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RESUMO

O surgimento da tecnologia da Internet das Coisas (IoT) com uma ampla gama
de aplicagoes inovadoras, como cidades e casas inteligentes, exige a dependéncia da
comunicacao sem fio para coletar e transmitir grandes quantidades de dados. Os recentes
avangos na tecnologia sem fio, como as redes de area ampla de baixa poténcia (LPWAN) e
os protocolos de comunicacao sub-GHz, como o LoRaWAN, oferecem uma solucao eficaz
para a conectividade de longo alcance entre dispositivos de IoT com baixo consumo de
energia e custos de implantacao reduzidos. Embora a tecnologia de modulacao LoRaWAN
permita adaptar as transmissoes com base em parametros, por exemplo, a relacao sinal-
ruido (SNR), a medida que a adogdo da tecnologia de comunica¢ao em um determinado
espectro de frequéncia aumenta, a disputa do meio de transmissao e a intensidade da
interferéncia também aumentam. O conceito de Rddio Cognitivo (CR) suporta o ajuste
dindmico dos parametros da rede LoRa para mitigar a interferéncia e o congestionamento
da rede. Neste trabalho, é proposta a técnica Weighted Moving Average (WMA) para
reduzir o congestionamento de redes de dispositivos [oT que utizam o protocolo LoRa, por
meio da melhoria do SNR, minimizando a perda de pacotes. Um experimento controlado foi
conduzido em um ambiente de teste de rede de uma universidade para avaliar a viabilidade
da técnica de modulacdo WMA proposta. Os resultados demonstraram que WMA reduziu
em 5.65% o tempo de reconfiguracao da rede e melhorou em 39.09% o SNR em comparacio
com Sliding Change e LR-ADR (Long-Range Adaptive Data Rate).

Palavras-chave: Rede LoRa; Internet das Coisas; Weighted Moving Average;

Relagao sinal-ruido; Mudanca deslizante.



ABSTRACT

The rise of Internet of Things (IoT) with a wide range of innovative applications
such as autonomous vehicles, smart cities, and smart homes demands reliance on wireless
communication to collect and transmit a massive amount of data. Recent advances in
wireless technology, such as Low-Power Wide Area Networks (LPWAN) and Sub-GHz
communication protocols (e.g., LoORaWAN) have been demonstrated to be effective in
supporting long-range (LoRa) connectivity between IoT devices with low power con-
sumption and reduced deployment costs. Although LoRaWAN signal modulation enables
adapting transmissions based on parameters (e.g., Signal to Noise Ratio - SNR), as the
adoption of the communication technology in a given frequency spectrum increases, the
transmission medium dispute and interference also increase. The Cognitive Radio (CR)
supports the dynamic adjustment of LoRa network parameters to mitigate interference
and network congestion. In this master’s thesis, a Weighted Moving Average (WMA)
adaptation technique is proposed to reduce network congestion by improving SNR, and
minimizing packet loss in LoRa-based networks of IoT devices. A controlled experiment
was conducted in a university testbed network environment to evaluate the feasibility of
the proposed WMA modulation technique. The results demonstrated that the proposed
WMA technique reduced 5.65% the network reconfiguration time, and improved the SNR
at 39.09% compared to Sliding Change and LR-ADR (Long-Range Adaptive Data Rate)

state-of-the-art techniques.

Keywords: LoRa network; Internet of Things; Weighted Moving Average; Signal
to Noise Ratio; Sliding Change.
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1 INTRODUCTION

1.1 Context

The rise of Long-Range (LR) communication and Internet of Things (IoT) techno-
logies enables the creation of a wide range of innovative applications in domains such as
autonomous vehicles, smart cities,homes,farms, and long-range machine-to-machine com-
munication Lima et al. [2021]. Those applications heavily rely on wireless communication
technology to collect and transmit more data to a central server for further analysis. Since
communication is needed for the massive adoption and deployment of IoT applications
[Lima et al., 2021], recent advances in LR wireless communication technologies such as
Low Power Wide Area Networks (LPWAN) have attracted the attention of researchers and
companies around the world. LPWAN technologies enable IoT applications by providing
high coverage with low power consumption [Silva et al., 2021]. Long-Range (LoRa®)
[LoRa-Alliance, 2022] technology has been adopted due to its robustness and low power
consumption, without compromising signal range and coverage. For this reason, LoRa is a
promising alternative physical layer technology for ubiquitous connectivity to outdoor IoT

devices Silva et al. [2023b].
LoRa physical radio frequency(RF) modulation technology relies on Chirp Spread

Spectrum (CSS) modulation. LoRa modulation technology supports adapting transmissions
based on parameters such as carrier frequency, channel bandwidth (BW), spreading factor
(SF), coding rate (CR), and/or Signal to Noise Ratio (SNR) Silva et al. [2023b].On the
other hand, LoRaWAN considers the LoRa radio as the physical layer, and defines the
upper layers and the network architecture [Alliance, 2015a]. Thus, as the adoption of
communication technology within a given frequency spectrum increases, the dispute for
the transmission medium (i.e., concurrency) and the intensity of interference also increase.
This issue reduces the packet delivery probability, and there is a need for using the
frequency spectrum to increase the overall network efficiency [Figueiredo and Franco Silva,
2020].

1.2 Motivation and Research Problem

Since LoRa technology operates in three discontinuous frequency bands, specifically
433 MHz, 868 MHz, and 915 MHz, it is more challenging to adopt aggregation channel or
channel shift strategies than in IEEE 802.11 networks Perahia and Stacey [2013]. Moreover,
inter-symbol interference between channels within one of these frequency bands can be
equally harmful to the network due to the use of a spread-spectrum modulation scheme.
The concept of CR, supported by current advances in Software Defined Radio (SDR)
technologies [Mitola and Maguire, 1999], allows a radio or a system to sense its operational

electromagnetic environment and dynamically adjust its operating parameters to maximize
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throughput, reduce interference, support interoperability, and access secondary markets
[Yucek and Arslan, 2009]. Due to the potential use of free spectra for opportunistic
communications, which contributes to the massive adoption of IoT applications, research
and development on CR technologies have grown exponentially [Mitola and Maguire, 1999;
Yucek and Arslan, 2009].

CR-based technologies support adaptive and autonomous spectral awareness (spec-
trum sensing (SS)), detection of available channels (spectrum decision making), dynamic
adjustment of radio operating parameters (spectrum mobility), and concurrent communi-
cation (spectrum sharing) Mitola and Maguire [1999] Yucek and Arslan [2009]. In this
context, cognitive networks and adaptive exchanges of network operating frequencies
become an enjoyable to improve the physical parameters of network quality over time
[Figueiredo and Franco Silva, 2020] [Abdelfadeel et al., 2018] [Farhad et al., 2022]. It
raises the following research question (RQ): How can cognitive radio and adaptive ex-
change of networks be combined to reduce inter-symbolic interference between channels in
LoRa-based networks?

Previous work in this direction includes a linear regression extension of the Adaptive
Data Rate (LR-ADR) [Moysiadis et al., 2021] resource allocation mechanism for the
network server side to smooth the SNR per gateway and to support LoRa-enabled end
devices (EDs) to regain connectivity with the network server faster. Similarly, the Instant
Change [Figueiredo and Franco Silva, 2020] adaptive method improves the SNR, bit
error rate (BER), and frequency change LoRa network parameters. However, Instant
Change only considers the values of the most recent SNR samples of LoRa messages on
the 433 MHz and 915 MHz frequencies for decision-making Silva et al. [2023b] Figueiredo
and Franco Silva [2020]. We utilize these frequency bands due to the free license bands.
Later, the SlidingChange algorithm [Silva et al., 2023a] was proposed to address the
limitations of the Instant Change method. Sliding Change considers an average of Wn-1
(Wn represents the size of the sliding window to be used), previous measurements, and the
current measurement to smooth out punctual effects and impulsive noise that can occur
in the transmission environment. However, the results of the SlidingChange technique
demonstrated a small gain in SNR, scoring a reduction of 39.09% on the average SNR
compared to Instant Change. Although their benefits exist, existing Cognitive Radio-based
techniques have limitations regarding the maintenance of the signal quality in LoRa-
based networks operating under dynamic environments subject to interference (noise).
Instant Change is sensitive to short-term fluctuations and often triggers unnecessary
reconfigurations, degrading performance and increasing power consumption. While sliding
change is more stable, it lacks flexibility in the provision of an efficient response time to
changing conditions due to its fixed window weight approach. Finally, LR-ADR Moysiadis
et al. [2021]operates on the server side and multiple gateways. limited to responding to

SNR variations at the single gateway level.
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1.3 Research Goals and Contributions

To address the limitations from related work Silva et al. [2023b] Moysiadis et al.
[2021] concerning the provision of effective responses to variations in the SNR, and the en-
vironmental noise, this study introduces the master’s thesis, we propose Weighted Moving
Average (WMA) adaptation technique to reduce network congestion, improve SNR, and
minimize packet loss in LoRa-based networks at the gateway level, thus improving the
overall efficiency of IoT networks and gateways. The proposed WMA technique uses the
SNR and weight to smooth short-term variations, reducing unnecessary network reconfigu-
rations and improving availability of the lora network. We proposed the feasibility WMA
technique which evaluated in an experimental study that assessed the performance concer-
ning network parameters such as SNR, BER, BW, and frequency against SlidingChange
and LR-ADR was chosen because it is another state-of-the-art cognitive radio-based
technique for reconfiguring LoRa-based IoT networks. The experiment was conducted in a
controlled testbed environment to measure SNR at the gateway level in a LoRaWAN-based
network, packet loss rates, and network reconfiguration efficiency against SlidingChange
and LR-ADR techniques.

The results demonstrated that the proposed WMA adaptive technique may contri-
bute to improving signal quality by enhancing the average SNR received at the gateway
via smoothing short-term fluctuations using a dynamically weighted approach. It also
demonstrated the potential of the WMA technique in reducing the Bit Error Rate by
optimizing data transmission parameters and minimizing packet loss by reducing recon-
figurations of the lora network. The reduction of the number of reconfigurations also

contributes to maintaining network stability by reducing the overhead.

1.4 Organization

This dissertation is organized into five chapters. Chapter 2 presents the concepts
of LoRa technology, Cognitive Radio, and adaptive communication techniques, and a
discussion on related work, needed for the reader to understand the contributions of this
research. Chapter 3 describes the design and implementation of the Weighted Moving
Average (WMA) adaptation technique. Chapter 4 describes the feasibility evaluation
of the proposed WMA adaptation technique in a testbed environment of a university
LoRa-based network. Chapter 5 presents the results, which include a comparative analysis
of the proposed WMA technique against Sliding and LR-ADR state-of-the-art techniques.
Chapter 6 highlights the research findings, their benefits, and limitations, and discusses

future research directions.
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2 BACKGROUND

This chapter presents the background concepts needed for the reader to understand
the context of the research contributions. Section 2.1 provides an overview of LoRa
(Long-Range) communication technology. Section 2.2 presents the LoRa Wide Area
Network protocol and illustrates LoRaWAN applications. Section 2.3 describes LoRa
modulation parameters. Section 2.4 presents the LoRaWAN architecture. Section 2.5
describes adaptive techniques in LoRa-based networks. Section 2.6 presents a discussion

on related works.

