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RESUMO 

 Este trabalho monográfico tem como principal objetivo o desenvolvimento e 
estudo de um modelo de previsão para o total mensal de m3 de consumo de água no 
Setor Urbano de Juiz de Fora e distritos no período definido entre maio de 2025 e 
dezembro de 2026. Para isso, foram desenvolvidos dois modelos de projeção: um 
utilizando o método de Amortecimento Exponencial e o outro, utilizando a metodologia 
de Box & Jenkins. A fim de definir qual dos modelos seria o mais apropriado para 
projetar o consumo de água, foi realizada uma competição entre eles através da 
análise de out-of-sample rolling evaluation. Dessa forma, o modelo vencedor e o 
definido para a projeção foi o de Box & Jenkins, ele projetou um aumento consecutivo 
no consumo de água para os anos de 2025 e 2026, porém de forma mais modesta no 
segundo ano. Ademais, foi realizada pesquisa acerca da capacidade hídrica do país 
além de sua importância econômica. 

 

Palavras-chave: Consumo de água em m3. Projeções de dados. Séries Temporais. 

  



 
 

ABSTRACT 

This monographic study aims to develop and analyze a forecasting model for 
the monthly total water consumption (in m3) in the Urban Sector of Juiz de Fora and its 
districts, covering the period from May 2025 to December 2026. To achieve this, two 
projection models were developed: one using the Exponential Smoothing method and 
the other employing the Box & Jenkins methodology. In order to determine which model 
would be most appropriate for forecasting water consumption, a competition between 
them was conducted through out-of-sample rolling evaluation analysis. As a result, the 
Box & Jenkins model was identified as the most suitable, projecting a consecutive 
increase in water consumption for the years 2025 and 2026, though with a more 
modest growth in the second year. Additionally, research was carried out regarding the 
country’s water capacity and its economic significance. 

 

Keywords: Water consumption (m³). Data forecasting. Time series. 
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1 – INTRODUÇÃO 

 

Cerca de 70% do planeta Terra são água, entretanto, a grandiosa parte (cerca 

de 97%) dessa água é salgada e, portanto, imprópria para o consumo. Há também 

água em forma de gelo nos polos do planeta e na Groenlândia (2%). O restante (cerca 

de 1%) é referente à água em que realmente é possível usufruir e consumir (Agência 

Nacional de Águas e Saneamento Básico – ANA, 2021). Dentro deste 1% de água 

doce, o Brasil é considerado o país com a maior quantidade de recursos hídricos no 

mundo, apresentando cerca de 13% do volume de água disponível para consumo. 

Eles se encontram tanto em reservatórios subterrâneos quanto correndo abertamente 

em rios, riachos e outros corpos d’água no território (ANA,2021). Segundo o IBGE em 

um estudo de 2021 o país possui 5.353 bacias hidrográficas com mais de 100 km², 

incluindo a Bacia Amazônica de mais de 1 milhão de km² (IBGE, 2021). 

Para gerir um recurso tão abundante no país, foi estabelecida pela Lei n. 9433 

de 8.01.1997, as diretrizes básicas para a gestão das águas no país e levou à criação 

de planos de recursos hídricos. O Plano Nacional de Recursos Hídricos – PNRH foi 

realizado de 2003 a 2005 pela Secretaria de Recursos Hídricos do Ministério do Meio 

Ambiente, com suporte da Agência Nacional de Águas (ANA, 2021). Evidenciando a 

importância de se planejar na gestão de um recurso tão valioso.  

A água é utilizada para prover vários tipos de necessidades da população. Eles 

podem ser consuntivos ou não-consuntivos, isso é, se é necessário mover o recurso 

de seu local de origem para o consumo (Tucci, 2001).  

 Dentre os consumos consuntivos estão: consumo humano (16,4%); 

dessedentação – consumo bovino (4,9%); irrigação (64,7%) e indústria (13,9%) (Tucci, 

2001). Já os não-consuntivos: navegação e produção de energia elétrica em 

hidrelétricas (Tucci, 2001). 

A maior parte da energia ofertada no território brasileiro advém da energia 

hidráulica – 58,9%, conforme estudo realizado pela Empresa de Pesquisa Energética 

(EPE, 2024). 

Dessa forma, é possível evidenciar a importância que a água representa no 

território brasileiro. Assim, é preciso instituições fortes e preparadas para uma boa 

gestão deste recurso essencial à vida. 
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No Estado de Minas Gerais, a gestão hídrica é realizada pelo Instituto Mineiro 

de gestão das Águas (Igam) criado em 17 de julho de 1997, através do decreto-lei 

nº 12.584 (IGAM – Gestão das Águas, s.d.). 

Segundo Panorama de Abastecimento de Água e Esgotamento Sanitário de 

2023, aproximadamente 93,1% da população urbana mineira têm acesso ao 

abastecimento de água tratada e 87,15% têm acesso ao esgotamento sanitário 

(Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, 2023). 

No caso de Juiz de Fora, a distribuição de água e coleta de esgoto é gerenciada 

pela Companhia de Saneamento Municipal (Cesama), criada em 1990 em substituição 

ao Departamento de Água e Esgoto (DAE). (CESAMA - Histórico, s.d.) 

Cerca de 96% da população urbana têm acesso à água tratada e, 

aproximadamente, 99% contam com serviço de coleta de esgoto, de acordo com o 

Sistema Nacional de Informações em Saneamento Básico (Sinisa). Para isto, conta 

com as represas Dr. João Penido, São Pedro e Chapéu d'Uvas, além do Ribeirão do 

Espírito Santo, utilizados como mananciais para o abastecimento de água potável em 

Juiz de Fora (CESAMA - Histórico, s.d.). 

 Dessa forma, é necessário haver um preparo e uma gestão que estejam no 

mesmo patamar da importância da água para a vida e o funcionamento da sociedade. 

