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“Uncertainty is an uncomfortable position. But certainty is an absurd one.”

- VOLTAIRE.



ABSTRACT

Characterization of foam flow in subsurface formations requires protocols capable
of managing experimental uncertainties. Existing approaches for mathematical model
calibration treat foam properties and multiphase flow functions as independent systems,
introducing potential errors in simulations. When considering enhanced oil recovery
(EOR), this limitation is compounded by the absence of systematic calibration protocols

for water-oil-gas-foam systems, resulting in models with reduced predictive capability.

This thesis presents an uncertainty quantification (UQ) protocol for parameter
estimation in foam flow models. The protocol integrates Bayesian inference, surrogate
modeling, parametric identifiability assessment, uncertainty propagation, and sensitivity
analysis, applied to two-phase and three-phase flow scenarios relevant to foam applications

in subsurface modeling.

Three computational contributions constitute the core of the thesis. First, joint
estimation of foam and relative permeability parameters in water-gas systems reveals
interdependencies masked by sequential calibration procedures. Polynomial chaos-based
emulators enable efficient uncertainty propagation, quantifying predictive reliability bounds.
Second, extension of the protocol to three-phase systems is performed considering oil-foam
destabilization mechanisms. Numerical experiments establish data sufficiency criteria
for parameter identifiability and demonstrate that conventional experimental protocols
often yield ill-conditioned inverse problems, potentially leading to erroneous predictions.
Third, a reformulated mobility reduction factor expression eliminates the need for relative
permeability assumptions, connecting mathematical and experimental interpretations of
foam resistance and reducing epistemic uncertainties in calibration. Foam quality scan data
for different surfactant concentrations validate the approach and delineate requirements

for parameter identifiability.

Systematic application of UQ techniques establishes quantitative criteria for param-
eter estimation reliability and experimental design in foam-enhanced recovery. Inverse UQ
defines experimental requirements and model limitations to prevent incorrect characteriza-
tions, while forward UQ propagates parametric uncertainties to simulations, connecting
laboratory measurements to field-scale predictions. This probabilistic approach incor-
porates uncertainties in industrial application planning, identifying risks overlooked by

traditional deterministic methods and enabling risk-aware decision-making.

Keywords: Uncertainty Quantification. Foam. Relative Permeability. Three-phase

flow. Bayesian Inference.



RESUMO

A caracterizagdo do fluxo de espuma em meios porosos exige protocolos capazes
de lidar com incertezas experimentais. Abordagens na literatura para calibracao de
modelos matematicos tratam propriedades da espuma e fungoes de fluxo multifasico como
sistemas independentes, introduzindo erros potenciais nas simulagoes. Ao considerar
recuperagao avancada de petrdleo (EOR), esta limitagdo é agravada pela auséncia de
protocolos sisteméaticos para calibragdo em sistemas agua-oleo-gés-espuma, resultando em

modelos com capacidade preditiva reduzida.

Esta tese apresenta um protocolo de quantificagao de incertezas (UQ) para estima-
tiva paramétrica em modelos de fluxo de espuma. O protocolo integra inferéncia Bayesiana,
modelagem substituta, avaliagdo de identificabilidade paramétrica e analise de sensibilidade,

aplicado a cenarios de fluxo bifasico e trifasico em modelagem de reservatorios.

Trés contribui¢des computacionais constituem o ntucleo da tese. Primeiro, a es-
timativa conjunta de pardmetros da espuma e da permeabilidade relativa em sistemas
agua-gas revela interdependéncias mascaradas por procedimentos sequenciais de calibragao.
Emuladores baseados em caos polinomial viabilizam a propagacao eficiente de incertezas,
quantificando limites de confiabilidade preditiva. Segundo, a extensao do protocolo para
sistemas trifasicos é realizada considerando mecanismos de desestabilizacao da espuma por
6leo. Experimentos numeéricos estabelecem critérios de suficiéncia de dados para identifica-
bilidade paramétrica e demonstram que protocolos experimentais convencionais geram
problemas inversos mal-condicionados, que acarretam previsoes potencialmente erroneas.
Terceiro, uma expressao reformulada para o fator de reducao de mobilidade elimina a neces-
sidade de hipoteses sobre permeabilidade relativa, conectando interpretacoes mateméaticas
e experimentais de resisténcia da espuma e reduzindo incertezas epistémicas na calibragao.
Dados de varredura de qualidade da espuma para diferentes concentracoes de surfactante

validam a abordagem e delimitam requisitos para identificabilidade paramétrica.

A aplicacao sistematica de técnicas de UQ estabelece critérios quantitativos para
a confiabilidade da estimativa paramétrica e do projeto experimental em recuperacgao
avancada com espuma. A UQ inversa define requisitos experimentais e limita¢oes do
modelo para prevenir caracteriza¢oes incorretas, enquanto a UQ direta propaga incertezas
paramétricas para simulacoes, conectando medigoes laboratoriais a predicoes em escala de
campo. Esta abordagem probabilistica incorpora incertezas no planejamento de aplicagoes
industriais, identificando riscos negligenciados por métodos deterministicos tradicionais e

viabilizando a tomada de decisao informada por risco.

Palavras-chave: Quantificagdo de Incertezas. Espumas. Permeabilidade Relativa. Escoa-

mento trifasico Inferéncia Bayesiana.
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1 INTRODUCTION

This chapter presents the general context, a brief review of the literature, the

motivations, the objectives, and the organization of this work.

1.1 CONTEXT

Subsurface engineering processes that rely on gas injection may face effectiveness
issues due to the high mobility of the gas phase. The mobility contrast with resident liquids
triggers viscous fingering and gravity override, which in turn yield early breakthrough and
poor sweep efficiency. Rock heterogeneity further channels flow through high-permeability
pathways, leaving low-permeability zones unswept (Lake, 1989; Shafiei et al., 2024). Foam,
a liquid phase trapping dispersed gas stabilized by surfactant, provides a mechanism to
mitigate these effects (Tripathi et al., 2024; Wang et al., 2025). It replaces continuous
gas with discontinuous bubbles, providing mobility control to divert gas into previously
bypassed zones, enhancing volumetric sweep efficiency, and ultimately improving the

performance of subsurface operations (Kovscek and Radke, 1994).

Foam flow in porous media has proven useful across a range of applications,
including fertilizer delivery in agriculture (Shojaei et al., 2022), soil remediation and
groundwater protection in environmental engineering (Rossen, 1996; del Campo Estrada,
2014), and energy production, ranging from well stimulation to enhance permeability or
mitigate near-wellbore damage (Cheng et al., 2001; Faroughi et al., 2018; Okere et al.,
2020), to geothermal energy extraction (Harshini et al., 2024), and enhanced oil recovery
(EOR) (Lake, 1989; Rossen, 1996; Zhang et al., 2009).

Foam-assisted techniques have been recognized as a method for enhancing oil
recovery since the 1960s (Fried, 1960; Bernard and Holm, 1964). They provide more uniform
displacement of oil within the reservoir, which is especially advantageous in heterogeneous
formations, where traditional methods may struggle to achieve desired recovery rates (Seele
et al., 2022). Foam mobilizes residual oil trapped in porous media by altering fluid
flow paths, which mitigates issues such as gas channeling, viscous fingering, and gravity
override (Rossen, 1996; Zhang et al., 2009; Lotfollahi et al., 2016; Hematpur et al., 2018).
Laboratory studies and field applications show that foam-assisted EOR techniques offer
improved oil recovery rates compared to conventional gas injection methods (Moradi-
Araghi et al., 1997; Zhang et al., 2009; Sele et al., 2022; Alcorn et al., 2022; Vieira et al.,
2024).

In addition to improving recovery rates, the use of foams in EOR can lead to
substantial economic benefits by optimizing resource utilization and extending the pro-

ductive life of mature oil fields. Also, foam’s adaptability to reservoir conditions altering
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the system, including as COs-based, nitrogen-based, and steam-based foams, enhances
its applicability in EOR operations (Zhang et al., 2009). Foam flooding in reservoirs,
named Foam-Assisted Water-Alternating-Gas (FAWAG), can involve both in situ and
pre-generated foam approaches. For in situ foam generation, also named Surfactant-
Alternating-Gas (SAG), a surfactant solution and gas are injected alternately into the
reservoir, and the foam forms within the reservoir as the gas and surfactant solution
mix. On the other hand, in some FAWAG applications, foam is generated at the surface
(pre-generated) before being injected into the reservoir along with water and gas. This
pre-generated foam approach allows for better control over the foam properties, such as
bubble size and stability, before entering the reservoir (de Paula et al., 2024; Paula et al.,
2022; Farajzadch et al., 2015a; Afsharpoor et al., 2010; Li et al., 2010).

As global efforts to reduce atmospheric CO, levels intensify, Carbon Capture, Uti-
lization, and Storage (CCUS) has emerged as an opportunity in climate change mitigation.
The Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC)
states that anthropogenic greenhouse gas emissions, particularly CO,, are the primary
cause of rising global temperatures. The projections indicate that CO5 emissions are likely
to continue increasing in the coming years before any decrease occurs. In this context, foam
has attracted increasing attention to support carbon storage technologies and mitigate
the impacts of ongoing emissions (Metz et al., 2005; Rognmo et al., 2019; Arias et al.,
2021; Orujov et al., 2023; Bello et al., 2023a; Fritis et al., 2025). In this context, foamed
gas may reduce the formation of preferential paths by diverting flow into less permeable
zones of the formation, thereby addressing challenges in geological CO, sequestration and
enhancing the efficiency and safety of long-term subsurface storage (Rognmo et al., 2019;
Rossen et al., 2024). Therefore, foam-assisted CCUS operations for the oil industry offer a
dual benefit of enhancing oil recovery and long-term CO; storage in geological formations
simultaneously, which makes foam a promising solution in the near future (Rognmo et al.,
2019; Orujov et al., 2023; Bello et al., 2023a; Rossen et al., 2024). Figure 1 illustrates the
role of foam in EOR operations, where it increases sweep efficiency to enhance oil recovery

and controls gas mobility to enable CO4y sequestration.

The effectiveness of foam injection in EOR depends critically on understanding
foam stability under reservoir conditions. Since foam strength depends on various factors
such as surfactant concentration, foam quality, and reservoir conditions (Farajzadeh et al.,
2015¢; Kapetas et al., 2015; Hematpur et al., 2018), it leads to significant uncertainties in
performance prediction for field applications. Additionally, foam stability is also influenced
by the presence of oil, which alters its dynamics. The presence of oil can significantly
impact foam stability through complex physico-chemical interactions, causing foam to
lose its strength and reducing its effectiveness in EOR. In this thesis, we investigate
the STARS (CMG, 2019) foam model in porous media, which incorporates the previously

discussed effects of oil on foam.
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Figure 1 — Schematic representation of cyclical injection of gas and water/surfactant for
foam formation. The diagram contrasts the preferential pathways of water fronts (blue)
with the more uniform displacement achieved by foamed gas (gray bubbles within a blue
network), illustrating foam’s dual advantage in enhancing sweep efficiency for oil (black)
recovery and blocking gas paths to facilitate CO, storage.

1.2 MOTIVATION

Previous studies on uncertainty in foam flow models have focused on analyzing foam
properties, neglecting the interactions between important component models that describe
the underlying physics of the phenomenon, such as the relative permeabilities (Valdez
et al., 2020, 2021; de Miranda et al., 2022b,a). Furthermore, despite its importance for the
industry, dedicated uncertainty quantification (UQ) and parameter estimation frameworks
for three-phase foam flow are underexplored. Moreover, the limited interpretability
of implicit-texture models, non-standardized definitions for foam strength evaluation
(Adebayo, 2021), and uncertainty about the minimal experimental data needed for robust

parameter estimation pose challenges for calibrating foam simulators for EOR planning.

Inaccurate parameter estimation can lead to significant issues in predictions, causing
them to differ substantially from actual field observations, which ultimately impact
operational decisions (Ma et al., 2013; Ding et al., 2020a). Without accurate methods
for parameter estimation, each additional modeling step can increase uncertainty in the
predictions. Moreover, the absence of an uncertainty model complicates risk assessment in
foam injection projects, as subsurface modeling often involves complexities that a single
best estimate cannot fully encompass (Cushman and Tartakovsky, 2016). Together, these
challenges may hinder the adoption of foam-assisted recovery techniques, despite their

recognized potential.

Previous studies on foam quality scans using experimental data identified strategies
that significantly reduced uncertainties in estimating foam parameters related to only the
dry-out effects under the assumption of known relative permeability (de Miranda et al.,
2022b; Valdez et al., 2021). However, extending such approaches to other factors that

affect foam strength (e.g., surfactant concentration or oil saturation) or to additional model
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components (e.g., relative permeability) proved challenging. A single foam quality scan
experiment did not provide sufficient data to characterize foam and relative permeability
parameters (Ribeiro et al., 2024). The recognition of these experimental difficulties,
together with the lack of comprehensive three-phase foam flow studies with a detailed
parameter estimation approach (Tang et al., 2016, 2019¢; Lyu et al., 2021b), motivates
the present investigation. Our focus is on developing improved parameter estimation
methods and uncertainty quantification frameworks for multiphase foam systems, which

may ultimately support the design of more robust experimental protocols.

1.3 OBJECTIVES

This thesis is based on a comprehensive uncertainty quantification framework for
foam flow modeling in porous media, improved and applied with a focus on the implicit-
texture foam model. It is designed to address discrepancies between experimental data

and predictions from mathematical models.

The primary objective of this thesis is to evaluate how the novel parameter estima-
tion methods proposed herein, developed to consider different effects on foam strength,
influence predicted foam performance through uncertainty quantification and sensitivity
analysis, thereby guiding potential improvements in experimental design. To achieve this

goal, the study addresses the following specific objectives:

¢ Quantify the influence of experimental uncertainties on calibrating foam flow simula-
tors, particularly the simultaneous determination of relative permeabilities and foam

model parameters.

o Extend and validate an uncertainty-quantification and global sensitivity-analysis

framework for three-phase foam flow.

e Propose and evaluate enhanced parameter estimation considering three-phase flow in

porous media with foam to ensure measurements align with model representations.

1.4 ORGANIZATION

Figure 2 outlines the organization of this thesis, beginning with the introduction and
theoretical foundation (Chapters 1-2), followed by three self-contained but interconnected
rescarch chapters (Chapters 3-5), and concluding with the synthesis of findings (Chapter
6). Solid arrows illustrate the sequence of reading between chapters, whereas dashed arrows
indicate conceptual relationships: the path from Chapter 3 to Chapter 4 incorporates
foam-oil interactions; the path from Chapter 3 to Chapter 5 incorporates surfactant effects
and removes dependence on relative permeability estimation. Both extensions use the

mobility reduction factor to isolate these additional effects.
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Figure 2 — Thesis structure from introduction (Chapter 1) through theoretical foundation
(Chapter 2) to three self-contained chapters (Chapters 3-5, shown in black blocks), con-
cluding with synthesis (Chapter 6). Solid arrows indicate methodological flow; dashed
arrows represent conceptual connections between the paper-based chapters.

A brief overview of the content of the following chapters is provided below to orient
the reader. Chapter 2 presents the governing equations for multiphase flow in porous
media, the implicit-texture model for foam, and the uncertainty quantification framework
used throughout, including Bayesian inference, polynomial chaos expansion for surrogate
modeling, and Sobol sensitivity analysis, together with its computational implementation.
Chapter 3 applies this framework to two-phase foam flow, examining the coupling between
relative permeability and foam parameters through steady-state and transient simulations.
Chapter 4 extends the analysis to three-phase systems, incorporating foam-—oil interactions
and identifying experimental data needs for reliable parameter estimation. Chapter
5 introduces a pressure-drop-based method for estimating foam parameters without
prior relative permeability characterization, improving identifiability and assessing the
influence of surfactant concentration. Chapter 6 synthesizes the main findings and offers

recommendations for future research and industrial application of the framework.
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2 THEORETICAL FOUNDATION

This chapter covers foam flow modeling in porous media, focusing on the implicit-
texture model that adjusts gas mobility using a mobility reduction factor. The chapter also
briefly outlines methods for uncertainty quantification and sensitivity analysis, combining

Bayesian inference and probabilistic modeling to assess the impact of uncertain parameters.

2.1 MULTI-PHASE FLOW IN POROUS MEDIA

The general mathematical model for the three-phase flow of water, oil, and gas in
a porous medium is formulated based on mass conservation, coupled with an extension of
Darcy’s law for each phase. For incompressible and immiscible phases, ignoring gravity
and capillary pressures, the problem is governed by the following equations, where S,

represents saturation of the o phase, and u, denotes the phase velocity:

qsa;“ +V-u, =0, inQx][0,T], (2.1)
Uy = —K Ay VP, in €, (2.2)
with the phase mobility given by
k
Aoy = —=, 2.3
. (2.3)

where Ay, kro, o and p, are, respectively, the mobility, relative permeability, viscosity and
the pressure of the e phase, and K denotes the absolute permeability of the porous medium.
In particular, our interest lies in the three-phase flow, where the phase a = {w,o0,¢g}

denotes water, oil, and gas, respectively.

The fractional flow of a phase is defined as

u
fa_| Oé|

ug|

(2.4)

where |up| represents the magnitude of the total velocity of the system in the flow direction
(Rossen et al., 1999). By prescribing a fixed injection velocity, the pressure difference
across the domain becomes constant after a sufficient injection time, thus reaching a steady
state. The apparent viscosity p, is the inverse of the total mobility Ay. For an assumed
homogeneous core sample of length L, this property is determined from the steady-state
pressure drop AP using the following relation:

K AP
lug| L

Thus, the fractional flow of a phase can be defined as the ratio between the mobility of

Happ = )‘:I_“l = , with  |up| = Z |q | (2.5)

the phase )\, and the total mobility, allowing us to obtain an expression for the relative

permeability of the phase as

)\a alo
fo¢ = 3 = kra == /11 f . (26)
/\T Kapp
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2.2 FOAM MODELING

The mathematical approaches to model the behavior of foam in subsurface environ-
ments combine fluid dynamics equations with empirical correlations observed. Basically,
foam is modeled in the multiphase flows by modifying the gas mobility. Commonly, in
the literature, two types of models are presented to represent foam effects: Mechanistic
models describe the foam texture (bubble density) transport through a population balance
differential equation (Kovscek et al., 1995; Kam, 2008; Ashoori et al., 2010; Zitha and
Du, 2010; Chen et al., 2010; Zavala et al., 2024); implicit-texture models assume local
equilibrium of foam effects through an algebraic expression directly modifying the gas
mobility (Rosman and Kam, 2009; Rossen et al., 1999; Chen et al., 2010; CMG, 2019;
Danelon et al., 2024). A detailed review of these models is presented by Hematpur et al.
(2018).

Through the application of analytical methods (Lozano et al., 2021; Zavala et al.,
2021; Cedro and Chapiro, 2024; Danelon et al., 2024; Fritis et al., 2024) or numerical
simulations (Delshad et al., 1996; CMG, 2019; de Paula et al., 2020; Paula et al., 2022;
de Paula et al., 2024), researchers can solve these models to gain insights into overall foam
process performance and predict foam flow in porous media in realistic scenarios. The
quality of analyses and simulation predictions depends on factors such as the precision of
input parameters, the suitability of the chosen model for the studied phenomenon, and
other factors, including the numerical schemes’ resolution (Chen et al., 2006). Validation
against experimental data and history matching with ficld observations are crucial steps in
ensuring the reliability of simulation results (Farajzadeh et al., 2015a; Zavala et al., 2021;
de Miranda et al., 2022b).

In this work, the foam flow in porous media is described mathematically by assuming
that the foam is in a state of local equilibrium, where the rates of bubble generation
and destruction are balanced, that is, the so-called implicit-texture or local equilibrium
approach (Kovscek et al., 1995; Rossen et al., 1999; Chen et al., 2010). This approach
is widely used in foam flow simulators due to its computational efficiency and numerical
stability. The model assumes that foam forms instantly when water, gas, surfactant, and
appropriate conditions are present. It utilizes a mobility reduction factor (MRF') term to
modify gas mobility, representing the resistance caused by foam in porous media without
explicitly simulating the texture of foam as an additional partial differential equation
(Hematpur et al., 2018; Zhang et al., 2009).

The MRF term, in an experimental context, is defined as the ratio between the
pressure drop with and without foam (Rosman and Kam, 2009). However, in mathematical

models, it accounts for the gas mobility to alter the apparent viscosity in the presence of



26

foam:

)\ —1
Happ = ()‘w + X+ ]\/f]‘%F) ) (2.7)

where Ay, Ao, A, are the mobilities for water, oil and gas phases (Tang et al., 2016, 2019a).

Several factors can influence the mobility reduction provided by foam, including
water and oil saturations, surfactant concentration, and the interfacial tension between
phases. The empirical modeling of the mobility reduction factor calculates the combined
impact of these different factors into a single value, which is used to control gas mobil-
ity. The mathematical model originating from the widely used commercial simulator
STARS (CMG, 2019) defines the MRF by

MRF =1+ fmmob [ F, (2.8)

where the F; terms capture possible factors influencing mobility reduction, representing
the multifaceted interplay of foam with other elements from the porous media model in a
simplified approach. The parameter fmmob describes the maximum factor by which foam

is expected to reduce gas mobility.

A summarized description of MRF terms is presented in Table 1 with their corre-
sponding mathematical expression and descriptions of their parameters. The following
effects are considered: the surfactant concentration effect (F,,r), oil saturation (Fy),
shear thinning (Fipeqr), foam generation (Fyey,), oil composition (Fy.), salinity (Fyu),
absolute permeability (Fpern,), and foam dry-out (Fy,,). These factors are modeled in
terms of the water saturation (S,), oil saturation (.S,), capillary number (N,,), surfactant
concentration (Cy,,s), oil mole fraction (C,), salt concentration (Cj,;) and the average

permeability in a discretized block (perm).

Earlier versions of the STARS included only the terms Fy.,, Foir, Fsnear, and Fgyry.
A similar configuration can be found in the ECLIPSE simulator (Spirov and Rudyk, 2015).
Consequently, researchers in the relevant literature often focus on these terms when
modeling foam flow in porous media. At this point, it is worth emphasizing that only a
limited number of studies in the literature have addressed parameter estimation of the
F,; term in the context of three-phase flow, while most of the works addresses the Fy,, or
Fipeqr terms (de Miranda et al., 2025b; Ma et al., 2013, 2014a; Ribeiro et al., 2024; Valdez
et al., 2021, 2022).

2.3 UNCERTAINTY QUANTIFICATION

Simulations of complex phenomena are generally subject to multiple sources of
uncertainty arising from limitations in the underlying physics models, numerical approxi-
mations, and input parameter values that are assimilated with measurement errors. This

is particularly true for simulations involving multiphase flow in porous media, where the
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Table 1 — List of STARS terms available to represent specific foam effects and their
parameters.

Foam effect term Parameters
f .. .
Fows = (ﬁj:;:f f) . fmsurf: critical surfactant concentration.
epsurf: exponent parameter.
. il
F, = (%)em fmoil: oil saturation point to kill foam.

floil: oil saturation to destabilize foam.
epoil: exponent parameter

__ | fmca
Fshear - (_p

epcap
Nca )

fmcap: reference capillary number.
epcap: exponent parameter.

Fgen = (M)epgcp

Fmgep fmgcp: critical N, for foam generation.

epgcp: exponent parameter.

= epomf
Foipe = ((fmomf CO))

Trom] fmomf: critical oil mole fraction.

epomf: exponent parameter.

It
Foaw = (%)wa fsalt: lowest salt mole fraction.

fmsalt: critical salt mole fraction.
epsalt: exponent parameter.

1 In ( perm-+ fmperm?)

Foerm = Frpermi o3 fmperm1: parameter 1 for permeability.

fmperm2: parameter 2 for permeability.

1 arctan[epdry(Sw —fmdry
Fary = 2t : 7(r = )

epdry/sfbet: abruptness of the dry-out effect.
fmdry/SF: critical water saturation for collapse.

presence of foam adds significant complexity. Accurate characterization and quantification
of these uncertainties are crucial for establishing confidence in the predictive capabilities

of the models and identifying areas for future improvements.

Uncertainty Quantification (UQ) is a systematic approach to identify, quantify, and
reduce these uncertainties. By applying statistical methods to assess the impact of input
variations and model assumptions, UQ can evaluate and further enhance the reliability
of predictions. This section presents a panorama of the UQ workflow proposed and the
techniques employed to assess the representation of foam in a multiphase flow. Figure 3
presents the schematic view of the UQ workflow used in this work. While the specific
elements in this figure relate to multiphase flows in porous media, the overall UQ workflow

is adaptable to evaluate any model against observational data.
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Figure 3 — Workflow for uncertainty quantification of computational models. First row:
Inverse uncertainty quantification. Second row: Forward uncertainty quantification.
First column: space of the latent/non-observable variables. Last column: Space of the
observable /measurable variables.

The following subsections discuss the procedures and methods that are present in

each step of the workflow, which is summarized as follows:

1. Experimental Data Curation and Probabilistic Modeling of these uncertain

data, the input parameters, and their relations to be incorporated into the workflow;

2. Parameter Inference over the experimental data (evidence) and initial hypothesis

(prior beliefs);

3. Parameter Characterization via diagnostics and evaluation of the posterior

distributions and techniques to assess identifiability;
4. Uncertainty Propagation of posteriors distributions to the model;

5. Uncertainty and Sensitivity Analysis of the output led by variations in input

variables.

The process displayed in Figure 3 usually progresses in a counter-clockwise direction,
as indicated by the steps numbered from 1 to 5. The first column represents the space of
latent variables, which are non-observable or non-measurable parameters within the model.
In contrast, the last column encompasses the observable quantities, typically outputs of
the simulators, that are evaluated against real data. The first row involves conducting
the inverse UQ), a step to solve an inverse problem to estimate the latent parameter space
given measurements of the observable space. The second row comprehends the forward UQ
analysis, which analyzes how the uncertainties observed in the latent reflect uncertainties
in the model outputs. Subsequent sections will provide a more detailed discussion of these

steps.
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2.3.1 Experimental Data Curation and Probabilistic Modeling

Choosing the right experimental data for calibrating and evaluating simulator
parameters is vital for ensuring reliable uncertainty quantification. Factors such as
experimental conditions, measurement uncertainties, and the completeness of the data
must be taken into account. Accurately calibrating a model and reaching precise estimates

of parameters and uncertainties requires avoiding irrelevant or inadequate data.

The physical system’s probabilistic modeling is conducted by randomizing the
studied parameters based on the hypothesis to be tested against data. Bayesian modeling,
a fundamental concept in modern Bayesian statistics, integrates submodels or components
into a structure and associates them with the data using Bayes’ theorem while accounting
for any uncertainties (Martin et al., 2021; McElreath, 2020). In recent years, sophisticated
computational implementations have been developed to support Bayesian modeling for

complex systems (Salvatier et al., 2016).

2.3.2 Parameter Inference

The Bayesian inference provides a method for assessing the credibility of the
constructed probabilistic model, considering both the hypotheses and the available data.
The foundation of this approach is Bayes’ theorem (Martin et al., 2021; McElreath, 2020),

which can be expressed mathematically as:

likelihood prior

_ P(D|o) P(0)
P(fl?)— @ , (2.9)

marginal likelihood

where P(0) represents the prior knowledge of the input parameters 6; P(D|f) is the
likelihood function, i.e., how the observed data D is introduced on the model; and P(D) is

the marginal likelihood or evidence, a normalization factor for the posterior distribution,
P(0|D).

In Bayesian theory, probability represents the degree of credibility of one event,
which can be updated with new information, unlike a fixed value in the frequentist approach
(Gelman et al., 1995). This uncertainty may be based on prior knowledge about the event,
such as results from previous experiments or personal belief in the event (McElreath, 2020).
Bayesian inference involves updating beliefs to integrate new evidence (Gelman et al.,

1995) using Bayes’ theorem.

The prior distribution P(#) translates the notion one has on that event 6, in a sense

that it represents the uncertainty about an event before observing the data'. When little

! The Bayesian uncertainty formulation makes no distinction between epistemic and aleatoric

uncertainties (Martin et al., 2021; Soize, 2017).



30

is known about an event, it is common to use a uniform prior over a conservative support
space, as per the principle of insufficient reason, to prevent bias. However, for parameters
without clear physical interpretations, defining a trustworthy range can be challenging,
thereby introducing strong bias in parameter selection when adopting a uniform prior.
Other alternative strategies are also explored in the literature to decide which prior is
employed (McElreath, 2020; Martin and Wiecki, 2018; Caticha and Preuss, 2004).

To link the observed data D to the unknown parameters 6, the likelihood function,
P(D|0) = L(0 | D), measures the probability of observing data D given the parameters 6.
For a continuous case with an observed dataset D, the likelihood is the product of the
PDF parameterized by 6 for all data d; € D:

n

L0 D) =] fol(ds), (2.10)

i=1
where fy(d;) is the PDF of 6 evaluate at d;. The likelihood function is central to many
iterative algorithms when working with observed data, as it provides a measure of how

well the current parameter estimates explain the observed data.

In practice, when working with observed data, Bayes’ theorem is often expressed
as a proportionality:

likelihood prior
——~

P(6|D)  P(D|0) P(0). (2.11)

This formulation is useful because the marginal likelihood P(D) often serves as a normal-

ization constant and can be difficult to compute directly.

Modern Bayesian statistics leverages increasing computational power to enable
iterative algorithms that were not possible decades ago. Computational tools have
emerged to facilitate the development of probability models working with computational
representations of random variables (Martin et al., 2021). Markov Chain Monte Carlo
(MCMC) methods, such as the Metropolis algorithm, are commonly implemented in these
tools to generate numerical approximations and draw samples from complex probability
density functions (PDF) (Hastings, 1970). These methods often rely on evaluating the
likelihood function at each iteration to update the parameter estimates. Figure 4 illustrates
the iterative process of the Metropolis algorithm, demonstrating the evolution from a
uniform prior to a Gaussian-shaped posterior distribution, which agrees with the Central
Limit Theorem and properties of well-designed MCMC methods (Geyer, 1992).
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Figure 4 — Illustration of the iterative process in the classical MCMC algorithm, Metropolis.
The prior hypothesis is updated to a Gaussian. Adapted from (Lee et al., 2015)

2.3.3 Parameter Characterization

The third step of the workflow we used (Figure 3, column 1) involves critically
analyzing the estimated uncertainties of parameters, many of which are latent variables in
petroleum reservoir characterization. This analysis aims to define appropriate probability
distributions or ranges for these uncertain parameters, an important step for reliable

sensitivity analysis and uncertainty propagation (Smith, 2013).

2.3.4 Uncertainty Propagation

The fourth step of the workflow illustrated in Figure 3 focuses on propagating
input parameter uncertainties through the model to quantify output uncertainties. Monte
Carlo (MC) sampling methods (Metropolis and Ulam, 1949) are commonly used for
this purpose, relying on random sampling from the input probability distributions to
generate an ensemble of input parameters. For each sample, the model is evaluated
to obtain the corresponding outputs. This process is repeated many times to build
statistical representations of the output distributions induced by input uncertainties. Input
probability distributions are based on available data, expert knowledge, and physical

constraints.

Methods based on MC rely on random sampling to achieve a numerical result. In
the context of UQ, MC methods can be employed to sample from posterior distributions
and achieve a prediction interval (PI) for a quantity of interest (Qol). With sufficient MC
samples, statistical summaries such as means and quantiles can be obtained for the output
distributions, thereby quantifying overall uncertainties and enabling risk assessments.
While the concept is straightforward, MC can be computationally expensive for complex
models with high-dimensional parameter spaces. It’s worth noting that MC methods
typically exhibit a convergence rate of O(N~'/2) independent of dimension, where N is the
number of samples, a very robust method but also slow (Caflisch, 1998). While robust and

straightforward conceptually, MC can be computationally expensive for complex models.
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In this context, more efficient sampling strategies and surrogate modeling techniques can

be employed to improve computational efficiency (Xiu, 2010).