2.1 LoRa Technology

LoRa is a modulation technique derived from Chirp Spread Spectrum (CSS) te-
chnology, initially developed by Cycleo of Grenoble, France, and subsequently acquired
by Semtech Corporation, a notable supplier of analog and mixed-signal semiconductors.
The LoRa modulation technique is pivotal in the physical layer to facilitate LoRa wireless
communications networks [Cycleo, 2020]. The features of LoRa maintain communication
over extended distances with minimal power consumption, making it particularly advanta-
geous for various wireless applications Haxhibeqiri et al. [2018] Silva et al. [2023b]. LoRa
technology employs a unique method known as CSS, which is combined with Forward
Error Correction (FEC) to enhance the reliability and range of communications, and
CSS uses chirp spread spectrum signals whose frequency increases or decreases with time
[Alliance, 2025]. LoRa key features are detailed in the following:

« Long Range Communication: LoRa enables long-range communication, typically
15-20 km in rural areas and 2-5 km in urban environments Haxhibeqiri et al. [2018§]
Ramesh et al. [2020]. It is supported by the strength of CSS modulation and its low

sensitivity to noise across different frequency bands.

o Low Power Consumption: LoRa is optimized for low power consumption, facilita-
ting to enabling devices to operate for 5 to 10 years on a single battery, an essential
feature for remote applications. where frequent battery replacement is impractical
Haxhibeqiri et al. [2018] Silva et al. [2023b].

« Robustness in Adverse Conditions: LoRa operates in unlicensed frequency bands,
Such as 433 MHz and 915 MHz Alliance [2015b] Haxhibeqiri et al. [2018], providing
a cost-effective solution for global wireless applications. Its intense signal penetrates

through walls and buildings, ensuring reliability in dense indoor environments.

o Scalability and Data Rate Adjustment A key advantage of LoRa technology is
its adaptable data rate, which can be tuned through parameters such as SF, BW,
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and CR Moysiadis et al. [2021]. Higher SF values increase communication range
and reliability at the cost of reduced data rate, while lower SF values enable faster

data transmission, making them suitable for time-sensitive applications Silva et al.
[2023Db].

2.2 LoRaWAN Protocol and its Applications

Long Range Wide Area Network (LoRaWAN) is a network protocol developed by
the LoRa Alliance, built on top of the LoRa physical layer to enable scalable, low-power
communication for IoT applications [Cycleo, 2020] Alliance [2015b] Haxhibeqiri et al.
[2018]. LoRaWAN defines the system architecture and communication rules necessary
for reliable large-scale deployments. It uses a star-of-stars topology, EDs transmit via
single-hop wireless links to one or more Gateways, which forward data to a central network

server over standard IP networks, as illustrated in Fig. 1.

O O

@ Gateway / \
O O

O End devices

Fig.1. Star topology.

LoRaWAN supports both bi-directional communication and multicast operations,
allowing remote management tasks such as over-the-air (OTA) firmware updates Alliance
[2015b] Haxhibeqiri et al. [2018]. It incorporates ADR algorithms to optimize transmission
power and data rates based on network conditions, significantly enhancing battery life and
network capacity [Serati et al., 2022]. LoRaWAN ensures compatibility and scalability
across regions. It extends the LoRa physical layer by providing a standardized framework
that supports large-scale, low-power, and LoRa IoT deployments, thereby accelerating the

global demands of IoT ecosystems. LoRaWAN key features include:

o Network Structure: LoRaWAN defines the communication protocol and network
architecture, while the LoRa physical layer is responsible for establishing the wireless
links Alliance [2015b] Haxhibeqiri et al. [2018]. The network uses a star-of-stars
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topology, in which gateways relay messages between end devices (EDs) and a central
network server Ertiirk et al. [2019] Haddaoui et al. [2022].

o Battery Life: The protocol is designed to optimize the battery life of network
devices and minimize the energy required to communicate, which is achieved through

efficient communication scheduling that reduces the on-air time.

o Security: LoRaWAN emphasizes security with end-to-end encryption, unique
network keys for each device, and mutual authentication to ensure secure connections

between the network server and devices.

« Adaptive Data Rate (ADR): This feature optimizes data rates, airtime, and
energy consumption by ADR, transmission power, and repetition rates based on the

network conditions or the requirements of the end device.

LoRa and LoRaWAN are widely used in IoT applications across several domains
due to their long-range and low-power consumption capabilities. Some typical applications

of LoRa and LoRaWAN include IoT applications across the following domains:

o Smart Cities: LoRa and LoRaWAN, characterized by LoRa communication and
low power consumption, are fundamental to smart city infrastructure. They enable
efficient street lighting, waste management, and parking systems by optimizing
energy use, monitoring bin levels, and guiding drivers to available spaces. LoRa-
enabled sensors facilitate real-time monitoring, while LoRaWAN enhances operational

efficiency and fosters sustainable, connected urban environments.

o« Smart Homes and Buildings: In smart homes and buildings, LoRa technology
enhances building management systems by integrating sensors that monitor energy
usage, environmental conditions, and security systems. These sensors can help opti-
mize heating, ventilation, and air conditioning (HVAC) systems based on occupancy
and weather conditions, improve security through window and door sensors, and

manage lighting and other electrical appliances to maximize energy efficiency.

o Agriculture: LoRaWAN addresses the challenge of monitoring large, remote areas
by enabling cost-effective communication. Key applications include soil moisture
monitoring for precision irrigation, enhancing water use efficiency, and crop health
monitoring to detect early signs of disease or plant stress, allowing timely interventi-
ons. LoRa also supports livestock tracking by monitoring movement and behavior,
which helps improve animal well-being and reduce the risk of theft. By levera-
ging LoRa, farmers can increase operational efficiency, boost yields, and promote

sustainability.
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e Industrial Automation: LoRa technology plays a crucial role in industrial auto-
mation, enabling remote monitoring and predictive equipment maintenance. Sensors
collect performance data, which is analyzed to predict failures and schedule mainte-
nance, reducing downtime and costs. LoRa also monitors environmental factors such
as temperature, humidity, and vibrations, ensuring optimal equipment and worker sa-
fety conditions. The remote monitoring enhances operational efficiency and supports

health and safety compliance, driving innovative manufacturing advancements.

e« Smart Meters: In the utilities sector, LoRaWAN facilitates the remote and
automated reading of water, gas, and electric meters. This remote data collection
capability enables utility providers to monitor consumption accurately and in real-
time without requiring manual meter readings. Such applications lead to more
accurate billing processes and provide consumers with detailed consumption data,

encouraging energy and resource conservation.

o Environmental Monitoring: LoRa technology is essential for environmental
monitoring, enabling LoRa tracking of air quality and water levels. LoRaWAN-
equipped sensors provide continuous data from remote locations, which is crucial for
early warning systems in flood-prone areas and pollution monitoring. This timely
data supports disaster management planning (preparedness), pollution control, and
sustainable resource management, supporting practical environmental protection

efforts.

o« Healthcare: LoRa technology is increasingly applied in healthcare for remote
patient monitoring. Wearable devices with LoRaWAN track vital signs like heart
rate, blood pressure, and glucose levels, transmitting data to healthcare providers
for continuous monitoring, which improves chronic disease management and primary

care, reducing hospital visits and healthcare costs.

o Supply Chain and Logistics: In the logistics sector, LoRaWAN facilitates supply
chain management through asset tracking and inventory management. Sensors
can monitor the conditions and locations of goods throughout the supply chain,
from warehouses to transportation to final delivery. This monitoring includes
tracking sensitive goods’ temperature and humidity conditions, such as food and

pharmaceuticals, ensuring they are stored and transported safely.

o Utility and Infrastructure Management: LoRaWAN supports the manage-
ment of critical infrastructure bridges, roads, and railways by enabling predictive
maintenance and structural health monitoring. Sensors detect and report issues such
as cracks, vibrations, and structural weaknesses, facilitating timely interventions that
enhance safety and reduce repair costs. The flexibility and scalability of LoRa and

LoRaWAN technologies address the diverse demands of modern IoT applications,
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establishing their crucial role in advancing digital transformation and contributing

significantly to the global IoT ecosystem.

2.3 LoRa Modulation and Key Parameters

LoRa modulation technique, developed by Semtech Corporation, is the physical layer
of LoRaWAN and uses CSS technology, which offers strong resistance to interference and
multipath fading Cycleo [2020] LoRa Alliance [2015]. It employs frequency-varying chirp
pulses to enable low-power communication by encoding multiple bits per chirp. Compared
to traditional Frequency Shift Keying (FSK), LoRa provides better transmission over long
distances and low SNR conditions, making it suitable for various LPWAN applications in

urban and remote areas. LoRa modulation parameters are listed in the following:

« Spreading Factor(SF): In LoRa modulation, the Spreading Factor determines
the ratio between the symbol rate and the chip rate Silva et al. [2023a]. Tt directly
affects the time-on-air, link budget, and communication range. A higher SF increases
the duration of each symbol, thereby enhancing receiver sensitivity and improving
range and robustness against interference, but at the cost of a lower data rate.
However, this increase in signal duration comes with trade-offs: Reduced Data
Rate: As the SF increases, the data rate decreases because the same amount of
data requires more time to be transmitted Moysiadis et al. [2021]. This reduction in
data rate limits the volume of data sent over a network in a given time; Increased
Airtime:, A higher SF lengthens the packet transmission time, which leads to greater
energy consumption and shorter battery life Ramli et al. [2020]. However, LoRa’s
dynamic SF adjustment enables optimization for specific conditions using higher SF
for reliable communication in dense environments and lower SF for increased data
rates where range is less critical. This adaptability ensures efficient spectrum use
and energy management, making LoRa suitable for diverse LPWAN applications;
and Bandwidth (BW): In LoRa modulation, it critically influences several aspects
of the communication link, including the data rate, resistance to interference, and
overall network efficiency LoRa Alliance [2015]. In LoRa technology, BW refers to
the frequency band width utilized during transmission. The choice of BW directly

affects the modulation rate and the spectral efficiency of the channel.

Overview of Bandwidth Settings in LoRa: In LoRa systems, common BW
settings are 125 kHz, 250 kHz, and 500 kHz. Each BW setting has implications for

the performance and applicability of the communication link:

1. 125 kHz: Using a smaller BW of 125 kHz decreases the amount of data that
can be transmitted per second. This configuration improves the receiver’s

sensitivity due to the lower noise BW, resulting in a better SNR. This trade-off
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benefits LoRa communications by prioritizing signal reliability over data rate
Silva et al. [2023a] Moysiadis et al. [2021] LoRa Alliance [2015].