Ainda mais quando se trata de um recurso onde sua oferta é imprevisível já que é 

ditada por fenômenos climáticos e fora da alçada humana. Portanto, para um bom 

planejamento na distribuição deste recurso é essencial a previsão através da 

demanda, ou seja, do consumo da água. Dessa forma, este trabalho monográfico, 

através da definição de um modelo vencedor após competição entre dois modelos 

autorregressivos, se propõe a prever o consumo de água no Setor Urbano de Juiz de 

Fora e distritos na forma probabilística, com o horizonte de 20 meses no futuro. 

 Após esta introdução, na seção 2, é apresentado o referencial teórico deste 

trabalho; no capítulo 3 encontra-se a metodologia utilizada em sua realização. Na 

parte 4, vê-se a análise dos dados, serão apresentados os resultados encontrados, 

além da competição dos modelos para enfim, realizar a previsão do consumo da água 

na forma probabilística para os períodos seguintes. Finalmente, na parte 5 vê-se as 

conclusões finais sobre o estudo.
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2 – REFERENCIAL TEÓRICO  

 

Modelos de previsão acerca do consumo de água são comumente realizados 

devido à sua importância, ainda mais em cidades urbanizadas e populosas. É possível 

citar o caso de Istambul, na Turquia, onde foi desenvolvido um modelo de previsão do 

consumo de água mensal, utilizando uma competição dos métodos de amortecimento 

exponencial e Box-Jenkins (Ölçenoğlu; Borat, 2023). O modelo vencedor, o de Holt-

Winters, calculou a previsão de que em 2033, o consumo total de água passará de 

778 milhões de m³ (em 2010) para o número exorbitante de 1,41 bilhão de m³ 

(Ölçenoğlu; Borat, 2023). Este trabalho facilitou o preparo necessário dos formadores 

de política locais. 

 Kontopoulos et al., 2023, realizaram trabalho similar em Atenas, Grécia. Foram 

utilizados os métodos SARIMA de Box-Jenkins e de Redes Neurais. Após a 

competição entre os modelos, as Redes Neurais se mostraram mais poderosas na 

explicação e apresentaram menor erro médio, sendo selecionadas para o modelo 

oficial do trabalho. 

 Localmente, no Brasil, Falkenberg, 2005, desenvolveu estudo acerca de 

modelos de previsão de consumo de água no curto prazo, mais precisamente, nas 

próximas 24 horas (Falkenberg, 2005). O autor utilizou dados históricos de três bairros 

distintos da cidade de Ponta Grossa, PR. Propôs e competiu entre eles, modelos de 

previsão utilizando métodos de redes neurais artificiais, modelos do tipo Box-Jenkins 

e híbridos dos dois modelos (Falkenberg, 2005). Neste estudo, o modelo vencedor foi 

o de Box-Jenkins e o autor atenta trabalhos futuros acerca da importância de possuir 

um banco de dados bem estruturado para o desenvolvimento de modelos mais 

confiáveis (Falkenberg, 2005). 

 Feroni et al., 2020, utilizaram de uma série histórica que abrangia o período de 

1997 a 2018, acerca do consumo de água na cidade de São Mateus-ES. Foram 

realizados modelos utilizando os métodos de Holt-Winters aditivo e multiplicativo 

(Feroni et al., 2020). Após competição entre os modelos, apesar de apresentarem 

resultados quase idênticos, o modelo aditivo resultava em menores erros de previsão 

(Feroni et al., 2020). 
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 Em Juiz de Fora (MG), Andrade (2023) utilizou de uma série temporal 

disponibilizada pela Agência Nacional de Águas que representa os usos consuntivos 

da água para todos os municípios brasileiros entre 1931 e 2021. Desenvolveu e 

competiu entre eles modelos utilizando os Métodos de Amortecimento Exponencial e 

o de Box-Jenkins para prever o consumo de água de forma abrangente entre os 

diferentes setores que utilizam recursos hídricos, sendo eles: Humano Urbano; 

Humano Rural; Agricultura de Irrigação; Mineração; Dessedentação animal; Indústria 

de transformação; Termoeletricidade (Andrade, 2023). Após a competição, nota-se 

que o modelo mais apropriado para a previsão do consumo de água depende de qual 

setor está sendo analisado. O setor urbano, em sua pesquisa, apresentou menor erro 

de previsão utilizando o Método de Amortecimento Exponencial. O autor conclui o 

trabalho afirmando que novos estudos acerca de cada setor são necessários para 

uma otimização dos modelos de previsão sobre o consumo de água em Juiz de Fora 

já que o autor fez uma análise geral dos setores e não concentrou sua pesquisa em 

apenas um deles.  

 Portanto, nota-se que o desenvolvimento de modelos de previsão para o 

consumo de água em regiões metropolitanas não é uma preocupação momentânea 

nem regional. Pesquisadores do mundo todo dedicam seu trabalho nesta área. Dessa 

forma, é importante que novos estudos sejam frequentemente realizados em grandes 

cidades como Juiz de Fora. 
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3 – METODOLOGIA 

 

Para a previsão do consumo de água no setor urbano em Juiz de Fora (MG), 

aplicou-se a análise de séries temporais estimando-se modelos através do Método de 

Amortecimento Exponencial (Montgomery & Johnson, 1990) e do Método de Box & 

Jenkins (Box & Jenkins, 1994). Foi realizada uma competição entre estes dois 

métodos, selecionando o método vencedor através de uma análise recursiva fora da 

amostra (Goodrich, 1999).  

Foi utilizada uma base de dados mensal que envolve o período de janeiro de 

2000 a abril de 2025. Foram geradas previsões mensais (20 meses à frente). 

Este capítulo está fundamentado em Zanini (2023). 

3.1 – SÉRIES TEMPORAIS 

3.1.1 – Definição do conceito 

 Segundo Zanini (2023): “Uma série temporal é um conjunto de observações de 

uma dada variável, ordenadas segundo o parâmetro tempo, geralmente em intervalos 

eqüidistantes”, entretanto, se comportar desta forma não é o bastante para uma série 

de dados ser considerada uma série temporal, adicionalmente, é necessário “que as 

observações apresentem uma dependência serial, isto é, sejam dependentes no 

tempo.” (Zanini, 2023). Se Zt representa o valor da variável aleatória Z no instante t, 

denota-se a série temporal por Z1, Z2, ..., ZN onde N é o tamanho da série ou número 

de observações seriais da variável. Usualmente, para séries temporais discretas, as 

periodizações de coleta de dados usuais são definidas por dia, semana, mês ou ano. 