2.3.4.1 Surrogate Modeling

In cases where it is computationally expensive to solve the model to evaluate
some Qols, an interesting approach is to use surrogate models (also known as emulators).
These statistical tools seek to approximate the output of complex physical systems at a
much lower computational cost (Gramacy, 2020). Some examples of techniques commonly
used for uncertainty quantification are the polynomial chaos expansion (PCE) (Xiu and
Karniadakis, 2002; Ghanem and Spanos, 1991; Wiener, 1938) and the Gaussian process
(GP) emulators (Gramacy, 2020).

The PCE is a particularly useful surrogate modeling technique for uncertainty
quantification. It works by mapping the random input variables onto a basis of orthogonal
polynomials, allowing the construction of a surrogate model that approximates the original
model outputs as a polynomial function of the input variables. The key advantage of PCE
is its ability to achieve accurate approximations with relatively fewer simulator evaluations
compared to other techniques, such as the classical MC method, making it computationally
efficient for uncertainty propagation. Figure 5 illustrates the process of constructing and
using a PCE emulator. In the training phase, a set of sample input parameter values
is used to evaluate the original simulator or model, and these input-output pairs are
then used to compute the PCE coefficients through regression techniques. Once trained,
the PCE emulator can rapidly evaluate the surrogate model for any new set of input
parameter values during the usage phase, providing an inexpensive approximation of the

model outputs without the need to run the full simulator.

hours per run

Simulator
0 N |
Design | _ ___ > Y=MX) ! Sampled
Parameters : Outputs
| training |
X; y samples : Y
‘X_} _____ »|  Emulator " > ¥,
X ;’/z M Emulator :
;N/ e ﬂ{;‘? Validation A Yw _4

a million runs

Figure 5 — [llustration of the training and usage phases for constructing and deploying a
polynomial chaos expansion (PCE) surrogate model.
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Figure 6 — Hlustration of the sensitivity analysis identifying key parameters affecting model
outputs and revealing areas of unnecessary complexity or needing refinement.

2.3.5 Uncertainty and Sensitivity Analysis

In the context of uncertainty quantification, sensitivity analysis (SA) (step 5 in the
workflow in Figure 3) serves as a crucial tool for assessing the impact of input parameter
uncertainties on model predictions and enhancing interpretability. While uncertainty
quantification examines the complete propagation of input uncertainties through the
model, SA aims to identify the dominant drivers of output uncertainty among the input
parameters. This knowledge can be helpful for guiding model refinements to reduce model
output uncertainties and/or for focusing efforts on carefully measuring specific data (Iooss
and Lemaitre, 2015; Saltelli, 2002; Saltelli et al., 2008).

As illustrated in Figure 6, the analysis identifies parameters with significant vari-
ations but minimal impact on the model output, potentially indicating unnecessary
complexity. Conversely, it also identifies parameters with small variations that significantly
influence the model output, suggesting regions in the parameter space that require refine-
ment in the model description or in the data measurement. This aims to enhance stability
and simplify models. Additionally, sensitivity analysis can help identify uncertain parame-
ters that lead to desired or unexpected outputs, thereby enhancing the decision-making
process. Overall, SA assists in understanding the impact of uncertain input parameters on
output uncertainty and can guide efforts to gather more data for influential parameters or
improve the precision of underlying physics models for key processes (Iooss and Lemaitre,
2015; Wagener and Pianosi, 2019; Saltelli et al., 2008).

2.8.5.1 Sobol Indices

A widely used SA technique is the Sobol indices, also known as variance-based
sensitivity analysis, which are metrics derived from statistical analysis of variance (ANOVA)
methods. It is used to quantify the relative importance of the input parameters on the
output via a decomposition of the model output’s variance into fractions which can be
attributed to inputs or sets of inputs (Sobol’, 1990; Sobol, 2001; Saltelli et al., 2008).

More specifically, the first-order Sobol index (or main Sobol index) evaluates the influence
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of a given input parameter #; € © independently of the output. The total Sobol index
evaluates the direct contribution and interactions among parameters to the variance of a
given output ). The following expressions describe the main and total Sobol indices:
VIE|Y|6; VIE[Y|0_;
R+ |
vy VY

where V]| is the variance, E[-] the expected value, and 6_; denotes the set of all input

S (2.12)

parameters except the ; parameter.

2.3.5.2 SHAP Values for Directional Sensitivity Analysis

The SHAP (SHapley Additive exPlanations) method extends sensitivity analysis by
providing signed contributions that indicate the direction of parameter effects (Lundberg
and Lee, 2017). For a model f with an input parameter vector 8 € RM  where M is
the total number of parameters, SHAP values decompose a specific prediction f(8) into
additive contributions: .
f(0) = ¢o+ > 0i(6:), (2.13)

i=1
where ¢g = E[f(0)] is the baseline prediction (the expected value of the model output
over the training data), and ¢; is the SHAP value for parameter ;. This value quantifies

how the parameter increases or decreases the model’s output relative to the baseline.

The SHAP value for parameter ¢ is calculated by averaging its marginal contribution

across all possible parameter subsets:

;= Z |S|!(]\4 —d!|S| - 1)! {fsu{i}(eSU{i}) . fS(GS)} 7 (2.14)

SC{1,...M}\{d}

where S represents parameter subsets, fg is a surrogate model trained considering this
subset, and g represents the values of the subset S. Unlike variance-based methods,
SHAP values reveal whether increasing or decreasing parameters enhance or reduce a Qol,
providing directional sensitivity information for understanding foam parameter impacts

on key outputs in EOR.

2.3.6 An Implementation of the UQ Framework for Porous Media Simulators

The framework for UQ described in Figure 3 is general and may be used in different
fields for scientific and/or engineering applications (Eck et al., 2016). Here, we detail
a particular implementation developed in this work tailored for conducting UQ & SA
studies using porous media flow simulators such as FOSSIL (de Paula et al., 2020; Paula
et al., 2022; de Paula et al., 2024), UTCHEM (Pope and Nelson, 1978; Delshad et al., 1996),
STARS (CMG, 2019), and OpenFOAM (Horgue et al., 2015).

The UTCHEM simulator, developed at the University of Texas at Austin, is one

of the pioneering simulators for foam flow in porous media. Developed in FORTRAN, it
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was among the first to incorporate comprehensive foam modeling capabilities within a
chemical flooding simulator (Pope and Nelson, 1978; Delshad et al., 1996). The STARS
(Steam, Thermal, and Advanced Processes Reservoir Simulator) simulator, developed
by the Computer Modelling Group (CMG), is a widely used commercial simulator for
modeling foam flow in porous media. Developed in C++, it offers advanced thermal and
compositional modeling, including sophisticated foam simulation features (CMG, 2019).
In contrast, FOSSIL (FOam diSplacement SImuLator) is an in-house software developed
at LAMAP from UFJF that implements a stable and conservative numerical algorithm
with reduced numerical diffusion (de Paula et al., 2020; Paula et al., 2022; de Paula et al.,
2024). These simulators, among others, provide researchers and engineers with tools to

investigate foam behavior in various porous media applications.

To leverage the capabilities of foam simulators, we developed a tool that interfaces
with a given simulator and automates its execution over a prescribed experimental design
(defined as a set of parameter combinations to be evaluated) for UQ and/or SA studies.
As illustrated in Figure 7, the tool treats the simulator as a black box, agnostic to its
internal solution method. The experimental design, represented as a table with each
row corresponding to a unique parameter combination, is generated and passed to the

framework’s wrapper component.

Input
Template |- - :

e " s

1 outputs

Design | _,
Parameters[f -~~~ """ """ """ """ T"-T-T---------- = i

—— usage

Figure 7 — Ilustration of the simulator wrapper together with the emulator enabling
efficient exploration of the parameter space for uncertainty quantification and sensitivity
analysis.

The wrapper utilizes a templating engine to interface with the simulator, which
requires a single input file in a specific format and syntax tailored to the chosen simulator.
So, a template file with placeholders for input parameters is provided to the wrapper, and
the placeholders are replaced with the corresponding values from the experimental design
table. Automated input file generation allows seamless integration with existing simulators,
as the generated files can be directly consumed without modifying the simulator’s internal

code.

By automating the process of generating input files and executing simulations across
the experimental design, the framework enables efficient exploration of the parameter

space and quantification of the resulting uncertainties. The decoupling from the simula-
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tor’s internal structure promotes modularity and extensibility, while the templates can

accommodate various input file formats, enhancing compatibility with different simulators.

While the framework handles simulation execution, custom output processing codes
are often necessary for analysis tasks specific to each simulator. Codes have been developed
for our in-house simulator, FOSSIL (de Paula et al., 2020; Paula et al., 2022; de Paula
et al., 2024), and UTCHEM (Pope and Nelson, 1978; Delshad et al., 1996). It is important
to highlight that another in-house foam flow simulator, currently under development and
based on OpenF0AM (Horgue et al., 2015), is also being integrated into this framework, with
output processing tools tailored to its specific data structures and formats. These codes
incorporate techniques like sensitivity analysis, uncertainty quantification, or surrogate
modeling, enabling insights into the impact of input parameter variations on quantities of

interest.

Additionally, as shown in Figure 7, the framework integrates with surrogate mod-
eling techniques, such as polynomial chaos expansion (PCE), to create computationally
efficient emulators. These emulators can rapidly approximate simulator outputs, further

enhancing the efficiency of uncertainty quantification and sensitivity analysis workflows.

The framework has been implemented as a Python package, named UQTOPUS (Uncer-
tainty Quantification Toolbox for OpenFOAM and Python Unified Simulation), providing an
end-to-end uncertainty quantification workflow with pluggable sampling strategies, parallel
execution support, and extensible hooks for surrogate model integration. For accessibility,
the package is distributed via the Python Package Index (PyPI) and installed with the
command: pip install uqgtopus. The framework was applied to computational fluid dy-
namics problems using standard OpenFOAM tutorial cases, validating its effectiveness beyond
specialized porous media simulators. The source code, along with examples and tutorials,
is available at the following repository: https://github.com/GBdeMiranda/UQTOPUS.
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3 RELATIVE PERMEABILITY AND FOAM PARAMETERS

This chapter presents the paper de Miranda et al. (2024) published in Transport
in Porous Media, entitled “ Uncertainty Quantification on Foam Modeling: The Interplay
of Relative Permeability and Implicit-Texture Foam Parameters”, which handles the
simultaneous estimation of foam and relative permeability parameters, along with an

analysis of their correlations and associated uncertainties.

3.1 INTRODUCTION

Foam has been extensively used in various applications to improve fluid flow
in porous media due to its unique properties, such as its high viscosity, low density,
and the ability to reduce gas mobility. In well stimulation, the introduction of foam
acid diversion facilitates the creation of fractures within reservoirs, thereby augmenting
permeability and stimulating well productivity (Cheng et al., 2001; Okere et al., 2020).
Foam also finds its usage in delivering liquid fertilizer (Shojaei et al., 2022), which enables
a uniform distribution and enhanced soil penetration, crucial for successful agricultural
applications. Moreover, foam improves the transportation and distribution of remediation
agents throughout the contaminated zones (del Campo Estrada, 2014). Furthermore,
foam-assisted techniques in Enhanced Oil Recovery (EOR) have been shown to improve
sweep efficiency and mitigate gas channeling due to reservoir heterogeneities, viscous
fingering, or gravity override (Rossen, 1996; Zhang et al., 2009; Lotfollahi et al., 2016;
Hematpur et al., 2018). In the context of EOR, foam has also been used to improve
sweeping efficiency in steam flooding processes (Patzek and Myhill, 1989; Patzek, 1996),

as well as in numerous other pilots, as recently reported by Rossen et al. (2024).

When simulating a multi-phase flow phenomenon, such as foam displacement, it is
essential to carcfully design the complete mathematical model, the underlying hypothesis,
and components such as relative permeability, viscosity, capillary pressure, and others, to
describe the correct physics (Ranade, 2002; Bear and Bachmat, 2012). However, these
components are also subject to strong interactions and uncertainties that affect the model’s
overall response. Therefore, selecting and parameterizing these components is essential
to carefully create a comprehensive and reliable fluid flow model that can replicate the
complexities of real-world porous media systems and make accurate predictions. In this
context, the fractional flow theory (Pope, 1980; Ding et al., 2020b) describes the fractional
contribution of a displacing phase to the total flow rate in the reservoir, offering crucial
insights into the mechanisms driving recovery (Zhou and Rossen, 1995; Dholkawala et al.,
2007; de Miranda et al., 2022a). Adjusting a model to incorporate new techniques for
foam representation in fluid displacement introduces elements of uncertainty into the

mathematical formulation. To enhance the reliability of multi-phase flow simulations, it is
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essential to quantify the uncertainty and identify its influential parameters accurately.

In the context of determining relative permeability for multi-phase flow in porous
media, Valdez et al. (2020) utilized two datasets to explore the effects of uncertainties in
input parameters from relative permeability models on the outputs of a water-oil flow,
using an approach based on Bayesian inference and surrogate modeling. Berg et al. (2021b)
addressed the uncertainties of relative permeabilities by employing Bayesian inference with
synthetic and experimental core flooding data. Their work highlighted the considerable
impact of different relative permeability models on saturation profiles, pressure drop, and
relative permeabilities. Both works indicated that the choice of relative permeability
models and their parameters significantly influences the accuracy of model predictions,
a factor of paramount importance in a range of practical applications. In particular, for
the case of foam flow for EOR, a series of works (Lotfollahi et al., 2016; Ma et al., 2014a;
Valdez ct al., 2021; de Miranda et al., 2022b,a) have investigated the uncertaintics arising
from the implicit-texture description of foam (Osterloh and Jante, 1992) in terms of the
foam strength. Specifically, Valdez et al. (2021) evaluated the ability of two foam models,
the one used in the STARS simulator (CMG, 2019) and the Linear Kinetic model (Ashoori
et al., 2010), to represent the experimental data, providing insights for enhancing foam-
assisted EOR processes. Focusing on the parameter estimation and their uncertainties
in foam displacement models, Valdez et al. (2022) explored the utilization of different
objective functions. In contrast, de Miranda et al. (2022b) introduced the measured
variations in experimental data as a weighting factor to the objective function. Berg
et al. (2024) presents an inverse modeling approach for the simultaneous determination
of relative permeability and capillary pressure—saturation functions using a synthetic
dataset. According to a recent study conducted by Ribeiro et al. (2024), it is not feasible
to accurately determine both the relative permeability and foam representation using a
dataset that only consists of observations of foam quality and apparent viscosity in a

steady state.

In situations where models are governed by complex equations, such as partial
differential equations (PDEs), the challenges associated with uncertainty quantification
and sensitivity analysis become even more pronounced. In these cases, emulators come into
play to enable analysis due to the lower cost of evaluating an approximation of the model.
Within this context, methods such as Polynomial Chaos Expansion (PCE) and Gaussian
Process (GP) gain prominence. Global sensitivity analysis is crucial for understanding
the complex interdependencies between various parameters that affect flow dynamics.
Sochala and Mai, L. tre (2013) delved into the impact of uncertainty in hydrological laws
on subsurface flows, as modeled by Richards’ equation. Their study utilizes PCEs to
efficiently quantify the effects of hydrological parameter uncertainties on the behavior
of the wetting front. It demonstrates that second-order PC expansions are adequate for

capturing the output quantities of interest. This approach significantly enhanced the
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efficiency of simulation processes compared to traditional Monte-Carlo methods by using a
non-intrusive spectral projection to obtain PC decomposition coefficients. Their findings,
across three test cases with different hydrological laws, revealed that second-order PCE
suffices for capturing the quantities of interest due to the smooth dependencies of the
considered problems. Bazargan et al. (2015) employed PCE to approximate the outputs
of reservoir models, providing a more nuanced approach to uncertainty quantification.
Similarly, Kim et al. (2022) leveraged surrogate PCE alongside Global Sensitivity Analysis
for multi-phase, multi-component numerical simulators in soil remediation scenarios.
These advanced techniques demonstrate their efficacy in delivering reliable predictions and

addressing the inherent challenges in environmental and reservoir models.

However, while previous studies on foam flow have made significant advances in
examining uncertainties in implicit-texture models, none of these works have explored the
intrinsic interactions among the components of relative permeability and foam parameters,
thereby limiting the scope of the analyses. Also, previous works on uncertainty quantifica-
tion on foam models have been limited to steady-state foam models without solving the
governing PDEs and analyzing their outputs. The present work addresses these gaps by
conducting an uncertainty quantification and sensitivity analysis of a foam implicit-texture
model based on the STARS formulation (CMG, 2019) and the Corey relative permeability
model (Corey, 1954; Brooks and Corey, 1963) to better understand the interactions be-
tween these two components. Inverse uncertainty quantification, which characterizes model
parameters and their associated uncertainty, relies on Bayesian techniques that utilize
improved prior distributions. To propagate uncertainties through the governing partial
differential equations of foam flow, we utilized an in-house foam displacement simulator,

aided by a surrogate model based on PCE, to carry out further uncertainty quantification.

The remaining of this chapter is organized as follows: Section 3.2 outlines the
fundamental equations and theories governing two-phase flow in porous media, particularly
discussing the fractional flow theory for water and gas flow in the presence of foam:;
Section 3.3 delves into inverse and forward uncertainty quantification based on Bayesian
techniques and Sobol Indices, which are used for model calibration and sensitivity analysis,
respectively; Section 3.5 applies the discussed methods to estimate parameters in the
STARS mathematical model for foam flow in porous media. Finally, Sections 3.6 and 3.7
discuss the results, highlighting possible future steps for research and synthesizing the

findings of this work.

3.2 MATHEMATICAL MODEL

Many mathematical models have been developed to analyze the two-phase flow
of water and gas in the presence of foam in a porous medium. In this work, we focus

on analyzing a water-gas flow with foam in a one-dimensional domain €2 representing
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a saturated porous medium, where the aqueous and gaseous phases are represented by
a = {w, g}. The mathematical model for this problem is based on the principle of mass
conservation for each phase, where the saturation and velocity of each phase are denoted
by S, and u,, respectively. Assuming incompressible and immiscible phases, a saturated
system is represented as S, + .S, = 1. The Darcy law determines the rate of fluid flow for
a given phase, expressed as a function of the pressure of each phase, denoted by p,, and

its mobility, denoted by \,.

The governing equations for two-phase flow are given by:

0 0 :
(basa + %UQ = 0, in ) x [O, T], (31)
Uq = _)\a%pou in Q? (32)

with ¢ denoting the porosity and T representing the final time.

The mobility of phase « is a function of the relative permeability %, , and viscosity
lta, and is given by
kr «
Ao = —. (3.3)
Lo

The Corey-Brooks equations describe water and gas relative permeability for two-
phase flow in porous media (Corey, 1954; Brooks and Corey, 1963). These equations
assume that the relative permeabilities of each phase are functions of their saturations

and can be defined for water and gas as:

Sy — S e S, — S "
_ 1.0 w wce _ 1.0 g gr
Ko = K (1 — Swe — Sgr) oand kg =y (1 — Swe — Sgr> ' (34)

The parameters £, and k7, denote the end-point relative permeabilities, while S, and
Sgr are the residual saturations for water and gas. The exponents n,, and n4, often called
Corey’s exponents, describe the curvature or shape of the relative permeability curves for
water and gas. These parameters are often determined using experimental data from core

flooding experiments in laboratories (Berg et al., 2021b,a; Valdez et al., 2020).

The fractional flow theory for gas-water flow is a mathematical framework to
describe the multi-phase flow in porous media (Dholkawala et al., 2007; Rossen et al.,
1999; Zhou and Rossen, 1995; Larson, 1978). The fractional flow of a given phase, denoted
by f., represents the volumetric displacement fraction in a specific direction dominated

by phase a = {w, g} and can be written as

Jo=+1 (3.5)

where total mobility is Ay = >, Aa.
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From Darcy’s law for the total velocity, a direct relation between the apparent
viscosity fapy and the pressure difference AP across the core sample can be written as
K AP
fapp L7

(3.6)

ur =

where K is the absolute permeability of the porous medium, ur is the magnitude of the
superficial velocity, and L is the length of the core sample. This relationship is commonly

utilized in experimental settings to assess fluid flow characteristics in porous media.

3.2.1 Foam modeling

Modeling foam flow in porous media presents a significant challenge due to the
complex interplay of foam properties, porous media characteristics, and flow dynamics.
Early attempts to model foam flow relied on population balance equations, pioneered
by Falls et al. (1988) and Patzek (1988). This approach incorporates a conservation
equation for the number density of foam bubbles, treating foam as a component of the gas
phase. The bubble population balance equation is analogous to mass and energy balances

commonly used in reservoir simulations.

These models explicitly track bubble generation and coalescence through rate
expressions dependent on saturations and surfactant concentration, as well as lamella
mobilization. The apparent viscosity of the gas phase is modified based on the texture of
foam bubbles, capturing the non-Newtonian behavior of foam. However, while offering a
detailed representation of foam texture evolution, these population balance models may be
computationally expensive (Kovscek et al., 1997; Rossen et al., 1994; Bertin et al., 1999;
Chen et al., 2010; Lozano et al., 2021).

The implicit-texture model is frequently used to describe how foam affects flow
in porous media, assuming that foam is in local equilibrium; that is, the rates of bubble
generation and destruction are equal. Implicit-texture models offer computational efficiency
and are easily implemented in foam flow simulators. The principle behind the implicit-
texture model lies in representing the foam’s intricate structure and effects on fluid flow
without explicitly simulating foam texture as an additional partial differential equation
(Hematpur et al., 2018; Zhang et al., 2009; Falls et al., 1988; Patzek, 1988). An example is
the STARS simulator (CMG, 2019), which uses a mobility reduction factor (MRF') term
instead of evaluating bubble density. Many factors affect mobility reduction, such as
water and oil saturations, surfactant concentration, interfacial tension between phases,
and others. The MRF term, the mobility reduction factor, calculates the combined impact
of these factors into a single value, which is used to control gas movement (Boeije and
Rossen, 2013; Kapetas et al., 2015).

The modified gas mobility in the presence of foam is used to alter the apparent
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viscosity, and therefore, the apparent viscosity is given by:

o\
Happ = (Aw + M]%F) . (3.7)

In an experimental context, the mobility reduction factor MRF is defined as the
ratio between the pressure drop with and without foam (Rosman and Kam, 2009), that is,
APfoqm/AP. In the STARS mathematical model, the mobility reduction factor is defined
by

MRF =1+ fmmob || F;, (3.8)

where the F; terms capture possible factors influencing mobility, representing the multi-
faceted interplay of foam with other elements from the porous media model. The parameter

fmmob describes the maximum factor by which foam is expected to reduce fluid mobility.

In this work, we follow Ma et al. (2014a) and consider only the factor Fy,, that

describes how water saturation impacts the mobility reduction, which is given by:

1 1
Firy = - + ;arctg (sfbet(S, — SF)). (3.9)

2

where SF indicates an approximation for the critical water saturation above which foam
collapses, and sfbet represents the sharpness of the transition between the low- and
high-quality regimes. Figure 8 depicts these regimes in steady-state pressure gradients,
illustrating how the transitional gas fraction f; distinguishes these regimes, which are

characterized as:

« High-quality regime (dry): Characterized by bubble coalescence at a limiting capillary
pressure, this regime is independent of gas and liquid flow rates. The pressure gradient
in this regime is almost independent of the velocity of the gas phase (Afsharpoor
et al., 2010);

o Low-quality regime (wet): This regime features a fixed bubble size and exhibits
variations in water saturation depending on the flow rates. In contrast to the strong
foam regime, the pressure gradient in the weak foam regime is almost independent
of the liquid phase’s velocity. The weak foam regime is governed by bubble trapping

and mobilization mechanisms.

3.3 METHODS FOR UNCERTAINTY QUANTIFICATION

In this section, we describe the methods and the workflow used for uncertainty
quantification of the foam flow and relative permeability models. The first step is to
carry out the inverse uncertainty quantification using experimental (or synthetic) data to

characterize the parameters and their uncertainty. The second step consists of propagating
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Figure 8 — Schematic representation of the foam quality regimes. The panel relates the
foam quality regimes from (a) the representation presented by Osterloh and Jante (1992)
of the pressure gradient as a function of gas and water superficial velocities, and (b) The
apparent viscosity as a function of foam quality in a constant total velocity wr.

this uncertainty from the input parameters to the model outputs. In particular, this
work presents studies carried out for both the STARS steady-state model and the PDEs
governing foam flow in porous media. A sensitivity analysis was also conducted using the

knowledge gained from the parameters in the first step.

3.3.1 Inverse Uncertainty Quantification

Inverse uncertainty quantification (IUQ) is used to infer the model’s parameters and
their uncertainties from observed data, enabling accurate prediction and characterization
of model outcomes. In particular, Bayesian TUQ involves finding a posterior distribution
of model parameters that is consistent with both the observed data and prior knowledge

about the system.

Bayesian inference involves estimating the posterior distribution of model parame-

ters, denoted here by O, given observed data D, utilizing Bayes’ theorem:

P(D|O) - P(6)

P(6ID) = ==

(3.10)

where P(0O) is the prior distribution representing initial beliefs or prior knowledge about
the parameters, P(D|©) is the likelihood function expressing the probability of observing
data D given the parameters ©, and P(D) is the marginal likelihood or evidence. After
incorporating the observed data, the posterior distribution P(©|D) summarizes our

updated knowledge about the parameters.

Several methods are available within the Bayesian inference framework to obtain the
posterior probabilities, including Markov Chain Monte Carlo (MCMC) techniques (Brooks,
1998), Approximate Bayesian Computation (ABC) (Csill’e, ry et al., 2010), and Variational
Inference (Blei et al., 2017), each providing different approaches to estimate posterior

distributions.
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Among the MCMC methods existing in the literature, the Metropolis algorithm
(Metropolis et al., 1953) is the classical one and has been successfully employed in many
studies. However, a notable disadvantage of the Metropolis is its inefficiency in exploring
high-dimensional or strongly correlated parameter spaces. In these cases, the method tends
to exhibit poor convergence, making it less suitable for complex models where effective

exploration of the parameter space is crucial for accurate inference.

In particular, the Hamiltonian Monte Carlo (HMC) algorithm, a member of the
Markov chain Monte Carlo (MCMC) family that is well-suited for sampling from complex
probability distributions, particularly those with high dimensionality, was employed in this
work. Unlike other MCMC methods that suffer from random walk behavior and sensitivity
to correlated parameters, HMC takes steps informed by first-order gradient information.
This unique feature enables it to converge faster to high-dimensional target distributions
than methods like random walk, Metropolis, or Gibbs sampling. HMC simulates trajectorics
of these equations using numerical integration techniques, generating new proposed states
that effectively explore the posterior distribution. Divergences in the Hamiltonian Monte
Carlo arise when the simulation of Hamiltonian dynamics encounters numerical instability
or approximation errors, leading to a discrepancy between the proposed and simulated
trajectories. These divergences indicate a potential issue with the model’s parameterization
or the algorithm’s tuning and are essential to diagnose and address for reliable inference
(Betancourt and Girolami, 2013; Carpenter et al., 2017; Betancourt, 2018)

3.5.1.1 Prior Selection

Selecting a prior distribution is a fundamental step in Bayesian analysis when using
the MCMC method. In this work, we selected priors for the parameters based on physical

assumptions or using the maximum entropy principle.

Essentially, the maximum entropy principle selects the distribution with the highest
entropy from a set of distributions that represent our incomplete information. The principle
finds the PDF that maximizes the entropy functional, as mentioned by Soize (2017). Based
on the given information about the support and statistical properties of the random
variable in question, the maximum entropy principle results in the probability distribution
for that variable, ensuring that no unwarranted assumptions are made. Employing the
maximum entropy prior in Bayesian inference is justified as it leverages only available
information to construct the prior and avoids introducing extraneous data (Neumann

et al., 2007; Caticha and Preuss, 2004).

Table 2 shows the corresponding distribution indicated by the maximum entropy

principle for two cases where support and constraints are known.
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Table 2 — Support and constraints about a random variable and the corresponding
distributions given by the maximum entropy principle. Parameters a,b € R represent
lower and upper limits of the support, and p € R represents the mean value of the
random variable X.

Support | Constraints | Distribution
a<zr<b - X ~Ula, b
x>0 Elz]=p | X ~ Exp(p)

3.3.2 Forward Uncertainty Quantification

Forward UQ employs sampling methods to systematically generate scenarios that
vary input parameters according to their prescribed probability distributions. By simulating
these scenarios using the predictive model, the extraction of statistics such as means,
variances, and quantiles is enabled over a Quantity of Interest (Qol). This approach
captures the inherent variability stemming from input uncertainty, providing a way to

characterize the range of potential outcomes and assess the reliability of predictions.

There are many available techniques to carry out a forward UQ study, ranging
from the classical Monte Carlo method to more efficient approaches based on surrogate
modeling, such as the polynomial chaos expansion (PCE) or Gaussian process (GP). For a
detailed description, see Eck et al. (2016).

3.3.3 Polynomial Chaos Expansion

Emulation, also referred to as surrogate modeling, is the process of approximating a
computationally expensive numerical model with a more efficient surrogate. This approach
is particularly useful when the original model requires significant computational resources
to be evaluated several times, which is the case in UQ and SA studies (Gramacy, 2020;
Luthen et al., 2021). Polynomial Chaos Expansion (PCE) is a widely used technique
for constructing a surrogate for a specific Qol. This surrogate model approximation is
constructed after a few runs of the forward problem, allowing for a mapping between
the input samples and the model’s outputs. After its construction, it can be cheaply
evaluated to obtain an approximation of the output due to its polynomial nature. The
PCE-based surrogate can also be used to obtain statistical moments and sensitivity indices.
A brief overview of the PCE’s construction for surrogate modeling is presented next. To
access a comprehensive and detailed derivation, see Xiu and Karniadakis (2002); Ghanem
and Spanos (1991); Wiener (1938); Eck et al. (2016); Ernst et al. (2012); Feinberg and
Langtangen (2015); Marelli and Sudret (2015) and Sudret (2008).

Consider a quantity of interest ) computed by a simulator M(Z), where Z
denotes the input parameters, which are represented by a random vector with independent
components that belongs to RP (Ernst et al., 2012). For each i = 1,..., D, let fz, denote
the marginal distribution of Z;. The joint probability density function (PDF) of Z is
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represented by fz(z) = 12, ;.. Assuming that the model output Y = M(Z) has a finite
variance,

E[y?] = A M2 (2) f2(2)dz < o, (3.11)

where E[X] denotes the mean value of a random variable X with density fx. The PCE
representation for ) = M(Z) is defined as:

V=M(Z)= Y b,V.(2), (3.12)

aeND
where ¥, (X) are multivariate orthonormal polynomials with respect to fz, a € NP is a
multi-index notation used for the identification of the multivariate polynomials V¥, and

be are the coefficients of the expansion.

In practice, the expansion is truncated at a finite number of terms, and the
approximation of ), obtained by the emulator Mpcg and denoted by Vpcg, can be

expressed by:
Np—1

V=~ Vpop = Mpcep(Z) = > ¢;,(Z), (3.13)

=0
where ¢; are the coefficients of the expansion to be determined and U;(Z) are the orthogonal

polynomials.

The polynomial basis W, (Z) is constructed from a set of univariate orthonormal
polynomials gzﬁ,(f) (z;) of degree p. These orthonormal polynomials satisfy the following
equation:

(69 )0 ) = [ 6 () 0 (20) o (a) s = 2 (3.14)

where ¢ identifies the input variable, j and k are the polynomial degrees such that
0 < j,k <p, and dj; is the Kronecker delta.

The multivariate polynomials are created by taking the tensor products of their

univariate counterparts. This can be represented as:
D .
Uo(z) =]V (2) (3.15)
i=1
The orthogonality of the univariate polynomials in Eq. (3.14) leads to:
(Va(2), Vs(2)) = dap, (3.16)

One method for creating orthogonal polynomials is the discretized Stieltjes pro-
cedure (Feinberg and Langtangen, 2015; Marelli and Sudret, 2015). In the multivariate
scenario, components of Z must be independent. The polynomial expansion of Eq. (3.13)
has a degree of p for D input parameters. The number of terms in the polynomial expansion

is given by: . '
N — (D+p)

=Dl (3.17)



47

The surrogate model is built from a total of N, samples, which can be expressed as

Ny =mN,. Here, m is a multiplicative factor typically used.