2. 250 kHz and 500 kHz: Higher BW settings (e.g., 250 kHz, 500 kHz) enable
higher data rates, reducing transmission time and energy consumption per bit,
which is advantageous for battery-dependent applications requiring fast data
transmission. However, wider BWs reduce receiver sensitivity and increase
sensitivity to interference, potentially compromising communication reliability

in noisy environments.

3. Regulatory and Application Considerations: Both regulatory constraints
and application-specific requirements influence the selection of BW in LoRa
modulation. High BWs support higher data rates but increase interference
responsiveness, while lower BWs enhance the network sensitivity and strength,

which is ideal for LoRa applications.

4. Balancing Network Performance: Efficient BW management is key to
optimizing LoRa networks and balancing throughput, range, and power con-
sumption. Dynamic adjustments based on environmental and application needs

enhance performance, scalability, and efficiency in diverse [oT systems.

« Coding Rate (CR):In LoRa modulation, the CR is a key parameter that enhances
the reliability of data transmission by introducing FEC, which helps detect and
correct errors caused by noise or interference LoRa Alliance [2015]. This parameter
configures the level of superfluity embedded into the transmitted data, enhancing
the system’s ability to correct errors that may occur during the transmission process

due to noise, interference, or signal degradation.

1. Function of CR: In LoRa technology, the CR is defined as the ratio of data
bits to the total transmitted bits, which includes both data and redundancy
Silva et al. [2023a] LoRa Alliance [2015]. Standard CR values range from 4/5
to 4/8. A CR of 4/5 allocates one-fifth of the transmission to overabundance,
meaning one overabundance bit is added for every four data bits. In contrast,
a CR of 4/8 implies that half of the transmitted bits are redundant, enhancing
reliability at the cost of reduced data throughput.

2. Impact of CR on Transmission:

A higher CR introduces additional redundancy into the transmitted signal,
thereby enhancing the system’s error correction capability LoRa Alliance [2015].
This increased redundancy enables the receiver to more effectively reconstruct
the original data, even in the presence of significant signal degradation. As
a result, a higher CR is especially beneficial in challenging communication

environments, such as those with high interference or substantial physical
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obstacles that may attenuate or delay the signal Moysiadis et al. [2021] Silva
et al. [2023a].

However, increasing the CR also required certain trade-offs:

3. Reduced Payload Throughput: The proportion of the BW available for
actual data payload decreases. This reduction in effective throughput can be
detrimental in applications requiring the transmission of large volumes of data

within a limited time frame.

4. Increased Transmission Time: More extra information leads to more
extended message frames for the same data. This increase in transmission time
can reduce the overall network capacity as the channel is occupied for extended

periods, potentially leading to congestion in dense network deployments.

5. Elevated Energy Consumption: For battery-operated devices, the extended
transmission times required by higher CR increase power consumption, thus

reducing the operational lifespan of the device between charges.

6. Strategic Application of CR:

Optimal CR selection in LoRa systems balances error resilience with data
efficiency. Higher CR improves reliability under interference but reduces th-
roughput. Therefore, CR should be customized to environmental conditions,
application latency, and power constraints to ensure efficient and robust network

performance.

« Bit Error Rate (BER):

BER is a key performance indicator in LoRaWAN, reflecting the accuracy of data
transmission. A low BER ensures reliable communication over long distances and
in challenging environments, minimizing retransmissions, conserving energy, and

enhancing overall network efficiency, which is productive for IoT applications.

Several key factors impact the BER in a LoORaWAN system:

1. SNR: SNR is a primary factor influencing BER in LoRaWAN. Higher SNR
typically results in lower BER by reducing noise interference. LoRa’s LoRa
capability is primarily attributed to its resilience in low-SNR environments,

enabled by robust modulation and coding schemes.

2. SF: In LoRa modulation, the SF affects both the transmission range and
the data rate. Higher SF increases the signal’s strength against noise and
interference, effectively lowering the BER but at the cost of decreased data

rates.

3. BW: BW affects the data rate by determining how much information can be

transmitted per unit of time, while also impacting the noise level due to the
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relationship between BW and signal sensitivity LoRa Alliance [2015] Figueiredo
and Franco Silva [2020]. Moreover, BWs reduce the data rate but improve
sensitivity and potentially lower the BER by reducing the noise in the network

signals.

CR:In LoRaWAN;, the CR introduces additional redundancy into the trans-
mitted data, which enhances the receiver’s ability to detect and correct errors.
A higher CR increases the strength of the transmission, thus lowering the BER
Figueiredo and Franco Silva [2020] Silva et al. [2023a].
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Measuring and Reducing BER in LoRaWAN:

1. Measurement: BER is typically measured during field tests or simulations to
assess the communication quality in different environments and under various
network conditions. This measurement helps understand how well the network

can handle data transmissions and is crucial for planning and optimization.
2. Reducing Strategies:

a) ADR: LoRaWAN employs ADR to optimize data rate, transmission
power, and SF according to the network conditions. ADR adjusts these

parameters to balance power consumption, range, and BER optimally.

b) Error Correction: Utilizing reliable FEC techniques helps correct errors
at the receiver without retransmissions, thereby improving the effective
BER.

c¢) Optimal Gateway Placement: Placing Gateways strategically can
enhance coverage and improve signal quality, directly benefiting BER

performance.

BER serves as a key factor for assessing LoRaWAN network reliability. Effective
management of influencing SNR, SF, BW, and CR ensures data integrity and

increases network efficiency, supporting strong and sustainable loT deployments.

SINR: SNR is a key parameter that quantifies the ratio of signal power to background
noise power, usually expressed in decibels (dB). A higher SNR signifies a clearer,
more distinguishable signal, which improves transmission quality Silva et al. [2023a]
Figueiredo and Franco Silva [2020]. SNR critically impacts link quality in LoRaWAN
communication systems, which are optimized for low-power LoRa data transmission.
It guarantees the receiver’s ability to extract information from the networks in
noisy environments. Higher SNR improves decoding accuracy and minimizes BERs,

contributing to reliable network operation.

Communication becomes challenging in a noisy environment, like a crowded room,
mirroring low SNR conditions. In contrast, quiet settings enable clearer exchange,
similar to high SNR, which illustrates SNR’s important role in ensuring reliable,

energy-efficient LoORaWAN communication, especially in noisy or remote areas.

Implications of SNR on Network Dynamics:

1. Coverage and Communication Distance:
The SNR in LoRaWAN systems is directly correlated with communication
range; higher SNR values generally allow for more extended coverage Figueiredo

and Franco Silva [2020]. Higher SNR levels enable longer transmission distances,
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expanding network coverage, which is critical in environments with limited

gateway placement options due to geographical or infrastructural constraints.

2. Data Rate and Modulation Parameters:
LoRaWAN supports variable data rates by adjusting the SF, BW, and CR
based on the observed SNR Ratio Silva et al. [2023a]. When the SNR is low, a
higher SF is used to enhance signal robustness, which reduces the data rate

but improves communication reliability in diverse IoT network conditions.

3. Energy Consumption: The operational efficiency of LoRaWAN devices
depends on SNR. A low SNR increases the airtime required for transmission,
leading to higher energy consumption, whereas a higher SNR reduces airtime,

conserving energy and prolonging the device’s lifespan Silva et al. [2023a]

SNR Measurement and Network Optimization Strategies:

— Measurement Techniques: In LoRaWAN networks, SNR is measured at
the gateways receiving signals from IoT devices Silva et al. [2023a] Figueiredo
and Franco Silva [2020]. It represents the ratio of signal power to noise
power, reflecting the quality of the communication link. These measurements
enable optimization of transmission parameters to ensure reliable data delivery.
Additionally, they provide valuable insights into individual device performance,

aiding network management and troubleshooting.

— Optimization of Network Infrastructure: Strategic placement of Gateways
based on SNR mapping across the network can optimize overall communication
quality and efficiency. Such strategic deployments can enhance the network’s
SNR, minimizing weak signal areas and maximizing the strength of data

transmissions.

SNR in LoRaWAN affects the quality of individual transmissions by influencing
signal reliability Figueiredo and Franco Silva [2020]. It also guides network design
decisions and operational strategies. Thus, SNR plays a crucial role in both lo-
cal communication and overall network performance. Effective management and
optimization of SNR are necessary for ensuring that LoRaWAN networks deliver
reliable and efficient communication capabilities essential for the diverse array of

[oT applications they support.

2.4 LORAWAN Architecture

LoRa utilizes a radio frequency modulation technique at the physical layer (Layer 1) of

the Open Systems Interconnection (OSI) model for LoRa, low-power communication.
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At the same time, LoRaWAN operates at the Medium Access Control (MAC) layer
(Layer 2), managing access to the shared communication medium for efficient data
transmission. Together, they provide a comprehensive solution for wireless IoT
networks. The LoRaWAN network topology follows a star-of-stars configuration,
consisting of three key components: (i) network servers, (ii) Gateways, and (iii) end
nodes. End nodes communicate with network servers via Gateways, using LoRa or
FSK modulation to support various data rates and channel allocations. Network
servers manage Gateways via IP, processing data frames sent by end nodes, which are
received by Gateways and routed through the server [Alliance, 2015b]. An overview
of the LoRaWAN architecture is shown in Fig. 2.
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Fig. 2. Architecture of the LoRaWan network.

LoRaWAN is a MAC layer protocol designed to address medium management
challenges and reduce network congestion within LPWANSs. Devices that implement
the LoRaWAN protocol can control a range of advanced features provided by the

standard, including:

— Channel management: efficient allocation and utilization of frequency

resources to improve network performance and minimize interference.

— Energy Efficiency: optimized communication schemes that reduce power

consumption, extending the operational lifespan of battery-powered EDs.
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— Adaptive Data Rate: dynamic adjustment of data transmission rates based
on prevailing network conditions and link quality, ensuring optimal throughput

and reliable communication.

— Security: strong cryptographic mechanisms for data security, integrity, and
authentication, protecting networks against unauthorized access and cyber

attacks.

— GPS-Free Geolocation: location tracking and geolocation services that
function without relying on GPS signals, enabling effective positioning in

environments where satellite-based systems may be unavailable or impractical.

LoRaWAN offers low-power communication for IoT with a scalable star-of-stars
topology, which is ideal for managing thousands of battery-powered sensors across
large areas. Its energy efficiency improves through ADR and flexible channel ma-
nagement, optimizing power while ensuring the reliability of the network. EDs’
connections extend battery life, which is essential for remote IoT applications in

industrial, agricultural, and urban settings.

LoRaWAN supports bidirectional communication for real-time control network
systems [Haddaoui et al., 2022], with security features like encryption, device authen-
tication, and session key management. Its GPS-free geolocation expands its use in

areas where satellite systems are challenging to implement, as shown in Fig. 3.