(Zanini, 2023). 

 É importante ressaltar que nem todo acontecimento que ocorre mais de uma 

vez no tempo pode ser considerado uma série temporal, um exemplo disso é o sorteio 

do jogo da MegaSena da Virada, evento que ocorre anualmente, entretanto, não há 

maneira de ajustar um modelo estatístico e estudar os resultados passados para 

prever os futuros. 
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3.1.2 – Processo Estocástico 

 O processo estocástico, geralmente, apresenta-se como uma sequência no 

tempo de variáveis aleatórias, em outras palavras, é “um modelo que descreve a 

estrutura de probabilidade de uma seqüência de observações” (Zanini, 2023). 

Processos estocásticos são sistemas que evoluem o tempo e/ou no espaço de acordo 

com leis probabilísticas (Zanini, 2023). 

 Dessa forma, um processo estocástico é definido como Z={Z(t),tN} tal que 

para cada tR , Z(t) é uma variável aleatória. Se NZ={1,...,t}, diz-se que o processo 

é de parâmetro discreto, denotando por Zt. Se NR, diz-se que o processo é de 

parâmetro contínuo, denotando-se por Z(t). 

 Zanini compila as definições de forma absoluta na seguinte frase: “De forma 

geral, o objetivo do estudo de uma série temporal consiste em: dada uma realidade 

(processo estocástico) retira-se uma amostra finita de observações equiespaçadas no 

tempo (série temporal) e através do estudo desta amostra (análise de séries 

temporais) identifica-se um modelo cujo objetivo é inferir sobre o comportamento da 

realidade (modelo estocástico).” (Zanini, 2023). 

 

3.2 – MÉTODO DE AMORTECIMENTO EXPONENCIAL 

  

Considerando o conjunto de observações Z1,Z2,…,ZT como uma série temporal de 

tamanho “𝑇” e que tem variância irrisória ao decorrer do tempo, a equação de previsão 

dessa série pode ser: 

Zt = a(T) + t                                            (3.2.1) 

Onde Zt representa o valor esperado da previsão da variável, a(T) representa 

o nível médio da variável no período T, e t é o erro de previsão, onde t ~ N(0, 2). 

A cada novo dado incluído na amostra, o parâmetro representativo a(T) é 

atualizado para obter uma melhor estimação, ou seja, a cada novo dado inserido, este 

é reestimado para obter uma previsão da variável mais confiável. Dessa forma, a 

equação de previsão pode ser definida como: 

   â(𝑇) = 𝛼∗𝑍T + (1 − 𝛼)â(𝑇 − 1)                                    (3.2.2) 
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Ou seja, o parâmetro “a” será calculado usando o que é chamada de 

combinação convexa. Serão aplicados pesos de consideração para o dado mais 

recente e os demais dados mais antigos na obtenção do valor de previsão. Em outras 

palavras, o hiperparâmetro 𝛼 apontará se um novo dado é amplamente influenciado 

por dados atuais ou pelos demais.  

Não é necessário utilizar dois hiperparâmetros diferentes para a definição de 

“a” já que 𝛼 é um número entre 0 e 1, dessa forma, utiliza-se “1- 𝛼” para definir seu 

complementar. 

Geralmente, séries temporais que apresentam grande variância, têm seus 

hiperparâmetros apontando uma maior relevância aos dados recentes, enquanto no 

caso de variância mais comportada, o hiperparâmetro 𝛼 tende a se aproximar do valor 

0,50, ou seja, atribui valor igual a dados atuais e passados.     

O modelo de previsão já apresentado realiza um trabalho excepcional na 

previsão de séries temporais onde não há tendência, isso é, uma variação em seu 

nível, podendo ser de crescimento ou de decrescimento. Dessa forma, é necessário 

implementar mais um parâmetro na equação de previsão: 

   Zt = (𝑎1(𝑇) +𝑎2(𝑇)∗𝑡)+ 𝜀t                                            (3.2.3) 

Onde a2(T) é o parâmetro de tendência do modelo no instante T. Assim como o 

parâmetro de nível a1(T) (anteriormente definido como a(T)), o parâmetro a2(T) 

também é reestimado a cada novo dado inserido na amostra. 

Além disso, apresentará a mesma forma de aplicar pesos a dados mais atuais 

ou antigos, pela utilização de hiperparâmetros. Agora, definidos como  e seu 

complementar 1- . Este é o modelo de Amortecimento Exponencial de Holt. 

Ademais, é possível adaptar este modelo para considerar mais um fator 

extremamente importante e presente nas séries temporais. É a chamada 

Sazonalidade, isso é, o valor esperado de um dado tende a variar por se encontrar 

em um determinado período do tempo. Por exemplo, quando a série é representada 

em semanas, um aumento nas vendas de um restaurante pode ser identificado aos 

fins de semana. Ou, um aumento nas vendas de brinquedos infantis em outubro e 

dezembro por serem os meses do Dia das Crianças e do Natal. Portanto, é necessário 

adicionar um novo parâmetro à equação: 
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   Zt = (𝑎1(𝑇) +𝑎2(𝑇)∗𝑡)∗𝑝t + 𝜀t                                                  (3.2.4) 

 Onde pt indica o fator sazonal do período em questão. Este novo parâmetro 

também se comporta como os apresentados anteriormente – é reestimado a cada 

nova introdução de dados à série temporal e é estimado através do hiperparâmetro γ 

e seu complementar.  

Agora, o modelo apresentado se caracteriza como o Modelo de Amortecimento 

Exponencial de Holt-Winters. 