There are different methods available to calculate coefficients, denoted by ¢;, which
are used to build an emulator for a specific Qol. In this study, the stochastic collocation
method (Xiu and Hesthaven, 2005) was used to determine the coefficients of the PCE.
This method results in either an interpolation or regression problem, depending on the
choice of the multiplicative factors m and the resulting number of samples N,. When
m = 1 (hence, Ny = N,), an interpolation problem occurs. On the other hand, when
m > 1, a regression problem arises, which can be solved using least squares methods. In
all cases studied in this work, the regression approach (m > 1) was used for constructing
the PCE surrogates.

In the regression case, where Y = M(Z) and the truncated polynomial chaos
expansion was used (as given in Eq. (3.13)), the unknown coefficients were estimated by

minimizing the mean square residual error (Marelli and Sudret, 2015), that is

¢= argminNii (M(zzf) - > ca\Ila(zi)) : (3.18)

$ =1 aeND
3.3.4 Sensitivity Analysis via Sobol Indices

Sensitivity analysis assesses how changes in a model’s inputs affect its output,
providing insight into the parameters that most influence the results. Numerous methods
for sensitivity analysis exist, ranging from variance-based techniques, such as Sobol indices,
to local methods, including one-factor-at-a-time exploration (OAT) (Daniel, 1973; Hamby,
1994). In particular, the Sobol index is a global sensitivity analysis technique used to
study how variability in a model’s output can be attributed to different sources of variation
in its inputs. Unlike local sensitivity techniques, global sensitivity analysis enables the
evaluation of simultaneous changes in all model parameters across their entire range. This
tool assesses the contribution of individual input parameters (or their groups) to the output
variance, improving the understanding of the model’s behavior under uncertainty (Sobol,
2001; Saltelli et al., 2008).

Sobol indices decompose the variance of the model orthogonally with respect to
individual variables or groups of variables. The first-order Sobol index S;, evaluates
the independent influence of a specific input parameter #; € © on the output ) of a
given model. Conversely, the total Sobol index Sz, evaluates both the direct contribution
(evaluated via the first-order index) and also the interactions among parameters to the
variance of ). The expressions for these indices are given by:
_VEW 6] VIE[Y | 0]
z vy ViYL

where 6_; represents all input parameters except the 8; parameter.

81 and ST.L- =1- (319)
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In this work, the Sobol indices were calculated using either the surrogate models
constructed in this study, as available in the UQLab libraries, or the Saltelli method, as
implemented in SALib. The calculations using the surrogate models were employed for
the cases solving the PDE models, whereas the latter was used for the simpler steady-state

model.

3.4 DATA AND METHODS

Data from relative permeability and foam quality-scan experiments were used to
determine parameters and their uncertainties. In particular, the present study utilized
synthetic dataset parameters presented by Gassara et al. (2017), which were fitted from
experimental data provided by Pedroni (2017).

Next, we provide a brief description of the experimental setting and data. The
experimental setup involved foam displacement within a Fontainebleau sandstone core.
The gaseous phase employed in the experiment consisted of a mixture composed of 80%
carbon dioxide and 20% methane. The aqueous phase consisted of desulphated synthetic
seawater (DSW) containing a dissolved surfactant at a concentration of 5 g/L, which
facilitated foam generation. The experimental conditions were set at a temperature of
60°C and a pressure of 80 bar. More details can be found in Pedroni (2017).

Table 3 displays the parameters and their corresponding values used to generate
the synthetic data used in this work. To simulate uncertainty in observations, a Gaussian

noise relative to the maximum observed value for each output (k,g, Ky, flapp) is included.

Table 3 — Parameter values used to generate a synthetic dataset based on the work of
Gassara ct al. (2017).

Parameter | i | fhg | Swe | Sgr | E°
Value | 0.50 | 0.021 ] 0.2 [ 0.1 ] 05 | 0.6

| N | Ng |fmm0b| SF |sfbet
| | 1.40 | 4341 | 0.3409 | 424

In this work, the irreducible saturations S, and S, were not included as adjustable
parameters following many inverse studies from the literature (Borazjani et al., 2021;
Hemmati et al., 2024; Lomeland et al., 2005). In addition to this, the irreducible saturations
are responsible for high correlations between fitting parameters, as discussed by Berg et al.
(2021a,b), due to the coupling between them and the endpoint permeabilities. Therefore,
their inclusion in the analysis could also affect the correlations between the parameters and,
in this way, hinder the interplay between the foam and relative permeability parameters,

which is the primary focus of this work.

3.4.1 Construction of the Priors Distributions

Uniform distributions with large support were assumed for the relative permeability

parameters n,, ng, k2,, and k2 . following the choice used in the work of Berg et al.

rw? rg?
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(2021a). For the foam parameters fmmob, SF, and sfbet previous studies (Valdez et al.,
2022, 2021) also employed uniform prior distributions. However, in this case, the chosen
boundaries for the uniform prior introduce the researcher’s biases and might significantly
influence the inference outcome since no prior knowledge is available for the parameters
fmmob and sfbet based on their physical meaning. In general, these boundaries are set in
a trial-and-error procedure. The foam SF parameter, on the other hand, is limited by

physical principles within the range [Sye, 1 — S|

As shown in Table 2, having a clear interval defined for the support, the uniform

distribution will be attained via the principle of maximum entropy.

To select priors for sfbet and fmmob parameters based on the maximum entropy
principle, an approximation of these parameters is provided in order to apply the same
principle. Therefore, two approaches (Boeije and Rossen, 2013; Zeng et al., 2016) for
estimating the parameters of the STARS mathematical model using steady-state foam data
are briefly revised. The main advantage of these approaches is that they are simple and
can be carried out easily to provide reliable information about the parameters (Boeije and
Rossen, 2013). The method of Boeije and Rossen (2013) is used to provide information
for the fmmob parameter, whereas the method of Zeng et al. (2016) provides information

about the sfbet parameter.

3.4.1.1 Priors for fmmob and sfbet

To obtain information about the maximum mobility reduction factor fmmob, we
use the algorithm presented in Boeije and Rossen (2013), which splits apparent viscosity
data in low- and high-quality regimes, as shown in Figure 9. In this work, two convex
curves were used to approximate the apparent viscosity in both low- and high-quality
regimes. The intersection of these two curves represents the critical foam quality denoted

by f;, where the apparent viscosity is maximum.

The critical water saturation S, which can also be interpreted as an approximation

for SF, can be found via Darcy’s law for the water phase:

(1 - f;) - kjrwﬂ—(fm/‘app <f;> . (3.20)

Then, once the critical point of foam quality and apparent viscosity is obtained, which
is denoted here by (papp(fy); fy), it is possible to find an approximation for the fmmob

parameter, represented here by fmmob, through Darcy’s law for the gas phase:

1— _ f;ug
1 + fmmob krg (S%) Happ (f;)

(3.21)

To approximate sfbet, some calculations presented in the method of Zeng et al.

(2016) are used. The original method consists of an iterative approach, whereas here, only
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Figure 9 — First step of the method proposed by Boeije and Rossen (2013) to estimate the
critical foam quality, f;. The dot symbol marks the intersection between the two curves,
which fit the low- and high-quality foam regimes.

a single step will be considered. This approach uses fmmob, which after some algebraic

manipulation on Egs. (3.5)-(3.9), results in the following linear relation for S, given by

tan <<% - 0.5) 7r> = sfbet (Sy — S5), (3.22)

mmob

where the mobility reduction factor MRF is computed using Eq. (3.8). Then, sfbet can be
obtained as the angular coefficient from the right-hand side of Eq. (3.22).

Finally, given the previous information sfbet and fmmob, one can consider the
maximum entropy principle to assign exponential prior distributions for these parameters.
A summary of all the choices for prior distributions of the parameters from relative

permeability and foam models is shown in Table 4.

Table 4 — Foam parameters and the associated prior distribution for Bayesian inference.

Parameter X | Information Support Prior
fmmob 4287.503 [0, 00) Exp (fmmobil)
sfbet 107.310 (0, 00) Exp (sfbetﬁl)
SF 0.301 (Swer 1 — Sgr) | U[Suer 1 — Syl
k?g - (0, 00) U[0.01,1.2]
kS - (0,00) U[0.01,1.2]
Thes - (0,00) U[0.1, 10]
ng - (0, 00) U[0.1, 10]

3.4.2 Computational Tools

Using the experimental data along with the Bayesian model consisting of the
priors outlined in Table 4 and the Egs. (3.3)-(3.6), the Bayesian inference process for
foam parameters is conducted with the help of the PyMC3 library (Salvatier et al., 2016).

For the Bayesian inference, four independent chains are created, and the combination of
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these chains provides the posterior distribution for each parameter. The HMC variant
NUTS (Hoffman and Gelman, 2014) is used as the step function. A total of 10° samples
are drawn for each randomized parameter, and 103 samples are utilized for the burn-in

phase.

The uncertainties found in the parameters are propagated to the outputs of
computer simulations of one-dimensional foam core-flooding using the numerical simulator
FOSSIL (FOam diSplacement SImuLator) (de Paula et al., 2020; Paula et al., 2022). In
particular, we considered quantities of interest from the core flooding simulation, including
breakthrough time and pressure drop across the core. The simulator is designed to solve
two-phase foam flow in porous media, governed by Eqs. (3.1) and (3.2), and is based
on robust and efficient numerical methods. It is also capable of incorporating several
features, such as non-Newtonian foam, heterogeneous media, capillary pressure, and other
complexities (Paula et al., 2022; Vasquez et al., 2022). A detailed study on the prior

selection is presented in Section A.1.

3.5 RESULTS

This section presents the numerical experiments conducted to quantify uncertainty
and analyze the sensitivity of the foam models. First, we present the parameter char-
acterization using the inverse UQ based on the MCMC method to obtain the posterior
distribution of the parameters. Next, the uncertainties are propagated to both the steady-
state foam model and the PDE-based model. In addition, sensitivity analyses are also

carried out.

3.5.1 Inverse Uncertainty Quantification

Figure 10 shows the marginal posterior distributions (on the top diagonal) as well
as pairwise projections of the posterior distributions for all the parameters. The red points
represent the ground-truth value for each parameter. The posterior distributions exhibit
consistency and a tight credible interval around the true parameters across multiple sam-
pling runs, indicating convergence in Bayesian inference. Moreover, a detailed convergence
diagnostics and additional analysis can be found in Section A.2. It can be observed that
the obtained posterior distributions are able to comprise the ground-truth value. The
slight mismatch in the peak of the posterior distributions and the ground-truth value is
expected due to the presence of noise. Section A.2 presents a comparison between the
matching when using an optimization procedure over synthetic datasets with and without

noise.

The results obtained from the given dataset indicate that there are direct corre-
lations between certain pairs of parameters. For instance, when considering a pair of

parameters such as SF and n,,, it was observed that values in their upper region tend to
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occur together more often. Similarly, the same holds for both parameters in the lower
region. In addition, strong correlations were observed for Corey’s parameters. More
specifically, the phase exponent and phase endpoint of Corey’s model are correlated (.,
and k7, present a positive correlation, as well as n, and k). Correlations for other
datasets are detailed in Section A.3.
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Figure 10 — Pair plot of joint distributions approximated by a multivariate Kernel Density
Estimation (KDE) over the posterior distributions. Red squares indicate the ground-truth
value on the joint plot over the crossed dashed lines. The plot also displays marginal
densities on the main diagonal for each parameter.

Table 5 shows the median and standard deviation from the posterior distribution of
each parameter obtained after the inverse UQ, which can be compared to the ground-truth
parameter value also reported. It can be noted that the Bayesian inference provides an
accurate estimation (based on the median) for all parameters, with the exception of the

sfbet parameter, which is within a 90% of the credible interval of the posterior.

Table 5 — Comparison between the ground-truth value and the median values and deviation
of each posterior distribution achieved.

Median 4 Standard Deviation

Parameter | fmmob (x10%) sfbet (x10?) SF(x107") &2, (x107') KZ (x107') n, (x10°)  n, (x10°)
Real 4.341 4.240 3.409 5.000 6.000 4.200 1.400
Estimated ‘ 4.467 +0.26 2.624 +£091 3.325+0.10 4.809+0.19 5.830+0.13 3.998+0.20 1.385=+0.05
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3.5.2 Steady-State Foam Model

The uncertainties obtained for the parameters, as presented in Figure 11, were
propagated to the relative permeability model given by Eq. (3.4) and to the steady-
state STARS foam model described by Eqs. (3.7)-(3.9) using the classical Monte Carlo
method. Figure 11 presents the propagated uncertainties to the relative permeabilities and
foam apparent viscosity in terms of the mean value and of a 5%-95% prediction interval.
The results show that the data aligns well with the prediction interval, considering the

uncertainties from the input parameters.
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£05 \ K fit —— ki fit = Happ fit
0.
= Bk PI=90% krg PI=90% g 12 Happ PI=90%
=0 ' £0.100
= o
203 2 0.075
: =
02 5 0.050
& 3
g =
2 0.1 < 0.025

0.0 0.000

0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
S, [frac.] [ [frac]

Figure 11 — Propagated uncertainties from input parameters to relative permeability and
foam apparent viscosity. Each color represents one quantity, while the solid line represents
the mean value, and the shaded region represents the corresponding 90% prediction
interval.

To conduct the sensitivity analysis, a credible interval of 90% is considered for the
posterior distributions, and the values in this range are sampled using Saltelli’s extension
of the Sobol sequence (Campolongo et al., 2011; Saltelli, 2002). The bounds used in the
SA are presented in Table 6.

Table 6 — Intervals of the parameters, corresponding to a 90% credible interval from the
posteriors, used to carry out the Sensitivity Analysis.

Boundaries
Parameter | Lower Upper

KO 1 4.526 x 1071 5.129 x 101

ne | 3.691 x 109 4.344 x 10°

k?g 5.628 x 1071 6.036 x 107!

ng | 1.300 x 109 1.472 x 10°

fmmob | 4.079 x 103 4.923 x 103
SF | 3.169 x 107! 3.496 x 107"

sfbet | 1.293 x 102 4.286 x 102

For both relative permeability and steady-state foam models, a sensitivity analysis
via Sobol indices was conducted. The results in terms of main and total Sobol indices are

presented in Figure 12. For the relative permeability, the sensitivities are presented as
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a function of water saturation, whereas for apparent viscosity, it is given as a function
of foam quality (f,). Based on the sensitivities of the relative permeabilities, it can be
observed that the exponent parameter for gas and the water end-point parameter are
more relevant in the region of high water saturation. Conversely, in regions of lower water
saturation (and higher gas saturation), sensitivity is governed by the exponent parameter
for water and the gas end-point parameter. This is a predictable outcome, as the endpoint
parameters represent the maximum relative permeability of a given phase, which decreases

to zero as saturation levels decline.

The sensitivities for foam apparent viscosity indicate that the fmmob parameter
predominates in the low-quality regime, with no significant high-order interactions (as
represented by the total Sobol indices). However, in the high-quality regime, one can
observe that not only SF and n,, are more relevant, but they also exhibit strong high-order
interactions, as indicated by the total Sobol indices (when these indices exceed the main
indices). These findings underscore the significant impact of the water-relative permeability
model on foam strength within the high-quality regime. Therefore, accurately representing
the water-relative permeability model is imperative for reliable foam simulations. Section
A.3 includes studies using synthetic datasets that exhibit different wettability behaviors.
These studies encompass the entire workflow, from inverse UQ to sensitivity analysis, and

the results align with those presented here.
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Figure 12 — Main and total Sobol indices for relative permeability functions (left) and for
the apparent viscosity as a function of foam quality (right).

3.5.3 Quality Scan Simulation

Here, we present a case study that represents a core-flooding simulation, known as
a foam quality-scan experiment, by solving the governing PDEs described by Egs. (3.1)-
(3.2). The computational domain consists of a block extending from 0 to 0.1538m in the
x-direction and 0 to 0.000475678m in the y-direction to match the area of a circular cross-

section of diameter 0.02461m as Pedroni (2017) core sample. The domain is discretized
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into a grid of 100 cells in the z-direction and a single cell in the y-direction. A constant
absolute permeability of 66 mD and porosity of 0.1091 are considered. Phases’ viscosity and
residual saturations are given in Table 3. The boundary conditions for the Darcy equations
are applied to describe an injection process from the top to the bottom of the domain.
The following fractional flows were used: f, = {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95},

as in the steady-state case.

To facilitate the analysis of this case, PCE-based surrogate models were employed
to solve the time-consuming partial differential equations. Pressure drop was taken as
the quantity of interest at several time steps in the numerical solution. The surrogate
models were constructed using a total of N samples, as given by Eq. (3.17), where p =7
(number of randomized parameters) and d = 3 is the polynomial degree, resulting in
120 simulations to be carried out using the FOSSIL simulator. To evaluate the accuracy
and reliability of the emulator, the Leave-One-Out (LOO) cross-validation was employed.
Figure 13 demonstrates the accuracy of the emulator in terms of the pressure drop (AP),
which shows for the samples out of the training process its true value AProssrr computed
by the FOSSIL simulator and the corresponding approximation obtained by the PCE,
which is denoted by APpcg. It is worth noting that the PCE-based emulator accurately
predicts the response (pressure drop) with high precision, as confirmed by the computed
coefficient of determination of R? = 0.998. In addition, by distinguishing between low-
and high-quality regimes, one can observe that for the cases in the low-quality regime, the
PCE shows better agreement due to lower uncertainty than in the high-quality regime

(see Figure 13).
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Figure 13 — Accuracy of the emulators via a Leave-One-Out (LOQO) strategy and the
corresponding coefficient of determination (R?).

Figure 14 shows the predictions obtained by the PCE-based emulators of the
pressure drop as a function of time. The dashed line represents the median, whereas
the shaded region represents the 90% prediction interval. One can observe that for each
fractional flow simulated, the uncertainties in this transient case are compatible with the
ones obtained for the steady-state case, where more uncertainty is obtained in the high-

quality regime, as shown in Figure 11. This indicates that uncertainties do not increase
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directly with time, but rather as a function of the underlying physical phenomenon in a

high-quality regime.
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Figure 14 — Uncertainties in pressure drop as a function of time obtained by the PCE-
based emulator. The solid line represents the median, while the shaded region is the 90%
prediction interval.

The results of the sensitivity analysis are presented in Figure 15. The temporal
behavior of the sensitivity indices suggests that foam effects parameterization does not
significantly impact the outcomes until the gas flow reaches a steady state. Furthermore,
the contributions of each parameter in the output’s sensitivity are almost equally significant
in fraction magnitude for all foam quality plateaus. For instance, at the transition where
fq = 0.6 and t ~ 2800s, the fmmob influence for both Qols - apparent viscosity and
pressure drop - decreases from almost 0.6 baselines to a little above 0.4, encountering the
n,, contribution. Subsequently, in the regime transition, where f, ~ 0.7, the n,, influence
increases to a fraction of 0.6 of the sensitivity, with indications of strong interactions with
SF by its total index.

Notice that the sensitivity indices for pressure drop closely align with the sensitivity
of fiqapp as illustrated in Figure 12 when f, is continuously varied. However, in the current

study, the sensitivity indices for pressure drop are presented as a function of time.
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Figure 15 — Sobol indices for pressure drop over time.
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3.5.4 DBreakthrough Time

A new set of simulations was conducted to assess the uncertainties and sensitivities
associated with the breakthrough time (B7T'). The breakthrough time, that is, the time
it takes for the gas phase to reach the reservoir’s end, is a revealing parameter of the
recovery process’s effectiveness. Unlike the previous foam quality-scan simulations, here,
a single fixed foam quality is prescribed to evaluate the sensitivity of the breakthrough
time. Ten different values for the foam quality injection, ranging from 0.20 to 0.95, were
used, resulting in ten sets of simulations. Each simulation used the same setup and initial
conditions as the previous case, despite the fixed f; used for injection, and was carried out
for a sufficiently long time to observe the breakthrough. The analyses of the BT again

were aided by PCE emulation employing the same parameter boundaries presented in
Table 6.

The uncertainties for breakthrough time are presented in Figure 16 for each injection
condition. To obtain the distributions for each BT, a PCE emulator was constructed
for each case, and then the input parameters were sampled to approximate B7T. One
can observe that, besides reducing the time to reach the breakthrough, its variance also

decreases as the foam quality increases.
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Figure 16 — Propagation of uncertainties for the BT using PCE for each different foam
quality. Breakthrough times are given in seconds.

Figure 17 shows the results of the sensitivity analysis of the BT using the PCE
emulators. The sensitivity of the breakthrough time in the low-quality regime region is
governed by the parameter n,, for all f, values, with negligible contributions from other
parameters with sensitivities smaller than 0.1 (notice that Figure 17 uses a log scale in the
y-axis). The foam parameters of STARS used in this study were found to have little impact
on the breakthrough time in the low-quality regime. However, in the high-quality regime,

SF'is the most significant input parameter, and sfbet also increases its contribution. The
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parameter fmmob exhibited a continuous decrease in importance as foam quality increased
across the different cases, initially ranking as the second most important parameter and

eventually becoming almost insignificant in the high-quality regime.
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Figure 17 — First and Total Sobol Indices for the breakthrough time simulated at different
foam quality injections. y-axis is presented at a log scale to detail the variance, also for
parameters with low contributions.

To deepen the SA results and provide an understanding of the effects of relative
permeability and foam parameters on BT, we further evaluated three representative cases
(fy = {0.5,0.8,0.9}) using the Shapley additive explanations (SHAP) (Lundberg and
Lee, 2017; Zhou et al., 2021) to explain how the output of the model (PCE-based) is
affected. The horizontal axis of the plots represents the degree of impact of a feature
(input parameter) on the model’s prediction of the breakthrough time. Values to the right
indicate a stronger positive impact, while values to the left indicate a stronger negative
impact. The color bar displays how the feature’s value affects the model’s prediction.
The results indicate that an increase in n,, or SF' leads to a shorter gas breakthrough
time. Conversely, as expected due to its representation of maximum mobility reduction,
increasing fmmob increases breakthrough time, making foam more efficient in mobility
control. It is worth noting that overestimating n,, or SF can lead to an underestimation
of foam performance, and vice versa. Hence, it is crucial to accurately determine these

parameters for effective evaluation of foam performance.

3.6 DISCUSSIONS

Previous studies conducted by Valdez et al. (2021) and de Miranda et al. (2022a,b)
have focused on assessing uncertainties in foam models in steady-state, while others
Valdez et al. (2020); Berg et al. (2021b) explored the separated effects of foam parameters
or relative permeability. In this chapter, sensitivity analysis highlights the importance
of considering the interactions between the mathematical representation of foam flow
modeling and other model components, specifically a foam implicit-texture model together
with the Corey-Brooks relative permeability model, when evaluating foam flow modeling.
Based on the results of core flooding simulations conducted in the presence of foam, it is

clear that the water relative permeability exponent, denoted as n,,, has a crucial impact
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Figure 18 — Comparison of three simulations with fixed foam quality - low, transition,
and high-quality regimes. The plot shows feature impact on model prediction, with
r-axis indicating positive or negative impact on the breakthrough time and the color bar
representing feature value impact.

on foam simulation. It exhibits significant interactions with the critical water saturation,

represented as SF, in determining the sensitivity of the foam strength.

Our results showed that the uncertainty in pressure drop increases in the high-
quality regime. The propagation results, together with the sensitivity analysis, show that
accurate estimations for SF and n,, are crucial for high-quality regime simulations. The
most significant factors for the interval agree with the previous result using the steady-state
fractional flow theory. The most influential parameters in low-quality are fmmob followed

by n,,, while in the high-quality regimes are SF, n,,, and their interactions.

The results for breakthrough time showed that parameters SF and n,, still figure as
main parameters on its variance, but now intercalating which one has the main impact on
the sensitivity, depending on the foam quality used for injection. It is worth noting that as
the injected gas increases, the breakthrough time naturally decreases due to the increased
presence of gas in the medium. Also, note that the sensitivity for a single foam quality
is independent of other injections in the breakthrough analyses. The breakthrough time
sensitivity analysis reveals the importance of the water’s relative permeability exponent,
with the understanding that when it increases, the breakthrough time also increases. Higher
values of n,, result in lower values of the water relative permeability for intermediate water
saturations, consequently reducing water velocity. For a fixed total velocity, it increases
the velocity of the gas. Therefore, the parameter n, plays a crucial role in obtaining

reliable representations of foam flow, particularly at low gas injection rates.

3.6.1 Correlation of Parameters

The correlation between SF and n, stems from their complementary effects on
fluid mobility in porous media. The exponent n,, governs the degree of nonlinearity in the

water’s relative permeability, with higher values indicating a sharper decline in permeability
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as water saturation decreases. Conversely, as water saturation increases, a higher n,,
results in a more pronounced increase in relative permeability, reflecting a stronger
nonlinear relationship between water saturation and permeability. The SF foam parameter
represents the critical water saturation below which foam loses effectiveness in controlling
gas mobility. Together, these parameters affect total mobility in contrasting ways. A
higher n,, significantly reduces water permeability at low- and mid-range saturations,
resulting in decreased overall mobility. In contrast, a higher SF value indicates that more
water is necessary to achieve maximum foam effectiveness, which increases overall mobility.
This interplay is clearly demonstrated by their impact on the system’s total mobility, as
expressed in Eq. (3.7) with mobilities defined in Eq. (3.3).

Figure 19 illustrates the impact of varying n, and SF on apparent viscosity,
comparing the results with the synthetic data from Section 3.5.1. When these parameters
vary inversely, the apparent viscosity deviates significantly from the observed values. For
instance, higher values of n,, and smaller values of SF result in an apparent viscosity curve
exceeding the observed data. On the other hand, lower values of n,, and higher values of

SF result in an apparent viscosity that is lower than the observed data.
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Figure 19 — Analysis of the effects of varying parameters n,, and SF on apparent viscosity.
The color bar illustrates the magnitude differences by the ratio between SF and n,,,.

In addition, it is important to note that the correlations for n,, (relative perme-
ability) and SF (foam) parameters corroborate with Sobol indices results, which indicates

that the parameters’” interplay is stronger at higher foam qualities (see Figure 12).

Notice that the correlation between Corey’s exponents and endpoint parameters
is expected due to their roles in the relative permeability curve geometry of each phase.
An increase in £k, shifts the curve upward, while increasing n, steepens it. Conversely,
a decrease in these parameters produces a similar but opposite effect, with lower values
of kY, shifting the curve downward and reduced n, resulting in a more gradual slope.
Proportional increases in both parameters tend to counterbalance and maintain a good

fit between the curve and the data, resulting in high likelihood values. In addition, we
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highlight that the likelihood function based on apparent viscosity and relative permeability

observations may also contribute to the correlations between kY, and n,,.

3.6.2 Relative Permeability Models

Alternative models for describing relative permeability, such as LET (Lomeland
et al., 2005), may offer more flexibility than the traditional Corey model, as it exhibits a
high level of agreement with experimental data across a wide saturation range. However,
the increased number of LET model parameters introduces greater uncertainty (Valdez
et al., 2020). In addition, Berg et al. (2021a) noted that while the LET model’s additional
degrees of freedom allow for a better description of the data, it remains a phenomenological
parameterization with empirical parameters that lack physical interpretation, including
cross-correlations of fit parameters. Moreover, when accounting for foam representation,
the LET model does not allow for direct observation of water saturation in steady-state
from the foam quality scan, unlike Corey’s model (Kapetas et al., 2015). That is why, in
the present chapter, we used Corey’s model, as it is a widely used empirical approach to
model the relative permeability curves of two-phase flow in porous media, probably the
most used model for foam flow modeling (Kovscek and Radke, 1994; Ma et al., 2014a;
Kapetas et al., 2015; Almagbali et al., 2017; Tang et al., 2019b; Ding et al., 2020a; Tang
et al., 2022). Nevertheless, the computational analysis presented in our work can be
extended to other models, such as LET.

3.6.3 Limitations

This study focused on analyzing two distinct parameterizations of the model’s
components: the STARS foam implicit-texture representation, which accounted solely for
water saturation effects, and the Corey-Brooks relative permeability model. Although the
interaction between the two models affecting foam strength has been significant, in order
to obtain a more comprehensive understanding of the model’s reaction, it is necessary
to consider a broader study that takes into account the interactions between different
representations of foam texture and how other physics, such as capillary pressure, could

influence the model response.

In this work, we are primarily concerned with quantifying uncertainties arising
from laboratory-derived parameter fitting in foam modeling. Our approach utilizes one-
dimensional simulations as an in silico experimental framework to elucidate the potential
variability in foam performance predictions at the core sample scale. While this approach
provides valuable insights into parameter sensitivity, it is important to acknowledge its
limitations. The simplified nature of our approach does not fully encapsulate the complex
phenomena encountered at the field scale, such as heterogeneity, multi-dimensional flow,

and long-term dynamic processes. Therefore, the uncertainty analysis results should be
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interpreted within the laboratory context, taking into account important considerations

for future research that bridge laboratory findings with field-scale applications.

In addition, as highlighted by Patzek and Myhill (1989) and Hirasaki (1989), the
significantly slower propagation of foam compared to surfactants in field applications reveals
complexities and uncertainties that are not fully captured by laboratory experiments and
one-dimensional simulations. This observation highlights the challenges in accurately
scaling laboratory data to field conditions, where additional factors influence the behavior
of foam. Patzek (1996) further underscores the importance of carefully considering the
scaling characteristics of foam dynamics, such as bubble growth and collapse, surfactant
types, injection strategies, and reservoir architectures when extending lab-based models.
These scaling issues introduce additional layers of uncertainty, complicating the task of
accurately matching mathematical models to experimental data and predicting field-scale

performance (Bertin et al., 1999).

Nevertheless, core flood data are primarily used to calibrate the parameters of
the foam implicit-texture model and to determine relative permeability, as demonstrated
in previous studies, such as Alcorn et al. (2022) and Vieira et al. (2024). We aim to
investigate how these calibration procedures introduce uncertainties and how they can
impact key quantities of interest, as well as the overall foam flow, despite the differences

between core flood modeling and field-scale applications.

3.7 CONCLUSIONS

This work presented an inverse uncertainty quantification approach comprehending
both relative permeability and foam parameters to enable parametric uncertainty prop-
agation and sensitivity analysis evaluation for a foam flow model in porous media. A
new strategy is proposed to define and incorporate prior knowledge about non-observable
parameters into the Bayesian inference for foam parameters. By using a noisy synthetic
dataset and an algebraic model employing fractional flow theory, posterior distributions
were achieved via Bayesian inference, comprising their respective ground-truth values.
Following this inverse uncertainty quantification step, uncertainty propagation and sensi-
tivity analysis were carried out to evaluate the algebraic steady-state and the transient
PDE model against the data. Additionally, PCE-based surrogate models were employed
to represent the outputs of the transient foam flow simulator for different experimental

setups.

The main findings of this work rely on the simultaneous estimation and uncertainty
characterization of relative permeability and foam model parameters, as well as their
interplay. The proposed approach achieved a reasonable match between the model and
the reference dataset with noise, as well-defined posterior distributions were obtained for

all model parameters through Bayesian inference. In addition, the results also revealed a
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significant correlation and interplay between foam and relative permeability components

of the flow model.

The estimated uncertainties were propagated to the outputs of algebraic steady-
state and transient PDE models based on the local equilibrium approach for foam flow.
Limited uncertainty, which comprehends the experimental data synthetically generated,
was observed for both cases, which are also compatible between the two models. Results
of the Sobol sensitivity analysis on both models also revealed a good agreement in terms
of the impact of each input parameter on the outputs, where it was found that the fmmob
(foam) and n,, (relative permeability) parameters are the more relevant ones for pressure
drop and apparent viscosity in the scenario studied. The analysis of the breakthrough
time revealed that the water exponent n,, and the SF foam parameter have a significant
impact on this quantity of interest, indicating another interesting interplay between these
two components of the model. The sensitivity results for the breakthrough time indicate
that accurately determining n,, or SF is crucial for evaluating foam performance precisely.
Finally, it was demonstrated that the polynomial chaos expansion is an efficient approach
for surrogate models of transient foam flow dynamics, enabling computationally expensive

uncertainty quantification and sensitivity analyses.
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4 MODELING FOAM FLOW IN POROUS MEDIA INFLUENCED BY
OIL

This chapter presents the paper de Miranda et al. (2025b) submitted for con-
sideration of publication entitled “Modeling Foam Flow in Porous Media Influenced by
Oil: A Computational Framework for Improved Parameter Estimation”, which develops
a computational framework to estimate foam parameters in the presence of oil using

systematic core flooding protocols with progressive oil injection.