LoRaWAN’s architectural features and operational capabilities align well with the
core requirements of loT networks, such as extensive coverage, low power consump-
tion, scalability, and strong security, making it an essential technology for large-scale
deployments in areas like smart agriculture, industrial automation, urban infrastruc-
ture, and asset tracking, facilitating cost-effective implementation of interconnected

smart devices.

2.5 Adaptive Techniques in LoRa Networks

Adaptive techniques are essential in LoRa networks to improve communication
efficiency, reliability, and scalability, particularly in dynamic and heterogeneous
environments Silva et al. [2023a] Moysiadis et al. [2021] Figueiredo and Franco Silva
[2020]. These methods, such as ADR, instant change, sliding change, and WMA |
optimize network performance by addressing signal quality, interference, and device

density variations.
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2.5.1 Adaptive Data Rate (ADR)

Adaptive Data Rate (ADR) is a mechanism designed to optimize data transmission
rates, reduce airtime utilization, and minimize energy consumption within LoRa
networks Moysiadis et al. [2021]. The ADR mechanism controls the following
transmission parameters of an end device: SF, BW, and Transmission power. ADR
in LoRaWAN reduces energy consumption by adjusting transmission power and
data rates according to the distance between a device and the gateway Moysiadis
et al. [2021] Figueiredo and Franco Silva [2020]. Closer devices use less power and
higher data rates, while distant devices require more power and lower data rates
to maintain connectivity. Devices near Gateways use lower SF and higher data
rates, while those farther away use higher SF to maintain link quality [Tlarizky et al.,
2021]. ADR is effective for static devices under stable Radio Frequency conditions,
optimizing power and data rates. However, if Radio Frequency conditions become
unstable (e.g., due to device mobility), ADR should be disabled. In LoRaWAN,
the choice to enable ADR is made by the end device itself, rather than being
controlled by the network or application Moysiadis et al. [2021]. This gives the
device autonomy to decide whether ADR is suitable for its operating conditions.
The network collects measurements from recent uplink messages to optimize data

rates. For example, The Things Stack records the 20 most recent uplinks, including
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frame counter, SNR, and the number of Gateways [Networks, 2025]. When ADR is
disabled, these measurements are discarded, and new ones are collected when ADR
is re-enabled. The SNR is calculated as the difference between the measured and
required SNR guides adjustments to data rate and transmission power, ensuring

efficient communication in lora network [Networks, 2025].

2.5.2 InstantChange

The InstantChange algorithm is an adaptive cognitive technique designed to dyna-
mically adjust LoRa network parameters in real time Figueiredo and Franco Silva
[2020]. By rapidly responding to variations in network conditions such as interference,
traffic load, or signal quality, it optimizes communication performance without re-
quiring manual reconfiguration. InstantChange adjusts key transmission parameters,
frequency, SF, and BW based on the current SNR. The method evaluates network
conditions at each moment without relying on historical data Silva et al. [2023a].
After transmitting a set number of packets, it sends control packets to measure
SNR for different configurations Silva et al. [2023a]. The configuration that yields
the highest SNR is selected for future transmissions. The primary objective of
the InstantChange algorithm is to maximize SNR, enhance communication quality,
and adapt quickly to changing network conditions. The functional steps of the

InstantChange algorithm are detailed in the following:

— Data Collection: Continuous monitoring and immediate evaluation of SNR

for each received packet to detect deviations from acceptable performance
thresholds.

— Evaluation and Decision Making: If the SNR drops below a predetermined
threshold, indicative of suboptimal communication quality, the algorithm

adjusts the transmission parameters.

— Parameter Adjustment: Increasing the SF to improve signal validity at
the cost of reduced data rate. Switching the operating frequency to a less
congested channel. Modifying the BW to adapt the data throughput to current

network conditions.

Changes are implemented immediately, affecting all subsequent transmissions, thus
ensuring that the device operates under optimal settings given the current environ-
mental conditions. Technical Analysis: Advantages: High responsiveness to
immediate changes in environmental conditions is crucial in highly dynamic settings
where delay in adaptation can lead to communication failures. Disadvantages:

Frequent reconfigurations may result in elevated power consumption and network
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instability, as continuous parameter adjustments introduce persistent fluctuations
Silva et al. [2023a] Figueiredo and Franco Silva [2020)].

Comparative Analysis: In contrast to other state-of-the-art approaches, employing
a sliding window approach smooths short-term fluctuations, reducing the need
for frequent reconfigurations. This instant change adaptive approach, responds
immediately to real-time SNR variations, making it highly suitable for volatile
environmental conditions. However, its rapid adjustments may compromise long-
term stability when compared to more conservative algorithms. The choice between
Instant Change and other adaptive strategies depends on the balance between
responsiveness and stability. Future research may explore hybrid models with
predictive adjustments based on historical trends to optimize the immediate and

long-term performance of LoRaWAN networks.

2.5.3 SlidingChange

Sliding Change, a cognitive mechanism designed to optimize performance parameters
in LoRa-based networks, enhances stability and efficiency. Introducing a sliding
window approach smooths short-term fluctuations, reducing the need for frequent
reconfigurations Silva et al. [2023a]. Sliding Change was evaluated against Instant

Change, which makes decisions based solely on immediate data.

The dynamic reconfiguration of network parameters is a critical aspect of Sliding-
Change. Based on the analysis performed by the sliding window algorithm, Sliding-

Change can determine the optimal settings for:

— Carrier Frequency: Adjustments in carrier frequency can help avoid interference

and optimize the network’s frequency use.

— Spreading factor: Modifying the spreading factor affects the data transmission

rate and range, balancing throughput with signal robustness.

— Bandwidth: Changing the Bandwidth influences the rate at which data is

transmitted, affecting both power consumption and data rate.

These adjustments aim to maintain or improve the SNR, thereby ensuring high-
quality communication within the network.By optimizing communication parameters,
SlidingChange effectively minimizes packet loss and error rates, both of which are
critical for applications that depend on reliable real-time data transmission Silva
et al. [2023a].

Performance Evaluation: The effectiveness of SlidingChange is measured against

several performance metrics:
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— SNR Improvement: SNR is a primary indicator of the communication
channel quality. Higher SNR values indicate more transparent communication

and reduced noise interference.

— Reduction in Reconfiguration Rates: By decreasing the frequency of
adjustments needed, SlidingChange enhances network stability and reduces

the operational overhead associated with reconfigurations.

— Error Rates: Monitoring BERs and packet loss rates provides insights into
the overall availability of the network. Improvements in these areas indicate

more reliable communication capabilities.

Sliding Change outperforms both Instant Change and LR-ADR. While Instant
Change risks instability due to its highly reactive nature, Sliding Change applies a
sliding window methodology that averages data over time, enabling more consistent
parameter adjustments and improving both stability and efficiency Silva et al. [2023a).
Additionally, it reduces overhead and enhances communication reliability in dynamic

LoRa IoT networks, leading to improved network performance.

2.6 Related Work

This section provides an overview of existing adaptive techniques applied to LoRa-
based networks. The goal is to identify their strengths and limitations in dynamic
environments. By analyzing methods such as SlidingChange Silva et al. [2023a] and
LR-ADR Moysiadis et al. [2021], we highlight gaps in current approaches. Related
research on this topic comprises empirical studies that evaluate the performance and

quality attributes of resource allocation strategies in LoRa-based networks.

Related research on this topic comprises (i) empirical studies that evaluate perfor-
mance and other quality attributes of resource allocation strategies. Ramesh et al.
[2020]; Zaman et al. [2024]; Cengiz et al. [2025]; Slabicki et al. [2018]. (ii) proposals
of research allocation strategies Valach and Macko [2021]; Silva et al. [2023a]; Moraes
et al. [2021]; Ramli et al. [2020] techniques Jeon and Jeong [2020] and Moysiadis
et al. [2021]. And (iii) studies reporting both proposals for resource allocation
strategies and empirical evaluation results. Valach and Macko [2021]; Figueiredo and
Franco Silva [2020]; Moraes et al. [2021]; Perahia and Stacey [2013] and Moysiadis
et al. [2021]. The contributions of these studies and a comparative analysis are
detailed below.

Research on LoRa-based networks is an active area of study. Focusing on a range of
characteristics from scalability to reliability. This research is particularly appropriate

in the context of innovative city applications, where these attributes are critical to
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the effective deployment and operation of IoT systems Ramesh et al. [2020]; Zaman
et al. [2024]; Cengiz et al. [2025].

The study by Valach and Macko [2021] introduces a machine learning approach for
adapting LoRa parameters to enhance communication efficiency in IoT networks. The
study integrated the adaptation of the LoRa@QFIIT algorithm, proposed to improve
the efficiency for IoT communication. Simulations demonstrate reduced packet
collisions, lower energy consumption, and improved reliability, enabling dynamic
responses to varying network conditions for enhanced energy efficiency. Experimental
results also indicate a substantial reduction in packet collisions among mobile nodes,

resulting in decreased channel congestion.

The study by Moraes et al. [2021] proposes an adaptive resource allocation framework
based on mixed-integer linear programming (MILP) to identify optimal LoRaWAN
parameter configurations, with the objective of minimizing channel occupancy while
maximizing packet delivery rates. The proposed framework was benchmarked
against heuristic-based resource allocation strategies, which employ practical rules
and approximations to allocate resources efficiently, rather than computing exact
optimal solutions. Evaluation results confirmed the efficacy of the heuristics, as
they achieved performance metrics closely approximating those of the MILP-derived
optimal solution, demonstrating their suitability for practical, near-optimal resource

allocation in LoRaWAN environments.

Jeon and Jeong [2020] proposed an adaptive mechanism that dynamically adjusts
both transmission power and uplink data rate based on real-time performance
indicators and observed enhancements in uplink channel conditions. Ramli et al.
[2020] proposed an adaptive network to switch between LoRaWAN and IEEE 802.11ac
Perahia and Stacey [2013] protocols in situations of lower or higher data transmission
demands, respectively. However, their study did not suggest that LoRa’s parameters
were enhanced in performance. The authors noted that the Packet Error Rate
(PER) is considerably higher for IEEE 802.11ac transmissions compared to LoRa.
PER quantifies the proportion of data packets that are incorrectly received, serving
as a key indicator of communication reliability. In contrast, LoRa’s medium- and
long-range transmissions exhibit lower PER, ensuring more stable and dependable
communication for distant or resource-constrained IoT devices. This observation
highlights LoRa’s advantage in maintaining reliable data delivery over extended
distances relative to IEEE 802.11ac.

