tags Coil 3; Topic: spByl O/TEST/DDATA/teste sinulado/Coil Status/Coil 3, Value: False
station teste sinulado -> Publicacdo bem-sucedida - Device: MbSlave3, Tag: tagl, Topic: spBvl.6/TEST/DDATA/teste sinulado; o/MiSLoves/tagl, g

station_teste sinulado -> Publicagao ben-sucedida - Device: Coil Status, Tag: Coil 4, Topic: spBv1.0/TEST/DDATA/Teste simulado/Coil Status/Coil 4, Value: Fatse
station teste sinulado -> Publicacao bem-sucedida - Device: Mbslaved, Tag: tagl, Topic: spBvl.6/TEST/DDATA/teste_sinulado/Mbslaved/tagl, Val

Stiontestesimiade 1> Publicachs ben.sucedida | bevice: Mhelaves, Tog: toa2! Tonlci soBvE.a/TEST/DDATA/secte™simolado Mbelavesstacs. Valve: Folse -

se
INFO] 05/03/2025
INFO] 05/03/2025

INFO] 05/03/2025
INFOT 05/03/2625

rror (Exception Response(132, 4, IT)
INFOL 65/63/2625 17:34:12 siation.teste sinulado -> Conexdo Modbus estabelecida con sucesso para estacdo teste sinulado
NFO] 5/63/2025 17:34: - Publicecto bem-sucedida - Device: Cofl Status, Teg: Coil 2; Toplc: spbyl,O/TEST/DDATA teste simulodo/CollL Status/Col 2, Value: False
INFO] 05/03/2025 17:34. > Publicacao bem-sucedida - ic: spBv1.0/TEST/DDATA/ teste_sinulado/MbSlave3/fagl, Valu
INFO] 05/03/2025 17:34. > Publicacao ben-sucedida - ic: spBvl.0/TEST/DDATA/ teste sinulado/Mbslaved/tagl, Valug
INFO] 05/03/2025 17:34 > Publicacao ben-sucedida - . SpBVL.0/ TEST/DDATA/teste simulado/Mostaves/ tagl, ;0
INFO] 05/03/2025 17:34: -> Publicagao ben-sucedida - Topic: spBv1.6/TEST/DDATA/ teste_sinulado/Coil Status/cnl\ 3, Value: False
INFO] 05/03/2025 17:34. > Publicacao bem-sucedida - c: spBvL.O/TEST/DOATA/teste_simulado/MiSLoved/tag2
INFO] 05/03/2025 17:34 -> Publicacao ben-sucedida - tag2, Topic: spBvi.O/TEST/DDATA/teste. simulado/ hetoved:tags, Vot
INFO] 05/03/2025 17:34: > Publicacao bem-sucedida - tagz, Topic: spBVL.0/TEST/DDATA<este sinutado tbsloves) tag2,
INFO] 05/03/2025 17:34. ~> Publicacdo bem-sucedida - L e Gl ATeste sinulado/Coil S(alus/(nﬂ 4, vaue: Fatse
INFO] 05/03/2025 17:34: -> Publicacao ben-sucedida - ic: spBy1.0/TEST/DDATA/ teste_sinulado/MbSlave3/tag3, “False
INFO] 05/03/2025 17:34. > Publicacao bem-sucedida - OBt =T DATA st ats oMl vsd oot Value
INFO] 05/03/2025 17:34. > Publicacao ben-sucedida - /TEST/DDATA/ testesinulado/MbsaveS/tag3.
INFO] 05/03/2025 17:34 7 Pubt1cachs ben-sucedids | bevice: Corl Status. Tag: oil 5. Toprcs SpmVE.0/TEST/ADATA/ aste. sinuioabsCort Statusltu\ 5 Value: False
INFO] 05/03/2025 17:34: teste s - Publicacgo ben-sucedida - Device: MbSlave3, Tag: tagd, Topic: spBvi.0/TEST/DDATAYteste_simulado/MStavedEags
INFO] 05/03/2025 17:34:12 station teste simulado -> Publicacdo ben-sucedida - Device: Mbslave 04, Topic. spbd o/ TEST/DDATA teste Simil ado/lbslaved”tagd, Val e
INFO] 05/03/2025 17:34:13 stotion teste simulado - Publicacdo ben-sucedida - Device: Mbslaves, Tags tagd, Topic: spBvi.o/TEST/DDATA/teste”simulado/Mostaves/agd; Value
INFO] 03/63/2025 17134113 Station teste similode > Publicacas bem sucedida . Device: Coil Status. Tag. TENPERATURA 1, Topic. SpOuL.0/TEST/ODATAY teote simetadasCorl Sta(us/TEHPERATURA 1, Vatve:
4:
4
4
4
4:
4
4.
4
134:

[

Figura 42 — Log de funcionamento do gateway - Fonte: Elaborado pelo autor

76
4 Conclusoes

O presente trabalho propos o desenvolvimento de uma aplicacao web fullstack para
gerenciamento e encapsulamento de um gateway MQTT /Modbus para a CESAMA. O
sistema foi implementado utilizando Python com FastAPI no backend e React com Vite
no frontend, estabelecendo uma arquitetura moderna e eficiente. Ademais, foi possivel

encapsular de forma integrada o gateway desenvolvido em [7].

4.1 Objetivos alcangados

Ao término do desenvolvimento e simulagao realizada, é possivel concluir que o
aplicativo atendeu plenamente as demandas e expectativas, proporcionando uma interface
intuitiva para o gerenciamento dos dispositivos conectados ao gateway e facilitando a
integracao entre os protocolos MQTT e Modbus. As funcionalidades implementadas
permitiram simplificar o processo de configuracao, monitoramento e manuten¢do do

sistema.

A utilizagdo do FastAPI no backend mostrou-se uma escolha acertada, proporci-
onando uma API de alta performance e facil manutencao, enquanto o React com Vite
no frontend, em conjunto com a biblioteca Material Ul para componentes, garantiu uma
experiéncia de usudrio consistente, acessivel e esteticamente refinada. A integracao do
Material Ul permitiu a implementagao de uma interface grafica profissional com compo-
nentes reutilizaveis, acelerando o desenvolvimento e melhorando a usabilidade do sistema.
A arquitetura adotada demonstrou-se escalavel e modular, permitindo futuras expansoes e

adaptagoes conforme as necessidades da CESAMA evoluam.

4.2 Sugestao para Estudos Futuros

Como trabalhos futuros, sugere-se a implementacao de recursos adicionais de anélise
de dados e visualizacao em tempo real, além da possibilidade de integracao com outros

protocolos industriais expandindo a versatilidade do sistema.

Por fim, conclui-se que o desenvolvimento deste aplicativo contribuiu significativa-
mente para a gestdo e modernizagao da planta industrial da CESAMA, representando um

avango tecnoldgico importante e adequado com os padroes atuais do mercado.

77

REFERENCIAS

1 VNODE. vNode use Cases v2.5. 2022. Disponivel em: <https://vnodeautomation.com/
wp-content/uploads/vNode-v121-UseCases-v2.5.pdf>. Acesso em: 15/02/2025.

2 INC, E. T. Neuron Documentation. 2024. Disponivel em: <https://docs.emqx.com/en/
neuronex/latest/>. Acesso em: 15/02/2025.

3 USTYMENKO, V. A/B testing on single-page applications with Adobe

Target. 2025. Disponivel em: <https://business.adobe.com/blog/how-to/
your-guide-to-successfully-implementing-a-b-testing-in-a-single-page-application>. Acesso
em: 01/03/2025.

4 ARMSTRONG, N. Passing Data From Child to Parent Component
in TypeScript React. 2021. Disponivel em: <https://plainenglish.io/blog/

passing-data-from-child-to-parent-component-in-typescript-react>. Acesso em:
03/02/2025.

5 MATERIALUI. Material UI - Overview. 2025. Disponivel em: <https:
//mui.com/material-ui/getting-started />. Acesso em: 15/02/2025.

6 REACT. Passing Data Deeply with Context. 2025. Disponivel em: <https://pt-br.react.
dev /learn /passing-data-deeply-with-context#context-an-alternative-to-passing-props>.
Acesso em: 01/03/2025.

7 REIMAO, M. R. Gateway mqtt para sistemas de automacao industrial. UFJF, 2024.

8 S.L., V. B. Meet the new vNode v1.21 Powerful Edge Platform For IloT. 2024.
Disponivel em: <https://vnodeautomation.com>. Acesso em: 15/02/2025.

9 INC, E. T. NeuronEX - Industrial Edge Data Hub. 2024. Disponivel em:
<https://www.emqx.com/en/products/neuronex>. Acesso em: 15/02/2025.