4.1 INTRODUCTION

In gas-assisted enhanced oil recovery (EOR) projects, foam represents a strate-
gic approach to overcome significant reservoir challenges by reducing gas mobility and
improving sweep cfficiency (Kovscek and Radke, 1994; Farajzadch et al., 2012). When
deployed in heterogeneous reservoirs, foam creates flow resistance by trapping gas in a
network of liquid lamellae, redirecting injected fluids toward unswept zones, and mitigating
viscous fingering and gravity override phenomena (Bello et al., 2023b). The effectiveness of
foam-assisted recovery relies on its rheological properties and its stability under reservoir
conditions, highly impacted by the presence of crude oil and the scarcity of water (Talebian
et al., 2014; Bello et al., 2023b).

Numerical models are often employed during foam-based EOR processes to evaluate
their feasibility, predict production performance, and assess carbon dioxide (COs) storage
capacity (Paula et al., 2022; Lyu ct al., 2021a). In these applications, the accurate
simulation of complex fluid flows is frequently limited by the approximations introduced
through mathematical modeling or numerical methods and by uncertainties in model
parameters. Important model parameters such as relative permeability, capillary pressure,
and foam-related properties are typically estimated through calibration procedures using
core flooding experiments (Berg et al., 2024). While there are several research studies
on experimental procedures and methods to determine foam parameters related to the
effects of water saturation, shear-thinning behavior, surfactant concentration, and other
factors (Boeije and Rossen, 2013; Ma et al., 2014a; Valdez et al., 2021; Zeng et al., 2016),
fewer studies address the issue of estimating parameters related to the effects of oil on

foam.

The impact of oil is often assessed with steady-state foam—oil co-injection exper-
iments, which typically involve either fixing the oil injection rate while varying the gas
fraction, or simultaneously varying both the oil and gas fractions (Amirmoshiri et al., 2018;
Da et al., 2018; Chen et al., 2018; Tang et al., 2019¢; Jian et al., 2019; Hussain et al., 2019;
Vieira et al., 2024; Jia et al., 2024). In particular, Tang et al. (2019d,a,c) demonstrated

that oil effects on foam can be assessed through co-injection experiments conducted at
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fixed ratios of oil-water superficial velocity. This protocol enables direct quantification of
oil effects on foam behavior. Regarding the estimation of oil-related parameters, one of
the few studies in this area was conducted by Lyu et al. (2021b), who applied a non-linear
least-squares minimization approach to fit foam parameters using data from a single foam
quality-scan experiment. However, their method aimed to simultaneously capture the
effects of water saturation, shear-thinning behavior, and the presence of oil on foam using
a single experimental dataset. Despite these efforts, a systematic understanding of the
experimental data required to reliably estimate oil-related foam parameters, particularly

with reduced uncertainty, remains largely unexplored in the literature.

To address this gap, the study employs a computational framework based on
numerical simulations to replicate core flooding experiments that are used for characterizing
foam properties in implicit-texture models. The main contribution of this work is a
systematic evaluation of the approach used to estimate foam parameters from experiments
commonly employed to assess oil effects on foam, with the goal of obtaining more reliable
estimates and reducing uncertainty. Therefore, this work demonstrates that oil-related
parameters can be extracted from experiments already commonly used in the literature. In
addition, we assess the impact of limited data availability and analyze how uncertainties in
foam model inputs propagate to key quantities of interest, such as oil and gas production.
Additionally, we investigate how variations in estimated oil-related parameters affect
predictions from numerical simulations of three-phase flow with foam, including scenarios
with oil-bank formation and complex two-dimensional heterogeneous reservoirs. The
computational framework and results of this work can support the refinement of injection
strategies and measurement techniques to better isolate oil effects on foam, enabling
more accurate interpretation of experimental data for model parameter calibration. This
approach helps reduce parametric uncertainty and ultimately improves predictive models

for field-scale foam applications.

The remainder of this work is organized as follows. Section 4.2 presents the
governing equations for three-phase flow in porous media and the foam model used in this
study, with particular emphasis on the systematic and novel workflow for characterizing
foam parameters through numerical simulations. Section 4.3 describes the numerical
implementation of the three-phase flow simulator and the Bayesian inference techniques for
parameter estimation. Section 4.4 presents the results, including the generation of synthetic
experimental data, estimation of oil-related foam parameters, uncertainty quantification
analysis, and evaluation of parameter impacts through two-dimensional heterogeneous
simulations. Section 4.5 discusses the implications of the findings and the limitations of

current experimental protocols, while Section 4.6 presents the conclusions.
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4.2 METHODS

Next, we present the governing equations for multiphase flow in porous media,
accounting for the oil, water, and gas phases in the presence of foam, as used in the
numerical simulations. We then introduce the proposed parameter estimation approach

for determining oil-related foam parameters.

4.2.1 Fractional Flow Formulation

The three-phase flow of water, oil, and gas in a porous medium is governed by mass
conservation equations for each phase, along with a Darcy-like equation that defines phase
velocities. Following Tang et al. (2019a), the phases are assumed to be incompressible and
immiscible. For simplicity, gravity and capillary pressures are neglected. Phase saturations
are denoted by S, with velocities u,, where a € {w, 0, g} corresponds to water, oil, and

gas phases. Then, the governing equations are given by:

(ba;a—l-v-ua:(), in Q x [0,77, (4.1)
Ug = —K Ay Vpo, in €, (4.2)

with the phase mobility given by L
Ao = #’:, (4.3)

where k.., U, and p, denote the relative permeability, viscosity, and pressure of phase «,

¢ is the porosity, and K is the absolute permeability.

The relative permeabilities k., are described by the Brooks-Corey model (Brooks
and Corey, 1963) for three-phase flow. Without considering foam effects, they are given
by:

Ky = k2 s, o = k2 s, kpg = k?g (1 — sy — o)™, (4.4)
with the normalized saturations defined by

Sw - ch So - Sor
= So = )

]-_ch_Sor_Sgr7 ]-_ch_Sor_Sgr

(4.5)

Sw

where n,,, n,, and n, are the Corey exponents and Sy, Sor, and S, denote connate water,

residual oil, and residual gas saturations.

The fractional flow of a phase « is defined as the ratio of the phase velocity to the

total velocity of all phases flowing through the porous medium:

U

Jo=—, ur= Zuaa (46)

ur

where ur is the total superficial velocity. Under conditions of fixed injection velocity in a

core flooding experiment, a steady state is eventually reached, and a constant pressure
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difference across the core is established (Welge, 1952; Rossen, 1996; Tang et al., 2019b).
At this steady state, the apparent viscosity of the fluid system can be calculated. The
apparent viscosity, defined as the inverse of the total mobility Ar in experimental settings,
is calculated as: X A

Happ = A7 = |u_T|Tp7 (4.7)
where Ap is the pressure drop (measured between the outflow and the core injection), and

L is the core length.

At steady state, the fractional flow of each phase can also be expressed mathemati-

cally as the ratio of its mobility to the total mobility, that is:

Aa o Ja
= Hae (4.8)

B )\T Kapp

Ja

In addition, Eq. (4.8) also establishes a direct expression to determine relative permeability
from experimentally measurable quantities: the injected fractional flow ( f,), phase viscosity
(fta), and apparent viscosity (ftapp). This relation forms the basis for analyzing foam effects

on fluid mobility in porous media.

4.2.2 Foam Model

Few mechanistic foam models explicitly account for the effects of oil on foam
behavior (Myers and Radke, 2000; Ma et al., 2018; Zhao et al., 2022). In contrast,
implicit-texture models offer advantages in terms of both efficiency and simplicity, and
can be calibrated to experimental data to reproduce observed outcomes. The widely used
commercial simulator for foam flow, STARS (CMG, 2019), employs an implicit-texture of
foam and is adopted in this study. This model employs a mobility reduction factor (MRF')

to describe foam effects, which is introduced into the gas mobility as follows:

A -1
o= (o) el

where F; are factors modeling physical phenomena with impacts on the foam texture. In
this work, following Lyu et al. (2021b), only the terms Fy,, and F,;, which describe the

effects of water and oil saturation on foam performance, are considered:

1 1
Fypy = B + —arctan(epdry(S,, — fmdry)), (4.10)
0
17 Sor S So S ﬂOil,
. epoil
Foa = ¢ (L2 )™ foil < S, < fmoil, (4.11)
0, fmoil < S, < Sye — Syr-

Here, fmmob describes the maximum gas mobility reduction due to foam, epdry controls

the smoothness of foam degradation caused by dry-out effects, fmdry approximates the
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critical water saturation, below which foam collapses due to drying effects, epoil regulates
the smoothness with which increasing oil saturation weakens foam, floil indicates the oil
saturation point at which oil begins to weaken foam, and fmoil indicates the oil saturation

point at which oil destroys foam.

4.2.3 Characterization of Foam Parameters

A systematic workflow for characterizing the effects of dry-out and oil on foam
behavior in porous media through numerical simulations is illustrated in Figure 20. Our
approach follows the steps outlined below to obtain data for foam characterization, where
(E) items stand for experimental procedures and (D) items stand for computational

steps for parameter calibration that integrate experimental protocols with computational

modeling.
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Figure 20 — Schematic representation of the workflow employed in this study: from core
flooding experiments (left), through model parameter estimation (center), to uncertainty
quantification (right). The left panels illustrate a foam-quality scan and a foam—oil
scan, with experimental data used to characterize the effects of foam dry-out (Fy,y) and
oil-induced foam weakening (Fy;), respectively. The right panel depicts the uncertainty
quantification stage, in which the estimated parameters and their associated uncertainties
are propagated through numerical simulations.

It is important to highlight that in this work, we relied on data generated from
numerical simulation of foam flow in porous media to represent the laboratory experiment
(E) from which the calibration (C) to determine the parameters is conducted. The main
reason for adopting this approach is that it provides control over the experimental setup

and the exact parameter values used in the simulations. This enables a rigorous verification
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process, allowing us to directly compare the estimated parameters with the actual values
used to generate the data (synthetic data). Such conditions enable systematic evaluation of
parameter estimation and uncertainty quantification, ultimately improving the reliability

of methods for interpreting experimental data and calibrating foam models.

Before presenting our approach, we first consider a preliminary but essential step:
performing a co-injection of water, oil, and gas into the porous medium (Oak et al., 1990;
Alizadeh and Piri, 2014) to estimate the water/oil/gas relative permeabilities based on a

selected model, such as the Corey—Brooks function, as defined in Eq. (4.4).

The subsequent steps define the workflow (Figure 20) for estimating foam parame-

ters, including the effects of o0il on foam behavior:

(E1) Conduct a foam quality scan using co-injection of surfactant and gas until a steady-

state of each gas fraction.

(C1) Estimate foam parameters such as fmmob (maximum mobility reduction factor), and
the ones related to dry-out effects such as epdry and fmdry using the foam quality
scan data (see Eqs. (4.9) and (4.10)). Also, determine f;, the gas fraction associated
with the maximum pressure drop; this value represents optimal foam generation

conditions and will serve as the reference point for subsequent oil injection tests.

(E2) Conduct a core flooding with coinjection of surfactant, oil, and gas at the fixed
critical gas fraction f; while progressively increasing the oil-water ratio (u, JU)
and maintaining total velocity constant throughout the experiment (see Figure 23,

bottom-left panel).

(C2) Estimate foam parameters from the F,; term related to the effects of oil on foam
(see Figure 25).

To characterize foam parameters from Eqs. (4.9), (4.10) and (4.11), the initial step
is to carry out a foam quality scan (step E1) (Moradi-Araghi et al., 1997; Ma et al., 2013;
de Miranda et al., 2022b) using the co-injection of gas and water in the presence of foam.
The pressure drops obtained at steady-state after this step are used to compute apparent
viscosity using Eq. (4.7), which, together with the fractional flow f, information, will allow
the determination of fmmob, fmdry, and epdry parameters (step C1). The foam quality
corresponding to the maximum apparent viscosity (and pressure drop), denoted by [y, s

identified after the foam quality scan and will be used in the following steps.

Next, a core flooding at a fixed gas fractional flow, f;, while progressively increasing
the oil-water injection ratio is conducted (step E2). This step is crucial to determine the
effects of oil on foam and, consequently, estimate the oil-related parameters (step C2). To

this end, the observed data at the steady state of each injection ratio u,/u,, is used to
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compute a corresponding mobility reduction factor (MRF). In particular, we used the

following expression, described in Valdez et al. (2021), to compute the mobility reduction

factor:

MRF = ﬁ K AP,
f g ur L

where the use of A\, presupposes that relative permeabilities have been previously charac-

(4.12)

terized.

To ensure accurate parameter estimation for the F,; term, along with the corre-
sponding oil saturation S,, a correction for dry-out effects must be applied. Specifically,
each data point in the dataset is adjusted by incorporating Fy,, as follows:
1 (MRF-1)

Foi, =
! Fgy  fmmobd

(4.13)

This process generates a collection of data points (S,, F,;), enabling the estimation of
oil-related parameters floil, fmoil, and epoil (see Eq. (4.11) and Figure 25 for further
details).

4.3 NUMERICAL IMPLEMENTATION

In this section, we outline the techniques employed for parameter inference and the

numerical implementation details of the three-phase flow simulator used in all experiments.

4.3.1 Parameter Inference

The foam parameters to be estimated are denoted as @ = {fmmob, epdry, fmdry, floil,
fmoil, epoil} and appear in Egs. (4.9), (4.10), and (4.11). Following the outlined procedure,
we start by estimating the parameters related to maximum mobility reduction fmmob
and related to the water saturation effects epdry and fmdry are estimated using the data
from the foam quality scan from Step E1. Numerous approaches have been reported in the
literature for estimating the parameters that characterize dry-out effects (Fy,, term) and
the maximum reduction in foam mobility (fmmob), using datasets obtained from foam
quality scans (Ma et al., 2014a; Boeije and Rossen, 2013; Zeng et al., 2016; Valdez et al.,
2021; de Miranda et al., 2022b, 2024). In this study, these parameter values are regarded
as the ground truth. This approach establishes a baseline for analysis while enabling
attention to be directed toward other critical aspects of the work, the parameters related

to oil effects (F,; term), which shall be denoted by @ = {floil, fmoil, epoil} from now on.

A Bayesian inference technique is used to estimate these parameters along with their
associated uncertainties. We employ the No-U-Turn Sampler (NUTS), which is a variant of
Hamiltonian Monte Carlo (Hoffman and Gelman, 2011; Salvaticr et al., 2016). This method
quantifies uncertainty by sampling from the posterior distribution p(8]y) o p(y|0)p(@) for
a given quantity of interest y, specifically the F,; function in this study. Through this
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approach, we generate posterior samples that facilitate uncertainty propagation and allow

us to calculate credible intervals and posterior predictive distributions.

This approach quantifies parameter uncertainty by sampling from the posterior
distribution. The likelihood function assumes normally distributed measurement errors

with constant variance:

e (_(yi —f(xz';e))2) (4.14)
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where y; represents the observed data, f(z;;0) is the model prediction, and o2 is the

measurement crror variance. The following prior distributions for the parameters are used:
floil ~ U(1073,1.0),  fmoil ~ U(floil, 1.0), epoil ~ U(1072,10), (4.15)

which are established based on physical constraints (floil and fmoil) or based on a reasonable
large interval (epoil). The hierarchical constraint floil < fmoil enforces the physical
requirement that the oil saturation at which foam begins to weaken must be lower than
the saturation at which foam completely collapses. The NUTS method is used with 5 x 10%
posterior samples, 5 x 10% tuning iterations, and 4 independent chains to ensure reliable
convergence. Additional details about the adopted Bayesian inference algorithm can be
found in Salvatier et al. (2016).

4.3.2 Numerical Simulations

The numerical simulations used the parameters from Lyu et al. (2021b); Tang
et al. (2022) to generate representative data. Table 7 presents fluid properties, relative
permeabilities, and foam parameters used in the baseline simulations. To simulate the
core-flooding experiments, one-dimensional simulations of three-phase flow with foam
were carried out using an in-house code developed based on OpenF0AM (Jasak, 2009).
In summary, the governing equations were solved using the IMPES (IMplicit Pressure,
Explicit Saturation) method; that is, the pressure equation was solved implicitly, while
saturations were updated explicitly. For more details on the formulation, see Horgue et al.
(2015).

To generate data that more closely resembles experimental observations, a pre-
defined level of noise is added to the numerical simulation results before proceeding to
parameter estimation. Gaussian noise was added at 2% of the highest observed value for a
quantity during the entire injection protocol, specifically to the pressure drop observations
and the average saturations of water and oil. The gas saturation was calculated using this

noisy data derived from the saturations of other phases.
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Table 7 — Fluid properties, relative permeabilities, and foam parameters: viscosity (i),
residual saturation (S,,), Corey exponent (n,), and end-point relative permeability (k2.).

Fluid g (Pa“s) Spa na k2, ‘fmmob fmdry  epdry

Water 1.00 x 1072 0.1 2.0 1.0‘ 2000 0.3 32000

Oil  500x107% 0.1 20 10| foil  fmoil epoil

Gas 1.00x107° 0.0 2.0 1.0\ 0.1 05 3.0

The computational domain was represented by a one-dimensional porous medium
with 0.247 m length, absolute permeability of 1300 mD, and porosity of ¢ = 0.25. The
mesh was discretized using 100 cells in the x direction, while the transverse directions

(y, z) were resolved with 1 cell each.

4.3.2.0.1 Foam quality scan

Simulations of a foam quality scan (water/surfactant and gas) were performed with
a fixed total velocity of 2.924 x 107° m/s while varying the foam quality f,. Each case was
simulated for 5 x 10 seconds using a time step of At = 1 second. Initially, for f, = 0.1,
the medium was fully saturated with water, disregarding the residual saturations of other
phases. Subsequent simulations were initialized from the final state of the preceding case,

progressively increasing f, to assess its influence on flow regimes.

4.3.2.0.2 Core-flooding with oil injection

Simulations of core-flooding co-injecting water, gas, and oil used the same compu-
tational domain configuration and fixed total velocity. Here, the gas fraction f; with the
highest observed pressure drop is fixed while water and oil are injected at different ratios
22 to evaluate the oil effects in foam. Each simulation, using a different water-to-oil ratio,
is performed with a time step size of At = 0.01s for at least 10* seconds. This period is
monitored to ensure that steady-state conditions for pressure and saturation have been
reached. If these conditions are not met, an additional 5 x 10% seconds is added, and the

conditions are checked again until they are satisfied.

4.3.2.0.3 Heterogeneous two-dimensional simulations

To further assess the impact of parameter estimation for F,;, simulations were
conducted in a two-dimensional domain featuring a heterogeneous permeability field
derived from layer 19 of the 10th SPE comparative project (SPE10) (Christie and Blunt,
2001), which was rescaled to a length of 3.67 m as described by Paula et al. (2022) and
Cedro et al. (2025) to emphasize the structure of a realistic permeability field rather
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than focusing on the challenges associated with upscaling. This layer features gradual
variations in permeability magnitude which facilitate the development of preferential
paths for displacement, as depicted in Figure 21. Additional details on these simulations
are provided in the following section. The simulated cases were designed based on
initial configurations that closely resemble those investigated by Lyu et al. (2021b). The
configuration used consists of a porous medium that is initially saturated with higher
initial oil saturation, (S,,S,) = (0.2,0.8), representing conditions typical of an early-stage

EOR process.

0.0m 0.9175m 1.83 lim 75"5::1 3.67m
LOm +—=—=mw 2 5 \l
0.6m A
—l 1 - lO

»
- ’
0.4m A
by ¢ n,
0.2m 4
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Log Permeability [m?]

Figure 21 — Permeability field for layer 19 of the SPE10 benchmark model.

0.8m

44 RESULTS

We begin by describing the simulations carried out to generate data representative
of core flooding experiments. Then, we use this data to show how to estimate foam
parameters, with a special focus on the oil-related ones. Finally, we explore different cases
of the parameters to show the impacts of estimated foam parameters on 2D simulations
on heterogencous fields and evaluate relevant quantities such as production and pressure

drop.

4.4.1 Generation of synthetic data from numerical experiments

First, a foam quality scan with gas and water only is simulated by varying the
injected gas fraction f, from 0.1 to 0.9 in steps of 0.1. This procedure allows for evaluating
foam performance and determining the critical gas fraction f; at which the maximum
mobility reduction occurs. The results of this experiment are used to estimate fmmob
(representing the maximum mobility reduction factor) and Fy,, parameters such as epdry
and fmdry. Figure 22 presents the pressure drop evolution for the water-gas co-injection
in the computational simulation of the foam quality scan experiment. Regarding the
foam quality scan protocol, the critical foam value f is unknown a priori. Therefore,
the gas fraction corresponding to the maximum observed pressure drop is taken as an
approximation of the critical foam quality f; for subsequent core flooding simulations,

which for this simulation is around 0.3.
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Figure 22 — Numerical simulation of foam quality-scan experiment. Left: pressure drop
(with noise) along time in the foam quality scan protocol in the absence of oil. Right:
steady-state values of the apparent viscosity as a function of the gas fraction f,.

Based on the results of the foam quality scan, the parameters fmmob, fmdry, and
sfbet can be estimated. In this study, however, these parameters are fixed at their ground
truth values. Next, to evaluate the influence of oil on foam strength, oil is co-injected
alongside surfactant and gas, with the oil fraction gradually increased, as described by Tang
et al. (2016). The critical gas fraction (f), observed during the foam quality scan, acts as
a reference point for the injection strategy. This strategy ensures a constant total velocity

while progressively increasing the oil-water rate u,/u,,, and keeping the gas fraction fixed.

Figure 23 illustrates the pressure drop recorded during this procedure and the
steady-state values of apparent viscosity as a function of oil fraction, while Figure 24
presents the average saturation levels for the phases during the simulation time. Initially,
it is observed that the oil injection into the core leads to a gradual decrease in pressure
drop, which is attributed to a weakening of the foam strength. Further, it is possible to
see that after a certain level of oil injection in the core (in our study case, the oil-water
rate is around 0.16 and 0.20), the pressure drop starts to increase; this region marks where
the foam is destroyed, and oil viscous forces start to decrease overall mobility, and a slight

increase in pressure drop is observed.

Systems that are more vulnerable to oil damage require careful control over the oil
injection process during experiments. For instance, when the upper threshold parameter
fmoil is lowered, as discussed in Section B.3.4, it becomes increasingly important to
monitor the gradual increase in oil injection to accurately characterize the interactions

between foam and oil.
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Figure 23 — Left: simulated pressure drops increasing oil injection at f; and the noisy
synthetic points generated. Right: steady-state values of apparent viscosity as a function
of oil fraction f,.
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Figure 24 — Saturations of the water (top), oil (middle), and gas (bottom) phases during
the simulations with increasing oil-water ratio u,/u, at a fixed gas injection fy- Noise
was added to the simulation results to represent experimental data. The graphs also show
the saturation levels corresponding to the parameters fmdry, fmoil, and floil.

In this particular case, there is no transition of steady-state water saturation levels
below the critical water saturation in the presence of foam, represented in the STARS model
by the parameter fmdry and illustrated in the top panel of Figure 24. Nevertheless, it
is important to monitor water saturation when increasing the injected oil fraction, as it
can activate the dry-out effects on foam performance. The floil and fmoil lines represent

the regions where the oil begins to influence foam effectiveness and where it reduces the
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foam’s capacity to control gas mobility, respectively. Notice that in the transition at fmoil,
the apparent viscosity of the flow begins to rise as oil injection increases, as illustrated in

Figure 23.

Section B.3.4 presents the results of simulations and parameter estimation for a
ground-truth case with a reduced value of the fmoil parameter, a scenario also considered
by Lyu et al. (2021b). In this study, we revisit this configuration to demonstrate the

applicability of our approach under varying foam destruction thresholds.

4.4.2 Estimation of F,; parameters

After collecting the steady-state data from the oil rate scan experiments (see
Figures 23 and 24), the parameter estimation for the F,; term can proceed. Figure 25
presents the data points for F,; values at various oil saturations from the experimental
protocol, while the solid line shows the fitted function according to the formulation in
Eq. (4.11). The figure also shows the estimated F,; function using Eq. (4.13) together
with propagated uncertainties from the parameters, which are presented next. As shown
in Figure 25, the estimated function closely matches the ground truth (red dashed line),
demonstrating the efficacy of the proposed approach. The 90% prediction interval (shaded
area) indicates the uncertainty associated with the parameter estimation, which is larger
at intermediate oil saturations where the transition from full foam stability to complete

foam destruction occurs.

1.0 1 +  Observed Data —— 50% Quantile
----- Ground Truth (5-95%) Quantiles
0.8 1
_ 0.6
€
0.4 1
0.2 1
0.0 1 —t—t—t
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Figure 25 — Estimation of the parameters from the F; function with uncertainty prop-
agation. The data points represent values derived from oil rate scan experiments. The
solid line shows the fitted function, and the shaded area represents the 90% prediction
interval. The ground truth function (dashed line) is included for comparison and serves as
a reference for evaluating the accuracy of parameter estimation.

Figure 26 displays the joint posterior probability distributions of the estimated
parameters (floil, fmoil, and epoil) in the lower triangular panels, as obtained through
Bayesian inference, while the diagonal panels show the corresponding marginal posterior

distributions. The correlation plots show that floil is well-constrained around 0.1, consistent
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with the ground truth value, and that there is a significant correlation between fmoil and
epoil. The marginal distributions indicate that floil is well-identified, whereas fmoil and
epoil are considerably more challenging to estimate, presenting respectively a coefficient
of variation (CoV) of 6.9%, 21.7%, and 32% illustrated further in Figure 31. The joint
distributions reveal that different combinations of these parameters can yield similar F,;
functions, suggesting potential issues with parameter non-identifiability. Despite these
challenges, the resulting posterior distributions reflect a good agreement between the data

and the fitted model, closely aligning with the ground truth.
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Figure 26 — Posterior probability distributions of estimated F; parameters obtained
through Bayesian inference. Diagonal plots show marginal distributions for each parameter
(floil, fmoil, and epoil), while off-diagonal plots demonstrate parameter correlations.

4.4.3 Uncertainty propagation of foam-oil interactions

The practical implications of parameter uncertainty are further explored here
by presenting the results of numerical simulations with the estimated parameters and
evaluating relevant quantities of interest, such as oil and gas production. To this end,
we sclected two simulation scenarios with different injection conditions (J) and initial
saturation conditions (I) from the works of Lyu et al. (2021b) and Tang et al. (2022)
to propagate the uncertainties from the estimated F,; parameters (from Figure 26).
Specifically, we employed the configurations referred to as Case 2 for Scenarios 3 and 4
(see Table 1 in Lyu et al. (2021b)). For consistency, we adopt the same notation and case
labeling as presented in Lyu et al. (2021b). Scenario 3 reflects a medium with depleted oil
saturation post-extraction, while Scenario 4 represents a near-primary oil-saturated state,

where elevated oil content hinders foam stability.
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4.4.3.0.1 Scenario 3

The injection (J) and initial (I) conditions for this simulation are represented in
the diagram presented in Figure 27. Figure 27(a) shows the uncertainties in how the
saturation path traverses regions of varying MRF values, which directly influences the
efficiency of gas mobility control by foam. Panels (b) and (c¢) from Figure 27 show the
uncertainties in gas and oil saturations. Notably, the formation of an oil bank is observed
in all samples for this case, exhibiting some variability in its shape due to underlying

uncertainties (gray shaded region).
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Figure 27 — Scenario 3 from Lyu et al. (2021b): (a) Uncertainty propagation to saturation
paths (solid black lines) in a ternary diagram; (b) gas saturation; (c) oil saturation, both
with associated uncertainties. The solid line represents the median and the shaded region
the 90% prediction interval.

Figure 29 (left) presents the results of uncertainty propagation of Scenario 3 for the
cumulative production of gas and oil phases over time, based on 1D simulations using the
estimated posterior distributions of the parameters (see Figure 26). Although uncertainty
in the F,; parameters introduces variability in oil and gas production predictions, the
overall magnitude of this uncertainty remains limited, primarily due to the small volume
of initial oil in place. In summary, although saturation paths show some variability
(see Figure 27), the efficiency of oil displacement as measured by oil production remains

relatively stable.
4.4.3.0.2 Scenario 4

Next, we performed the uncertainty propagation of the F,; parameters for the
simulation of Scenario 4. The injection and initial conditions are depicted in Figure 28,
along with the resulting uncertainty in the saturation paths (panel a), while the gas and
oil saturations are shown in panels (b) and (c). The initial condition in this scenario
corresponds to a case with a larger volume of oil in place, leading to significantly higher

production levels compared to the previous case. From the oil saturation, it is also worth
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noting that, in this case, no oil bank is formed. Furthermore, reduced uncertainty is

observed in both the saturation paths and profiles.
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Figure 28 — Numerical results for Scenario 4 from Lyu et al. (2021b): (a) uncertainty
propagation to saturation paths (solid black lines) in a ternary diagram; (b) gas saturation;
(c) oil saturation, both with associated uncertainties.

Figure 29 (right) shows the results of uncertainty propagation of Scenario 4 for
the cumulative production of gas and oil phases over time. As expected from the initial
conditions, this case leads to a larger oil production, reaching approximately 0.6 PV by
the end of the simulation. The magnitude of uncertainty of the productions remains small,

which reflects the accuracy of the parameter fitting with reduced uncertainties.
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Figure 29 — Numerical results for the cumulative production of oil and gas phases over
time with uncertainty propagation based on Scenarios 3 (left) and 4 (right) from Lyu et al.

(2021b). The shaded areas represent 5-95% prediction intervals derived from the posterior
distributions of F,; parameters.

Table 8 quantifies the propagated uncertainties in terms of the coefficient of variation
for the final cumulative production forecasts. Gas production exhibits higher uncertainty
than oil production across both scenarios. The contrasting uncertainty patterns between
scenarios reflect the different initial saturation conditions and their interaction with foam

stability mechanisms under parameter variations.
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Table 8 — Coefficient of variation for cumulative production under parameter uncertainty
propagation for Scenarios 3 and 4.

Coefficient of Variation (%)

Scenario  Oil Production Gas Production

3 7.1 14.4
4 2.0 21.2

4.4.4 Impact of parameters calibration on the oil production within 2D porous medium

This section examines the performance implications of two different foam charac-
terizations by analyzing them in two-dimensional heterogencous porous media simulations.
Specifically, we consider a case in which the F; parameters were estimated under a data-
scarce scenario in order to evaluate how the associated uncertainties affect the predictions

of the three-phase foam flow model.

First, we present the data used for parameter estimation and uncertainty quantifi-
cation in Figure 30 (left). In this case, several data points were intentionally removed to
mimic a scenario with limited observational data, which often occurs due to the high costs
of conducting such experiments (Valdez et al., 2021). Figure 30 (right) displays the F,;
term computed using the fitted parameters, with the associated uncertainties represented
as a prediction interval. In this case, the uncertainties are substantially wider than those
observed previously (see Figure 25), reflecting the reduced amount of observational data
available for parameter inference. It is also noteworthy that the uncertainties associated
with the floil parameter are greater than those related to the fmoil parameter, as evidenced

by the broader prediction intervals in the upper and lower regions of the graph, respectively.
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Figure 30 — Left: Steady-state values of apparent viscosity as a function of oil fraction f,,
shown for both the full dataset (all circles) and the reduced dataset (filled circles only)
used for parameter inference. Right: Derived data points for F;, along with the estimated
parameters and their associated uncertainty. The solid line represents the fitted model,
the dashed line corresponds to the model with ground-truth parameters, and the shaded
region indicates the 90% prediction interval.