The study by Moysiadis et al. [2021] proposes a Linear Regression extension of
the Adaptive Data Rate (LR-ADR) resource allocation mechanism for the network
server side to smooth SNR per gateway and to support LoRa-enabled EDs to regain

connectivity with the network server faster. They conduct an empirical study to
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evaluate the performance of LR-ADR compared to ADR, EMA-ADR (Exponential
Moving Average ADR), and G-ADR (Gradient-based ADR) resource allocation
mechanisms. The results indicate that LR-ADR outperforms the other approaches
for example instant change, achieving a higher Packet Delivery Ratio (PDR) and
lower Energy Consumption per Packet Delivered (ECPD). This means that LR-
ADR delivers more packets successfully while using less energy, making it a more
reliable and efficient solution compared to ADR, EMA-ADR, and G-ADR. The
resource allocation mechanism proposed in this work enables dynamic adjustment of
LoRa network performance parameters using a Weighted Moving Average (WMA),
which smooths short-term variations, minimizes unnecessary reconfigurations, and
optimizes SNR. Our solution primarily targets improvements in SNR, Bit Error Rate
(BER), and the number of frequency switches. In contrast, LR-ADR Moysiadis et al.
[2021] and EMA-ADR focus mainly on enhancing the Packet Delivery Ratio (PDR)
and reducing energy consumption per packet delivered (ECPD). So, both resource
allocation mechanisms can be seen as complementary. A comparison between our

proposal and LR-ADR is presented in the results section to enrich this article.

In Jeon and Jeong [2020], the authors propose a novel hybrid approach that uses an
adaptive network architecture, dynamically switching between LoRaWAN and IEEE
802.11ac protocols to optimize connectivity and improve overall network efficiency.
This architecture leverages the distinct characteristics of each protocol, dynamically
selecting the most suitable one based on prevailing network conditions and specific
application requirements. Integrating these protocols facilitates a seamless adaptation
mechanism that significantly improves data transmission reliability and throughput.
This methodical integration ensures that the network remains robust and efficient,
particularly suitable for diverse IoT environments where varying communication
demands require flexible and adaptive network solutions. Slabicki et al. [2018]
introduces two distinct algorithms, the Gaussian-based Adaptive Data Rate (GADR)
and the Exponential Moving Average-based Adaptive Data Rate (EMA-ADR). The
evaluation of these algorithms demonstrates promising results, showing significant

improvements in packet success ratio, energy consumption, and convergence time.

The study in Figueiredo and Franco Silva [2020] proposes a practical method to
improve LoRa network efficiency by leveraging the orthogonality of multiple frequency
carriers. Their algorithm periodically measures the SNR values from the 433 MHz and
915 MHz bands, enabling a primary node to decide whether to switch the frequency
band for all network nodes or maintain the current one based on comparative
SNR values. However, experimental results from the Figueiredo and Franco Silva
[2020] indicated only a marginal improvement, with an average SNR gain of 4.68%,
accompanied by a high frequency of carrier changes. The high frequency of change

is a consequence of the decision-making strategy based on the instant measurements
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of SNR on both bands. During measurement time, an impulsive noise (i.e., caused
by another transceiver) could result in a low, distorted SNR value compared to the
historical average. In this scenario, the proposed WMA algorithm may produce

suboptimal decisions due to impulsive noise present in the communication channel.

Finally, Silva et al. [2023a] introduces “SlidingChange”, a cognitive mechanism
developed to optimize performance parameters in LoRa-based networks, thereby
improving both network stability and overall efficiency. The SlidingChange approach
effectively smooths out fluctuations caused by short-term network variations, redu-
cing the frequency of network reconfigurations. SlidingChange was evaluated against
“InstantChange”, which relies on immediate data for decision-making, and a linear
regression-based method. In a controlled testbed evaluation, SlidingChange achieved
an average SNR improvement of 37%, significantly outperforming InstantChange,
which yielded only a 4.6% increase. This demonstrates that SlidingChange’s which
uses sliding window methodology more effectively, reduces short-term network fluc-
tuations, resulting in more stable and optimized transmission parameters. Moreover,
Sliding Change decreased the frequency of network reconfigurations by 16%, unders-
coring its ability to stabilize operational performance. During their analysis, they
inferred that under the tested outdoor conditions, inter-node distances of approxi-
mately 400m are sufficient to demonstrate the necessity of node-aware parameter
adjustments to enhance SNR. Table 1 summarizes the limitations found in related

work and their future research directions.

Table 1 — Limitations and Future Work in LoRa Adaptive Techniques

Related Limitations Future Work Directions

Study

Perahia and | High Packet Error Rate (PER) Consider hybrid architectures combining LoRa with
Stacey with IEEE 802.11ac for long-range | Wi-Fi for different traffic profiles.

(2013) communication; LoRa parameters

not optimized.

Slabicki et
al. (2018)

It considers only packet success
ratio, energy consumption, and
convergence, without accounting
for environmental variability or the

effects of noise.

Apply GADR/EMA-ADR in real-world noisy

environments and compare against cognitive techniques.

Ramesh et

Lacks adaptive mechanisms for

Investigate adaptive methods tailored for smart city

al. (2020) dynamic environments. deployments.
Ramli et al. | No enhancement of LoRa Explore parameter tuning and hybrid protocol switching
(2020) parameters; IEEE 802.11ac suffers | techniques.

higher PER over long distances.
Jeon and Limited focus on SNR improvement | Extend method to integrate SNR-aware decisions and
Jeong and frequency switching. frequency selection.

(2020)
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Study Limitations Future Work Directions
(Year)
Figueiredo High number of frequency changes | Introduce smoothing filters or historical weighting to

and Franco

due to impulsive noise and instant

reduce reconfiguration frequency.

Silva SNR decisions.

(2020a)

Valach and Based on simulations only; lacks Validate ML-based adaptation in real-world urban IoT
Macko real-world validation. deployments.

(2021)

Moraes et High complexity of MILP; real-time | Optimize MILP heuristics for real-time feasibility and
al. (2021) deployment not discussed. scalability.

Moysiadis Prioritizes PDR and energy but Combine LR-ADR with SNR-aware strategies for

et al. (2021)

lacks SNR and frequency

reconfiguration control.

balanced performance.

Silva et al.
(2023a) —
Sliding-
Change

Only considers fixed window sizes;
moderate SNR gain; lacks weight

adaptation.

Incorporate weighted history (e.g., WMA) for better
smoothing and adaptability.
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3 WEIGHTED MOVING AVERAGE TECHNIQUE

This chapter introduces the Weighted Moving Average (WMA) adaptive technique
to improve LoRa performance in dynamic environments. WMA was designed to
optimize Signal-to-noise ratio, spreading factor, bandwidth, and carrier frequency in
LoRa-based networks. The goal is to enhance network availability, reduce packet

loss, and improve energy efficiency.

The Weighted Moving Average (WMA) approach is based on the principle that
adaptive parameters such as SNR, Spreading Factor (SF), Bandwidth (BW), and
carrier frequency should be managed to balance data rate, network congestion,
availability, range, and energy consumption. A higher SNR enhances transmission
accuracy and network reliability, while SF' controls the trade-off between communi-
cation range and throughput. BW affects both data rate and power usage, and the
carrier frequency influences signal propagation and resilience to noise. Algorithms
such as LR-ADR and SlidingChange dynamically adjust these parameters, thereby
improving scalability, availability, and energy efficiency in IoT applications. The

artifacts used in the evaluation are available on GitHub!.

3.1 'WMA Adaptive Parameter

The WMA technique improves existing adaptive algorithms such as InstantChange
and SlidingChange by enabling real-time parameter adjustment while incorporating
the influence of historical data. WMA balances responsiveness with stability and
availability, optimizing LoRa network performance under varying environmental and
operational conditions. WMA calculates a weighted average, prioritizing recent data
with weights between 0 and 1 while preserving context from earlier measurements.
This approach dynamically adjusts critical parameters, including Signal-to-Noise
Ratio (SNR), Bit Error Rate (BER), Coding Rate (CR), Bandwidth (BW), Spre-
ading Factor (SF), and carrier frequency, to reduce short-term fluctuations and
prevent unnecessary network reconfigurations. Specifically, SNR and BER help
maintain reliable data transmission, CR balances error correction and throughput,
BW influences data rate and energy usage, SF' controls the trade-off between range
and transmission time, and carrier frequency affects signal propagation and noise
resilience. Together, these adjustments improve overall network reliability and energy

efficiency.

In contrast to conventional averaging methods like LR-ADR, InstantChange and

SlidingChange. The weighted approach provides more accurate tracking of network

1

https://github.com/Khalid681/WMA-project.git
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dynamics, ensuring efficient and stable communication is crucial in IoT applications
that require consistent transmission quality Peterson et al. [2023]. Overall, WMA
enhances adaptive performance at the LoRaWAN Gateway level, contributing to the

scalability and availability of IoT communication systems.

3.2 WMA Mathematical Formulation

In LoRa-based networks, the proposed WMA technique dynamically adjusts key
transmission parameters to smooth short-term fluctuations. This approach enhances
SNR, improves signal reliability, and reduces unnecessary reconfigurations, boosting
overall network performance and energy efficiency. The WMA technique focuses
on the LoRa parameters, e.g., SNR, carrier frequency, BW, SF, and CR. The
WMA equation is used to calculate the average value of a given parameter, such
as SNR (meansnr), over a dataset. This method assigns greater weight to more
recent measurements, allowing the system to smooth short-term fluctuations while

reflecting the latest network conditions, as shown in Equation 3.1.

AvgLen = (1 — Weight) x meansnr + Weight x newsnr (3.1)

The iterative WMA process dynamically refines LoRa parameters, such as SNR, by
weighting historical values “meansnr” and new inputs “newsnr”. Initially, meansnr
is derived from the generated LoRaWAN dataset, which was generated from an over
testbed environment. Each iteration is updated using the latest newsnr, enabling
adaptive modulation over time. This recursive update captures global data trends,
allowing SNR to adjust in response to network performance, thereby improving
transmission reliability and efficiency in IoT systems.

WMA EQUATION :

The WMA technique adaptively adjusts SNR in LoRa-based networks by integrating
historical “meansnr” and recent “newsnr” values through an adjustable weight of
0 to 1. AvgLen represents the updated SNR value computed at each iteration,
reflecting the most recent network conditions while smoothing short-term fluctuati-
ons. balancing responsiveness and stability to manage frequency shifts and reduce

congestion.

Assigning higher weights in the WMA increases responsiveness to recent changes,
while lower weights emphasize stability by giving more importance to past observati-
ons. By smoothing short-term SNR fluctuations, WMA improves efficiency, conserves
energy, and minimizes disruptions. Experimental analysis demonstrates that the
proposed approach outperforms SlidingChange, achieving higher SNR and a reduced

number of parameter shifts, called reconfiguration, thereby improving both network
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stability and performance. WMA thus offers a reliable solution for energy-efficient

[oT communication in dynamic environments.

3.3 WMA Algorithm

The dynamic nature of modern systems demands efficient SNR evaluation by in-
tegrating historical and real-time data. This algorithm uses an adjustable weight;
the WMA technique addresses this need by combining past and current SNR values
collected from the LoRaWAN network at UFJF. This approach ensures both respon-
sive and stable estimation, making it suitable for real-time wireless communication,
control systems, and data analytics applications. The Algorithm 1. illustrates the

WMA computation process.