10 INC, E. T. Neuron Github. 2024. Disponivel em: <https://github.com/emqx/neuron>.
Acesso em: 15/02/2025.

11 SOBRINHO, A. M. et al. Conversor embarcado de protocolos modbus/mqtt para rede

iot utilizando raspberry pi. Brazilian Journal of Development, v. 9, n. 6, p. 1932719337,
2023.

12 SILVA, C.; MUNIZ, F. An iot gateway for modbus and mqtt integration. In: . [S.1.:
s.n.], 2019.

13 MATOS, E. D. V. de. Sistema meu tcc: implementacao do front-end de uma
aplicagao web para controle de tccs utilizando reactjs. UFSC, 2023. Disponivel em:
<https://repositorio.ufsc.br/handle/123456789/248929>.

14 CHEN, C.-Y. et al. Web-based internet of things on environmental and lighting control
and monitoring system using node-red, mqtt and modbus communications within embedded
linux platform. Internet of Things, v. 27, p. 101305, 2024. ISSN 2542-6605. Disponivel em:
<https://www.sciencedirect.com/science/article/pii/S2542660524002464> .

78

15 BORDIGNON, G. D. Desenvolvimento de um gateway de protocolo com suporte
a modbus e mqtt. UFSC, 2024. Disponivel em: <https://repositorio.ufsc.br/handle/
123456789/256860>.

16 POETRY. Poetry Documentation. 2025. Disponivel em: <https://python-poetry.org/
docs/>. Acesso em: 15/02/2025.

17 FASTAPI. FastAPI Source Code. 2025. Disponivel em: <https://github.com/fastapi/
fastapi>. Acesso em: 15/02/2025.

18 FASTAPI. FastAPI Documentation. 2025. Disponivel em: <https://fastapi.tiangolo.
com/>. Acesso em: 15/02/2025.

19 SQLALCHEMY. The Python SQL Toolkit and Object Relational Mapper. 2025.
Disponivel em: <https://www.sqlalchemy.org/>. Acesso em: 15/02/2025.

20 ALEMBIC. A database migrations tool written by the author of SQLAlchemy. 2025.
Disponivel em: <https://alembic.sqlalchemy.org/>. Acesso em: 15/02/2025.

21 PYDANTIC. The most widely used data validation library for Python. 2025.
Disponivel em: <https://docs.pydantic.dev/latest/>. Acesso em: 15/02/2025.

22 PYJWT. Python library to encode and decode JSON Web Tokens. 2025. Disponivel
em: <https://pyjwt.readthedocs.io/en/stable/>. Acesso em: 15/02/2025.

23 PWDLIB. Password hasher helper for the modern Python era. 2025. Disponivel em:
<https://frankie567.github.io/pwdlib/>. Acesso em: 15/02/2025.

24 DAIQUIRI. Python logging setup helper. 2025. Disponivel em: <https:
//daiquiri.readthedocs.io/en/latest/>. Acesso em: 15/02/2025.

25 FASTAPI. Bigger Applications - Multiple files. 2025. Disponivel em: <https:
//fastapi.tiangolo.com/tutorial /bigger-applications/#an-example-file-structure>. Acesso
em: 15/02/2025.

26 META. React Reference Overview. 2025. Disponivel em: <https://react.dev/
reference/react>. Acesso em: 15/02/2025.

27 META. Built-in React Hooks. 2025. Disponivel em: <https://react.dev/reference/
react/hooks>. Acesso em: 15/02/2025.

28 VITE. Getting Started with Vite. 2025. Disponivel em: <https://vite.dev/guide/>.
Acesso em: 15/02/2025.

29 MATERIALUI. Material UI - Theming. 2025. Disponivel

em: <https://mui.com/material-ui/customization/theming/?srsltid=
AfmBOorta5ywxHP JnFF8LbkSOUfXreQ1t7dZNkoDCbWUNFIXOEjQNqyv>.
Acesso em: 15/02/2025.

30 ROUTER, R. React Router Home. 2025. Disponivel em: <https://reactrouter.com/
home>. Acesso em: 15/02/2025.

31 AXIOS. Awios - Getting Started. 2025. Disponivel em: <https://axios-http.com/docs/
intro>. Acesso em: 15/02/2025.

79

32 REACT. Creating a context. 2025. Disponivel em: <https://react.dev/reference/
react/createContext>. Acesso em: 15/02/2025.