Figure 31 presents the coefficients of variation for the posterior distributions
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obtained in Case A and Case B. The results indicate that the most pronounced difference
between the two cases is observed in the floil parameter, whereas the other two parameters

exhibit only moderate to small variation.
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Figure 31 — Coefficient of variation for the estimated posterior distributions for the F,;
parameters in Case A and Case B.

Next, we employed the F,; parameters listed in Table 9, which were obtained from
estimations using both the full and reduced datasets, to conduct simulations based on
the 19th layer of the SPE 10 model, as shown in Figure 21. All other fluid properties are
consistent with those reported in Table 7, except for the residual oil saturation, which was
increased to 0.15 to emphasize the effects of parameter mismatches. The injection process
follows the same initial and boundary conditions described in the previous section, with
an injection pressure of 10° Pa applied at the left boundary, and the simulations were

carried out for a total of 50000 seconds.

The two cases analyzed in this study are labeled as Case A and Case B, and the
oil-related parameters estimated for each one are reported in Table 9. Case B corresponds
to the scenario with limited data available for parameter inference (see Figure 30), and
the estimated parameters indicate a foam formulation that exhibits greater tolerance to

the presence of oil.

Table 9 — Foam parameters for the oil term F,; in cases A (full dataset), B (scarce dataset),
and the ground-truth (GT) parameters.

Case  floil  fmoil  epoil

A 0.1069 0.4882 2.939
B 0.2055 0.7513 9.991
GT 0.1 0.5 3.0

Figure 32 presents snapshots of the saturation from the 2D simulations in a hetero-
geneous medium for both cases at selected time instants. Initially, a water front advances,
pushing some of the oil and tracing preferential paths through the high-permeability zones.
Subsequently, the gas front not only advances but also mobilizes both other phases in arcas

not previously swept by water. Notably, in case B, the gas front appears more contained,
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as the estimated F,; indicates a greater resistance to the detrimental effects of the oil on

foam.

The cumulative production of oil and gas, expressed in pore volumes (PV), is
shown in Figure 33 for both simulation cases. In case A, the projected oil production at
the final simulation time surpasses that of case B, achieving a difference of over 5%. This
increase can be attributed to the enhanced overall mobility during displacement, as the
modelled foam in B is less affected by oil. At the same injection pressure, the gas velocity
in case A is higher. As the foam in case A is more susceptible to oil effects, gas production

is greater during the entire simulation; that is, the foam provides less gas trapping.
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Figure 32 — Saturation profiles at different time instants for case A (left) and B (right).
The triangle represents the color coding used to describe the predominant phase saturation.
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Figure 33 — Comparison of gas and oil productions for a water-gas coinjection at initial
conditions (S,, S,) = (0.8,0.2) with a core initially with 80% oil and 20% water.

4.5 DISCUSSIONS

Beyond fitting parameters, this work aims to computationally understand how

experimental procedures are reflected in relevant observations to characterize the effects of
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oil, considering measurable oil saturation. The development of standardized steady-state
protocols with direct, continuous saturation monitoring would substantially advance the
characterization and parameter estimation method of foam-oil effects, providing more

reliable inputs for field-scale simulation models.

We investigated an experimental protocol for obtaining representative oil saturation
measurements, which are essential for accurately characterizing the F,; function. This
approach incorporates the assumption that the floil parameter meets or exceeds residual oil
saturation. However, this assumption may not hold universally, as residual oil saturation
alone could potentially reduce foam capacity for gas mobility control. This floil threshold
is absent in alternative models, such as the implementation in the ECLIPSE simulator
(Schlumberger, 2014), which eliminates this parameter by assigning it a value of zero.

Comparative analysis of F,; function formulations may be addressed in future works.

As observed in Figure 26, even with a dataset exhibiting minimal noise, the
parameters derived from F; indicate potential issues with identifiability (non-uniqueness
of parameters). Notably, fmoil and epoil show a significant correlation within the posterior
distribution, lacking a distinctly defined peak. This issue can be reduced with additional
data points. It may also be further explored together with other implicit-texture models
found in the literature that consider fewer parameters for this representation (Schlumberger,
2014; Namdar-Zanganeh et al., 2010).

Uncertainties in the F,; function play a pivotal role in the reliability of model
predictions. For instance, in Scenario 3, even a minor uncertainty in the F,; function
led to significant variations in oil and gas production. On the other hand, in Scenario 4,
gas production exhibited high uncertainty, as demonstrated by the coefficient of variation
presented in Table 8. These findings are particularly important when dealing with scenarios
with very high or very low water saturation initially, where predictions may underestimate

or overestimate oil production or CO, storage capacity.

In the case study analyzing three-phase co-injection presented in this work, which
employed the parameters outlined by Lyu et al. (2021b), we observed in Figure 24 that the
dry-out effects were negligible. This was due to no significant variation in water saturation,
which prevented it from reaching the critical threshold for foam collapse. However, in
practical scenarios of three-phase co-injection, especially in cases where a strong foam is
present, the injected oil can displace some of the water saturation. This situation can lead
to significant dry-out effects. Therefore, accurately determining and considering the term

Fiyry is crucial for the calculations, as shown in Eq. (4.13).
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4.6 CONCLUSIONS

This study presented an approach for characterizing foam parameters in the presence
of oil, with an emphasis on data typically obtained from laboratory experiments. To
achieve this, we replicated core flooding experiments through computer simulations to
assess how oil influences foam stability and how these effects can be quantified using
steady-state measurements. A detailed, step-by-step approach was outlined for conducting
experiments that generate data essential for the accurate characterization of oil-related
parameters in implicit-texture foam models. A Bayesian framework was employed for
parameter estimation, enabling the assessment of parameter uncertainty. Subsequently,
a series of numerical simulations were performed, propagating the obtained parametric
uncertainty to model outputs, such as oil and gas production, to evaluate the impact
of these uncertainties. Additionally, we conducted two-dimensional simulations using a
representative heterogeneous permeability field, considering two distinct parameter sets.
One set of parameters was derived from a limited dataset to simulate the challenges

typically encountered in experimental conditions with sparse data.

The simulation results demonstrated that gradual increases in oil-water injection
ratios at fixed gas fraction provide more reliable data for parameter estimation. The
numerical simulations addressed limitations in current experimental protocols where
abrupt increases in oil injection often lead to non-representative oil saturations, hampering

accurate characterization of functions in implicit-texture models.

Bayesian inference techniques applied to synthetic experimental data highlight
difficulties in parameter identification. Uncertainty propagation through one-dimensional
simulations revealed that even minor parameter uncertainties significantly impact pre-
dictions of gas production more than those of oil production. The two-dimensional
heterogeneous simulations confirmed that inaccurate estimation of oil-related parameters
from limited datasets leads to substantial variations in displacement patterns, cumulative

production, and gas-oil ratios.
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5 FOAM STRENGTH ASSESSMENT THROUGH MOBILITY REDUC-
TION FACTOR FORMULATION

This chapter presents the paper de Miranda et al. (2025a) submitted for consider-
ation of publication entitled “On the mobility reduction factor for the quantification of
foam strength in porous media”, which develops a parameter estimation approach based
on a new expression for the mobility reduction factor for characterizing foam parameters
through direct pressure drop measurements, bypassing intermediate relative permeability

modeling steps as required in other approaches from the literature.

5.1 INTRODUCTION

Predicting foam behavior at the core scale is critical for transferring laboratory
insights to the ficld (Ma et al., 2015). Numerical simulators, such as STARS (CMG, 2019),
represent foam effects through a mobility reduction factor (MRF') that multiplies down
the gas mobility. In principle, this aligns with the widely accepted view that foam mainly
suppresses gas flow (Bernard and Jacobs, 1965; Kovscek and Radke, 1994; Rossen, 1996;
Eftekhari and Farajzadeh, 2017). However, in laboratory practice, foam strength is usually
quantified via apparent viscosity, which is proportional to the pressure drop and influenced
by both phases (Farajzadeh et al., 2015b; Eftekhari and Farajzadeh, 2017). Additionally,
experimental formulations of MRF do not clearly distinguish the reduction in gas-phase
mobility, which makes it inconsistent with the modeling assumption of gas-only mobility

reduction, complicating parameter estimation (Lotfollahi et al., 2016).

Most approaches, therefore, rely on relative permeability functions to disentangle
phase contributions (Ma et al., 2014b). Yet relative permeability estimation is itself
uncertain and strongly affects the identifiability of foam parameters (Zeng et al., 2016;
Cavalcante Filho et al., 2017; Valdez et al., 2021; Ribeiro et al., 2024; de Miranda et al.,
2024). This creates a two-layer uncertainty source: first in relative permeability, then in

foam characterization.

In this chapter, we propose an alternative formulation of the MRF that isolates
the gas-phase contribution directly, without requiring relative permeability functions. The
method is derived algebraically from the steady-state experimental definition of MRF),
producing a gas-specific expression consistent with simulator formulations such as STARS.
We then evaluate its performance for parameter estimation using synthetic foam-quality
scans, comparing it against the conventional apparent-viscosity-based objective function.
Identifiability and robustness are assessed under both correct and misspecified relative
permeability models, highlighting how the proposed definition confines the uncertainty to

the foam parameters alone.
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5.2 MATHEMATICAL MODELING

The foam flow in porous media can be modeled by a multiphase system with
surfactant transport, where phases are assumed to be incompressible and immiscible. The
system involves mass conservation for each phase, flow relationships for phase velocities,
and transport of surfactant. Phase saturations are denoted by S,, velocities by u,, where
a € {w, g}, and C, represents the aqueous surfactant concentration (Zavala et al., 2024).
These governing equations are simplified under the conditions of steady-state laboratory
experiments, where constant inlet fluxes, pressures, and surfactant concentration are
assumed. This reduces the mass conservation and transport equations to algebraic
expressions (Valdez et al., 2021; de Miranda et al., 2022a). The homogeneity hypothesis
results in spatial invariance of saturations and concentrations, yielding a constant pressure
drop AP, water saturation, and surfactant concentration (Ma et al., 2013; Eftekhari and
Farajzadeh, 2017; Kahrobaei and Farajzadeh, 2019).

The fractional flow of a phase « is defined as the ratio of the phase velocity to the
total velocity of all phases flowing through the porous medium:
u
fo=—", ur=> ug, (5.1)
ur e
where uyp is the total superficial velocity in the flow direction. At steady-state conditions

in experimental settings, the apparent viscosity of the system can be calculated as follows:
K Ap
—1
Happ = Ay~ = wr L (5.2)
where A7 is the total mobility, K is the absolute permeability of the domain, Ap is the
pressure difference, and L is the length of the core. At steady-state, the fractional flow of
each phase can also be expressed mathematically as the ratio of its mobility to the total

mobility, that is:
Aa
fa = )\_7
T

where the phase mobility is given by A\, = k.o/lla, and depends on relative permeability

(5.3)

ko and viscosity p, of phase a.

5.2.1 Relative Permeability

Relative permeabilities are usually described either by the Brooks-Corey (Brooks
and Corey, 1963) or LET models (Lomeland et al., 2005). Without considering foam

effects, the Brooks-Corey form for water-gas flow is given by:

RSO = KO, s, kST = kD (1 s,,)", (5.4)

Tw Tw

with the normalized water saturation defined by

Sw - ch

RS (5.5)

Sw
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where n,, and n, are the Corey exponents.
The LET functions for relative permeability (Lomeland et al., 2005), which offer
more flexibility to describe multiphase flow, are defined as:

ghw (1-— sw)Lg

k,LET — k,O w 7 k,LET — k? 7
rw rw Sg)w + Ew (1 . Sw)Tw rg 9(1 _ Sw)Lg + EgSng

(5.6)

where L, L, control the lower part of the curve, F,,, E, determine transition curvature,
T, Ty characterize upper part of the curve, and S, and Sy, denote connate water and
residual gas saturations. In general, the LET correlation functions for relative permeability
provide a better description of the data (Berg et al., 2021b).

5.2.2 Foam Model

The implicit-texture formulation implemented in STARS (CMG, 2019) represents
foam effects through a mobility reduction factor (MRF') term applied to reduce the gas

phase mobility. For water-gas systems, the apparent viscosity is expressed as:

N Y (ke kg )
Happ = <)\w + MRF) - (/,Lw + W) (57)

while the mobility reduction factor of the STARS model for foam is given by

MRF =1+ fmmob][ F;, (5.8)

where F; represent dimensionless functions capturing various foam destabilization mecha-
nisms. This chapter considers two primary effects: the dry-out function Fy,, accounting for
foam coalescence at low water saturations, and the surfactant function Fj,, s representing

concentration-dependent foam stability.
The dry-out function takes the form:

1 arctan|epdry(S, — fmdry
Fury(Sw) = 3 + [ Sr ) (5.9)

where fmdry represents an approximation for the critical water saturation below which foam
becomes unstable and collapses, and epdry controls the sharpness of the transition from
the low- to high-quality regimes (Osterloh and Jante, 1992). The surfactant concentration

effect is modeled as:

epsurf |
_ (fmi%rf) if Cs < f??”LSUTf7

Fsurf(Cs) - (510)
1 otherwise,

where fmsurf denotes the reference surfactant concentration (wt%) and epsurf determines

the sensitivity of foam strength to concentration changes.
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Estimation of the model’s parameters relies on steady-state core flooding experi-
ments conducted at various foam qualities and surfactant concentrations. The primary
observable is the relationship between apparent viscosity and injected gas fraction at
constant total velocity. As foam quality increases, the apparent viscosity initially rises
due to foam generation, then decreases beyond a transition quality f; corresponding to
the onset of dry-out conditions. The reference mobility reduction factor fmmob scales
the overall foam strength and is determined through history matching of experimental

pressure drop and saturation data (Ma et al., 2013).

5.2.3 The mobility reduction factor expression

Since the first application of foam for gas mobility control (Bond and Holbrook,
1956), the quantification of its mobility-reduction capability has evolved from empirical
correlations toward a mechanistic understanding (Ma et al., 2015). While the assumption
of foam reducing solely gas-phase mobility prevails (Bernard and Jacobs, 1965; Eftekhari
and Farajzadch, 2017), modeling approaches in the literature have linked the experimen-
tally measured ratio of pressure drop with and without foam (Chang and Grigg, 1996;
Mohammadi et al., 1995; Ma et al., 2015). Typically, the mobility reduction factor (MRF')

is computed using the following expression

APfoam
APref 7

(5.11)

to characterize foam. However, even approaches assuming that foam affects solely gas-
phase mobility may be misled by inconsistencies between this modeling assumption and
the classical definition of such ratios during parameter estimation (Vieira et al., 2024;
Hematpur et al., 2025).

According to Rosman and Kam (2009), the MRF is determined from the pressure
drop ratio between the foam and no-foam conditions in the same rock sample at identical
saturation states. In the literature, however, the no-foam pressure drop AP,.; has been
defined in different ways: continuous brine injection (Simjoo et al., 2013; Jia et al., 2024),
continuous gas injection (Bello et al., 2023c), or water—gas co-injection (Sri Hanamertani
et al., 2021; AlYousef et al., 2023). Each condition yields distinct quantities associated with
MRF, hindering direct comparison of experimental results and complicating parameter

estimation in foam simulators.

5.2.4 Current parameters estimation procedures

In a steady-state scenario, the relative permeability for any chosen model can be

written in terms of experimentally measurable quantities

by — HoSa. (5.12)

/’L app
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A significant assumption among the methods for foam parameter fitting relying on apparent
viscosity measurements (Eq. (5.7)) is that the relative permeability functions are known
prior to analysis (Ma et al., 2013; Eftekhari and Farajzadeh, 2017; Vicard et al., 2022; Valdez
et al., 2021). However, its accuracy relies on the adequacy of the relative permeability
model and the quality of the data used for parameter fitting; uncertainties in either
the model or its parameters at this stage inevitably propagate into the foam parameter

estimates.

Procedures for foam parameter estimation relying on steady-state data from a
foam-quality scan or flow-rate scan, without monitoring water saturation experimentally,
generally assume that the relative permeabilities are described by the modified Brooks-
Corey model (Brooks and Corey, 1963). The experiments provide data points in the
form of (f;, p,,). To evaluate the STARS model for parameter estimation, however,
the corresponding water saturation must be determined for each given pair (f,, ftapp)-
Therefore, if the Brooks-Corey form is assumed, the corresponding water saturation can
be analytically inverted, as proposed by Farajzadeh et al. (2015b) and Eftekhari and
Farajzadeh (2017), as follows:

1

11— f Hw nw

Sy = <(0—9)> (1= Sue — Sypr) + Sue. (5.13)
k’rw Mapp

Once S, is obtained for each pair (fy, ftapp), the foam apparent viscosity model (STARS)

can be computed, since it depends on S, through Fy,,(S,) (Egs. (5.7)-(5.9)). Since S,,

estimation from apparent viscosity data relies on assumed relative permeability functions

(Eq. (5.13)), uncertainties in these functions further propagate to parameter estimation.

The LET relative permeability model described in Eq. (5.6), unlike the Brooks-
Corey model, cannot be analytically inverted for saturation, requiring numerical methods
for this inversion. Consequently, its application with the STARS foam flow model has been
limited. In the following, we introduce a new expression to quantify the MRF, enabling
the estimation of foam parameters without prior knowledge of, or assumptions about, the

relative permeabilities.

5.2.5 Derivation of a new MRF expression

An alternative expression connecting experimental measurements of pressure drop
to the MRF term used in foam models is derived from the formula given in Eq. (5.11)
following the experimental requirements defined by Rosman and Kam (2009). The
present approach contributes to establishing a quantity that does not depend on relative
permeability for foam characterization. This is because the empirical effects in the MRF
term depend directly on observable variables and do not require knowledge of modeling

phase mobilities.
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Starting from a steady-state flow at the same saturation levels, the pressure drop
ratio between the foam and no-foam cases is analogous to the ratio between the total

mobilities, which can be expressed as:

ur L | foam foam ref
APfoam _ K Frapp _ Happ — )\T — )\l i )\g (5 14)
T wurlL f  ,ref —  \foam Ag 7 '
APref IZs quepp luapp )\T )\l + M};F

where \; represents liquid phase mobility (water or combined water-oil in three-phase
systems). Next, rearranging to isolate the foam-induced pressure increment yields the

following expression:

NSy _1_()\l+/\g)—(/\z+ﬂ2}%F)_%(MRF—U (5.15)
AP N N+ Nt wgE

Normalizing by the steady-state form of the gas fractional flow f, in presence of foam
(Eq. (5.3)) isolates the contribution to gas-phase:

APfoam - AF)ref o APfoam - (1 - fg) APref

MRF =1+ =
fg APref fg APref

(5.16)

The MRF term is designed in implicit-texture foam models by adding a unitary regular-
ization term to the part modeling the foam effects in reducing gas mobility, as shown in
Eq. (5.7) (right), ensuring that gas mobility returns to its original state when foam effects
vanish. Indeed, if APam = APs in Eq. (5.16), we have MRF = 1.

Note that Eq. (5.16) can also be written as:

APfoam - fl APref

MRF = ,
fg APref

(5.17)

which clearly and correctly defines MRF. The numerator subtracts the liquid contribution
of the reference pressure drop, f; AP, from the total foam pressure drop, isolating
the portion attributable to the gas phase under foam. The denominator, f; AP, is
the gas contribution of the reference pressure drop. Thus, MRF quantifies the foam-
induced amplification of gas-phase resistance relative to its baseline, without requiring

relative-permeability curves.

Observe that, if f; AP were replaced by f; APram, Eq. (5.17) would reduce to
the simple ratio APgam/A P, thereby losing the gas-specific normalization. In that case,
the MRF definition would implicitly incorporate changes related to the liquid phase, while
the objective of MRF' is to isolate the effect of foam on the gas phase only. Therefore, the
subtraction must involve the liquid contribution of the reference case, ensuring that MRF

remains a gas-specific measure of foam strength.

Figure 34 illustrates the alignment between the proposed MRF expression (dots) and
the one computed with the STARS equation (solid line), in comparison to the classical MRF

definition (crosses), APram/A P, using noisy datasets for foam and no-foam experiments.



91

A quantitative analysis was also performed to complement the visual inspection. Since
the MRF values span several orders of magnitude, the evaluation employed the Mean
Absolute Percentage Error (MAPE) as a scale-invariant metric. The classical MRF
definition exhibited substantial deviations (average MAPE =~ 1.75), whereas the proposed

formulation demonstrated high accuracy across all scenarios (average MAPE = 0.007).
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Figure 34 — Comparison of the MRF expression in the STARS model (solid line) in front of
the datasets considering the two formulas, Eq. (5.11) (cross) and Eq. (5.16) (dot), over
noisy observations for different surfactant concentrations. As the concentration increases,
the impact of noise on saturation and pressure drop becomes less significant, improving
the precision of the calculations.

We observe that for low f, values, the classic definition drastically underestimates
the correct value of MRF, since f; is high. Because it normalizes by the total (liquid+gas)
reference drop rather than the gas contribution, the large liquid contribution in the

denominator reduces the foam-induced gas resistance. Indeed, since

APfoam o )\l + )‘g - 1
AP N+ M,/MRF  (1-f)+ f,/MRF’

(5.18)

in the liquid-dominated limit f, — 0, this ratio tends to unity regardless of the actual value
of MRF. Therefore, A Piyam /AP, systematically underestimates the correct MRF when
fg is small. On the other hand, the novel estimation of MRF follows the true values. This
comparison demonstrates that the proposed expression aligns more closely with the model
formulation, supporting its use for direct parameter estimation based on only pressure

drop measurements.

5.3 DATASET AND PARAMETER ESTIMATION APPROACH

Synthetic datasets were generated using the implicit-texture foam model (Eq. (5.7))
with known parameter values to focus on the mathematical aspects of parameter estima-
tion and uncertainty quantification approaches. This strategy eliminates experimental
uncertainties and model-data mismatch, allowing comparisons to a reference value to
understand the fundamental properties of different estimation methods, and has been
used extensively in the literature (Berg et al., 2024; Ribeiro et al., 2024; de Miranda et al.,
2024).
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To generate the dataset, we based our models and parameters on the work of Jones
et al. (2016). The foam parameters were derived from their data using steady-state multi-
phase flow equations with foam effects (Egs. (5.1)-(5.6)). However, to assess robustness
against model mismatch, we used the LET functions. To this end, we approximated the
relative permeabilities reported by Jones et al. (2016), which are Brooks-Corey based,

using the LET relative permeabilities.

Figure 35 shows the LET relative permeability functions (solid lines), which
were based on data from the Brooks-Corey representation of Jones et al. (2016). The
parameters of the LET functions are reported in Table 10, along the original Corey
exponents (n,, = 2.86, n, = 0.7) from Jones et al. (2016). It is important to note that the
LET function can reproduce the shape of the Brooks—Corey function, whereas the converse
is not necessarily true. This flexibility gives the LET formulation a broader applicability
and makes it better suited for representing diverse relative permeability behaviors (Berg
et al., 2021b; Valdez et al., 2020).
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Figure 35 — Comparison of LET (solid lines) and Brooks-Corey (dashed lines) relative
permeability functions used in this work.

With the set of parameters reported in Table 10, the dataset - presented in Figure
36 - spanned surfactant concentrations of 0, 0.003, 0.01, 0.03, 0.05, 0.1, 0.5, and 1.0 wt%.
The zero-concentration case provides the reference conditions required for MRF' calculation
using Eq. (5.16), conducted at high gas fractions to achieve high gas saturations, similar
to those observed in the presence of foam. Simulations include foam qualities from 0.1
to 0.99, generating pressure drop and saturation data where true parameter values are
known exactly. A 10% Gaussian noise is added to the apparent viscosity and saturation
values to simulate uncertainty inherent in experimental measurements (Berg et al., 2024).
The original dataset from Jones et al. (2016) and the synthetic dataset are presented in
the left and right panels of Figure 36. The steady-state foam corefloods from Jones et al.
(2016) were conducted on Bentheimer sandstone cores at 60°C and 20 bar back-pressure.
Nitrogen and an AOS surfactant solution were co-injected at a constant superficial velocity

of 2.4 x 107° m/s to generate foam, while pressure drop was measured. The differences
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between the original dataset and model-generated data arise from model limitations that

do not fully capture the experimentally observed behavior.

Table 10 — Parameter values used for synthetic data generation based on Jones et al. (2016)

Foam Parameters

fmmob fmdry epdry fmsurf  epsurf
84916 0.334 66.7 0.558 0.865
Relative Permeability Parameters
kgw ch Lw Ew Tw
0.39 0.25 3.0 2.0 1.0
kgg Sgr Ly E, T,
0.59 0.2 0.75 1.0 1.5

Fluid/Rock Properties

fw [Pas]  p, [Pas]  wm/s o N/m] ¢
1.0x 1072 1.805x 107 24 x 10~ 0.0291 0.23

Experimental (Jones et al., 2016) Fitted (Reference Case)
o Surfactant Concentration
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Figure 36 — Apparent viscosity vs foam quality for different surfactant concentrations.
Left: The original data from Jones et al. (2016) data. Right: The synthetic data at the
same surfactant concentrations plus a no surfactant experiment, that is, without foam,
used as a reference for MRF' calculation.

Therefore, from this point onward, we use the dataset generated with the parameters
estimated by Jones et al. (2016). Based on these data, two distinct datasets were
constructed. The first dataset provides direct measurements of apparent viscosity (ftap)
in relation to foam quality (f;). The second dataset contains calculated MRF values
derived from pressure drop measurements based on the proposed Eq. (5.16); the data are

presented for three selected surfactant concentrations in Figure 34.

5.4 METHODS

The two parameter estimation approaches evaluated in this work are illustrated in
Figure 37, highlighting the fundamental difference in their workflows and data requirements.
The apparent viscosity approach (highlighted in blue) requires previous knowledge of the

relative permeability functions and the pressure drop with foam. In contrast, the proposed
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MRF approach of this work (highlighted in green) relies solely on pressure experimental

data with and without foam, and no information about the relative permeabilities is

required.
Foam AP foam >/ Happ Approach )
Core Flooding K AP fogm|
ko Estimation —> Happ = —
ur L Y,
AP iz S _.)( MRF Approach h
No — Foam
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po Sp—— 3 R,

Figure 37 — Workflow comparison for foam parameter estimation. Method (Direct MRF')
uses reference experiments at matching saturations to directly calculate mobility reduction
factors. The Apparent Viscosity approach requires a separate relative permeability
characterization to model apparent viscosity. Both methods optimize for the same foam
model parameters using different objective functions.

5.4.1 Foam Parameter Estimation

In this section, we describe the objective functions employed for foam parameter
estimation. Two alternatives are considered: one based on apparent viscosity (Eq.(5.7))
and another based on the mobility-reduction factor (MRF') proposed in this work (see
Eq.(5.16)). Both functions represent the normalized sum of squared deviations between

model predictions and experimental observations.

The accuracy of the methods for estimating foam parameters using apparent
viscosity observations also depends on the adequacy of the assumed relative permeability
model and its estimated parameters. Structural mismatch between assumed k,, functions
and true flow behavior or parametric uncertainties propagates into foam parameter
estimates (Ma et al., 2013; Eftekhari and Farajzadeh, 2017; Vicard et al., 2022; Valdez
et al., 2021).

In the following, the apparent viscosity—based and MRF-based parameter estimation

approaches are formulated as optimization problems.

5.4.1.0.1 Apparent Viscosity Approach

Given the observed apparent viscosity u;;f;;, and the relative permeability parameters

using Eq. (5.7), find foam parameters 6 that

k to evaluate apparent viscosity model /I/Z;)(;)dd
minimizes .
model obs
ot @ s k) — pos
Xiﬂpp(@; i) = Z R mhL (5.19)

i

: obs
max (pge)
It is important to note that procedures lacking saturation monitoring necessitate the

estimation of S,, from (fy, ftapp), as detailed in Eq. (5.13). This issue may become more
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significant for complex models that do not permit analytical inversion, as Corey-Brooks
(Eq. (5.13)).

5.4.1.0.2 Mobility Reduction Factor Approach

Given the observed mobility reduction factor MRF®* (Eq. (5.16)), find foam

parameters 6 that minimizes

wodel bs 7 2
Xirr(0) = Z MRET19) QJRF?D .
; max(MRF™)
A key advantage of the MRF approach is that it estimates foam parameters without

(5.20)

requiring prior knowledge of relative permeability functions.

Both optimization problems were carried out using the differential evolution (DE)
method, a population-based stochastic search algorithm (Storn and Price, 1997; Price,
2013), and relied on the following settings across all scenarios: a population size of 500
individuals for the DE method evolved over 500 generations within the parameter space

limited by physical constraints presented in Table 11.

Table 11 — Parameter bounds used in differential evolution optimization.

Parameter Lower Bound Upper Bound

fmmob 103 107
fmdry Swe 1.0 = Sy,
epdry 10! 10°
fmsurf 1072 2.0
epsurf 1072 5 x 10!

5.4.2 Profile Likelihood Analysis

Parameter identifiability is a fundamental aspect to support reliable model calibra-
tion. Profile likelihood (PL) analysis is a technique for assessing practical and structural
identifiability by examining the objective-function topology in the vicinity of optimal val-
ues (Raue et al., 2009), thereby highlighting correlation structures and potential ambiguities

in parameter estimation.

The PL method involves fixing each parameter of interest at specified values while
optimizing the remaining parameters to minimize the objective function. To this end, in
this chapter, each parameter was systematically varied within 50% of reference values,
generating 200 evaluation points per profile. At each fixed parameter value, 20 independent
optimization runs of the DE method were performed with randomized initial populations

to ensure robust convergence and capture potential local minima.

Three distinct scenarios were examined to evaluate the influence of relative perme-

ability characterization on foam parameter identifiability:



96

1. The first scenario represents ideal conditions where the apparent viscosity objective
function presented in Eq. (5.19) is minimized using ground truth relative permeabil-
ity functions. This baseline establishes the intrinsic identifiability limits of foam

parameters under perfect knowledge of multiphase flow properties.

2. The second scenario employs again the apparent viscosity objective function, Eq. (5.19).
However, it adopts a misspecified relative permeability function, particularly assum-
ing the Brooks-Corey functions instead of the LET functions, illustrated in Figure
35, the subtle yet critical model discrepancy. It represents the common experimental
conditions where relative permeability characterization contains uncertainties in

model specification and parameter fitting.

3. The third scenario evaluates the mobility reduction factor formulation, presented
in Eq. (5.20), which, by construction, eliminates direct dependence on relative

permeability functions during optimization.

5.4.3 Relative Permeability Uncertainty Quantification

Following the establishment of parameter identifiability through profile likelihood
analysis, an uncertainty quantification analysis was carried out to assess the robustness of
each foam parameter estimation approach. This evaluation analyzes how uncertainties in
relative permeability characterization propagate through the parameter estimation process

and influence the reliability of the estimated foam parameters.

To evaluate uncertainties, we regenerated the data by sampling the Corey-Brooks
relative permeability parameters, & = {n,,n,, k?wk?g}, using Latin Hypercube Sam-
pling (Iman and Conover, 1982). The parameters were sampled from Gaussian distributions
centered at their ground truth values (n, = 2.86, n, = 0.7, k7, = 0.39, and k), = 0.59)

with a £10% variation, generating 2'® parameter sets that span the uncertainty space.

For each sampled relative permeability parameter set, two estimation pathways were
evaluated to enable direct comparison between the strategies presented in Figure 37. The
apparent viscosity approach employs the perturbed relative permeability functions in fiey,
calculations during foam parameter optimization, representing the conventional method
where relative permeability characterization uncertainties directly affect the estimation
process (for further details see Eftekhari and Farajzadeh (2017)).

The MRF approach utilizes the same perturbed relative permeability functions to
generate reference pressure drop values AP,.¢, which, combined with foam experiment
pressure drops A Ppoqm, are used to calculate MRF values according to Eq. (5.16). Foam
parameters are subsequently estimated using just the MRF dataset without relying on
relative permeability knowledge functions during optimization. While in the apparent

viscosity approach, monitoring water saturation is just an optional step, it assumes a
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relative permeability function, which introduces epistemic uncertainty. In contrast, the
MREF approach does require monitoring saturations but does not make any assumptions

about the relative permeability.