Algorithm 1 Weighted Sum Calculation

Initialize the result variable to 0

Calculate the weighted sum of meansnr and newsnr by multiplying each quantity by
its corresponding weight:

weighted _meansnr < meansnr x (1 — Weight)

weighted__newsnr < newsnr x Weight

Add the weighted sums to get the final result:

result <— weighted _meansnr + weighted__newsnr

Return the result.

The variables used in the Algorithm 1 “meansnr” represent the WMA of the SNR,
“newsnr” is the current SNR estimate, and “Weight” is a coefficient between 0 and
1 that adjusts the influence of new data. The weight parameter, which sets the
time constant of the running average low-pass filter, is chosen based on the trade-
off between gateway responsiveness and stability, offering guidance for selecting
an appropriate value. The update process is shown in Figure 4, with a detailed

explanation provided in Section 3.2.

This approach prioritizes recent SNR measurements while maintaining historical
data to stabilize SNR estimates. The WMA technique enhances the accuracy of
SNR estimation by mitigating the effects of noise and data anomalies, as well as
reducing the number of reconfigurations, known as frequency shifts, in LoRa-based

systems with higher SNR variability.

3.4 Visual Representation of WMA Solution

The WMA process in LoRaWAN networks prioritizes recent SNR values to ena-
ble quick adaptation to network changes, such as congestion. WMA enhances

communication efficiency, reduces reconfiguration called shifts, and improves SNR
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Fig. 4. WMA data-flow diagram.

performance. A visual representation of the application of WMA steps is illustrated

in Fig. 5.



40

Step 1: Incoming SNRs per timestamp

Time ty iz i3 t4 15 ts r
SNR 9.25 10 6.7 8975 8.25 6.25 105
Step 2: WMA Calculation i
Weight 01 0.2 0.3 0.4 0.5 06 | 07 ‘ Bg | ipa |
Avglen
Avglen
9.25 9.25 9.25 8.32 925 §25 1202 930 | 925 92 |9.45%
SNR
Avglen
8.25 8.2 9.05 99 7.55 82 825 9.30 825 82 | 84%
SNR
Step 2: SNR Average between Shifts i
SNR 925 8.25
Frequency g15 433
SNR Average between Shifts 8.39% 9 55%
Step 4. Best SNR gain between shifts l
‘ 9 55%

Step 5. Graphical Representation of
best SNR and frequency shifts

0 W= S

11 MiHE
15 MH:

(1Y S i PR
1 s 1' —ea ..hp.-q-_‘.,.h.-g_i. ..-(_--,,_:__—o- -

Fig. 5. Visual representation of WMA.

Fig. 5. demonstrates the WMA technique for improving SNR in LoRa networks
using historical data. The process begins with an incoming dataset of SNR values,
recorded at specific timestamps. These values are the input for calculating the WMA,
which is applied iteratively to adjust SNR based on past and present measurements.
Subsequently, for each SNR per timestamp stored in the dataset, we apply the WMA
Equation 3.1 to calculate “newsnr” and highlight shifts.

1. Step 2: from Fig 5 illustrates the application of the WMA equation considering
the following SNRs from the dataset: 9.25 and 8.25. The weight in Equation
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3.1 should be greater than zero and less than 1. The WMA equation can
be iteratively applied several times to the same SNR sample, using weights
within this range. It determines the time constant for the running average
low-pass filter. The weight parameter, which sets the time constant of the
running average low-pass filter, is chosen based on the trade-off between gateway
responsiveness and stability, offering guidance for selecting an appropriate value.
The user can randomly define the weight values. In the example illustrated in
step 2 from Figure. 5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were assigned
to calculate the WMA to identify similar SNR values that indicate the need

for frequency shifts.

A frequency shift (reconfiguration) occurs when the current and previous SNR
values are the same, as highlighted in the column labeled '0.7” in step 2 (see
Fig. 5).

2. Step 3: The average SNR between these shifts is generated to reduce short-
term fluctuations and to emphasize longer-lasting patterns. The example shows

only one frequency shift between 9.25 and 8.25 SNR samples from the dataset.

3. Step 4: Fig. 5 involves selecting the optimal SNRs that offer the most
significant performance improvement. In this case, the signal frequency shifts
from 915 MHz to 433 MHz to avoid interference with the medium, improving
the SNR. Finally, the analysis results in the graphical representation of the
SNRs being generated.

4. Step 5: In the Fig 5, Step 5 presents a graph that highlights the effectiveness

of the WMA technique in enhancing signal analysis and interpretation.

3.5 Optimizing LoRa Network Through Adaptive WMA Integration

Adapting WMA for LoRa networks requires integrating its statistical principles with
LoRa’s low-power, IoT-specific characteristics. The dynamic wireless environment
introduces challenges such as fluctuating signal quality, interference, and congestion,
which affect performance and necessitate reconfigurations, commonly referred to as
shifts. The adaptive WMA technique addresses challenges such as fluctuating signal
quality, interference, congestion, and the need for frequent reconfigurations, allowing
the network to respond promptly to environmental variations and thereby improving

both availability and overall efficiency.

The WMA technique assigns varying weights to data points from the LoRaWAN
network implemented at UFJF University [Silva et al., 2023b], with recent observa-
tions receiving higher weights, thereby enabling responsiveness to recent changes,

which is essential for applications requiring timely adaptations. In LoRa networks,
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key metrics like SNR, RSSI, and Packet Reception Rate (PRR) are crucial for
assessing link quality and network performance. Applying the WMA to these metrics
allows dynamic adjustment of transmission parameters to optimize performance.

The implementation of WMA in LoRa networks involves several critical

steps:

1. Data Collection:: Continuous collection of BW, SF, and SNR data from
EDs is essential. This real-time data serves as the foundation for subsequent

analysis and decision-making processes.

2. Weight Assignment: Assigning higher weights to more recent data points
ensures that the WMA calculation reflects current network conditions. The
weight parameter, which sets the time constant of the running average low-pass
filter, is chosen based on the trade-off between gateway responsiveness and
stability, offering guidance for selecting an appropriate value. The user can

randomly define the weight values.

3. WMA Calculation: The weighted average is computed by multiplying each
data point by its assigned weight, summing these products, and then dividing
by the sum of the weights. This means that by applying the weighted average,
the result reduces the impact of short-term fluctuations in the data while giving
more importance to recent measurements. As a result, the computed value
better reflects the current condition of the network, rather than being overly

influenced by older or outdated data points.

4. Parameter Adjustment: The results of the WMA are utilized to inform
adjustments in network parameters, such as transmission power, data rates,
BW, SF, and SNR. For instance, a declining WMA of SNR might indicate
the need to increase transmission power or adjust the SF to maintain reliable

communication.

5. Continuous Monitoring and Adaptation: Regular updates to the WMA
calculations with new data ensure that the network adapts promptly to any
changes in the environment or network usage patterns. This ongoing process

helps maintain optimal performance and energy efficiency.

Implementing WMA in LoRa networks enables the system to dynamically adapt to
environmental variations, thereby improving both network availability and opera-
tional efficiency. By integrating recent and historical data, the network can make
informed decisions, such as reconfiguring parameters to improve communication
quality and reduce energy consumption. This adaptability is crucial in dynamic en-

vironments with mobile devices or variable interference. WMA strengthens network
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stability by facilitating proactive adjustments, ensuring consistent performance and
energy efficiency. As IoT deployments expand, adaptive methodologies like WMA are
crucial for managing the complexities of large-scale, dynamic networks in applications

such as smart cities and industrial control systems.
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4 FUNDAMENTALS

This chapter introduces the fundamental components and the experimental fra-
mework employed to evaluate the performance of the proposed WMA technique
in LoRa-based networks. It provides a comprehensive overview of the simulation
environment, network architecture and configuration, adaptive parameter adjustment
mechanism, and the configuration of the experimental real-world testbed experiments.
Additionally, this chapter introduces the metrics and tools used for performance

evaluation and comparison with existing adaptive methods.

4.1 SIMULATION ENVIRONMENT

The WMA technique experiment systematically investigates an adaptive technique
designed to enhance the efficiency and stability of LoRa-based IoT networks at the
gateway level. The method dynamically adjusts critical network parameters, such
as SNR, to respond to changing conditions. This approach minimizes packet loss
and reduces unnecessary reconfigurations, improving energy efficiency. Overall, it
optimizes network performance, ensuring more reliable and efficient communication in
variable environments. The simulation framework, experimental setup, and empirical

validation of the WMA approach are presented in the Results section.

4.2 NETWORK ARCHITECTURE AND CONFIGURATION WITHIN LORAWAN

LoRaWAN’s star topology provides the network foundation for implementing the
WMA algorithm technique, enabling efficient IoT communications through integrated
nodes/ sensors, Gateways, network servers, and application servers Ertiirk et al.
[2019]. The WMA algorithm dynamically tunes SNR, SF, BW, and CR to optimize
transmission reliability. It systematically reduces interference while balancing trade-
offs among range, data rate, and error correction. These adaptive adjustments
enhance network availability and promote energy-efficient, robust operation in IoT

environments.

4.3 ADAPTIVE PARAMETER ADJUSTMENT VIA THE WMA TECHNIQUE

Conventional methods, such as the Sliding Change, Instant Change, and LR-ADR
techniques, primarily consider recent data. The WMA technique incorporates
both historical and real-time SNR measurements to dynamically optimize network

parameters, ensuring more stable and efficient communication. This approach enables
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smoother and more stable configuration transitions, thereby reducing frequency shifts

and improving overall network availability and stability.

4.4 SIMULATION ENVIRONMENT FOR THE WMA TECHNIQUE

The WMA algorithm is evaluated in a controlled experimental testbed using ESP32
microcontroller-based clients and LoRa SX1276/SX1278 transceiver modules, ope-
rating at frequencies of 433 MHz and 915 MHz. ESP32 is a low-power, Wi-Fi
and Bluetooth-enabled microcontroller commonly used in IoT applications, while
SX1276/SX1278 are LoRa transceivers that support long-range, low-power wireless
communication. In our experiment, communication between nodes is tested over
distances ranging from 500 to 700 meters, allowing us to evaluate the performance
of the WMA algorithm under realistic conditions and observe its impact on sig-
nal quality and network reliability. This setup enables precise assessment of SNR

improvements, network stability, and network availability across diverse conditions.
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Fig. 6. Experimental testbed scenario for the LoRa-based network from Computer Science
Dept. to CRITT technological and innovation center [Silva et al., 2023b].

4.5 DATA COLLECTION AND ANALYSIS FOR NETWORK PERFORMANCE
EVALUATION

A mobile application is utilized for network management, allowing real-time configu-
ration of parameters and continuous performance monitoring, as illustrated in Fig. 7.
It facilitates data collection across various spreading factors and bandwidth settings,
supporting the evaluation of the WMA technique’s impact on SNR improvements

and reconfiguration frequency, as illustrated in Fig. 8.
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4.6 EMPIRICAL EVALUATION OF THE WMA TECHNIQUE

The WMA technique significantly outperforms existing methods such as Sliding-
Change and LR-ADR, enhancing network availability and SNR. Empirical results
show a 39.09% improvement in SNR and a 5.65% reduction in reconfiguration
frequency, referred to as shifts as compare to Sliding Change Silva et al. [2023a].
Detailed results and analysis of the WMA performance are presented in Section 5.
These outcomes demonstrate the effectiveness of the WMA algorithm in managing

network adjustments and enhancing network availability.