 

3.3 – MODELO DE BOX & JENKINS 

  

A teoria utilizada na fundamentação deste modelo baseia-se na Teorial Geral 

de Sistemas Lineares. Ela dita que “a passagem de um ‘ruído branco’ por um filtro 

linear de memória infinita gera um processo estacionário de segunda ordem” (Zanini, 

2023). Um processo estacionário de segunda ordem diz respeito a um processo 

estocástico com média e variâncias constantes. 

 

Definindo um operador de atraso “B” (backward shift operator)  

BkZt = Zt-k 

Tem-se que:  

wt = at - 1atB - 2atB2 - ... 

wt = (1 - 1B – ψ2B2 -...)at = (B)at 

wt = (B)at <-> at = (B)-1 wt 

Sendo que:  

(B)-1 = π(B) 

onde π(B) = 1 - π1B – π2B ... 
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Pelo fato de ψ(B) [ou π(B)] possuírem infinitos parâmetros, Box & Jenkins 

afirmam que, sob certas restrições, todo polinômio infinito pode ser descrito pelo 

quociente de dois polinômios finitos, resolvendo o problema da infinidade. (Zanini, 

2023). 

Dessa forma:  

(B) = (B) / (B), onde: 

(B) = 1 - 1B - 2B2 - ... - qBq  Polinômio MA (q) 

(B) = 1 - 1B - 2B2 - ... - pBp  Polinômio AR (p) 

 

 E então, surgem os Modelos ARMA (p,q) que assumem a seguinte forma: 

                                                      (B)wt = (B)at                                    (3.3.1) 

 No entanto, originalmente, a série pode ser não estacionária, portanto, é 

necessário torná-la não estacionária e homogênea. Para isso, utiliza-se o método de 

diferenciação. Então, se Zt é uma série não estacionária, é preciso transformá-la na 

série Xt não estacionária homogênea. Dessa forma: 

Xt = Zt – Zt-1 = Zt – BZt = (1 – B) Zt = Zt 

Onde:  = (1 – B)  operador de diferença 

 De forma simplificada, aplica-se tantas diferenças quantas forem necessárias 

para produzir estacionariedade (na média) da série resultante. Para a obtenção de 

uma série estacionária wt, aplica-se o termo “d” (d=0, 1, 2,...) diferenças na série 

original: wt = dZt. Geralmente, na prática, “d” se apresenta como 0, 1 ou 2.  

 E então, surgem os Modelos ARIMA (p,d,q) que assumem a seguinte forma: 

                                                     (B)dZt = (B)at                                            (3.3.2) 

 A modelagem de Box & Jenkins fundamenta-se em duas ideias básicas: o 

princípio da parcimônia (definir um modelo com o menor número de parâmetros 

possíveis para a simplificação e a adequação de sua representação matemática) e a 

elaboração de modelos através de um ciclo iterativo (elaboração de modelos até a 

obtenção de um modelo satisfatório). 
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 Assim, a modelagem através da metodologia de Box & Jenkins abrange várias 

etapas de análise. Desde a identificação da estrutura do modelo, chegando à 

estimação paramétrica até a realização de um número de testes para a validação do 

modelo elaborado. 

 A primeira etapa a ser realizada na metodologia Box & Jenkins é a de encontrar 

a ordem de homogeneidade “d”, ou seja, é a etapa de definir quantas vezes a série 

original deve ser diferenciada para se comportar como uma série estacionária. Ela 

pode ser realizada através da observação do gráfico da série ou pela função de 

autocorrelação (FAC). 

 A etapa seguinte é a de identificação do modelo, quanto à sua ordem 

(identificação de p e q). Para isso, devem ser utilizados os conceitos de função de 

autocorrelação (FAC) e autocorrelação parcial (FACP). A seguir, há um quadro que 

caracteriza os modelos AR(p), MA(q) e ARMA (p,q). 

Quadro 1 - Resumo das características teóricas da FAC e da FACP dos modelos 
AR(p), MA(q) e ARMA(p,q) 

 

 

 

 

 

 

 

 

Fonte: Zanini, 2023.  

De modo geral, para identificar a ordem p, de um modelo AR(p), analisa-se se 

a FAC diminui e se a FACP apresenta um corte – se as autocorrelações estão todas 

dentro de intervalo estipulado. Se isso ocorrer, é fornecido ao modelador a ordem p 

(p=lag do corte). 

 De forma paralela, para um modelo MA(q), é preciso que a FAC e a FACP 

apresentem comportamento inverso de um modelo genuinamente autorregressivo. 

Modelo 
Função de Autocorrelação 

(pk) 

Função de Autocorrelação Parcial 

(kk) 

AR(p) 
Infinita (Exponencial e/ou 

senóides amortecidas) 
Finita (Corte após o lag “p”) 

MA (q) Finita (Corte após o lag “q”) Infinita (Exponencial e/ou senóides 
amortecidas) 

ARMA (p,q) 

Infinita  

(Exponencial e/ou senóides 
amortecidas após o lag “q-

p”) 

Infinita (Exponencial e/ou senóides 
amortecidas após o lag “p-q”) 
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Isto é, para um modelo MA(q), a FACP decresce e a FAC deve apresentar um corte. 

Logo, o lag onde ocorre este corte do FAC refere-se à ordem “q” do modelo MA. 

 Após a identificação de “p” e “q” do modelo, é preciso obter as estimativas dos 

parâmetros dele. Para isso, é utilizada a técnica da máxima verossimilhança 

(Dudewicz & Mishra, 1988). 

 Finalmente, após a identificação do modelo e a estimação dos parâmetros, 

aplicam-se os testes de aderência a fim de verificar a adequabilidade final do modelo. 

É possível destacar dentre os mais importantes testes, o teste de sobrefixação e os 

testes para os resíduos. 

 O primeiro consiste na geração de modelos com ordem superior ao original, de 

forma que seja possível reforçar a pertinência deste. 

 No caso dos testes de resíduos, têm o objetivo de verificar se o resíduo gerado 

por este modelo é um ruído branco, ou seja, demonstra se o erro residual não 

apresenta correlação com a série temporal. Fato que representa um dos indicadores 

de eficiência explicativa do modelo. 