33 TYPES prop. Runtime type checking for React props and similar objects. 2025.
Disponivel em: <https://www.npmjs.com/package/prop-types>. Acesso em: 15/02/2025.

34 SAVER file. Solution to saving files on the client-side. 2025. Disponivel em:
<https://www.npmjs.com/package/file-saver>. Acesso em: 15/02/2025.

35 ESLINT. Find and fix problems in your JavasScript code. 2025. Disponivel em:
<https://eslint.org/docs/latest/>. Acesso em: 15/02/2025.

36 DOCKER. Docker Docs. 2025. Disponivel em: <https://docs.docker.com/>. Acesso
em: 01/03/2025.

37 DOCKER. Docker Compose. 2025. Disponivel em: <https://docs.docker.com/
compose/>. Acesso em: 01/03/2025.

38 DOCKER. Get Docker. 2025. Disponivel em: <https://docs.docker.com/get-started/
get-docker/>. Acesso em: 01/03/2025.

	Folha de rosto
	FOLHA DE APROVAÇÃO
	AGRADECIMENTOS
	RESUMO
	ABSTRACT
	LISTA DE ILUSTRAÇÕES
	LISTA DE TABELAS
	LISTA DE ABREVIATURAS E SIGLAS
	SUMÁRIO
	Introdução
	Gateways de protocolos e atualizações tecnológicas
	Motivação e objetivos
	Revisão do estado da técnica
	Soluções comerciais
	vNode
	NeuronEX

	Trabalhos correlatos
	Conversor Modbus/MQTT utilizando Raspberry Pi
	Implementação de um Sistema Gateway MQTT-Modbus para Abstração de Redes Industriais
	Sistema "Meu TCC": Implementação do front-end de uma aplicação web para controle de tccs utilizando ReactJs
	Sistema Web IoT para Monitoramento Ambiental e Controle de Iluminação Utilizando Node-RED, MQTT e Comunicação Modbus em Plataforma Linux Embarcada
	Gateway para Integração de Redes Industriais Modbus com Ecossistemas IoT via Protocolo MQTT

	Organização do trabalho

	Desenvolvimento
	Backend
	Estrutura e responsabilidades do backend
	Tecnologias
	Base do projeto
	Multi-threading
	Framework - FastAPI
	Banco de dados e modelagem
	Segurança e logging

	Modelagem do banco de dados
	Login e Tokens
	Rotas
	Validação de Permissões nos endpoints

	Gerenciamento automático dos tópicos MQTT
	Gerenciamento do Gateway Modbus/MQTT
	Documentação interativa com Swagger
	Gerenciamento de Migrações com Alembic
	Gerenciamento de Logs
	Arquitetura de Logs
	Categorização e Níveis de Log
	Integração com os Componentes do Sistema
	Acesso aos Logs via API
	Segurança e Integridade

	Frontend
	Visão Geral da Arquitetura
	Tecnologias e Bibliotecas Utilizadas
	React
	Vite
	Material-UI
	React Router
	Axios
	Context API
	Bibliotecas Auxiliares

	Sistema de Autenticação e Autorização
	Gerenciamento de Estado
	Interface do Usuário
	Estrutura de Navegação
	Página de login
	Página de estações
	Página de configurações
	Página de usuários
	Página de logs

	Comunicação com o Backend
	Otimizações de Performance
	Tratamento de Erros e Feedback ao Usuário
	Considerações sobre Experiência do Usuário

	Infraestrutura de TI
	Conteinerização com Docker
	Arquitetura de Contêineres
	Frontend
	Backend
	MQTT Broker

	Orquestração com Docker Compose
	Considerações sobre Implantação
	Implantação em Novo Ambiente
	Requisitos Preliminares
	Procedimento de Implantação
	Operações Comuns de Manutenção

	Resultados
	Inicialização do sistema
	Análise da inicialização do backend
	Análise da inicialização do frontend

	Resultados Simulados
	Configuração do simulador
	Configuração do aplicativo web com os dados do simulador
	Login
	Cadastro de estação
	Cadastro de dispositivo
	Cadastro de tag

	Permissionamento de páginas para gerente e visualizador
	Monitoramento da estação e funcionamento do Gateway encapsulado

	Conclusões
	Objetivos alcançados
	Sugestão para Estudos Futuros

	REFERÊNCIAS