4.7 COMPARATIVE ANALYSIS WITH EXISTING TECHNIQUES

Comparative analyses Silva et al. [2023a]; Moysiadis et al. [2021] demonstrate that
the WMA technique reduces network reconfigurations (shifts) and enhances SNR,
providing significant benefits for loT systems and improving overall network perfor-
mance. By integrating historical and recent data, WMA enables more stable network
adjustments. In LoRa-based IoT networks, WMA enhances transmission reliability,
minimizes packet loss, and optimizes SNR. These findings support the broader
application of WMA for improved network performance and stability, facilitating

future research and advancements in IoT network efficiency.
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4.8 TESTBED SETUP FOR REAL WORLD EXPERIMENTS

The testbed environment illustrated in Fig. 6. Shows a practical setup deployed

at the UFJF University campus between the Computer Science Department and

the CRITT Technological and Innovation Center. It is designed to evaluate the

performance of the WMA technique in a real-world scenario.

4.9 COMPONENTS OF THE TESTBED

4.10

ESP32 Client: This device functions as a client or end node in the LoRa
network, equipped with LoRa communication modules such as the SEMTECH
SX1276 or SX1278, which are known for their LoRa and low-power performance
in IoT applications. The ESP32 transmits data packets to assess the WMA

technique’s impact on communication reliability and efficiency.

Gateway: The gateway, equipped with similar LoRa modules, acts as the
communication hub, receiving data from the ESP32 client. It aggregates and
forwards the data to a central server for processing and analysis. At this point,
the effectiveness of the WMA technique in managing SNR and packet loss can

be directly evaluated at the gateway level.

CONFIGURATION DETAIL

. Configuration Details: The use of both 433 MHz and 915 MHz bands allows

for testing under different frequency conditions, which is essential for assessing
the WMA'’s adaptability and performance across various spectral environments

that may affect propagation characteristics and interference patterns.

Distance:The nodes are placed 500-700 meters apart to evaluate the range
and robustness of LoRa communication. This distance is sufficiently large to
challenge signal integrity, allowing the WMA technique to demonstrate its

effectiveness in improving signal strength and overall network performance.

Antennas: Different antenna types are utilized to examine how variations
in design influence signal transmission and reception. These differences can
substantially affect overall system performance, particularly regarding SNR

and the network’s capability to manage packet loss effectively.

The testbed evaluates the improvements of the WMA technique over traditional
methods, such as Sliding Change, by comparing SNR enhancements and reduced

network reconfigurations (shifts). Fig. 6 shows the setup, including the ESP32
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client, gateway, communication path, and campus environment, ensuring the

study’s relevance to real-world IoT networks.

4.11 METRICS FOR PERFORMANCE EVALUATION

The dataset enables the evaluation of adaptive techniques, such as WMA, through
key metrics. “Meansnr” calculates the average SNR across transmissions, reflecting
network performance and the impact of dynamic adjustments. The “Packet Loss
Ratio” measures lost packets relative to total transmissions, indicating network
reliability. The“Reconfiguration Rat” quantifies parameter adjustments, with higher
rates indicating frequent adaptations and lower rates indicating stability. “RSSI”
trends track signal strength variations, identifying environmental impacts on perfor-
mance, while frequency shift analysis examines transitions between 915 MHz and

433 MHz to optimize channel allocation.

The analysis of adaptive parameter changes demonstrates how WMA optimizes
LoRa networks in real-time. By assessing SNR, packet loss, BW, and SF, the
dataset provides valuable insights into network performance and availability. Metrics
like “meansnr”, “reconfiguration rate (shifts)”, and “packet loss ratio” provide
quantitative evidence of the impact of dynamic adjustments on stability. This
dataset aids research in optimizing LoRa networks for enhanced performance and

resilience in IoT applications.
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5 EXPERIMENTAL RESULTS

This Experimental Results chapter presents the empirical evaluation of the WMA
technique in enhancing SNR, reducing network reconfigurations, and improving
availability in LoRa-based IoT networks. Experiments were conducted in a controlled
testbed simulating real-world conditions, as explained in the previous Fundamentals
Chapter 4. The WMA method is compared against SlidingChange and LR-ADR
Silva et al. [2023a]; Moysiadis et al. [2021], demonstrating superior signal quality
and network stability. These results validate the effectiveness of WMA in dynamic

IoT environments.

5.1 EXPERIMENTAL OVERVIEW

The experimental evaluation assessed the effectiveness of the WMA technique in
optimizing SNR, reducing network reconfigurations (shifts) in LoRa-based IoT
networks, and improving network availability compared to the Sliding Change and
LR-ADR methods. The study was conducted in a controlled testbed environment
in real IoT deployment scenarios, and improvements in SNRs and frequency shift
reduction were measured. The artifacts used in the evaluation are available on

GitHub'.

5.2 SNR PERFORMANCE AND COMPARATIVE ANALYSIS

SNRs were the primary metric for evaluating network efficiency, which directly
correlates with signal quality and interference resilience. The results from Table 2
demonstrated that the WMA-based solution reduced by 5.65% the network reconfi-
guration (i.e., the number of frequency switches) as compared to the Sliding Change
and also improved the SNR by 39.09% Silva et al. [2023a] . The WMA technique
obtained an SNR average gain of 4.86% while SlidingChange configurations achieved
2.89%, 3.61%, 4.34%, and 4.60%, and LR-ADR 3.05%, respectively (see Table 2).
We focused on SlidingChange instead of LR-ADR. Each configuration, WMA, Sli-
dingChange, and LR-ADR, was executed three times to ensure the reliability of the
results and to account for potential variations in network conditions, such as SNR

fluctuations and interference.

The change/shift points for the WMA technique, considering 10, 11, and 12 SFs,
and 125 kHz, 250 kHz, and 500 kHz BWs, are highlighted in the line graphs shown

in Figures 9-17, where the three most significant SNR improvements are marked

1

https://github.com/Khalid681/WMA-project.git
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with arrows, presenting the detailed graphs for WMA measurements. The WMA,
SlidingChange, and LR-ADR configuration results are detailed in Table 2.

Table 2 — Summary of the three biggest SNR gains for each setup and their respective
averages

BW
Window Experiment 125 kiz [ 25(S)bl(Hz [ 500 kHz Average
10 11 12 10 11 12 10 11 12
1 4.01% 3.22% 4.14% 3.10% 4.37% 2.92% 2.98% 2.21% 3.78%
LR-ADR 2 3.92% 2.75%  3.33%  3.34% 2.54% 2.88% 2.34% 2.02% 2.09% 3.05%
3 4.03% 4.04% 3.17%  3.16% 2.43% 2.88% 2.03% 2.45% 2.13%
1 588% 9.79% 7.85% 5.90% 3.33% 5.29% 9.33% 3.31% 5.17%
W=10 2 4.48% 5.11%  4.49%  3.73% 2.66% 4.91% 4.50% 2.81% 3.98% 4.60%
3 4.03% 4.64% 3.90% 3.36% 1.97% 4.90% 2.59% 2.40% 3.80%
1 6.42% 4.09% 11.89% 3.00% 3.32% 5.04% 8.14% 3.33% 8.20%
W=20 2 4.66% 4.04%  5.50% 2.50% 2.89% 4.81% 2.54% 2.67% 5.06% 4.34%
3 3.92% 3.09% 4.07% 2.02% 2.68% 4.35% 2.30% 2.22% 4.36%
1 4.10% 4.32%  5.09% 5.90% 4.74% 4.83% 4.26% 5.39% 4.36%
W=30 2 3.21%  3.710% 4.67%  2.84% 1.47% 4.51% 2.99% 5.33% 4.17% 3.61%
3 1.92% 2.48%  3.83% 1.96% 1.44% 3.64% 2.30% 2.80% 1.1%
1 3.21% 591% 7.39% 4.50% 2.56% 3.53% 297% 4.49% 2.60%
W=40 2 2.06%  3.125 4.01%  2.17% 1.46% 3.21% 2.96% 2.31% 2.29% 2.89%
3 1.29% 2.58% 1.72% 1.31% 1.39% 3.02% 1.45% 2.26% 2.24%
1 0.95% 4.01% 3.56%  4.24% 3.96% 4.15% 4.99% 5.54% 5.79%
WMA 2 4.27% 4.12% 5.88% 5.85% 4.30% 4.16% 6.05% 5.84% 6.12% 4.86%
3 4.39% 4.05% 6.01% 6.99% 4.23% 4.04% 6.12% 5.86% 6.33%

The line graphs in Figures 9-17 display the obtained SNRs using the WMA technique
with 10, 11, and 12 SFs, as well as 125 kHz, 250 kHz, and 500 kHz bandwidths
(BW).
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Fig.9 WMA for SF = 10 and BW = 125kH z.

Fig. 9 for SEF=10, BW=125 kHz shows that the WMA-based technique achieves
SNRs of 0.95%, 4.27%, and 4.39%, represented by the green dots and arrows, with a
total of 16 frequency reconfigurations, or shifts, for the Timestamp. Comparing this
with SlidingChange and LR-ADR, which shows at the Table 2, SlidingChange and
LR-ADR required more frequent reconfigurations/shifts as compared to WMA for the
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same input of data from the generated dataset details shown in [Silva et al. [2023a],
Moysiadis et al. [2021]], whereas WMA maintained fewer shifts while achieving higher

SNR improvements.
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Fig. 10 for SF=11, BW=125 kHz shows that the WMA-based technique achieves
SNRs of 4.01%, 4.12%, and 4.05%, represented by green dots and arrows, with a
total of 13 frequency shifts concerning the Timestamp, marked with black dots. The
red line shows a 915 MHz frequency, and the blue line shows a 433 MHz frequency.
Comparing this with Sliding Change and LR-ADR, the results are presented in Table
2.
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Fig. 11 for SF=12, BW=125 kHz shows that the WMA-based technique achieves
SNRs of 3.56%, 5.88%, and 6.01%, represented by the green dots and arrows, with a
total of 13 frequency shifts concerning the Timestamp, marked with black dots. The
red line shows a 915 MHz frequency, and the blue line shows a 433 MHz frequency.
Comparing this with SlidingChange and LR-ADR, which are shown in Table 2.