 Na prática, os processos estocásticos, raramente, são estacionários e na 

maioria das vezes, apresentam sazonalidade. Portanto, Box & Jenkins adequaram 

seus modelos para séries temporais com componentes sazonais, dando origem aos 

modelos SARIMA. 

Nesse caso a modelagem segue a equação:  

ϕ(𝐵)𝛷(𝐵s) 𝛻ds 𝛻d 𝑍𝑡 = 𝜃(𝐵)𝛩(𝐵s)𝑎t 
Onde:  

ϕ (𝐵): operador não sazonal autorregressivo;   

ϕ 𝑖 = parâmetros autorregressivo não-sazonais;   𝛻𝑑 = (1 − 𝐵)d = operador diferença não sazonal de ordem d;   𝛷 (𝐵s) = operador sazonal autorregressivo;   

Φ𝑖 = parâmetros autorregressivo sazonais;  𝛻 ds = (1 – 𝐵s)d = operador diferença sazonal de ordem D;   𝜃(𝐵) = operador não sazonal de médias móveis;   𝜃i = parâmetros de médias móveis não sazonais;   𝛩(𝐵s) = operador sazonal de médias móveis;   
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𝛩𝑖 = parâmetros de médias móveis sazonais. 

 O modelo que apresente esta estrutura é denominado SARIMA (p,d,q)x(P,D,Q). 

As etapas para a obtenção deste modelo são as mesmas do modelo ARIMA não 

sazonal. Portanto, a observância do comportamento da FAC e da FACP além de seus 

lags de cortes ainda é feita, entretanto, adicionalmente, olha-se para os lags sazonais 

(no caso de uma série temporal com base mensal, os lags 12, 24, 36,... são 

observados. 

 

3.4 – COMPETIÇÃO ENTRE MÉTODOS 

 A fim de definir o melhor método de previsão para a série temporal, é realizada 

a Competição entre os Métodos, isto é, são utilizados critérios e métricas de 

desempenho para comparar os métodos testados e encontrar aquele que performa 

mais eficientemente nos parâmetros estabelecidos. Entre eles, tem-se: 

MAPE (Mean Absolute Percentual Error) 
  

O MAPE (erro médio absoluto padrão em sua sigla em inglês) é uma métrica 

de desempenho encontrado através da diferença entre o valor real e o valor estimado 

pelo modelo durante a análise dentro e fora da amostra (in-sample e out-of-sample). 

A fórmula de cálculo é como se segue: 

                      𝑀𝐴𝑃𝐸 =  ∑𝑡=1𝑁 𝑌(𝑡)− 𝑌̂(𝑡)𝑌(𝑡) 𝑥100𝑁                               (3.4.1.1) 

onde Y (t) é o valor da série no período (t), Y^(t) é o valor ajustado da série para o 

período (t) e N é o total de dados utilizados, ou seja, o total de observações, podendo 

ser dias, meses, anos etc. 

 

MAD (Mean Absolute Deviation) 
 O MAD (erro médio absoluto em inglês), da mesma forma do critério de 

desempenho anterior, também é encontrado através da diferença entre os valores 

estimados e reais para as previsões um período a frente. Porém, de forma contrária, 

ele não é lido em termos percentuais, mas sim na unidade de medida da variável de 

interesse. 
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                           𝑀𝐴𝐷 =  ∑ |𝑌(𝑡)−𝑌̂(𝑡)|𝑁𝑡=1 𝑁                               (3.4.2.1) 

onde Y (t) é o valor da série no período (t), Y^(t) é o valor ajustado da série para o 

período (t) e N é o total de dados utilizados, ou seja, o total de observações. 

 

Coeficiente de Explicação Ajustado (R2 ajustado) 
 Este coeficiente indica o quanto da variação total dos dados é explicada pelo 

modelo. E esta variação é corrigida tendo em vista a quantidade de parâmetros no 

modelo. A equação a seguir ilustra seu cálculo: 

                             𝑅𝑎𝑗𝑢𝑠𝑡2 = (1 − ∑ (𝑌(𝑡)−𝑌̂(𝑡))2𝑁−𝑘𝑁𝑡−1∑ (𝑌(𝑡)−𝑌̅)2𝑁−1𝑁𝑡−1 ) 𝑥100            (3.4.3.1) 

 

onde Y (t) é o valor da série no período (t), Y^(t) é o valor ajustado da série para o 

período (t), Y- é o valor médio das observações, N é o total de dados utilizados, ou 

seja, o total de observações, e k é o número de parâmetros do modelo. 

GMRAE (Geometric Mean Relative Absolute Error) 

 Este critério de desempenho compara o erro do modelo selecionado com o erro 

do modelo naïve ou modelo ingênuo (que utiliza como previsão o valor do último dado 

disponível). O GMRAE é a média geométrica da razão entre o erro absoluto do modelo 

estimado e o erro absoluto do método ingênuo. Dessa forma, é esperado e desejável 

que o GMRAE seja igual ou menor do que 1. 

                   𝐺𝑀𝑅𝐴𝐸 =  √∏ ( |𝑌(𝑡)− 𝑌̂(𝑡)||𝑌(𝑡)−𝑌(𝑡−1)|)𝑁𝑡−1𝑁
                        (3.4.4.1) 

onde Y(t) é o valor da série no período (t), Y^(t) é o valor ajustado da série para o 

período (t), Y(t-1) é o valor da série no período (t-1) e N é o número de observações. 
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3.5 – ANÁLISE RECURSIVA FORA DA AMOSTRA (OUT-OF-SAMPLE ROLLING 
EVALUATION) 
 Para a seleção de um melhor método de previsão, é incorporada à competição 

de métodos, o procedimento de análise in-sample e out-of-sample. Isto é realizado 

através da seleção de parte dos dados a fim de validar o poder de previsão dos 

modelos ajustado com o restante dos dados que não foram removidos, – por isso, são 

utilizados os termos dentro e fora da amostra. 