5.5 RESULTS

We begin by presenting the alignment of the proposed MRF' expression for charac-
terizing foam experimental data to the STARS foam model. We then present the results
of the methods discussed in the preceding section, which were used to evaluate parame-
ter identifiability and to quantify uncertainty associated with variability in the relative

permeability function.

5.5.1 Mobility reduction factor

Figure 34 shows the STARS model evaluation using the ground-truth parameters
(solid line) compared to MRF computed with Eq. (5.11) (cross) or Eq. (5.16) (dot) for
three selected surfactant concentrations. First, it is evident that the proposed expression
for MRF quantification aligns more closely with the data obtained using the STARS foam
mathematical model. Moreover, as the surfactant concentration increases and the foam

strengthens, the proposed MRF appears to be less sensitive to noise.

5.5.2 Parameter Identifiability

Figure 38 presents the profile likelihood results for three scenarios: apparent

LET

viscosity objective function with known relative permeability functions (s,,.",

using the

ground truth parameters), apparent viscosity objective function with a mismatch in relative

Corey
app

Each column represents a different profiled parameter.

permeability functions (u ), and mobility reduction factor objective function (MRF).
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Figure 38 — Profile likelihood analysis for foam parameter estimation under three scenarios:
,u,{;pr: apparent viscosity objective function assuming the correct relative permeability
functions that generated the data (LET); M@C;{:-ey: apparent viscosity objective function
assuming assuming wrong relative permeability functions (Corey); MRF: mobility reduction
factor objective function, no relative permeability assumptions. Vertical lines indicate

ground truth parameter values.
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In the first scenario (Figure 38, solid black line), the profile likelihood exhibits
well-defined minima within the confidence threshold of 50% for all foam parameters when
using the apparent viscosity approach with correct relative permeability functions (without
uncertainty in relative permeability). This confidence threshold defines the range of
acceptable parameter estimates that maintain at least half of the maximum likelihood.
The formulation that incorporates the mobility reduction factor into the objective function
(Figure 38, solid red line) also demonstrates close agreement with the ground truth

parameters.

The case where noise is introduced in the relative permeability functions to represent
difficulties in their estimation significantly impacts the identifiability profiles, as shown in
the blue lines in Figure 38. Notable deviations from the ground truth values occur for
fmdry and epdry, with the objective function minima shifting substantially from their
true positions. Although the mismatch in fmdry seems small, it is important to recognize
that even minor deviations in this parameter can have a substantial effect on model
predictions (Valdez et al., 2022).

Table 12 summarizes the foam parameter estimation results for each approach.
The apparent viscosity method produced significant errors, as it incorrectly attributed the
relative permeability model (mismatch) to foam effects. In contrast, the MRF approach,

being agnostic to the permeability model, closely approximated the true foam parameters.

Table 12 — Parameter estimation comparison between fiq,, and MRF methods considering
LET relative permeability for data generation.

Estimate (Absolute Relative Error)
Parameter | Ground Truth | pu,,, w/ Corey | pi,,, w/ LET MRF
fmmob [10°] 0.849 0.830 ( 2.24%) | 0.854 (0.58%) | 0.845 (0.49%)
findry [10°1] 3.344 3.148 ( 5.8%%) | 3.354 (0.30%) | 3.345 (0.02%)
epdry [107] 6.666 7.846 (17.70%) | 6.435 (3.46%) | 6.606 (0.90%)
fmsurf [1077] 5.580 5.532 (0.87%) | 5.524 (1.00%) | 5.540 (0.72%)
epsurf [10°1] 8.649 8.648 ( 0.01%) | 8.673 (0.28%) | 8.659 (0.12%)

5.5.3 Uncertainty Propagation from Relative Permeability Functions

The uncertainties in the relative permeability parameters k are propagated to
the model outputs, namely the apparent viscosity and the mobility reduction factor.
To evaluate the impact on the estimated parameters, we conduct multiple runs of the

parameter estimation process.

First, we show in Figure 39 (left panel) the uncertainties from relative permeability
parameters to the relative permeability functions. On the right panel of Figure 39, we show
the result of propagating the relative permeability uncertainties to the no-foam reference

pressure drop, which is required for the MRF approach.
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Figure 39 — Propagated uncertainties from relative permeability parameters to the relative
permeability functions (left) and to the reference pressure drop (right).

Next, we carried out 2'? parameter estimation runs to provide a statistically robust
characterization of bias and variance in estimated foam parameters under uncertainty in
relative permeability in order to compare the approaches using ji,,, or MRF. Table 13
presents a comparison of the maximum error committed when using the two different
approaches. The maximum relative errors demonstrate that the MRF approach consistently
yields better approximations for the dry-out parameters (fmdry and epdry). On the other
hand, both methods show similar performance for the other parameter estimation. The
improved performance of the MRF method observed in Table 4 stems from its theoretical
consistency with the gas-only mobility reduction hypothesis. While the /iy, approach relies
on inversion of relative permeability models to estimate water saturation, the MRF method
requires explicit saturation monitoring. This direct measurement of water saturation is
especially advantageous for estimating dry-out parameters (fmdry, epdry), which are
strongly connected to water saturation behavior. By eliminating the need for relative
permeability inversions and directly measuring the saturation that controls foam dry-out,

the MRF approach drastically reduces uncertainty in these critical parameters.

Table 13 — Comparison of estimated values from both approaches and their relative error
against the ground truth (GT) values.

Maximum Error (Relative Error)
Parameter GT Happ Approach | MRF Approach
fmmob [10°] | 0.849 | 0.516 (-39.28%) 0.506 (-40.47%)
fmdry [107Y] | 3.344 | 3.977 ( 18.91%) 3.328 (-0.48%)
epdry [101] 6.666 | 13.810 (107.11%) 6.385 ( -4.21%)
fmsurf [1071] | 5,580 | 4.585 (-17.84%) 5.925 ( 6.18%)
epsurf [1071] | 8.649 9.152 ( 5.82%) 8.837 ( 2.18%)

A more detailed analysis of the estimated parameters is presented in Figure 40 that
compares the fitting results of the two approaches in a joint plot of the estimated values @
for sampled relative permeability parameters k. For all parameters except fmmob, the fi,p,

approach produces a wider spread of estimated parameter values than the MRF approach,
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indicating a greater propagation of uncertainties in these parameters. With respect to
Figure 40, we can also note that the MRF approach for foam parameter estimation
reduces the range of estimated parameters, and consequently, the associated uncertainties,
particularly for the epdry and fmdry parameters. This improvement stems from the MRF

approach explicitly incorporating information about water saturation.
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Figure 40 — Comparison of foam parameter estimates from apparent viscosity (gray) and
MRF (blue) approaches across 8192 relative permeability realizations.

5.6 DISCUSSION

5.6.1 Relative Permeability Models

The proposed MRF approach, while requiring saturation monitoring, which can
be obtained through CT (Simjoo et al., 2013), NMR (Amirmoshiri et al., 2018), or mass
balance calculations (Ma et al., 2013), provides parameters less affected by epistemic
uncertainties from relative permeability assumptions. Recent studies on uncertainty
quantification of relative permeability models (Berg et al., 2021b, 2024; Valdez et al., 2020;
Ribeiro et al., 2024) have shown that these uncertainties can substantially affect production

factors. Therefore, in scenarios where relative permeabilities are highly uncertain, the
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direct measurement of water saturation in the MRF approach also provides an advantage
for estimating dry-out parameters, which are highly sensitive to water saturation, reducing

uncertainty propagation.

The MRF approach becomes particularly relevant when considering more complex
relative permeability models, such as LET (Lomeland et al., 2005), which include additional
parameters for endpoint curvature and transition behavior. Assumptions regarding the
estimated values for the relative permeability parameters enable the foam parameter
estimation to adjust to the studied dataset and indicate a best estimation set, although it
does not accurately represent the actual mobility reduction provided by foam (see Figure
38 and Tables 12 and 13).

The MRF approach circumvents this mathematical limitation by relying solely
on the observed pressure drop and saturation for core flooding experiments (with and
without foam). This flexibility sets the estimation of relative permeability as a subsequent
step or even a possibility to estimate together with the foam parameters. It avoids bias
from functional form assumptions and enables hypothesis testing during the parameter
estimation procedure, such as the variation in the residual saturations due to the presence
of foam (Mehrabi et al., 2022).

5.6.2 Mobility Reduction Factor Definition

Beyond the parameter fitting capability, the lack of standardized definitions for
experimental MRF (Rosman and Kam, 2009; Simjoo et al., 2013; Sri Hanamertani et al.,
2021; AlYousef et al., 2023; Bello et al., 2023c; Jia et al., 2024) creates challenges for
data interpretation and cross-study comparisons. This inconsistency in experimental
protocols produces MRF values that, while sharing nomenclature with the implicit-texture
model parameter, represent fundamentally different physical quantities (see Figure 34).
Different experimental MRF' definitions (involving reference conditions such as continuous
brine injection, continuous gas injection, or water-gas co-injection) yield values that
cannot be directly compared or converted into implicit-texture foam parameters without
additional data. Without standardization, the same foam system characterized in different
laboratories produces MRF values that represent distinct physical quantities despite

identical nomenclature.

Although this study focuses exclusively on the effects of surfactant concentration
and water saturation, the MRF approach is capable of capturing other foam behaviors,
such as shear-thinning effects. However, fitting parameters associated with these additional
behaviors would require further data, which have been simplified in the present analysis

to consider only dry-out and surfactant effects.

To further demonstrate the applicability of the proposed MRF expression, we

present an additional analysis using the experimental data provided by Kapetas et al.
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(2015). Figure 41 illustrates the MRF values using the proposed expression for the
experimental data of the foam-quality scan presented by Kapetas et al. (2015), along with
the fitted parameters from Valdez et al. (2022) used to simulate both the reference pressure
drop and the corresponding ground-truth function. This demonstrates that Eq. (5.16)
remains applicable to other foam physics, such as the non-Newtonian behavior, and may
also extend to additional contexts, as long as saturation matching between the reference

and foam experiments is preserved.
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Figure 41 — MRF approach validation on data from Kapetas et al. (2015) with active
Fear effects showing good agreement between calculated and theoretical values.

5.6.3 Injected Surfactant Concentrations

Including Fj.¢ in the model while using data from a single surfactant concentration
may result in identifiability issues. The optimization cannot distinguish between the
reference foam strength (fmmob) and the concentration-dependent scaling, leading to
parameter correlation and non-unique parameters. This coupling manifests as flattened
profile likelihood curves or oscillations for both fmmob and surfactant parameters. To illus-
trate this behavior, we conducted the profile likelihood analysis using data from increasing
surfactant concentrations (Figure 42). The results suggest that the non-identifiability cases
observed in Figure 42 (corresponding to the first three cases) arise because the experimental
procedure lacks the necessary variation in surfactant concentrations to properly constrain
the Fy.r terms. This issue is due to the absence of data, rather than the estimation
method used, whether the proposed MRF' approach or the traditional ji,,, approach.
Particularly, in the case examined, at least three surfactant concentrations are needed to

prevent identifiability issues, as shown in the bottom panel.

5.6.4 Translation to field scale

Although upscaling introduces additional complexities, such as heterogeneity and
gravitational effects, robust laboratory-scale characterization is the fundamental basis
for reliable field models. Field implementation typically employs history matching to
refine laboratory-derived parameters using early production data (Alcorn et al., 2022; Szele

et al., 2022). As shown in Table 3, the proposed MRF approach yields lower estimation
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Figure 42 — Profile likelihood analysis showing parameter identifiability improvement with

increasing surfactant concentration data points.
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errors for critical foam parameters, particularly fmmob, fmdry, and epdry, compared to the
conventional fi,,, approach. These parameters control the foam strength and the dry-out
behavior, which are essential for predicting foam propagation and stability in reservoirs.
Reduced uncertainties in these parameters lead to more accurate field-scale predictions
of foam performance, including sweep efficiency and oil recovery. In contrast, the piap,
approach introduces larger errors that propagate to field models, potentially leading to
suboptimal foam application designs and unfavorable economic outcomes. Consequently,
uncertainties originating from core-flooding parameter estimation are inevitably transferred
to field-scale simulations (Sharma et al., 2020; de Moura Ribeiro et al., 2025).

Biased parameter estimations from uncertain lab estimates either propagate to
field predictions or are compensated through adjustments to reservoir properties during
history matching. This misattribution obscures sources of uncertainty and reduces phys-
ical consistency in forecasts. While this work does not address upscaling or field-scale

translation, it strengthens the core-scale characterization essential for field-level modeling.

5.6.5 Applicability and Limitations

The proposed MRF method requires saturation monitoring and a no-foam reference
experiment at matching saturations, which may not be feasible in all laboratory settings.
In summary, the choice between methods for foam parameter estimation should consider:
(1) when relative permeability is well-characterized (low uncertainty), both methods are
applicable, though MRF typically provides lower uncertainty due to its circumvention of
relative permeability assumptions; (2) when relative permeability is highly uncertain, MRF
is preferred; (3) when saturation monitoring is unavailable, the traditional ji,,, method
may be the only option. In addition, we note that if relative permeability models, such as
the LET model, are to be employed, the MRF method remains the preferred choice, since
inverting the LET model is not straightforward. The decision should balance experimental
capabilities, required accuracy, and the intended application, as foam parameter estimation
is critical for accurate field-scale predictions, where the reliability of parameters significantly

impacts forecasts.

5.7 CONCLUSIONS

This study presented an alternative approach for foam parameter estimation in
implicit-texture models, which is based on the definition of an alternative mobility reduction
factor expression. The proposed approach introduces the foam quality f, value into the
MRF formula to circumvent the need for relative permeability functions assumption
during the estimation of foam parameters. The derived expression provides a standardized
metric for comparing foam strength across experiments and laboratories, and serves as an

alternative method for parameter estimation.
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We employed the LET relative permeability functions with the foam implicit-texture
model implemented in STARS to generate the data and validate the approach’s capacity to
circumvent model assumptions. The analysis of parameter identifiability showed that both
the surfactant-related parameters and the dry-out parameters can be reliably estimated
using the proposed formulation. Both approaches studied require conducting foam quality
scan experiments at a sufficient range of injected concentrations to prevent issues with

parameter identifiability.

The MRF formulation provides direct physical interpretability and facilitates
meaningful comparisons between foam characterization studies conducted under different
experimental conditions. Moreover, uncertainty quantification revealed that the MRF
approach enabled more robust parameter estimation by consistently producing lower
parameter estimation variances compared to the apparent viscosity approach, particularly
for the dry-out parameters fmdry and epdry. This reduction in uncertainty propagation

represents a significant advantage for experimental characterization of foam behavior.
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6 CONCLUSIONS

Modeling foam flow in porous media requires a comprehensive treatment of para-
metric uncertainties to enable reliable predictions for enhanced oil recovery applications.
The improved parameter estimation approaches and uncertainty quantification techniques
developed in this work address challenges in foam flow characterization by integrating
Bayesian inference, numerical simulations, and surrogate modeling. This work establishes
methods for quantifying uncertainties in implicit-texture foam models across two-phase
and three-phase systems, progressing from coupled parameter estimation to direct charac-
terization approaches. It also provides an important link between experimental design and
parameter estimation, strengthening the reliability of numerical simulations and predictive

modeling.

In the first part of the thesis (Chapter 3), we demonstrated the interplay between
relative permeability and foam parameters in two-phase flow systems by performing a
simultaneous inverse uncertainty quantification. The results revealed strong correlations
between parameters traditionally estimated independently, particularly between the wa-
ter relative permeability exponent and the critical water saturation for foam stability.
These correlations suggest that assuming relative permeability functions not derived from
specific experimental conditions can substantially impact foam parameter estimation, po-
tentially leading to biased predictions and misleading interpretations of foam effectiveness.
Additionally, the polynomial chaos expansion for surrogate modeling enabled efficient
uncertainty propagation in transient simulations, revealing that parameter sensitivities
vary significantly across different flow regimes. While fmmob controls the variance of foam
strength in the low-quality regime, n,, and SF/fmdry interactions dominate high-quality
regime behavior. Analysis of gas breakthrough times further demonstrated that the relative
importance of these parameters shifts with injection conditions: water relative permeabil-
ity governs the response at low gas fractions, whereas foam stability parameters become
dominant at high gas fractions. These findings highlight the importance of accurately
determining both model components (relative permeability and foam parameters), with

special attention to their potential interactions.

The second part of the thesis, presented in Chapter 4, advances the framework
by extending the uncertainty quantification analysis to three-phase foam—oil flow. In
particular, an improved parameter estimation method for the foam parameters related
to oil saturation was developed and evaluated under different conditions. The approach
was validated using both synthetic data and literature cases, including oil bank formation.
The results suggest that experimental designs should increase oil injection in gradual steps
with saturation monitoring to span the range required for reliable parameter estimation.

Two-dimensional heterogeneous reservoir simulations illustrated that single best-estimate
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parameters derived from sparse datasets produce substantially different flow behavior
compared to the true system response. Furthermore, strong correlations between oil
destabilization function parameters indicated identifiability challenges. While the propa-
gated uncertainties exhibited low variation in the F,; function itself, these uncertainties
significantly affected simulator responses, particularly in scenarios with low initial oil
saturations, which are characteristic of depleted reservoirs implementing FAWAG as a

tertiary recovery method.

The third part of the thesis, presented in Chapter 5, introduced an alternative
parameter estimation method based on the mobility reduction factor term, utilizing the
pressure drop measurements from steady-state experiments with and without foam. This
approach eliminates the usage of relative permeabilities in the process and, therefore,
eliminates epistemic uncertainties associated with relative permeability parameters, which
traditionally introduce modeling assumptions and propagate errors through multi-step
procedures. An identifiability analysis indicated that surfactant-related foam parameters
require experiments spanning multiple surfactant concentrations for reliable estimation.
Moreover, the proposed method based on a new MRF expression enables the incorporation
of more sophisticated relative permeability models, such as LET, for foam flow in porous

media, an aspect that has not been addressed in the literature to date.

In summary, this work advanced the understanding of foam flow modeling in
porous media by applying uncertainty quantification techniques to link experimental data
with numerical simulations effectively. Incorporating uncertainties into computational
models improves the reliability of foam flow simulators and provides quantitative criteria
for parameter estimation. This work refined the calibration of three-phase foam flow
simulators by accounting for experimental uncertainties. The methods developed herein
may guide experimental design by identifying minimum data requirements and optimal
measurement strategies for parameter estimation. These contributions enable practitioners
to evaluate the adequacy of experimental datasets and maintain quantified confidence in

foam flow predictions for enhanced oil recovery applications.

6.1 PRACTICAL GUIDELINES

The results of this study may be translated as practical guidelines for foam-assisted

EOR applications, aiding in the risk-aware planning of foam injection projects:

1. Experimental Design: Characterizing the effects on foam, such as oil saturation
and surfactant concentration, requires comprehensive data coverage related to these
effects. Therefore, experiments should avoid sudden changes in foam strength to

ensure that variations in the variable of interest are meaningful.

2. Foam Characterization: A standard measurement for the MRF term, defined as
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the relative pressure increase per unit of injected gas fraction, enables cross-study
comparisons of foam strength and allows for the characterization of parameters while
circumventing assumptions about relative permeability, thus avoiding misleading

forecasts of foam performance.

3. Probabilistic Forecasting: Parameter uncertainty, modeled by probability distri-
butions, can be propagated through reservoir-scale simulations to provide more robust
information for operational decisions. Uncertainty-aware forecasts offer significantly

more reliability than single best-estimate predictions.

4. Surrogate Modeling: Emlulator-based approaches, such as PCE, enable computa-
tionally tractable propagation of foam parametric uncertainties for field-scale studies

while maintaining prediction capability from robust simulators.

6.2 LIMITATIONS AND FUTURE WORK

This work employed implicit-texture foam models throughout the uncertainty
quantification framework. While computationally tractable for parameter estimation, these
models represent foam dynamics through empirical correlations rather than mechanistic

descriptions of bubble generation, coalescence, and transport (Lozano et al., 2021).

The UQ approaches assume parameter transferability from core samples to a
heterogeneous reservoir. However, the parameter uncertainties quantified at the core scale
may amplify when applied to field-scale predictions due to additional complexities related
to subsurface modeling that are not fully captured by laboratory experiments (Hirasaki,
1989; Patzek and Myhill, 1989; Patzek, 1996).

In the literature, modeling the three-phase relative permeability function itself is a
considerable challenge in fluid dynamics (Alizadeh and Piri, 2014). It becomes even more
complex when the presence of foam is considered (Farajzadeh et al., 2012). One of the
possible observed effects from the presence of foam in three-phase flows is the reduction of
residual oil (Farajzadeh et al., 2012; Sun et al., 2015). Modeling relative permeability for
this purpose introduces complexity in parameter estimation. A straightforward future work
is to combine the direct MRF characterization method from Chapter 5 with three-phase
foam-oil systems, allowing for the estimation of foam parameters without relying on

assumptions about relative permeability.

Additionally, the proposed UQ approaches can be used for the more sophisti-
cated models mentioned earlier to account for researching other effects on foam. The
techniques presented here enable probabilistic/ensemble forecasting for probabilistic risk
assessment (Zhu, 2005; Tartakovsky, 2007; Leutbecher and Palmer, 2008; Cushman and
Tartakovsky, 2016), resulting in more robust foreknowledge to guide foam-assisted EOR

planning or feed studies of optimization under uncertainty:.
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6.3 ACADEMIC CONTRIBUTIONS

This work led to several academic contributions, which are outlined below:

1. Modeling Foam Flow in Porous Media Influenced by Oil: A Computational Frame-

work for Improved Parameter Estimation (submitted).

2. Uncertainty Quantification on Foam Modeling: The Interplay of Relative Permeabil-
ity and Implicit-texture Foam Parameters. Transport in Porous Media 152, 8, 2025.
doi: 0.1007/s11242-024-02137-1.

3. On the identifiability of relative permeability and foam displacement parameters in
porous media flow. Water Resources Research, 2024, 60.3: e2023WR036751.
doi: 10.1029/2023WR036751.

4. Characterization of Foam-Assisted Water-Gas Flow via Inverse Uncertainty Quantifi-
cation Techniques. In: International Conference on Computational Science. Cham:
Springer International Publishing, 2022. p. 310-322.
doi: 10.1007/978-3-031-08760-8 26.

5. An Improved Approach for Uncertainty Quantification Based on Steady-State Experi-
mental Data in Foam-Assisted Enhanced Oil Recovery. In: ECMOR 2022. European
Association of Geoscientists & Engineers, 2022. p. 1-14.
doi: 10.3997/2214-4609.202244048.

6. A workflow for uncertainty quantification of numerical models for foam-based EOR.
In: Rio Oil & Gas 2022: Technical Papers. IBP. 2022. v. 179. p. 1.
doi: 10.48072/2525-7579.rog.2022.179.

While items 3-6 are relevant to the overall theme of this work, they have not been included
in full to maintain objectivity and conciseness. The contents of this work were also

presented and discussed at scientific events, including the following presentations:

o 28th Encontro Nacional de Modelagem Computacional, 1-4 October 2024, Tlhéus-BA,
Brazil. Title: Estimacao de parametros do modelo de textura implicita de espuma

para escoamentos trifdsicos em meios porosos.

« 6th Brazil InterPore Conference on Porous Media, 7-9 August 2023, Campinas-SP,
Brazil. Title: Improving the inverse uncertainty quantification in foam-assisted

enhanced oil recovery using physically based priors.

e SIAM Conference on Mathematical & Computational Issues in the Geosciences, 19-22
June 2023, Bergen, Norway. Title: Improving the Inverse Uncertainty Quantification

in Foam-Assisted Enhanced Oil Recovery
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15th Annual Meeting of InterPore 2023. 22-25 May 2023, Edinburgh, Scotland.
Title: Improved techniques for uncertainty quantification of foam flow in porous

media.

14th Annual Meeting of InterPore, 30 May—2 June 2022, Abu Dhabi, United Arab
Emirates. Title: Inverse and forward uncertainty quantification of relative perme-

ability and foam model parameters for EOR processes.

Rio Oil & Gas 2022, 26-29 September 2022, Rio de Janeiro-RJ, Brazil. Title: A

workflow for uncertainty quantification of numerical models for foam-based EOR

18th European Conference on the Mathematics of Oil Recovery, 5-7 September
2022, The Hague, Netherlands. Title: An Improved Approach for Uncertainty
Quantification Based on Steady-State Experimental Data in Foam-Assisted Enhanced
Oil Recovery.



111

REFERENCES

A. R. Adebayo. A Graphical Interpretation Technique to Evaluate Strength and Stability of
Foam in Porous Media Based on Mobile-Trapped Foam Ratio. Transport in Porous Media,
139(2):327-355, September 2021. ISSN 1573-1634. doi: 10.1007/s11242-021-01668-1.

A. Afsharpoor, G. S. Lee, and S. I. Kam. Mechanistic simulation of continuous gas injection
period during surfactant-alternating-gas (SAG) processes using foam catastrophe theory.
Chemical Engineering Science, 65(11):3615-3631, June 2010. ISSN 0009-2509. doi:
10.1016/j.ces.2010.03.001.

Z. P. Alcorn, Aleksandra Sale, Metin Karakas, and Arne Graue. Unsteady-state co2 foam
generation and propagation: Laboratory and field insights. Energies, 15(18):6551, 2022.
ISSN 1996-1073. doi: 10.3390/en15186551.

A. H. Alizadeh and M. Piri. Three-phase flow in porous media: A review of experimental
studies on relative permeability. Reviews of Geophysics, 52(3):468-521, 2014. ISSN
1944-9208. doi: 10.1002/2013RG000433.

A. Almagbali, V. E. Spooner, S. Geiger, D. Arnold, and E. Mackay. Uncertainty quantifi-
cation for foam flooding in fractured carbonate reservoirs. In SPE Reservoir Simulation
Conference. OnePetro, 2017.

Z. AlYousef, A. Gizzatov, H. AlMatouq, and G. Jian. Assessment of foam generation
and stabilization in the presence of crude oil using a microfluidics system. Journal of
Petroleum Exploration and Production Technology, 13(4):1155-1162, April 2023. ISSN
2190-0566. doi: 10.1007/s13202-022-01604-z.

M. Amirmoshiri, Y. Zeng, Z. Chen, P. M. Singer, M. C. Puerto, H. Grier, R. Z. Kamarul
Bahrim, S. Vincent-Bonnieu, R. Farajzadeh, S. L. Biswal, and G. J. Hirasaki. Probing
the Effect of Oil Type and Saturation on Foam Flow in Porous Media: Core-Flooding
and Nuclear Magnetic Resonance (NMR) Imaging. Energy € Fuels, 32(11):11177-11189,
November 2018. ISSN 0887-0624. doi: 10.1021 /acs.energyfuels.8b02157.

P. Arias, N. Bellouin, E. Coppola, R. Jones, G. Krinner, J. Marotzke, V. Naik, M. Palmer,
G. Plattner, J. Rogelj, et al. Climate change 2021: the physical science basis. contribution
of working group i to the sixth assessment report of the intergovernmental panel on

climate change; technical summary, 2021.

E. Ashoori, D. Marchesin, and W. R. Rossen. Roles of transient and local equilibrium foam
behavior in porous media-traveling wave. In FCMOR XII-12th European Conference on
the Mathematics of Oil Recovery, pages cp—163. European Association of Geoscientists
& Engineers, 2010.



112

H. Bazargan, M. Christie, A. H. Elsheikh, and M. Ahmadi. Surrogate accelerated sampling
of reservoir models with complex structures using sparse polynomial chaos expansion.
Advances in Water Resources, 86:385-399, December 2015. ISSN 0309-1708. doi:
10.1016/j.advwatres.2015.09.009.

J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous
Media. Springer Science & Business Media, December 2012. ISBN 978-94-009-1926-6.

A. Bello, A. Ivanova, and A. Cheremisin. A Comprehensive Review of the Role of CO2
Foam EOR in the Reduction of Carbon Footprint in the Petroleum Industry. Energies,
16(3):1167, January 2023a. ISSN 1996-1073. doi: 10.3390/en16031167.

A. Bello, A. Ivanova, and A. Cheremisin. Foam EOR as an Optimization Technique for
Gas EOR: A Comprehensive Review of Laboratory and Field Implementations. Energies,
16(2):972, January 2023b. ISSN 1996-1073. doi: 10.3390/en16020972.

A. Bello, A. Ivanova, A. Rodionov, A. aand Rodionov, T. Aminev, A. Mishin, A. Mishin,
D. Bakulin, P. Grishin, P. Belovus, A. Penigin, K. Kyzyma, and A. Cheremisin. An
Experimental Study of High-Pressure Microscopy and Enhanced Oil Recovery with
Nanoparticle-Stabilised Foams in Carbonate Oil Reservoir. Energies, 16(13):5120,
January 2023c. ISSN 1996-1073. doi: 10.3390/en16135120.

S. Berg, E. Unsal, and H. Dijk. Non-uniqueness and uncertainty quantification of relative

permeability measurements by inverse modelling. Computers and Geotechnics, 132:
103964, 2021a.

S. Berg, E. Unsal, and H. Dijk. Sensitivity and uncertainty analysis for parameterization
of multiphase flow models. Transport in Porous Media, 140(1):27-57, 2021b.

S. Berg, H. Dijk, E. Unsal, R. Hofmann, B. Zhao, and V. Raju Ahuja. Simultaneous
determination of relative permeability and capillary pressure from an unsteady-state
core flooding experiment?  Computers and Geotechnics, 168:106091, 2024. ISSN
0266-352X. doi: https://doi.org/10.1016/j.compgeo.2024.106091. URL https:
//www.sciencedirect.com/science/article/pii/S0266352X24000272.

G. G. Bernard and L. Holm. Effect of foam on permeability of porous media to gas. Society
of Petroleum Engineers Journal, 4(03):267-274, 1964. doi: 10.2118/983-PA.

G. G. Bernard and W. L. Jacobs. Effect of Foam on Trapped Gas Saturation and on
Permeability of Porous Media to Water. Society of Petroleum Engineers Journal, 5(04):
295-300, December 1965. ISSN 0197-7520. doi: 10.2118/1204-PA.

H. J. Bertin, O. G. Apaydin, L. M. Castanier, and A. R. Kovscek. Foam Flow in
Heterogeneous Porous Media: Effect of Cross Flow. SPE Journal, 4(02):75-82, June
1999. ISSN 1086-055X. doi: 10.2118/56009-PA.



113

M. Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo, July 2018.

M. J. Betancourt and Mark Girolami. Hamiltonian Monte Carlo for Hierarchical Models,
December 2013.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859-877, 2017.

C. S. Boeije and W. R. Rossen. Fitting foam simulation model parameters to data. In IOR
2013-17th European Symposium on Improved Oil Recovery, pages cp—342. European

Association of Geoscientists & Engineers, 2013.

D. C. Bond and O. C. Holbrook. Gas drive oil recovery process. US Patent, No. 2866507,
December 1956.

S. Borazjani, N. Hemmati, A. Behr, L. Genolet, H. Mahani, A. Zeinijahromi, and
P. Bedrikovetsky. Simultaneous determination of gas—water relative permeability and

capillary pressure from steady-state corefloods. Journal of Hydrology, 598:126355, July
2021. ISSN 00221694. doi: 10.1016/j.jhydrol.2021.126355.

G. E. P. Box and G. C. Tiao. Bayesian inference in statistical analysis, volume 40. John
Wiley & Sons, 1992.

R. H. Brooks and A. T. Corey. Hydraulic properties of porous media and their relationship
to drainage design. PhD thesis, Colorado State University. Libraries, 1963.

S. Brooks. Markov chain monte carlo method and its application. Journal of the royal
statistical society: series D (the Statistician), 47(1):69-100, 1998.

R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1-49, 1998.

