UNIVERSIDADE FEDERAL DE JUIZ DE FORA
FACULDADE DE ENGENHARIA
PROGRAMA DE POS GRADUACAO EM ENGENHARIA ELETRICA

Lucca Oliveira Facio Viccini

Simulation and Testing of the Upgraded Digital Signal Processing Firmware
Using High-Level Synthesis on the Real-Time Trigger Path of the ATLAS

Liquid Argon Calorimeters

Juiz de Fora

2025

Lucca Oliveira Facio Viccini

Simulation and Testing of the Upgraded Digital Signal Processing Firmware
Using High-Level Synthesis on the Real-Time Trigger Path of the ATLAS

Liquid Argon Calorimeters

Dissertacao apresentada ao Programa de Poés
Graduagao em Engenharia Elétrica da Univer-
sidade Federal de Juiz de Fora como requisito
parcial a obtencao do titulo de Mestre em
Engenharia Elétrica. Area de concentracio:
Sistemas Eletronicos

Orientador: Prof. Dr Luciano Manhaes de Andrade Filho

Coorientador: Dr. Marcos Vinicius Silva Oliveira

Juiz de Fora

2025

Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Oliveira Facio Viccini, Lucca.

Simulation and Testing of the Upgraded Digital Signal Processing
Firmware Using High-Level Synthesis on the Real-Time Trigger Path of the
ATLAS Liquid Argon Calorimeters / Lucca Oliveira Facio Viccini. — 2025.

111 f. il

Orientador: Luciano Manhaes de Andrade Filho

Coorientador: Marcos Vinicius Silva Oliveira

Dissertagao (Mestrado) — Universidade Federal de Juiz de Fora, Facul-
dade de Engenharia. Programa de P6s Graduacdo em Engenharia Elétrica,
2025.

1.High Energy Physics. 2. FPGA. 3. High-Level Synthesis. 4. Func-
tional Simulation, 5. Low latency. I. Manhéaes de Andrade Filho, Luciano,
orient. II. Silva Oliveira, Marcos Vinicius. coorient. III. Titulo.

07/10/25, 21:33

SEI/UFJF - 2624904 - PROPP 01.6: Statement of approval

RESEARCH AND GRADUATE PROGRAMS OFFICE

™
FEDERAL UNIVERSITY OF JUIZ DE FORA]

Lucca Oliveira Facio Viccini

Simulation and Testing of the Upgraded Digital Signal Processing Firmware Using High-Level Synthesis on the Real-Time Trigger Path of the ATLAS Liquid
Argon Calorimeters

Thesis submitted to the Graduate Program in Electrical Engineering
of the Federal University of Juiz de Fora as a partial

requirement for obtaining a Master's degree in Electrical Engineering.
Concentration area: Electronic Systems

Approved on 18 of September of 2025.

EXAMINING BOARD

Prof. Dr. Luciano Manhaes de Andrade Filho — Academic Advisor
Federal University of Juiz de Fora

Prof. Dr. Marcos Vinicius Silva Oliveira — Academic Co-Advisor
Brookhaven National Laboratory

Prof. Dr. Leandro Rodrigues Manso Silva
Federal University of Juiz de Fora

Prof. Dr. Victor Araujo Ferraz
Federal University of Rio Grande do Norte

Juiz de Fora, 09/18/2025.

— -

seil 4

Documento assinado eletronicamente por Leandro Rodrigues Manso Silva, Professor(a), em 22/09/2025, as 10:47, conforme hordrio oficial de
i assinature L Brasilia, com fundamento no § 3° do art. 4° do Decreto n°® 10.543, de 13 de novembro de 2020.

seil B

Documento assinado eletronicamente por Marcos Vinicius Silva Oliveira, Usuario Externo, em 25/09/2025, as 13:07, conforme horario oficial de
i assinatura Brasilia, com fundamento no § 3° do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

https://sei.ufjf.br/sei/controlador_externo.php?acao=documento_co...134f597f3bcbea717e10293&visualizacao=1&id_orgao_acesso_externo=0 Page 1 of 2

SEI/UFJF - 2624904 - PROPP 01.6: Statement of approval 07/10/25, 21:33

(> :l_ ~ 7} Documento assinado eletronicamente por Luciano Manhaes de Andrade Filho, Professor(a), em 02/10/2025, as 19:10, conforme hordrio oficial de
_').el, l‘j Brasilia, com fundamento no § 3° do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

assinatura L]
i eletrénica

i

o
_-’,el! l‘j Documento assinado eletronicamente por Victor Araujo Ferraz, Usudrio Externo, em 07/10/2025, as 12:50, conforme horario oficial de Brasilia,
31 com fundamento no § 3° do art. 4° do Decreto n°® 10.543, de 13 de novembro de 2020.