Ainda pode ser feito, o que se denomina out-of-sample rolling evaluation, isto 

é, move-se a origem da previsão no período out-of-sample, fazendo-se previsões para 

cada origem. Se o período de corte for, por exemplo, 12 meses (últimos 12 dados 

levados para fora da amostra), serão realizadas um total de 78 previsões (12 previsões 

para um passo à frente; 11 previsões para 2 passos à frente; 10 previsões para 3 

passos à frente e assim por diante). Pode-se, então, definir que o método vencedor a 

ser escolhido será o que minimizar o MAD acumulado ou o erro médio absoluto 

acumulado fora da amostra. Este processo é ilustrado na figura a seguir: 

Figura 1 - Procedimento de out-of-sample rolling evaluation 

 

Nota: F = Forecast; A = Actual          Fonte: Zanini, 2023. 

 Assim que encontradas as previsões out-of-sample, podem ser calculadas uma 

série de métricas de desempenho, como as já mencionadas anteriormente: o GMRAE, 

o MAPE e o MAD para cada horizonte de previsão, além de suas versões acumuladas 

entre os períodos.  

 É de suma importância ressaltar que após a seleção do melhor método de 

acordo com os critérios previamente estabelecidos, os dados retirados retornam à 
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amostra, os parâmetros são atualizados, e então, as projeções do modelo são 

realizadas. De forma simplificada, a análise in-sample e out-of-sample é apenas um 

procedimento de competição de métodos que visa definir qual é o melhor entre eles.  
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4 – ANÁLISE DOS DADOS E RESULTADOS 

 

4.1 – BASE DE DADOS 

 A série temporal utilizada neste trabalho utiliza como base os valores de 

consumo de água no Setor Urbano de Juiz de Fora e seus distritos em m3 fornecidos 

pela CESAMA. Os dados são referentes aos meses entre janeiro de 2000 e abril de 

2025. Ou seja, são contabilizados na série um total de 304 dados. Para estimar os 

modelos apresentados anteriormente foi utilizado o software Forecast Pro for 

Windows® ou FPW®. 

 A seguir, na figura 2, é possível analisar a série temporal de forma ilustrada. 

Vê-se que em determinada parte da série, o nível médio de consumo é mais ou menos 

constante, sendo que é possível observar uma tendência de crescimento a partir de 

2015. Este aumento provavelmente se deve ao fato da inclusão da adutora de Chapéu 

D’uvas em agosto de 2014 (CESAMA, 2024) à disposição de tratamento e distribuição 

por parte da CESAMA. Além disso, há a presença de sazonalidade em toda a amostra, 

representando um aumento ou uma diminuição na demanda por água em certos 

meses do ano. 
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Figura 2 - Série Temporal de consumo de água em Juiz de Fora e Distritos. Valores 
dados em 100.000 m3. 

 

Fonte: CESAMA 

4.2 –Modelo estimado através do Método de Amortecimento Exponencial 
(MAE) 

Tabela 1 - Resultado do MAE 

Componentes Hiperparâmetros Parâmetros 

Nível 0,17263 2.770.404 

Tendência 0,00294 1.239,1 

Sazonalidade 0,05220 * 

Fonte: Elaboração própria. Nota:* Podem ser vistos na Tabela 2 a seguir 

O Parâmetro de nível dita o valor base de consumo de água em m3 para cada 

mês previsto. Ademais, o modelo identifica tendência na série temporal, e, constata 

que há sim, uma sazonalidade aparente na amostra. Este valor base será então, 

multiplicado pelo valor da tendência e pelo fator sazonal de cada mês do ano para 

representar variações no consumo mês a mês. 

Através do hiperparâmetro, entende-se que o modelo aplica um peso de cerca 

de 17% ao dado mais recente e 83% aos dados antigos quando se trata da estimação 

do parâmetro de Nível. O hiperparâmetro de tendência revela que a informação mais 

recente da tendência é responsável por apenas 0,3% de seu comportamento, 

ponderando-se mais a informação passada da tendência. Já no caso da sazonalidade, 

a informação mais atual é considerada com peso de cerca de 5%, e os dados 
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passados, 95%. De forma geral, as informações anteriores (passadas) dos 

componentes de nível, tendência e sazonalidade recebem maior peso na estimação 

destes parâmetros.  

A equação de previsão estabelecida através deste método contabiliza esses 

fatores em sua concepção: 

 

                                  Zt = (2.770.404 + 1.239,1 *τ) ∗ 𝑝t + 𝜀t                                (4.2.1) 

 

onde Zt é o valor estimado de consumo de água no período t; 2.770.404 é o parâmetro 

de nível em m3; 1.239,1 é o parâmetro de tendência em m3; τ indica o horizonte de 

previsão; 𝑝t representa a sazonalidade em cada período e 𝜀t é o erro observado do 

modelo. 

 Os fatores sazonais estimados podem ser vistos na tabela 2 a seguir. 

Tabela 2 - Fatores Sazonais da série temporal - MAE 

Mês Fator Sazonal Mês Fator Sazonal 

Janeiro 1,01928 Julho 0,96632 

Fevereiro 1,00269 Agosto 0,99236 

Março 1,00965 Setembro 1,01307 

Abril 1,00130 Outubro 1,02593 

Maio 0,98646 Novembro 1,00918 

Junho 0,96669 Dezembro 1,00907 

                      Fonte: elaboração própria. 

Ao analisar a tabela 2, pode-se ver que há queda do consumo de água em 

meses como junho, julho e agosto, já que foram estimados fatores sazonais inferiores 

a 1. Isso pode ser devido ao fato de ser uma época de temperaturas mais baixas, 

onde a utilização da água para atividades recreativas ou de refrescamento tendem a 

ser reduzidas. Por outro lado, em meses como janeiro a demanda por água é maior, 

potencialmente, também devido à temperatura, agora mais elevada. Em janeiro, por 

exemplo, pode-se ver um incremento de cerca de 2% no consumo de água.  