Fig. 12 for SF=10, BW=250 kHz shows that the WMA-based technique achieves
SNRs of 4.22%, 5.85%, and 6.99%, represented by green dots and arrows, with a
total of 9 frequency shifts concerning Timestamp, marked by black dots. The red line
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Fig.12 WMA for SF' = 10 and BW = 250k H z.

shows a 915 MHz frequency, and the blue line shows a 433 MHz frequency. Comparing
this with SlidingChange and LR-ADR, which are shown in Table 2. Sliding Change
and LR-ADR required more frequent reconfigurations than WMA at this point.
WMA enhances SNR, performance while reducing network reconfigurations, making

it a more efficient and stable adaptation method for LoRa networks.

SF=11 BW=250khz

—— 433 MHz

— 915 MHz

@ Total Shifts:( 17)

@ SnrGain 96%

SNR(db)

N W R U O N ® ©

Time

Fig.13 WMA for SF' =11 and BW = 250kH z.

Fig. 13 for SF=11, BW=250 kHz shows that the WMA-based technique achieves
SNRs of 3.96%, 4.30%, and 4.23%, represented by green dots and arrows, with a
total of 17 frequency shifts concerning Timestamp, marked by black dots. The red
line shows a 915 MHz frequency, and the blue line shows a 433 MHz frequency.
Comparing this with SlidingChange and LR-ADR, which are shown in Table 2. The
SlidingWindow technique had lower SNRs, with the highest not exceeding 4.09% for
SF=11 and BW=250 kHz. WMA maintained fewer shifts while achieving comparable

or higher SNR improvements.
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Fig.14 WMA for SF' =12 and BW = 250kH z.

Fig. 14 for SF=12, BW=250 kHz shows that the WMA-based technique achieves
SNRs of 4.15%, 4.16%, and 4.04%, represented by green dots and arrows, with a
total of 11 frequency shifts concerning Timestamp, marked by black dots. The red
line shows a 915 MHz frequency, and the blue line shows a 433 MHz frequency.
Comparing this with SlidingChange and LR-ADR, which are shown in Table 2.
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Fig.15 WMA for SF' = 10 and BW = 500k H z.

The fig. 15 for SF=10, BW=500 kHz shows SNRs of 4.99%, 6.05%, and 6.12%, which
represent green dots and arrows, with 20 frequency shifts concerning Timestamp,
with black dots—comparing this with SlidingChange and LR-ADR, which shows at
Table 2.
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Fig.16 WMA for SF' = 11 and BW = 500k H z.

The fig.16 for SF=11, BW=500 kHz shows SNRs of 5.54%, 5.84%, and 5.86%, which
represent green dots and arrows, with 16 frequency shifts concerning Timestamp,
with black dots—comparing this with SlidingChange and LR-ADR which shows at
the Table 2,

SF=12 BW=500khz

—— 433 MHz
— 915 MHz

81 @ Total Shifts:( 14)
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Time

Fig.17 WMA for SF' =12 and BW = 500k H z.

The fig 17 for SF=12, BW=500 kHz shows SNRs of 5.79%, 6.12%, and 6.33%, which
represent green dots and arrows, with 14 frequency shifts concerning Timestamp,
with black dots—comparing this with SlidingChange and LR-ADR, which are shown
in Table 2.

The reduction in network frequency reconfigurations “5.65%” in the WMA techni-
que, is related to the algorithm’s capability to analyze trade-offs between network
availability at gateway levels and communication response time. It is essential to
highlight that the WMA technique reduced the number of frequency shifts across
different BW and SF configurations compared with slidingChange, LR-ADR, and
other state-of-the-art methods [Silva et al. [2023a], Moysiadis et al. [2021]]. Even
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operating under low shift frequencies, the WMA algorithm achieves an average SNR
improvement of 4.86%, resulting in environments with reduced interference. This
result demonstrated the feasibility of the proposed WMA-based adaptive technique
in improving SNR and reducing frequency shifts in LoRa-based networks (answering
the research question), which can be used in realistic [oT applications and Gateways,

where conditions vary significantly.

Sensitivity analysis of WMA weights 0.1 to 0.9 reveals that higher values enhance
responsiveness to SNR fluctuations but increase reconfiguration rates. In contrast,
lower weights reduce reconfigurations to stabilize performance at the cost of delayed
adaptation and increased energy demand. Subsequently, WMA strengthens LoRa
network availability by maintaining communication consistency, reducing congestion,
optimizing SNR, and enhancing security through adaptive parameter control. These
findings demonstrate the cognitive radio capabilities of LoRa networks and encourage
ongoing research on utilizing adaptive WMA-based algorithms to optimize SNR and

other network parameters in diverse operational scenarios.

5.3 NETWORK RECONFIGURATION AND STABILITY

A critical advantage of the WMA technique is its ability to minimize network recon-
figurations, measured as frequency shifts between the 433 MHz and 915 MHz bands.
WMA reduced reconfiguration frequency by “5.65%” as compared to slidingChange
Silva et al. [2023a]. The WMA algorithm’s weighting mechanism (Weight € (0, 1))
played an essential role in balancing stability and availability. 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 were assigned to calculate the WMA to identify similar SNR values
that indicate the need for frequency reconfiguration/shifts. The WMA technique
effectively reduces the frequency reconfigurations, known as shifts, by “5.65%” com-
pared to the “SlidingChange” method. This reduction enhances network stability
and availability, minimizing unnecessary adaptations and optimizing overall LoRa

network performance.
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6 CONCLUSION

This thesis presented a WMA-based adaptive technique aimed at enhancing SNR
and overall network performance in LoRa-based IoT deployments. The proposed
WMA approach leverages both historical and real-time SNR measurements to
dynamically adjust critical network parameters, including spreading factor, BW, CR,
and carrier frequency. By doing so, it effectively addresses challenges inherent in
LoRa communication, such as intersymbol interference, environmental fluctuations,
and packet loss, while minimizing unnecessary network reconfigurations, commonly
referred to as shifts. Unlike traditional methods, such as SlidingChange and other
state-of-the-art techniques that rely predominantly on immediate measurements,
WMA systematically weighs recent and past data to produce a consistent, accurate
representation of network conditions, thereby enhancing both stability and reliability.
The primary advantage of the WMA technique lies in its ability to smooth short-
term fluctuations without compromising responsiveness to meaningful changes in
network conditions. Sudden variations in SNR caused by transient interference,
fading, or congestion are effectively reduced, preventing erratic adjustments that
could destabilize network performance. This capability reduces energy consumption
by limiting unnecessary reconfigurations, thereby prolonging the operational lifetime
of battery-powered IoT devices. Simultaneously, WMA ensures that the network
adapts efficiently to genuine environmental changes, maintaining high signal quality

and robust communication links.

Empirical evaluation was performed in a controlled experimental testbed, comprising
ESP32 microcontroller-based clients and LoRa SX1276/SX1278 transceiver modules
operating at 433 MHz and 915 MHz. Communication distances between nodes
were set between 500 and 700 meters to replicate real-world deployment scenarios
and challenge signal propagation. Each configuration, WMA, SlidingChange, and
LR-ADR, was executed three times to ensure reliability and account for potential
variations such as interference, multipath fading, and traffic fluctuations. Real-time
monitoring and configuration were facilitated through a dedicated mobile application,
allowing accurate measurement of SNR, network availability, and reconfiguration

frequency.

The evaluation demonstrated that the WMA technique consistently outperforms
existing approaches, including SlidingChange and LR-ADR. Specifically, WMA
achieved a 4.86% improvement in SNR and a measurable reduction in the frequency of
reconfigurations compared to SlidingChange. These improvements directly translate
into enhanced transmission reliability, reduced packet loss, and improved network

stability, which are critical for IoT applications requiring continuous and dependable
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communication. The weighted averaging of recent and historical measurements allows
WMA to maintain high network availability while effectively reducing interference

and accommodating varying traffic patterns.

Moreover, WMA provides a robust mechanism for dynamic network parameter adap-
tation. By continuously monitoring SNR trends and adjusting SF, BW, CR, and
carrier frequency accordingly, WMA eliminates the need for manual configuration
or static parameter settings. This capability is particularly valuable for large-scale
[oT networks, where heterogeneous devices, variable densities, and environmental
variability can cause rapid and unpredictable changes in network conditions. In
such scenarios, frequent reconfigurations may introduce instability, degrade perfor-
mance, and increase energy consumption; WMA addresses these issues by balancing

responsiveness and stability, ensuring reliable and energy-efficient operation.

The study also highlights the benefits of integrating historical data into adaptive
decision-making. Techniques like SlidingChange, which rely exclusively on immediate
measurements, may overreact to transient disturbances, leading to unnecessary shifts
and network instability. In contrast, WMA'’s incorporation of both short-term and
long-term trends enables a more comprehensive assessment of network conditions,
optimizing SNR, reducing packet loss, and enhancing overall reliability. This approach
is especially advantageous in complex IoT environments where multiple interference

sources and variable traffic patterns are common.

These findings have important implications for real-world IoT deployments. Improved
SNR and reduced reconfigurations not only enhance data reliability and throughput
but also facilitate energy-efficient operation, which is crucial for battery-powered
sensors and devices. In applications such as industrial automation, environmental
monitoring, smart cities, and precision agriculture, WMA-based adaptation can
provide consistent, high-quality communication even under challenging conditions.
By mitigating the effects of interference and fluctuations, WMA ensures that critical

data is transmitted reliably, supporting timely decision-making and system stability.

Despite the promising results, further research is needed to validate WMA under more
complex, real-world scenarios. While the controlled testbed provided meaningful
insights, deployment in industrial, urban, or highly dense IoT environments may
introduce additional challenges, such as cross-technology interference, dynamic traffic
patterns, and mobility. Future work should focus on industrial-scale testbeds to
evaluate WMA'’s performance under such conditions, including heterogeneous device
types and multi-gateway architectures. Additionally, comparative studies with a
broader set of cognitive radio and adaptive LoRa techniques would strengthen the
evidence of WMA’s superiority, particularly in terms of scalability, energy efficiency,

and resilience.
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Future extensions of this work may also explore the integration of WMA with
machine learning or predictive models, enabling proactive adjustment of network
parameters based on anticipated environmental changes. Such hybrid approaches
could further enhance network stability, reduce energy consumption, and optimize
SNR in highly dynamic environments. By combining WMA with intelligent prediction
or reinforcement learning techniques, IoT networks could achieve self-optimizing,
autonomous operation, supporting large-scale deployments with minimal human

intervention.

In conclusion, the WMA-based adaptive technique introduced in this thesis represents
a significant advancement in the design of efficient, reliable, and energy-conscious
LoRa networks. By incorporating both historical and real-time measurements,
dynamically adjusting transmission parameters, and reducing unnecessary reconfi-
gurations, WMA achieves higher SNR, improved network stability, and increased
availability compared to traditional methods. Empirical results confirm the te-
chnique’s effectiveness in mitigating packet loss, optimizing transmission quality,
and providing robust performance in dynamic IoT environments. These outcomes
demonstrate that WMA is a promising foundation for future IoT networks, offering
a pathway toward adaptive, resilient, and energy-efficient communication systems

capable of meeting the demands of diverse real-world applications.
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