F. Campolongo, A. Saltelli, and J. Cariboni. From screening to quantitative sensitivity
analysis. a unified approach. Computer physics communications, 182(4):978-988, 2011.
doi: https://doi.org/10.1016/j.cpc.2010.12.039.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A.
Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A Probabilistic Programming Language.
Journal of statistical software, 76:1, 2017. ISSN 1548-7660. doi: 10.18637 /jss.v076.i01.

A. Caticha and R. Preuss. Maximum Entropy and Bayesian Data Analysis: Entropic
Priors. Physical Review E, 70(4):046127, October 2004. ISSN 1539-3755, 1550-2376. doi:
10.1103/PhysRevE.70.046127.

J. S. A. Cavalcante Filho, M. Delshad, and K. Sepehrnoori. Estimation of Foam-Flow
Parameters for Local Equilibrium Methods by Use of Steady-State Flow Experiments



114

and Optimization Algorithms. SPE Reservoir Evaluation & Engineering, 21(01):160-173,
October 2017. ISSN 1094-6470. doi: 10.2118/179597-PA.

J. B. Cedro and G. Chapiro. Traveling wave solutions for a realistic non-newtonian foam

flow model. Geoenergy Science and Engineering, 232:212478, 2024.

J. B. Cedro, F. F. de Paula, and G. Chapiro. On the modeling of the foam dynamics in
heterogeneous porous media. Advances in Water Resources, 196:104882, February 2025.
ISSN 03091708. doi: 10.1016/j.advwatres.2024.104882.

M. Chabert, M. Morvan, and L. Nabzar. Advanced Screening Technologies for the Selection
of Dense CO2 Foaming Surfactants. In SPE Improved Oil Recovery Symposium, pages
SPE-154147. OnePetro, April 2012. doi: 10.2118/154147-MS.

S. H. Chang and R. Grigg. Foam Displacement Modeling in CO2 Flooding Processes. In
SPE/DOE Improved Qil Recovery Symposium. OnePetro, April 1996. doi: 10.2118/3540
1-MS.

H. Chen, A. S. Elhag, Y. Chen, J. A. Noguera, A. M. AlSumaiti, G. J. Hirasaki, Q. P.
Nguyen, S. L. Biswal, S. Yang, and K. P. Johnston. Oil effect on CO2 foam stabilized by
a switchable amine surfactant at high temperature and high salinity. Fuel, 227:247-255,
September 2018. ISSN 0016-2361. doi: 10.1016/j.fucl.2018.04.020.

Q. Chen, M. Gerritsen, and A. R. Kovscek. Modeling foam displacement with the local-
equilibrium approximation: theory and experimental verification. SPE Journal, 15(01):
171-183, 2010.

Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in porous
media. SIAM, 2006.

L. Cheng, S. I. Kam, M. Delshad, and W. Rossen. Simulation of dynamic foam-acid
diversion processes. In SPE Furopean Formation Damage Conference and Ezxhibition,

pages SPE-68916. SPE, 2001.

M. A. Christie and M. J. Blunt. Tenth SPE Comparative Solution Project: A Comparison
of Upscaling Techniques. In SPE Reservoir Simulation Symposium. OnePetro, February
2001. doi: 10.2118/66599-MS.

Computer Modeling Group. CMG. Stars users manual; version 2019.10, 2019.

A. T. Corey. The interrelation between gas and oil relative permeabilities. Producers
monthly, pages 38—41, 1954.

Katalin Csill’e, ry, Michael GB Blum, Oscar E Gaggiotti, and Olivier Francois. Approximate
bayesian computation (abc) in practice. Trends in ecology € evolution, 25(7):410-418,
2010.



115

John H. Cushman and Daniel M. Tartakovsky, editors. The Handbook of Groundwater
Engineering. CRC Press, Boca Raton, 3 edition, November 2016. ISBN 978-1-315-37180-
1. doi: 10.1201/9781315371801.

C. Da, G. Jian, S. Alzobaidi, J. Yang, S. L. Biswal, G. J. Hirasaki, and K. P. Johnston.
Design of CO2-in-Water Foam Stabilized with Switchable Amine Surfactants at High
Temperature in High-Salinity Brine and Effect of Oil. Energy € Fuels, 32(12):12259—
12267, December 2018. ISSN 0887-0624. doi: 10.1021/acs.cnergyfuels.8b02959.

T. Danelon, P. Paz, and G. Chapiro. The mathematical model and analysis of the
nanoparticle-stabilized foam displacement. Applied Mathematical Modelling, 125:630—
649, 2024.

C. Daniel. One-at-a-time plans. Journal of the American Statistical Association, 68(342):
353-360, 1973. doi: 10.1080/01621459.1973.10482433. URL https://www.tandfonlin
e.com/doi/abs/10.1080/01621459.1973.10482433.

G. B. de Miranda, L. S. Ribeiro, J. M. da Fonseca Facanha, A. Pérez-Gramatges, B. M.
Rocha, G. Chapiro, and R. W. Dos Santos. Characterization of Foam-Assisted Water-
Gas Flow via Inverse Uncertainty Quantification Techniques. In Computational Science
— ICCS 2022, pages 310-322, Cham, 2022a. Springer International Publishing. ISBN
978-3-031-08760-8. doi: 10.1007/978-3-031-08760-8__26.

G. B. de Miranda, L. S. Ribeiro, B. M. Rocha, J. M. D. F. Facanha, A. Pérez-Gramatges,
R. W. Dos Santos, and G. Chapiro. An Improved Approach for Uncertainty Quantifica-
tion Based on Steady-State Experimental Data in Foam-Assisted Enhanced Oil Recovery.
In ECMOR 2022, volume 2022, pages 1-14. European Association of Geoscientists &
Engineers, September 2022b. doi: 10.3997/2214-4609.202244048.

G. B. de Miranda, R. W. dos Santos, G. Chapiro, and B. M. Rocha. Uncertainty
Quantification on Foam Modeling: The Interplay of Relative Permeability and Implicit-
texture Foam Parameters. Transport in Porous Media, 152(1):8, December 2024. ISSN
1573-1634. doi: 10.1007/s11242-024-02137-1.

G. B. de Miranda, G. Chapiro, R. W. dos Santos, and B. M. Rocha. On the mobility
reduction factor for the quantification of foam strength in porous media. (Submitted)),
2025a.

G. B. de Miranda, A. M. Ribeiro, R. W. dos Santos, G. Chapiro, and B. M. Rocha.
Modeling foam flow in porous media influenced by oil: A computational framework for

improved parameter estimation. (Submitted)), 2025b.

A. de Moura Ribeiro, L. F. Lopes, B. M. Rocha, R. Weber dos Santos, J. M. F.

Facanha, A. Pérez-Gramatges, and G. Chapiro. Quantifying experimental impacts



116

on non-newtonian foam characterization for flow modeling in porous media: Insights
from foam-quality and flow rate scan experiments. Water Resources Research, 61(9):
e2024WR039536, 2025. ISSN 1944-7973. doi: 10.1029/2024WR039536.

F. F. de Paula, T. Quinelato, I. Igreja, and G. Chapiro. A Numerical Algorithm to Solve
the Two-Phase Flow in Porous Media Including Foam Displacement. In Computational
Science extendash ICCS 2020, Lecture Notes in Computer Science, pages 18-31, Cham,
2020. Springer International Publishing. ISBN 978-3-030-50436-6. doi: 10.1007/978-3-0
30-50436-6\ 2.

F. F. de Paula, I. Igreja, T. O. Quinelato, and G. Chapiro. Numerical simulation of foam
displacement impacted by kinetic and equilibrium surfactant adsorption. Advances in
Water Resources, 188:104690, June 2024. ISSN 0309-1708. doi: 10.1016/j.advwatres.20
24.104690.

E. del Campo Estrada. Ecoulements de mousse pour la d’epollution d’aquiféeres. PhD
thesis, Universit’e de Bordeaux, 2014.

M. Delshad, G. A. Pope, and K. Sepehrnoori. A compositional simulator for modeling
surfactant enhanced aquifer remediation, 1 formulation. Journal of Contaminant
Hydrology, 23(4):303-327, August 1996. ISSN 01697722. doi: 10.1016/0169-7722(95)001
06-9.

Z. F. Dholkawala, H. Sarma, and S. Kam. Application of fractional flow theory to foams
in porous media. Journal of Petroleum Science and Engineering, 57(1-2):152-165, 2007,

L. Ding, L. Cui, S. Jouenne, O. Gharbi, M. Pal, H. Bertin, M. A. Rahman, C. Romero,
and Dominique Gu’e, rillot. Estimation of Local Equilibrium Model Parameters for
Simulation of the Laboratory Foam-Enhanced Oil Recovery Process Using a Commercial
Reservoir Simulator. ACS Omega, 5(36):23437-23449, September 2020a. ISSN 2470-1343,
2470-1343. doi: 10.1021/acsomega.0c03401.

L. Ding, Q. Wu, L. Zhang, and Dominique Gu’e, rillot. Application of Fractional Flow
Theory for Analytical Modeling of Surfactant Flooding, Polymer Flooding, and Surfac-
tant/Polymer Flooding for Chemical Enhanced Oil Recovery. Water, 12(8):2195, August
2020b. ISSN 2073-4441. doi: 10.3390/w12082195.

V. G. Eck, W. P. Donders, J. Sturdy, J. Feinberg, T. Delhaas, L. R. Hellevik, and W. Hu-
berts. A guide to uncertainty quantification and sensitivity analysis for cardiovascular

applications. International journal for numerical methods in biomedical engineering, 32
(8):e02755, 2016.

A. A. Eftekhari and R. Farajzadeh. Effect of foam on liquid phase mobility in porous
media. Scientific reports, 7(1):1-8, 2017.



117

O. G. Ernst, A. Mugler, H. Starkloff, and E. Ullmann. On the convergence of generalized
polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis,
46(2):317-339, 2012.

A. H. Falls, G. J. Hirasaki, T. W. Patzek, D. A. Gauglitz, D. D. Miller, and T. Ratulowski.
Development of a Mechanistic Foam Simulator: The Population Balance and Generation
by Snap-Off. SPE Reservoir Engineering, 3(03):884-892, August 1988. ISSN 0885-9248.
doi: 10.2118/14961-PA.

R. Farajzadeh, A. Andrianov, R. Krastev, G. J. Hirasaki, and W. R. Rossen. Foam-
oil interaction in porous media: Implications for foam assisted enhanced oil recovery.
Advances in Colloid and Interface Science, 183—184:1-13, November 2012. ISSN 0001-
8686. doi: 10.1016/j.¢is.2012.07.002.

R. Farajzadeh, A. A. Eftekhari, H. Hajibeygi, J. M. van der Meer, S. Vincent-Bonnieu,
and W. R. Rossen. Simulation of instabilities and fingering in surfactant alternating

gas (sag) foam enhanced oil recovery. In SPE Reservoir Simulation Conference?, page
DO011S001R005. SPE, 2015a.

R. Farajzadeh, M. Lotfollahi, A. A. Eftekhari, W. R. Rossen, and G. J. Hirasaki. Effect
of Permeability on Foam-model Parameters and the Limiting Capillary Pressure. In
IOR 2015 - 18th Furopean Symposium on Improved Oil Recovery, page cp. European
Association of Geoscientists & Engineers, April 2015b. ISBN 978-94-6282-141-5. doi:
10.3997/2214-4609.201412134.

R. Farajzadeh, M. Lotfollahi, A. A. Eftekhari, W. R. Rossen, and G. J. H. Hirasaki.
Effect of Permeability on Implicit-Texture Foam Model Parameters and the Limiting
Capillary Pressure. Energy €& Fuels, 29(5):3011-3018, May 2015c. ISSN 0887-0624. doi:
10.1021/acs.energyfuels.5b00248.

S. A. Faroughi, A. J. J. Pruvot, and J. McAndrew. The rheological behavior of energized
fluids and foams with application to hydraulic fracturing: Review. Journal of Petroleum
Science and Engineering, 163:243-263, April 2018. ISSN 0920-4105. doi: 10.1016/j.petr
0l.2017.12.051.

J. Feinberg and H. P. Langtangen. Chaospy: An open source tool for designing methods

of uncertainty quantification. Journal of Computational Science, 11:46-57, 2015.

A. N. Fried. Foam-drive process for increasing the recovery of oil. Technical report, Bureau
of Mines, San Francisco, Calif.(USA). San Francisco Petroleum Research Lab., 1960.

G. C. Fritis, P. S. Paz, L. F. Lozano, and G. Chapiro. On the riemann problem for the
foam displacement in porous media with linear adsorption. SIAM Journal on Applied
Mathematics, 84(2):581-601, 2024.



118

G. C. Fritis, P. S. Z. Paz, and G. Chapiro. Modeling the optimal foam injection slug
in porous medium accounting adsorption effects. International Journal of Non-Linear
Mechanics, 178:105199, November 2025. ISSN 0020-7462. doi: 10.1016/j.ijnonlinmec.20
25.105199.

O. Gassara, F. Douarche, B. Braconnier, and B. Bourbiaux. Calibrating and interpreting
implicit-texture models of foam flow through porous media of different permeabilities.
Journal of Petroleum Science and Engineering, 159:588-602, November 2017. ISSN
0920-4105. doi: 10.1016/j.petrol.2017.09.069.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman
and Hall/CRC, 1995.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian
Data Analysis. CRC Press, third edition edition, February 2021.

C. J. Geyer. Practical Markov Chain Monte Carlo. Statistical Science, 7(4):473-483,
November 1992. ISSN 0883-4237, 2168-8745. doi: 10.1214/ss/1177011137.

R. G. Ghanem and P. D. Spanos. Stochastic finite element method: Response statistics.
In Stochastic finite elements: a spectral approach, pages 101-119. Springer, 1991.

R. B. Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the
applied sciences. Chapman and Hall/CRC, 2020.

D. M. Hamby. A review of techniques for parameter sensitivity analysis of environmental
models. Environmental monitoring and assessment, 32:135-154, 1994. doi: 10.1007/BF
00547132.

R. D. G. F. Harshini, Ranjith P.g, W. G. P. Kumari, and D. C. Zhang. Innovative
applications of carbon dioxide foam in geothermal energy recovery: Challenges and

perspectives - A review. Geoenergy Science and Engineering, 241:213091, October 2024.
ISSN 2949-8910. doi: 10.1016/j.gecen.2024.213091.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97-109, 1970. ISSN 0006-3444. doi: 10.1093/biomet/57.1.97. URL
https://doi.org/10.1093/biomet/57.1.97.

H. Hematpur, S. M. Mahmood, N. H. Nasr, and K. A. Elraies. Foam flow in porous media:
Concepts, models and challenges. Journal of Natural Gas Science and Engineering, 53:
163-180, 2018. ISSN 1875-5100. doi: https://doi.org/10.1016/j.jngse.2018.02.017. URL
https://www.sciencedirect.com/science/article/pii/S1875510018300878.

H. Hematpur, S. Hosseini, S. M. Mahmood, R. Abdollahi, Z. Hamdi, and R. Ghamarpoor.

A new approach to foam flooding modelling with novel parameter Estimation techniques.



119

Scientific Reports, 15(1):22829, July 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-0
5847-8.

N. Hemmati, S. Borazjani, A. Badalyan, L.. Genolet, A. Behr, A. Zeinijahromi, and
P. Bedrikovetsky. Determining relative permeability and capillary pressure from mixed-
wet core floods. Geoenergy Science and Engineering, 239:212885, August 2024. ISSN
2949-8910. doi: 10.1016/j.geoen.2024.212885.

G. J. Hirasaki. The Steam-Foam Process. Journal of Petroleum Technology, 41(05):
449-456, May 1989. ISSN 0149-2136. doi: 10.2118/19505-PA.

M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths

in Hamiltonian Monte Carlo, November 2011.

M. D. Hoffman and A. Gelman. The No-U-Turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593-1623, 2014.

P. Horgue, C. Soulaine, J. Franc, R. Guibert, and G. Debenest. An open-source toolbox
for multiphase flow in porous media. Computer Physics Communications, 187:217-226,
2015.

A. A. A. Hussain, S. Vincent-Bonnieu, R. Z. Kamarul Bahrim, R. M. Pilus, and W. R.
Rossen. Impact of Different Oil Mixtures on Foam in Porous Media and in Bulk.
Industrial € Engineering Chemistry Research, 58(28):12766-12772, July 2019. ISSN
0888-5885. doi: 10.1021/acs.iecr.9b01589.

R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correlation
among input variables. Communications in Statistics - Simulation and Computation, 11

(3):311-334, January 1982. ISSN 0361-0918. doi: 10.1080/03610918208812265.

B. Tooss and P. Lemaitre. A review on global sensitivity analysis methods. Uncertainty

management in simulation-optimization of complex systems: algorithms and applications,
pages 101-122, 2015.

H. Jasak. OpenFOAM: Open source CFD in research and industry. International journal

of naval architecture and ocean engineering, 1(2):89-94, 2009.
E. T. Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.

H. Jia, H. Yu, T. Wang, P. Song, J. Song, and Y. Wang. Investigation of non-chemical
CO2 microbubbles for enhanced oil recovery and carbon sequestration in heterogeneous
porous media. Geoenergy Science and Engineering, 242:213229, November 2024. ISSN
29498910. doi: 10.1016/j.geoen.2024.213229.



120

G. Jian, L. Zhang, C. Da, M. Puerto, K. P. Johnston, S. L. Biswal, and G. J. Hirasaki.
Evaluating the Transport Behavior of CO2 Foam in the Presence of Crude Oil under High-
Temperature and High-Salinity Conditions for Carbonate Reservoirs. Energy € Fuels,
33(7):6038-6047, July 2019. ISSN 0887-0624. doi: 10.1021 /acs.energyfuels.9b00667.

S. A. Jones, G. Laskaris, S. Vincent-Bonnieu, R. Farajzadeh, and W. R. Rossen. Effect
of surfactant concentration on foam: From coreflood experiments to implicit-texture

foam-model parameters. Journal of Industrial and Engineering Chemistry, 37:268-276,
May 2016. ISSN 1226-086X. doi: 10.1016/j.jiec.2016.03.041.

S. Kahrobaci and R. Farajzadch. Insights into Effects of Surfactant Concentration on
Foam Behavior in Porous Media. Energy & Fuels, 33(2):822-829, February 2019. ISSN
0887-0624. doi: 10.1021/acs.energyfuels.8b03576.

S. I. Kam. Improved mechanistic foam simulation with foam catastrophe theory. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 318(1-3):62-77, 2008.

L. Kapetas, S. Vincent-Bonnieu, S. Danelis, W. R. Rossen, R. Farajzadeh, A. A. Eftekhari,
S. R. Shafian, and R. Z. Bahrim. Effect of temperature on foam flow in porous media.
In SPE Middle East Oil ¢ Gas Show and Conference. OnePetro, 2015.

T. Kim, W. S. Han, J. Piao, P. K. Kang, and J. Shin. Predicting remediation efficiency
of LNAPLSs using surrogate polynomial chaos expansion model and global sensitivity
analysis. Advances in Water Resources, 163:104179, May 2022. ISSN 0309-1708. doi:
10.1016/j.advwatres.2022.104179.

A. R. Kovscek and C. J. Radke. Fundamentals of Foam Transport in Porous Media.
In Foams: Fundamentals and Applications in the Petroleum Industry, volume 242 of
Advances in Chemistry, chapter 3, pages 115-163. American Chemical Society, October
1994. ISBN 978-0-8412-2719-4. doi: 10.1021/ba-1994-0242.ch003.

A. R. Kovscek, T. W. Patzek, and C. J. Radke. A mechanistic population balance model
for transient and steady-state foam flow in boise sandstone. Chemical Engineering
Science, 50(23):3783-3799, 1995.

A. R. Kovscek, T. W. Patzek, and Clayton J. Radke. Mechanistic Foam Flow Simulation
in Heterogeneous and Multidimensional Porous Media. SPE Journal, 2(04):511-526,
December 1997. ISSN 1086-055X. doi: 10.2118/39102-PA.

L. W. Lake. Enhanced oil recovery. Office of Scientific and Technical Information. U.S.
Department of Energy, 1 1989.

R. G. Larson. Analysis of the Physical Mechanisms in Surfactant Flooding. Society
of Petroleum Engineers Journal, 18(01):42-58, February 1978. ISSN 0197-7520. doi:
10.2118/6003-PA.



121

J. Lee, W. Sung, and J. Choi. Metamodel for efficient estimation of capacity-fade
uncertainty in li-ion batteries for electric vehicles. Energies, 8(6):5538-5554, 2015.

M. Leutbecher and T. N. Palmer. Ensemble forecasting. Journal of Computational Physics,
227(7):3515-3539, March 2008. ISSN 0021-9991. doi: 10.1016/j.jcp.2007.02.014.

R. F. Li, W. Yan, S. Liu, G. J. Hirasaki, and C. A. Miller. Foam mobility control for
surfactant enhanced oil recovery. SPE Journal, 15(04):928-942, 2010.

F. Lomeland, E. Ebeltoft, and W. H. Thomas. A new versatile relative permeability
correlation. In International symposium of the society of core analysts, Toronto, Canada,
volume 112, 2005.

M. Lotfollahi, R. Farajzadeh, M. Delshad, A. Varavei, and W. R. Rossen. Comparison of
implicit-texture and population-balance foam models. Journal of Natural Gas Science
and Engineering, 31:184-197, April 2016. ISSN 18755100. doi: 10.1016/j.jngse.2016.03.
018.

L. F. Lozano, R. Q. Zavala, and G. Chapiro. Mathematical properties of the foam flow in
porous media. Computational Geosciences, 25:515-527, 2021.

S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. In
[. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
4765-4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/706

2-a-unified-approach-to-interpreting-model-predictions.pdf.

N. Luthen, S. Marelli, and B. Sudret. Sparse polynomial chaos expansions: Literature
survey and benchmark. SIAM/ASA Journal on Uncertainty Quantification, 9(2):593-649,
2021.

X. Lyu, D. Voskov, and W. R. Rossen. Numerical investigations of foam-assisted co2
storage in saline aquifers. International journal of greenhouse gas control, 108:103314,
2021a.

X. Lyu, D. Voskov, J. Tang, and W. R. Rossen. Simulation of Foam Enhanced-Oil-
Recovery Processes Using Operator-Based Linearization Approach. SPE Journal, 26
(04):2287-2304, August 2021b. ISSN 1086-055X. doi: 10.2118/205399-PA.

K. Ma, R. Farajzadeh, Jose L. Lopez-Salinas, , Clarence A. Miller, Sibani Lisa Biswal,
and George J. Hirasaki. Estimation of Parameters for the Simulation of Foam Flow
through Porous Media: Part 3; Non-Uniqueness, Numerical Artifact and Sensitivity.
In All Days, pages SPE-165263-MS, Kuala Lumpur, Malaysia, July 2013. SPE. doi:
10.2118/165263-MS.



122

K. Ma, R. Farajzadeh, J. L. Lopez-Salinas, C. A. Miller, S. L. Biswal, and G. J. Hirasaki.
Non-uniqueness, numerical artifacts, and parameter sensitivity in simulating steady-state

and transient foam flow through porous media. Transport in porous media, 102(3):
325-348, 2014a.

K. Ma, G. Ren, K. Mateen, D. Morel, and P. Cordelier. Literature Review of Modeling
Techniques for Foam Flow through Porous Media. In SPE Improved Oil Recovery
Symposium. OnePetro, April 2014b. doi: 10.2118/169104-MS.

K. Ma, G. Ren, K. Mateen, D. Morel, and P. Cordelier. Modeling Techniques for Foam
Flow in Porous Media. SPE Journal, 20(03):453-470, February 2015. ISSN 1086-055X.
doi: 10.2118/169104-PA.

K. Ma, K. Mateen, G. Ren, H. Luo, G. Bourdarot, and D. Morel. Mechanistic modeling of
foam flow through porous media in the presence of oil: Review of foam-oil interactions
and an improved bubble population-balance model. In SPE Annual Technical Conference
and Ezhibition. OnePetro, September 2018. doi: 10.2118/191564-MS.

S. Marelli and B. Sudret. Uqlab user manual-polynomial chaos expansions. Chair of risk,
safety & uncertainty quantification, ETH Z"urich, 0.9-10/ edition, pages 97-110, 2015.

O. Martin and T. Wiecki. Bayesian analysis with Python: introduction to statistical
modeling and probabilistic programming using PyMC3 and ArviZ. Packt Publishing
Limited, second edition edition, 2018. ISBN 978-1-78934-165-2.

O. A. Martin, R. Kumar, and J. Lao. Bayesian Modeling and Computation in Python.
CRC Press, Boca Raton, 2021. ISBN 978-0-367-89436-8.

R. McElreath. Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman and Hall/CRC, England, 2020.

M. Mehrabi, K. Sepehrnoori, and M. Delshad. Displacement Theory of Low-Tension Gas
Flooding. Transport in Porous Media, 142(3):475-491, April 2022. ISSN 1573-1634. doi:
10.1007/s11242-022-01753-z.

N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American statistical
association, 44(247):335-341, 1949.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation
of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087-1092, 1953. ISSN 0021-9606. doi: 10.1063/1.1699114. URL https:
//aip.scitation.org/doi/10.1063/1.1699114. Publisher: American Institute of
Physics.



123

B. Metz, O. Davidson, H. De Coninck, M. Loos, and L. Meyer. IPCC special report on

carbon dioxide capture and storage. Cambridge: Cambridge University Press, 2005.

S. Mohammadi, J. Collins, and D. A. Coombe. Field Application and Simulation of
Foam for Gas Diversion. In TOR 1995 - 8th Furopean Symposium on Improved Oil

Recovery, page cp. European Association of Geoscientists & Engineers, May 1995. ISBN
978-94-6282-125-5. doi: 10.3997/2214-4609.201406964.

A. Moradi-Araghi, E. L. Johnston, D. R. Zornes, and K. J. Harpole. Laboratory Evaluation
of Surfactants for CO2-Foam Applications at the South Cowden Unit. In International
Symposium on QOilfield Chemistry, pages SPE-37218. OnePetro, February 1997. doi:
10.2118/37218-MS.

T. J. Myers and C. J. Radke. Transient Foam Displacement in the Presence of Residual
Oil: Experiment and Simulation Using a Population-Balance Model. Industrial €
Engineering Chemistry Research, 39(8):2725-2741, August 2000. ISSN 0888-5885. doi:
10.1021/1€990909u.

M. Namdar-Zanganeh, S. I. Kam, T. C. LaForce, and W. R. Rossen. The Method of
Characteristics Applied to Oil Displacement by Foam. SPE Journal, 16(01):8-23, August
2010. ISSN 1086-055X. doi: 10.2118/121580-PA.

T. Neumann, K. H. Knuth, A. Caticha, J. L. Center, A. Giffin, and Carlos C. Rodr’i, guez.
Bayesian Inference Featuring Entropic Priors. In AIP Conference Proceedings, volume
954, pages 283-292. AIP, 2007. doi: 10.1063/1.2821274.

M. J. Oak, L.E. Baker, and D.C. Thomas. Three-Phase Relative Permeability of Berea
Sandstone. Journal of Petroleum Technology, 42(08):1054-1061, August 1990. ISSN
0149-2136, 1944-978X. doi: 10.2118/17370-PA.

C. J. Okere, L. Zheng, G. Su, H. Liu, Q. Chang, and O. J. Obiafudo. Critical analysis
of productivity of well 21 after foam-acid diversion. In International Conference on

Mechanical Engineering and Applied Composite Materials, pages 21-36. Springer, 2020.

A. Orujov, K. Coddington, and S. A. Aryana. A review of ccus in the context of foams,

regulatory frameworks and monitoring. Energies, 16(7):3284, 2023.

W. T. Osterloh and M. J. Jante. Effects of Gas and Liquid Velocity on Steady-State Foam
Flow at High Temperature. In SPE/DOFE Enhanced Oil Recovery Symposium, pages
SPE-24179. OnePetro, April 1992. doi: 10.2118/24179-MS.

T. W. Patzek. Description of Foam Flow in Porous Media by the Population Balance
Method. In Surfactant-Based Mobility Control, volume 373 of ACS Symposium Series,
chapter 16, pages 326-341. American Chemical Society, July 1988. ISBN 978-0-8412-
1491-0. doi: 10.1021/bk-1988-0373.ch016.



124

T. W. Patzek. Field applications of steam foam for mobility improvement and profile
control. SPE Reservoir Engineering, 11(02):79-86, 1996.

T. W. Patzek and N. A. Myhill. Simulation of the Bishop Steam Foam Pilot. In SPFE
California Regional Meeting. OnePetro, April 1989. doi: 10.2118/18786-MS.

F. F. Paula, I. Igreja, T. Quinelato, and G. Chapiro. A numerical investigation into the
influence of the surfactant injection technique on the foam flow in heterogeneous porous
media. Advances in Water Resources, 171:104358, January 2022. ISSN 0309-1708. doi:
10.1016/j.advwatres.2022.104358.

L. G. Pedroni. Ezperimental study of mobility control by foams: potential of a FAWAG
process in pre-salt reservoir conditions. PhD thesis, Université Pierre et Marie Curie-Paris
VI, 2017.

G. A. Pope. The Application of Fractional Flow Theory to Enhanced Oil Recovery. Society
of Petroleum Engineers Journal, 20(03):191-205, June 1980. ISSN 0197-7520. doi:
10.2118/7660-PA.

G. A. Pope and R. C. Nelson. A Chemical Flooding Compositional Simulator. Society
of Petroleum Engineers Journal, 18(05):339-354, October 1978. ISSN 0197-7520. doi:
10.2118/6725-PA.

K. V. Price. Differential Evolution. In Ivan Zelinka, V. Snasael, and A. Abraham, editors,
Handbook of Optimization: From Classical to Modern Approach, pages 187-214. Springer,
Berlin, Heidelberg, 2013. ISBN 978-3-642-30504-7. doi: 10.1007/978-3-642-30504-7 8.

V. V. Ranade. Multiphase flow processes. In Computational Flow Modeling for Chemical
Reactor Engineering, volume 5 of Process Systems Engineering, pages 85-122. Academic
Press, 2002. doi: https://doi.org/10.1016/S1874-5970(02)80005-4. URL https:
//www.sciencedirect.com/science/article/pii/S1874597002800054.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmiiller, and J. Timmer.
Structural and practical identifiability analysis of partially observed dynamical models
by exploiting the profile likelihood. Bioinformatics, 25(15):1923-1929, August 20009.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btp358.

L. S. Ribeiro, G. B. Miranda, B. M. Rocha, G. Chapiro, and R. Weber dos Santos. On the
Identifiability of Relative Permeability and Foam Displacement Parameters in Porous
Media Flow. Water Resources Research, 60(3):¢2023WR036751, 2024. ISSN 1944-7973.
doi: 10.1029/2023WR036751.

A. U. Rognmo, S. B. Fredriksen, Z. P. Alcorn, M. Sharma, Tore Fg, yen, Qyvind Eide,
Arne Graue, and Martin Ferng. Pore-to-Core EOR Upscaling for CO2 Foam for CCUS.
SPE Journal, 24(06):2793-2803, July 2019. ISSN 1086-055X. doi: 10.2118/190869-PA.



125

A. Rosman and S. I. Kam. Modeling Foam-diversion Process Using Three-phase Fractional
Flow Analysis in a Layered System. Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, 31(11):936-955, June 2009. ISSN 1556-7036. doi: 10.1080/1556
7030701752875.

W. R. Rossen. Foams in Enhanced Oil Recovery. In Foams. Routledge, 1996. ISBN
978-0-203-75570-9. doi: 10.1002/food.19970410116.

W. R. Rossen, S. C. Zeilinger, Jianxin Shi, and M. T. Lim. Mechanistic Simulation of
Foam Processes in Porous Media. In SPE Annual Technical Conference and Ezhibition.
OnePetro, September 1994. doi: 10.2118/28940-MS.

W. R. Rossen, S. C. Zeilinger, J. X. Shi, and M. T. Lim. Simplified mechanistic simulation
of foam processes in porous media. SPE Journal, 4(03):279-287, 1999.

W. R. Rossen, R. Farajzadeh, G. J. Hirasaki, and M. Amirmoshiri. Potential and challenges
of foam-assisted CO2 sequestration. Geoenergy Science and Engineering, 239:212929,
August 2024. ISSN 2949-8910. doi: 10.1016/j.geoen.2024.212929.