Na tabela 3 a seguir pode-se visualizar o desempenho preditivo do modelo. Vê-

se um R2 ajustado de cerca de 69% e um MAPE de 3,4%. Isto significa que o MAE 

explica 69% da variação de consumo de água em m3 no Setor Urbano de Juiz de Fora 
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e distritos neste período, e erra, em média, cerca de 3,4% (para cima ou para baixo) 

nas previsões do consumo do mês seguinte.  

 

Tabela 3 - Desempenho preditivo do MAE 

Estatística % 

R2 ajustado 68,71 

MAPE 3,42 

Fonte: elaboração própria 

No caso do teste de Ljung-Box, nota-se uma previsão com erros 

descorrelatados (abaixo de 0,2 em módulo). A função de autocorrelação dos erros 

pode ser vista na figura 3 a seguir.  

Figura 3 - Função de autocorrelação dos erros – Método de Amortecimento 
Exponencial 

Fonte: elaboração própria. 

 

4.3 – Modelo estimado através do Método Box & Jenkins (MBJ) 
 Utilizando o método de Box & Jenkins Univariado, o modelo estimado foi o 

ARIMA (0,1,1)*(2,0,0). A equação de previsão estabelecida pode ser expressa da 

forma a seguir: 

                         (1 - 0,1603B12 - 0,2923B24) * (1-B) * (Zt) = (1 – 0,7958B) * at     (4.3.1) 
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onde B é o operador de atraso.  

O desempenho preditivo do MBJ pode ser visto na tabela 4. O MBJ explica 

cerca de 67% da variação do consumo de água no período e erra em média 3,5% 

(para baixo ou para cima) ao prever o valor do consumo do próximo mês.  

Tabela 4 - Desempenho preditivo do MBJ 

Estatística % 

R2 ajustado 67,08 

MAPE 3,5 

Fonte: elaboração própria 

 Quanto ao teste de Ljung-Box, é possível concluir que os erros são 

suficientemente descorrelatados, como é ilustrado na figura 4 a seguir: 

Figura 4 - Função de autocorrelação dos erros - Box & Jenkins Univariado 

 

Fonte: elaboração própria  

 

4.4 – COMPETIÇÃO DE MÉTODOS 

 Foi realizada uma competição entre os métodos através da análise recursiva 

fora da amostra (out-of-sample rolling evaluation). Foram retirados os últimos 12 

dados da amostra e estimadas as estatísticas dentro e fora da amostra. 
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Tabela 5 - Comparação entre modelos 

In-sample (dentro da 
amostra) Out-of-sample (fora da amostra) 

Modelo R² ajustado MAPE 

MAPE 

H=1 

N=12 

MAPE 
Acumulado 

GMRAE 

H=1 

N=12 

GMRAE 
Acumulado 

MAE 65% 3,4% 3,8% 3,5% 1,263 0,868 

MBJ 63% 3,5% 3,4% 3,4% 1,025 0,751 

Fonte: elaboração própria 

  

 Primeiramente analisando-se o poder de generalização dos modelos (análise 

na linha da tabela), vê-se que o MBJ possui bom poder de generalização gerando um 

erro de previsão fora da amostra menor do que o erro dentro da amostra. O mesmo 

não acontece com o MAE. O MAE, por exemplo, apresenta um MAPE de 3,4% dentro 

da amostra e de 3,8% fora da amostra para as previsões um passo à frente (mês 

seguinte). Já o MBJ apresenta um MAPE de 3,5% dentro da amostra e 3,4% fora da 

amostra para as previsões um passo à frente (mês seguinte). É possível observar 

também que, em ambos os métodos, o erro acumulado nas 78 previsões fora da 

amostra é próximo do erro para as previsões um passo à frente. No MAE, por exemplo, 

tem um erro de cerca de 3,4% para as previsões um passo à frente e 3,5% no 

acumulado. Já no MBJ tem-se um erro de cerca de 3,5% para as previsões um passo 

à frente e 3,4% no acumulado. Já na comparação com o método ingênuo, vê-se que 

ambos os métodos possuem um GMRAE maior do que 1 nas previsões um passo à 

frente e menor do que 1 no acumulado. Desta forma, no acumulado encontra-se um 

erro menor do que o erro que seria obtido caso se utilizasse o método ingênuo que 

usa o último dado como previsor. 

Num segundo momento, faz-se a análise entre os modelos (análise entre as 

linhas da tabela). Na comparação dentro da amostra, O MAE apresenta maior poder 

de explicação do que o MBJ. Ambos os métodos apresentam um MAPE próximo, 

sendo o do MAE um pouco menor. Desse modo conclui-se que o MAE faz um ajuste 

dos dados melhor dentro da amostra. Entretanto, na análise fora da amostra, o MBJ 
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apresenta todos os indicadores de desempenho preditivo melhores que o seu 

concorrente, MAE. 

 Em síntese, pode-se ver que ambos os métodos apresentam desempenho 

preditivo similar dentro da amostra, com um desempenho um pouco melhor do MAE, 

sendo que fora da amostra o MBJ apresenta indicadores melhores, ou seja, menor 

erro de previsão tanto para as previsões um passo à frente (mês seguinte) quanto no 

acumulado das 78 previsões. O mesmo se observa quanto a comparação com o 

método ingênuo. Desta forma, através do critério definido neste trabalho monográfico, 

o método que apresenta melhor poder de previsão fora da amostra é o MBJ que foi 

definido como o método vencedor. Dessa forma, frente às análises realizadas, o 

modelo escolhido para a previsão do consumo de água neste trabalho foi o Modelo 

de Box & Jenkins.   

 Essa seleção contrária à de Andrade (2023) é corroborada pelo material teórico 

que aponta que o Modelo de Box & Jenkins tende a performar melhor ao longo do 

incremento no número de dados da série temporal. 

 

4.5 – PREVISÃO DO CONSUMO 

 Utilizando o modelo vencedor de Box & Jenkins foi realizada previsão no 

horizonte de 20 meses no futuro a partir do último dado da amostra, ou seja, de maio 

de 2025 até dezembro de 2026. A seguir, é apresentada a tabela 6 que demonstra os 

valores previstos de consumo de água em m3 na cidade de Juiz de Fora e distritos. 