A. Sele, A. Graue, and Z. P. Alcorn. Unsteady-state CO2 foam injection for increasing

enhanced oil recovery and carbon storage potential. Advances in Geo-Energy Research,
6(6):472-481, December 2022. ISSN 2208-598X. doi: 10.46690/ager.2022.06.04.

A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer
physics communications, 145(2):280-297, 2002. doi: https://doi.org/10.1016/5S0010-465
5(02)00280-1.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
and S. Tarantola. Global sensitivity analysis: the primer. John Wiley & Sons, England,
2008.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in python using
PyMC3. PeerJ Computer Science, 2:e55, apr 2016. doi: 10.7717/peerj-cs.55. URL
https://doi.org/10.7717/peerj-cs.55.

Schlumberger. ECLIPSE Technical Description 2014.2. Schlumberger, 2014. ECLIPSE

Reservoir Simulation Software Reference Manual.

M. Shafiei, Y. Kazemzadeh, M. Escrochi, F. B. Cortés, C. A. Franco, and M. Riazi. A
comprehensive review direct methods to overcome the limitations of gas injection during
the EOR process. Scientific Reports, 14(1):7468, March 2024. ISSN 2045-2322. doi:
10.1038/s41598-024-58217-1.

M. Sharma, Z. P. Alcorn, S. B. Fredriksen, A. U. Rognmo, M. A. Ferng, S. M. Skjeveland,

and A. Graue. Model calibration for forecasting CO2-foam enhanced oil recovery



126

field pilot performance in a carbonate reservoir. Petroleum Geoscience, 26(1):141-149,
February 2020. ISSN 1354-0793. doi: 10.1144/petgeo2019-093.

M. J. Shojaei, D. Or, and N. Shokri. Localized delivery of liquid fertilizer in coarse-textured
soils using foam as carrier. Transport in Porous Media, 143(3):787-795, 2022.

M. Simjoo, Y. Dong, A. Andrianov, M. Talanana, and P.L.J. Zitha. Novel Insight Into
Foam Mobility Control. SPE Journal, 18(03):416-427, June 2013. ISSN 1086-055X,
1930-0220. doi: 10.2118/163092-PA.

R. C. Smith. Uncertainty quantification: theory, implementation, and applications. STAM,
2013.

I. M. Sobol’. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe
modelirovanie, 2(1):112-118, 1990.

I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and computers in simulation, 55(1-3):271-280, 2001.

P. Sochala and OP Mai, L. tre. Polynomial chaos expansion for subsurface flows with

uncertain soil parameters. Advances in water resources, 62:139-154, 2013.

C. Soize. Uncertainty quantification: An Accelerated Course with Advanced Applications

in Computational Engineering. Springer, Switzerland, 2017.

P. Spirov and S. Rudyk. Testing of Snorre Field Foam Assisted Water Alternating
Gas (FAWAG) Performance in New Foam Screening Model. Oil & Gas Science and
Technology - Revue d’IFP Energies nouvelles, 70(6):1025-1033, November 2015. doi:
10.2516/0gst /2013193.

A. Sri Hanamertani, S. Saraji, and M. Piri. The effects of in-situ emulsion formation and
superficial velocity on foam performance in high-permeability porous media. Fuel, 306:
121575, December 2021. ISSN 0016-2361. doi: 10.1016/j.fuel.2021.121575.

R. Storn and K. Price. Differential Evolution — A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341-359,
December 1997. ISSN 1573-2916. doi: 10.1023/A:1008202821328.

B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability
engineering & system safety, 93(7):964-979, 2008.

Q. Sun, Z. Li, J. Wang, S. Li, L. Jiang, and C. Zhang. Properties of multi-phase foam
and its flow behavior in porous media. RSC Advances, 5(83):67676-67689, August 2015.
ISSN 2046-2069. doi: 10.1039/C5RA09686C.



127

S. H. Talebian, R. Masoudi, I. M. Tan, and P. L. J. Zitha. Foam assisted CO2-EOR: A
review of concept, challenges, and future prospects. Journal of Petroleum Science and
Engineering, 120:202-215, August 2014. ISSN 0920-4105. doi: 10.1016/j.petrol.2014.05
.013.

J. Tang, M. Ansari, and W. Rossen. Modelling the Effect of Oil on Foam for EOR. In
ECMOR XV-15th European Conference on the Mathematics of Oil Recovery, pages
cp—494. European Association of Geoscientists & Engineers, August 2016. doi: 10.3997/
2214-4609.201601877.

J Tang, M. N. Ansari, and W. R. Rossen. Quantitative Modeling of the Effect of Oil on
Foam for Enhanced Oil Recovery. SPE Journal, 24(03):1057-1075, 2019a.

J. Tang, P. Castaneda, D. Marchesin, and W. R. Rossen. Three-Phase Fractional-Flow
Theory of Foam-Qil Displacement in Porous Media With Multiple Steady States. Water
Resources Research, 55(12):10319-10339, 2019b. ISSN 1944-7973. doi: 10.1029/2019
WR025264.

J. Tang, Sebastien Vincent-Bonnieu, , and William R. Rossen. Experimental Investigation
of the Effect of Oil on Steady-State Foam Flow in Porous Media. SPE Journal, 24(01):
140-157, February 2019¢c. ISSN 1086-055X. doi: 10.2118/194015-PA.

J. Tang, S. Vincent-Bonnieu, and W. R. Rossen. CT coreflood study of foam flow for
enhanced oil recovery: The effect of oil type and saturation. FEnergy, 188:116022,
December 2019d. ISSN 0360-5442. doi: 10.1016/j.cnergy.2019.116022.

J. Tang, P. Castaneda, D. Marchesin, and W. R. Rossen. Foam-Oil Displacements in
Porous Media: Insights from Three-Phase Fractional-Flow Theory. In Day 4 Thu,
November 03, 2022, page D042S195R003, Abu Dhabi, UAE, October 2022. SPE. doi:
10.2118/211467-MS.

D. M. Tartakovsky. Probabilistic risk analysis in subsurface hydrology. Geophysical
Research Letters, 34(5), 2007. ISSN 1944-8007. doi: 10.1029/2007GL.029245.

R. Tripathi, Z. P. Alcorn, A. Graue, and S. D. Kulkarni. Combination of non-ionic and
cationic surfactants in generating stable CO2 foam for enhanced oil recovery and carbon
storage. Advances in Geo-Energy Research, 13(1):42-55, June 2024. ISSN 2208-598X.
doi: 10.46690/ager.2024.07.06.

A. R. Valdez, B. M. Rocha, G. Chapiro, and R. W. dos Santos. Uncertainty quantification
and sensitivity analysis for relative permeability models of two-phase flow in porous
media. Journal of Petroleum Science and Engineering, 192:107297, 2020. doi: 10.1016/j.
petrol.2020.107297.



128

A. R. Valdez, B. M. Rocha, Juliana Maria Facanha, Alexandre Vilela Oliveira de Souza,
Aurora Perez-Gramatges, Grigori Chapiro, and Rodrigo Weber dos Santos. Foam-assisted
water—gas flow parameters: From core-flood experiment to uncertainty quantification
and sensitivity analysis. Transport in Porous Media, pages 1-21, 2021. doi: 10.1007/s1
1242-021-01550-0.

A. R. Valdez, B. M. Rocha, G. Chapiro, and R. W. dos Santos. Assessing uncertainties
and identifiability of foam displacement models employing different objective functions
for parameter estimation. Journal of Petroleum Science and Engineering, page 110551,
2022. doi: 10.1016/j.petrol.2022.110551.

A. J. Castrillon Véasquez, L. F. Lozano, W. S. Pereira, J. B. Cedro, and G. Chapiro. The
traveling wavefront for foam flow in two-layer porous media. Computational Geosciences,
26(6):1549-1561, December 2022. ISSN 1573-1499. doi: 10.1007/s10596-022-10169-z.

A. Vicard, O. Atteia, H. Bertin, and J. Lachaud. Estimation of Local Equilibrium Foam
Model Parameters as Functions of the Foam Quality and the Total Superficial Velocity.
ACS Omega, 7(20):16866-16876, May 2022. doi: 10.1021/acsomega.1c04899.

R. A. M. Vieira, S. S. F. Dos Santos, L. P. T. Do Nascimento, D. M. P. T. De Souza,
and C. N. Da Silva. Experimental Characterization to Support a FAWAG Project in
an Offshore Pre-Salt Field. In Day 2 Tue, April 23, 2024, page D021S005R005, Tulsa,
Oklahoma, USA, April 2024. SPE. doi: 10.2118/218195-MS.

T. Wagener and F. Pianosi. What has global sensitivity analysis ever done for us? a
systematic review to support scientific advancement and to inform policy-making in

earth system modelling. Farth-science reviews, 194:1-18, 2019.

Z. Wang, S. Li, Z. Xu, S. A. Aryana, and J. Cai. Advances and challenges in foam stability:
Applications, mechanisms, and future directions. Capillarity, 15(3):58-73, May 2025.
ISSN 2652-3310. doi: 10.46690/capi.2025.06.02.

H. J. Welge. A Simplified Method for Computing Oil Recovery by Gas or Water Drive.
Journal of Petroleum Technology, 4(04):91-98, April 1952. ISSN 0149-2136. doi:
10.2118/124-G.

N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897-936,
1938.

D. Xiu. Numerical methods for stochastic computations: a spectral method approach.

Princeton university press, 2010.

D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations
with random inputs. SIAM Journal on Scientific Computing, 27(3):1118-1139, 2005.



129

D. Xiu and G. E. Karniadakis. The wiener—askey polynomial chaos for stochastic differential
equations. SIAM journal on scientific computing, 24(2):619-644, 2002.

R. Q. Zavala, L. F. Lozano, P. L. Zitha, and G. Chapiro. Analytical solution for the
population-balance model describing foam displacement. Transport in Porous Media,
pages 1-17, 2021.

R. Q. Zavala, L. F. Lozano, and G. Chapiro. Traveling wave solutions describing the foam
flow in porous media for low surfactant concentration. Computational Geosciences, 28
(2):323-340, 2024.

Y. Zeng, A. Muthuswamy, K. Ma, .. Wang, R. Farajzadeh, M. Puerto, S. Vincent-Bonnieu,
A. Eftekhari, Y. Wang, C. Da, et al. Insights on foam transport from a texture-implicit
local-equilibrium model with an improved parameter estimation algorithm. Industrial &
Engineering Chemistry Research, 55(28):7819-7829, 2016.

Z. F. Zhang, Vicky L. Freedman, and Lirong Zhong. Foam Transport in Porous Media -
A Review. Technical Report PNNL-18918, Pacific Northwest National Lab. (PNNL),
Richland, WA (United States), November 20009.

J. Zhao, Y. He, and J. Yang. Experimental and population balance model interpretation
of foam physics in porous media. Frontiers in Physics, 10, September 2022. ISSN
2296-424X. doi: 10.3389/fphy.2022.1028414.

K. Zhou, S. Li, X. Zhou, Y. Hu, C. Zhang, and J. Liu. Data-driven prediction and analysis
method for nanoparticle transport behavior in porous media. Measurement, 172:108869,
2021. doi: 10.1016/j.measurement.2020.108869.

Z. Zhou and W. R. Rossen. Applying fractional-flow theory to foam processes at the
limiting capillary pressure. SPE Advanced Technology Series, 3(01):154-162, 1995.

Y. Zhu. Ensemble forecast: A new approach to uncertainty and predictability. Advances
in Atmospheric Sciences, 22(6):781-788, November 2005. ISSN 1861-9533. doi: 10.1007/
BF02918678.

P. L. J. Zitha and D. X. Du. A new stochastic bubble population model for foam flow in
porous media. Transport in Porous Media, 83(3):603-621, 2010.



130

APPENDIX A — Supplementary Information for Chapter 3

A.1 Comparison of the Prior Selection by Bayesian Diagnostics

In Bayesian statistics, some practitioners support that if there is no prior knowledge
of how an event can occur, the event will be equally likely in any way. This is known as the
Principle of Insufficient Reason (PIR), enunciated by Jakob Bernoulli Jaynes (2003). A
noninformative prior is defined as a prior that provides little information about the studied
variable (Box and Tiao, 1992). Gelman et al. (1995) advocates that there is no truly
noninformative proper prior, in the sense that any prior includes some information. In
order to assess the quality of the proposed strategy against diagnostic tools and investigate
the nature of informative choices for priors, a truly uninformative prior is included in the
experiments by an improper prior. Improper priors do not follow the traditional rules
of probability distributions. They are often used in Bayesian statistics when the prior
information available is truly minimal or when it’s desirable to let the data dominate
the posterior distribution entirely. Improper priors don’t integrate to a finite value over
their entire support, which means they lack a well-defined probability density function.
It indicates no specific beliefs are introduced, allowing the data likelihood to drive the

posterior distribution.

Three setups of priors are defined varying the distributions of foam parameters
fmmob and sfbet: (1) Flat strategy: uninformed priors defined by the half-flat, restricting
only to positive real numbers; (2) Uniform strategy: the choices made by Valdez et al.
(2021, 2022); (3) Entropic prior: the one proposed in this work using the principle of
maximum entropy. Table 14 presents the three different setups. The other randomized
parameters follow the same distribution as presented in Table 3 of the manuscript. It is
important to notice that a fair mimicking of Valdez’s strategy on a synthetic dataset is

easy to define, as the boundaries are known. Table 15 summarizes the advantages of each

strategy.
Table 14 — Setup of parameters for the different strategies.

Parameter | Real Flat Uniform Entropic

fmmob 4341 U(0,00) U(10,106) Exp (fmmob_l)

s fbet 424 U(0, 00) U(1,10%) Ezxp (sfbet_l)

Table 15 — Advantages of each setup of priors.

Criteria/Pros Flat Prior | Uniform Prior | Entropic Prior
Computational Feasibility v v
Uninformative / Bias-Free v
Objectivity v
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The strategies are evaluated in terms of different diagnostic tools in the following

subsections.

A.1.1 Gelman-Rubin Statistic

Diagnostics in Bayesian inference involve assessing the convergence and quality
of the inferred posterior distribution. A commonly employed method of evaluating
convergence is analyzing the concurrence among the autonomous chains, which can be
graphically assessed by plotting each chain trace. The Gelman-Rubin statistic (R-hat or R)
is a diagnostic tool that quantifies the ratio of the average variance of within-chain samples

to the variance of pooled between-chain samples. Mathematically, it can be represented

5 var(fly)
R = T

var(f|y) is the pooled posterior variance, and W is the average within-chain variance. A

as:

value of R close to 1 indicates convergence and suggests that the multiple chains have
adequately explored the parameter space and reached a stable posterior distribution. In
contrast, if R significantly deviates from 1, it implies there may be issues with the model

or sampling algorithm, or further sampling may be required.

Figure 43 presents the Gelman-Rubin statistic for the three strategies. The Entropic
strategy presents a better agreement among the four chains. Although not subjected to
modifications in the experiments, SF' faced more convergence issues than s fbet, suggesting
the interdependence of parameters and underscoring the significance of defining priors for

Bayesian inference.

A.1.2 Autocorrelation Function

The autocorrelation function (ACF) plot is one of the most used diagnostic tools
in Bayesian inference to assess its efficiency. The plot illustrates the correlation between a
sample and its subsequent samples at different lags or steps. A quick drop in autocorrelation
values as you move away from lag zero indicates efficient sampling, meaning the chain
is exploring the parameter space well. Conversely, high and sustained autocorrelation
suggests poor mixing, implying that the chain is moving slowly through the parameter
space and might require more samples or even model reparameterization for reliable

inference.

The autocorrelation is evaluated for each chain with a lag of 100 samples. In Figure
44, the ACF plot showcases four chains from the same experiment in a single column,
each chain differentiated by color. Once again, the advantages of the Entropic strategy

are visible. However, chain number 2 of the Entropic strategy displays values surpassing
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Figure 43 — The Gelman-Rubin statistics for each experiment of prior choices.

the 0.1 threshold for a lag of 100 samples, indicating potential problems with mixing,

convergence, or efficiency in exploring the posterior distribution.

A.1.3 Divergent Transitions

Divergences, or divergent transitions, can be employed as a diagnostic tool to
compare different choices of priors, as they indicate inadequate parameter adaptation
in HMC. They occur when the trajectory deviates from the expected Hamiltonian path
due to complex or steep posterior geometry (Betancourt, 2018; Gelman et al., 2021).
Persistent or clustered divergences can signal problematic areas in the parameter space
that require careful examination. Comparing divergence patterns for different priors offers
a quantitative way to assess their impact on the Bayesian regression process (Betancourt
and Girolami, 2013; Carpenter et al., 2017). Expanding the dataset in a well-defined
Bayesian model can improve the estimation of the posterior distribution. Inadequate

models may still show persistent divergences regardless of the size of the data.

The four chains’ trace plots are displayed side by side, along with the corresponding

distribution approach for each parameter in Figures 45, 46, and 47.

Table 16 presents the estimated values by the proposed approach for initial guesses,

the set of distributions for the entropic priors experiment, and the uniform priors.

The results here suggest a huge potential in expanding the application of the

maximum entropy principle to consider the knowledge of prior beliefs, more complex
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Figure 44 — Plots of autocorrelation function colored by chains, with a maximum lag of 100
samples. The threshold for acceptable autocorrelation is marked by the dashed horizontal

line at 0.1.

Table 16 — Comparison of parameters median and standard deviation across different
choices for the prior distributions.

Median #+ Standard Deviation

Real Uniform Entropic
fmmob  4.341 x 103 (2.720 & 00) x 10%7 (6.834 £ 2.690) x 10° (4.481 £ 0.266) x 103
sfbet 4.240 x 102 (1.734 £ c0) x 10396 (2.625 + 1.680) x 102 (2.687 £0.917) x 102
SF 3.409 x 1071 (3.321 +£2.22) x 107! (5.821 £1.120) x 10! (3.328 £0.102) x 10!
Ty 4.200 x 10° (3.998 £ 0.202) x 10° (4.014 £ 0.207) x 10° (4.006 £ 0.204) x 10°
Ng 1.400 x 10° (1.390 £ 0.054) x 10° (1.390 £ 0.054) x 10° (1.385 4 0.053) x 109
ke 5.000 x 1071 (4.809 4 0.186) x 10~ (4.818 +0.192) x 10~ (4.816 £ 0.188) x 107!
kgg 6.000 x 1071 (5.83940.13) x 10! (5.836 £0.128) x 10! (5.831 £0.127) x 10!

models, and systems, leveraging its honesty and objectivity.

A.2 Effects of Noise on Parameter Estimation

In the process of estimating parameters from a synthetic dataset, experiments

reveal distinct outcomes in scenarios with and without noise. Without noise, the model

demonstrates a high capability for precise parameter estimation, aligning closely with the

ground truth. This is evidenced by accurately matching parameters described in Table 17.

Conversely, introducing noise complicates the parameter estimation, leading to deviations

from the ground truth despite achieving a statistically good fit between the simulated

curve and noisy data. The following tables summarize the results from both experiments:

Notably, parameters n,, ng, k>

Tw?

and ko exhibit slight deviations with reason-

able accuracy, yet fmmob and sfbet show larger discrepancies and uncertainties. This
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Figure 45 — Trace plot for Flat prior. Number of divergences: 283014
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Figure 47 — Trace plot for Entropic prior. Number of divergences: 0

underscores the noise impact on the robustness of parameter estimation, leading to
solutions that fit the observed data well but deviate from the actual ground truth. Signifi-
cant correlation coefficients between parameters found during the optimization, such as
C(ny, SF) = 0.9862, C(ny, k2,) = 0.8316, C(k2,, SF) = 0.7815 and C(n,, k,(?g) = 0.7567,
indicate interdependencies among parameters, influencing the model’s sensitivity to noise
and affecting the precision of parameter recovery. Figure 48 compares the optimization

runs with and without noise, highlighting the effects of noise in the fitting process.
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Table 17 — Comparison between experiments

Parameter Ground Truth Fitting Results
w/0 noise w/ noise
fmmob 4341 4339.821 4670.670 £ 637.715 (13.65%)
s fbet 424 424.2472 306.7279 + 166.941 (54.43%)
SF 0.3409 0.340924 0.332246 + 0.00771 (2.32%)
o 4.200 4.199071 3.986546 + 0.15234 (3.82%)
Ng 1.400 1.400099 1.386151 + 0.04276 (3.08%)
K2, 0.5 0.499938 0.480179 + 0.01401 (2.92%)
k:,‘?g 0.6 0.600026 0.583317 + 0.01021 (1.75%)
(a) Optimization with no noise.
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A.3 Case Studies

Figure 48 — Comparative optimization results.

To deepen the analysis of model response via the sensitivity analysis, three case

studies with steady-state data from the literature will be evaluated. Datasets for a water-

wet case based on Chabert et al. (2012), a gas-wet case based on the Moradi-Araghi

et al. (1997), and a mixed-wet case Ma et al. (2013) will be generated considering the

real steady-state dataset of foam strength vs. foam quality and its respective relative

permeability based on the models presented in Boeije and Rossen (2013).
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A.3.1 Water-wet Case

The image shown in Figure 49 supports some of the findings discussed in Section
3 of the manuscript. Specifically, in the low-quality regime, the parameter fmmob rules
the sensitivity of the apparent viscosity, while in the high-quality regime, the parameter
SF remains one of the most important. However, the parameter n,, does not contribute
significantly to the variance response, and its interactions with SF are less important.
However, it is important to note that there is a high degree of uncertainty in the sharpness
of the transition between the two regimes. This indicates that the parameter sfbet has a
distribution with a not well-defined mean value, confirmed in Figure 50, which is reflected

in the sensitivity analysis as one of the most influential parameters for this particular case.
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Figure 49 — Propagated uncertainties and Sobol analysis for relative permeability and
implicit texture of foam models Chabert et al. (2012) dataset.

Figure 50 shows that the correlation between n,, and SF is not as strong as the
synthetic case. It is important to remark that the uncertainties will be greater due to the

size of this dataset.
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A.3.2 Gas-wet Case

The sensitivity of the parameters studied is confirmed once again, but now effects
from the gas relative permeability parameters, n, and kgg are more notable along the
entire low-quality region in Figure 51. The wider range of values for both n, and k:?g found

in Figure 52 can influence this contribution.
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Figure 51 — Propagated uncertainties and Sobol analysis for relative permeability and
implicit texture of foam models for Moradi-Araghi et al. (1997) dataset.

A.3.3 Mixed-wet Case

The last experiment shows results similar to those of the synthetic dataset in the
paper, with a mixed-wet behavior. Although Figure 53 exhibits an earlier transition
between regimes, fmmob still drives variations in low-quality regimes, while SF and

n, interactions govern high-quality. As the transition between regimes is more abrupt,
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Figure 52 — Joint distribution and correlation analysis for Moradi-Araghi et al. (1997)
dataset.

so are the changes in the most influential parameters. Also, as the dataset contains a
larger number of foam quality responses, many of which are in the high-quality range, the

estimations shown in Figure 54 are more well-defined than in the other two studied cases.
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Figure 53 — Propagated uncertainties and Sobol analysis for relative permeability and
implicit texture of foam models for Ma et al. (2013) dataset.
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Figure 54 — Joint distribution and correlation analysis for Ma et al. (2013) dataset.
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APPENDIX B — Supplementary Information for Chapter 4

B.1 Water and Oil Saturations

A key step in estimating foam parameters from solely foam quality scan data
(fgs tapp) is determining the corresponding phase saturations. We generalize the established
method for two-phase (water-gas) flow, which relies on Brooks-Corey relations (Farajzadeh
et al., 2015¢; Eftekhari and Farajzadeh, 2017; Ribeiro et al., 2024), to the three-phase case
at a fixed oil-water injection ratio (u,/u,). This extension allows for the direct estimation

of steady-state water and oil saturations from the experimental observables, as follows:

pw 1= Jg ﬁ
Sw = 1— ch - Sor — r ch- B.1
(kgwﬂappl‘{'g_;) ( or) ¥ / (B1)

fo 1 _fg s
o — 1-— we — Mor T 7 or- B.2
g (kgoﬂappl"{'z_f) ( ° = Sr) +5 (B2)

B.2 Deterministic Calibration

Deterministic optimization methods that yield a single best-fit parameter set can
mask significant mismatches, particularly when applied to sparse experimental data. To
illustrate this issue, we investigate the full and scarce datasets presented in Figure 12
using the differential evolution (DE) method (Storn and Price, 1997).

Figure 55 shows the fitting results obtained with the full and scarce datasets. For
the full dataset, a good agreement with the ground truth is observed, whereas for the
scarce dataset, the estimated F,; response deviates significantly. This behavior is also
observed when using Bayesian inference methods. However, an additional advantage of
the latter is the ability to estimate the posterior distributions of the parameters (see
Figures 6, 7, and 12), which enables a more rigorous assessment of uncertainty. This,
in turn, supports the evaluation of the fitting quality through the parameters’ posterior

distributions and the propagation of uncertainties to the simulation outputs.

1.0 3 +  Observed Data
—— Fitted Parameters

0.84 ====- Ground Truth

0.0 e ;
0.0 0.2 0.4 0.6 0.8 10 00 0.2 0.4 0.6 0.8 1.0
S{) ‘sll

Figure 55 — Deterministic fitting for the full (left) and scarce (right) datasets.



143

B.3 Parameter Calibration Robustness

This appendix assesses the robustness of the parameter estimation methodology

against increased measurement noise. We also analyze the impact of different prior

distributions and a model simplification to address parameter identifiability challenges
that emerge under high-noise conditions.

B.3.1 Sensitivity to Noise

We evaluated the parameter estimation performance with measurement noise

increased from the 2% baseline (main text, Figures 6 and 7) to 5% and 10%.

The results for the addition of 5% noise are shown in Figure 56. The right panel
presents the posterior distributions, where the increase in uncertainty is almost negligible.

The left panel displays the fitted curve for the F,; function, which begins to deviate from
the ground truth.

Sfmoil

+  Observed Data

A -===- Ground Truth
0.8 1 9 ——  50% Quantile
) (5-95%) Quantiles
_ 061
0.4 1
3
g 0.2
0.01
0.075 0.100 0.125 S 5 10 0.0 0.2 0.4 0.6 0.8
floil fmoil epoil

S,

Figure 56 — Parameter posterior distributions (left) and F,; function estimation (right)
with 5% measurement noise.

Further increasing the noise level to 10% degrades the recovery of both the ground
truth parameters and the F,; function, as shown in Figure 57. The results also show that

the posterior distribution of epoil becomes truncated at its upper bound, suggesting that

the uniform prior is overly restrictive in this case.
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Figure 57 — Parameter posterior distributions (left) and F,; function estimation (right)
with 10% measurement noise.

B.3.2 Prior Distribution Comparison

The choice of prior distributions can influence parameter estimation, particularly
when data is limited. This interval definition is clear for the parameters defining oil
saturation thresholds floil and fmoil. However, it is not true for the exponent epoil. While
our original choice sought to illustrate a typical box-constrained search space used in
optimization procedures with a sufficiently broad range, this may not be well-constrained

for epoil that may assume any positive real numbers.

To address the identifiability issues observed at 10% noise, we explore two alternative
prior distributions for the exponent parameter epoil, while keeping the same physically

based uniform priors for floil and fmoil. The following choices were explored:

1. A wider uniform prior, epoil ~ U(1072,50), to have a less informative specification.

2. An exponential prior, epoil ~ Exp(\ = 1), which assigns higher probability to smaller
values but does not impose a strict upper bound (see de Miranda et al. (2024) for

more details about this choice for prior distribution).

The wider uniform prior resolves the boundary truncation issue (reported in Fig. 57),
as the posterior for epoil concentrates well below the new upper limit of 20 (Figure 58).
However, the posterior distributions obtained in this case are even less precise, especially

for fmoil and epoil.
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Figure 58 — Parameter posterior distributions (left) and F,; function estimation (right)
with 10% measurement noise and and an extended uniform prior for epoil up to 50.

In contrast, the results for the exponential prior for epoil significantly improve
parameter identifiability (Figure 59). The posterior correlation is visibly reduced, and the
posterior mode for fmoil aligns closely with the ground-truth value. This improvement
occurs despite the modification being applied only to the prior for epoil. The propagated

uncertainty in the estimated F,; function remains comparable to the uniform prior case.
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Figure 59 — Parameter posterior distributions (left) and F,; function estimation (right)
with 10% measurement noise and exponential prior for epoil.

B.3.3 Model Simplification

A core physical assumption of our model is that oil affects foam only at saturations
exceeding its residual value (S,,.). This premise provides direct physical motivation for
a model simplification: setting the parameter floil = S,.. Driven by this, and by the
persistent correlation between fmoil and epoil observed in all cases, a final test was
conducted. We evaluated this simplified model under the high-noise scenario using both

the uniform and exponential priors.

With a uniform prior for epoil, the simplified model’s posteriors (Figure 60) align

better with the ground-truth. Nevertheless, the distributions of the remaining parameters
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are wider, and the correlation between them does not decrease significantly. This results in

greater propagated uncertainty to the F,; function for oil saturations near fmoil, despite

lower near floil.
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Figure 60 — Parameter posterior distributions (left) and F,; function estimation (right)
with 10% measurement noise and exponential prior for epoil.

Finally, we evaluate the exponential prior in the simplified model using the expo-

nential prior. Figure 61 (left) shows similar results compared to Figure 59
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Figure 61 — Parameter posterior distributions (left) and F,; function estimation (right)
with 10% measurement noise and exponential prior for epoil.

While the constraint floil = S, provides a physically motivated simplification that
improves the mathematical conditioning of the inverse problem, the persistent correlation
between fmoil and epoil across all evaluated cases is symptomatic of a structural dependency.
This dependency, analogous to collinearity, prevents the data from cleanly distinguishing

the individual effects of these two parameters on the model output (McElreath, 2020).

B.3.4 Modified synthetic dataset with a lower fmoil

We present additional numerical simulations conducted with a modified oil-related

foam parameter fmoil = 0.3 (Case 1 from Lyu et al. (2021b)) instead of fmoil = 0.5 used
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in the main text (Case 2 from Lyu et al. (2021b)). This lower value of fmoil represents
a case where foam destruction occurs at lower oil saturations, making the system more

sensitive to the presence of oil.

The simulations follow the same methodology described in the main text, with
all fluid properties and parameters remaining identical except for the modified value of
fmoil. The computational domain, numerical implementation, and simulation conditions

are maintained as described in the main text.

As in the main paper, we employed the same injection protocol with fixed gas
fraction f; =0.3 (determined from the foam quality scan) while progressively increasing
the oil-water ratio wu,/u,. Figure 62 illustrates the pressure drop evolution during this
procedure and the steady-state values of apparent viscosity as a function of oil fraction.
Notice that in this setup, reaching the steady-state configuration may take a much longer

time, especially for
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Figure 62 — Simulated pressure drops (left) and steady-state apparent viscosity (right)
with increasing oil injection at fixed gas fraction f, = 0.3.

Figure 63 presents the average saturation levels for each phase during the simulation.
The results show that the transition from foam-dominated flow to oil-dominated flow
occurs at lower oil saturations, consistent with the reduced fmoil value. The critical
threshold where foam effectiveness begins to diminish is reached significantly earlier in the

injection sequence.
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Figure 63 — Simulated saturations with increasing oil injection at [, = 0.3 .

Figure 64 illustrates the posterior distribution derived from the Bayesian inference
process, along with the associated uncertainties and observed data points. There is a
clear agreement with the ground truth, accompanied by minimal propagated uncertainty.
This improvement can be attributed to the fact that the modified case provided more
representative data points for the F; curve with low levels of added noise. Consequently,

this results in virtually no identifiability issues regarding the F,; function.
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Figure 64 — Left: Posterior probability distributions and estimation of the F,; obtained
through Bayesian inference. Right: Propagated uncertainties to the F,; function.

The additional results show a higher sensitivity to increases in oil fraction with

fmoil = 0.3, where small increases in the oil-water ratio significantly reduce foam effec-