Importante ressaltar que uma das vantagens de se trabalhar com métodos 

matemáticos e estatísticos de previsão é que não se gera apenas um número, a 

previsão. Esta é calculada na forma probabilística, ou seja, calcula-se um intervalo de 

confiança que possui determinada probabilidade de conter o valor calculado para a 

previsão. Em sendo assim, vê-se, por exemplo, que para maio de 2025 calculou-se 

que há 95% de chances do consumo de água na área de urbana de Juiz de Fora ficar 

entre 2,6 milhões de m3 e 3 milhões de m3, sendo que o valor esperado é de 2,8 

milhões de m3. 
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Tabela 6 - Previsão do consumo de água em valores mensais de m3 no horizonte de 
20 meses no futuro – Intervalo de confiança de 95% 

Data 
Limite 
Inferior 

Previsão Limite Superior 

mai/25 2.587.715 2.795.994 3.004.273 

jun/25 2.549.245 2.761.823 2.974.401 

jul/25 2.504.642 2.721.433 2.938.225 

ago/25 2.508.437 2.729.362 2.950.287 

set/25 2.586.401 2.811.383 3.036.365 

out/25 2.594.776 2.823.743 3.052.711 

nov/25 2.586.805 2.819.690 3.052.575 

dez/25 2.589.064 2.825.802 3.062.539 

jan/26 2.553.637 2.794.165 3.034.694 

fev/26 2.558.861 2.803.121 3.047.382 

mar/26 2.566.450 2.814.387 3.062.323 

abr/26 2.533.052 2.784.611 3.036.169 

mai/26 2.584.902 2.847.665 3.110.429 

jun/26 2.542.954 2.810.312 3.077.670 

jul/26 2.487.061 2.758.936 3.030.811 

ago/26 2.491.945 2.768.262 3.044.580 

set/26 2.561.084 2.841.774 3.122.465 

out/26 2.533.604 2.818.600 3.103.596 

nov/26 2.534.038 2.823.275 3.112.513 

dez/26 2.513.372 2.806.789 3.100.207 

Fonte: elaboração própria 

 O gráfico com a série histórica, valores ajustados e previstos com o intervalo 

de confiança pode ser visualizado abaixo. 
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Figura 5 - Previsão de consumo de água no horizonte de 20 meses no futuro. 

 

Fonte: elaboração própria. Nota: ____ Valor real ____ Valor ajustado/previsão ____ 

Intervalo de confiança de 95% 

 É possível também realizar uma análise anualizada dos resultados (tabela 7). 

De 2020 a 2022, provavelmente pelo acontecimento da pandemia, o consumo de água 

manteve-se praticamente o mesmo, inclusive reduziu-se em 2022 em relação ao ano 

anterior. A partir de 2023, o consumo de água retornou a elevar-se, com uma variação 

positiva de cerca de 2,2%. Este movimento voltou a acontecer no ano seguinte, com 

uma elevação de 1,5%. Através dos dados previstos neste trabalho, tem-se que 

deverá haver um aumento similar no ano seguinte, em 2025. Já em 2026, a variação 

prevista é novamente positiva, porém de forma mais modesta. Com base nas 

projeções realizadas, é indicado que haverá um aumento de cerca de 1,5% no 

consumo de água para o ano 2025 em relação ao ano anterior que foi de 33.002.297 

m3. O total para o biênio 2025-2026 foi de 67.185.383 m3, um aumento de cerca de 

2,5% em relação ao biênio anterior (2023-2024). 
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Tabela 7 - Valores anuais do consumo de água (em m3) 

Ano Valor (em m3) Variação % 

2020 31.870.810 - 
2021 31.962.711 0,2 

2022 31.784.592 -0,6 

2023 32.501.315 2,2 

2024 33.002.297 1,5 

2025* 33.513.486 1,5 

2026* 33.671.896 0,4 

Fonte: Elaboração própria. Nota: *valores projetados pelo MBJ. 
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5 – CONCLUSÃO 

 

 O presente trabalho teve como objetivo realizar a projeção de dados mensais 

de consumo de água em m3 no Setor Urbano de Juiz de Fora e distritos. Entende-se 

que este objetivo é importante no planejamento estratégico de grandes cidades já que 

a água é o bem mais básico e o mais valioso para a vida de todos os seres. 

 Assim, ao realizar estudo abrangente sobre este recurso tão importante, foi 

evidenciado que o Brasil é o país com a maior quantidade de recursos hídricos no 

mundo, além de comportar a Bacia Amazônica com mais de 1 milhão de km2. Portanto, 

realizações de trabalhos visando a previsão do consumo deste recurso se provam de 

suma importância. 

 Para selecionar o método vencedor para fazer as previsões, foi feita uma 

competição entre dois métodos autoprojetivos: o Método de Amortecimento 

Exponencial (MAE) e o Método de Box & Jenkins (MBJ). Através de uma análise 

recursiva fora da amostra evidenciou-se que o MBJ foi o melhor método por ter melhor 

desempenho preditivo ao prever a realidade mais recente. 

 Dessa forma, utilizando o modelo vencedor, previu-se os dados de consumo 

para os 20 meses seguintes, de maio de 2025 até dezembro de 2026. Obteve-se, 

então que é esperado que o consumo de água para o biênio 2025 a 2026 apresentará 

um aumento de cerca de 2,5% em relação aos 24 meses anteriores. 

 Finalmente, como sugestão de trabalhos futuros, recomenda-se a aplicação de 

outros métodos autoprojetivos, como as técnicas de inteligência artificial. Sugere-se 

ainda a inclusão de novas variáveis no modelo, não limitando-se somente a modelos 

autoprojetivos. Como trata-se de o consumo de água no Setor Urbano de uma grande 

cidade como Juiz de Fora e seus distritos, variáveis como o crescimento populacional 

e o crescimento espacial da própria cidade podem compor o conjunto de variáveis 

explicativas a serem testadas na estimação de modelos como, por exemplo, os de 

Regressão Dinâmica. 
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