assinatura
i eletrénica

https://sei.ufjf.br/sei/controlador_externo.php?acao=documento_co...134f597f3bcbea717e10293&visualizacao=1&id_orgao_acesso_externo=0 Page 2 of 2

AGRADECIMENTOS

Agradeco, em primeiro lugar, & minha familia pelo apoio incondicional e incentivo
em todas as etapas da minha vida académica. Sem o suporte deles, esta conquista jamais

seria possivel.

A minha noiva, Nathalia, por ser meu porto seguro, meu ponto de luz, por me

motivar e por estar sempre ao meu lado em todos os momentos.

Aos colegas da equipe LATOME HLS, sempre solicitos e dispostos a ajudar,

independentemente do momento.

Ao meu orientador, Luciano, por todos os aprendizados e confianga depositada em
mim.

Ao meu coorientador, Marcos, pela oportunidade oferecida e com quem tanto
aprendi nesta jornada.

A todos os professores, pelos ensinamentos e pelo apoio neste periodo de estudos.

Ao professor André Marcato, por seus ensinamentos, apoio, amizade e paciéncia ao

longo deste periodo.
Ao professor Ivo, por toda a paciéncia e apoio durante esta jornada.

A Universidade Federal de Juiz de Fora, & Faculdade de Engenharia Elétrica, ao
grupo do Calorimetro de Argdnio Liquido, ao ATLAS e ao Centro Europeu de Pesquisa
Nuclear (CERN), que me proporcionaram toda a infraestrutura para o desenvolvimento
deste trabalho.

"We are a way for the cosmos to know itself."
— Carl Sagan

RESUMO

Esta dissertacao apresenta a validagao e simulagao do pipeline digital de proces-
samento de sinais no sistema de gatilho do Calorimetro de Argénio Liquido (LAr) do
experimento ATLAS, com foco especifico no firmware LATOME. A implementacao utiliza
High-Level Synthesis (HLS) para gerar os blocos Input Switch Matrix (ISM) e Output
Summing (OSUM), responsaveis pela reorganizagao, processamento e agregagao dos dados
de Super Células em tempo real, atravessando multiplos dominios de relégio. As versoes de
firmware 6.0 a 6.3 foram analisadas em profundidade, com as versoes iniciais centradas no
caminho de monitoramento e na validacao do bloco REMAP, enquanto versoes posteriores
introduziram suporte aos caminhos de processamento eFEX e jFEX. Adotou-se uma
estratégia de simulacao em multiplas camadas, combinando modelos Firmware-Agnostic e
Firmware-Aware para possibilitar testes abrangentes desde componentes HLS isolados até o
firmware integrado completo. Os principais esfor¢os de validagao incluiram a calibracao do
atraso do sinal SOP, a identificacao da janela de metastabilidade e a verificacao funcional
dos mecanismos de sincronizacdo entre dominios de relégio. A integracao do modulo de
diagnostico Mini-FEX permitiu a observacao em tempo real de erros de SOP e CRC, tanto
em simulagoes quanto durante a operacao do sistema ATLAS. A metodologia desenvolvida
ao longo deste trabalho oferece uma estrutura reutilizavel e escaldvel para validar futuras
versoes do firmware—como o caminho gFEX (v6.4) e o bloco User Code (v7.x)—e serve
como referéncia para a adogao de HLS em outros sistemas FPGA de alta taxa de dados e

baixa laténcia em experimentos de fisica de altas energias.

Palavras-chave: high-level synthesis; firmware latome; calorimetro de argonio liquido do

ATLAS; sistema de gatilho em tempo real; validagdao e simulagao em fpga.

ABSTRACT

This thesis presents the validation and simulation of the upgraded digital signal
processing pipeline deployed in the ATLAS Liquid Argon Calorimeter trigger system, with
a particular focus on the LATOME firmware. The implementation relies on High-Level
Synthesis (HLS) to generate the Input Switch Matrix (ISM) and Output Summing (OSUM)
blocks, which are responsible for reorganizing, processing, and aggregating real-time Super
Cell data across multiple clock domains. Firmware versions 6.0 through 6.3 were analyzed
in depth, with early versions centered on the monitoring path and REMAP validation,
and later iterations introducing support for eFEX and jFEX trigger paths. A multi-
layered simulation strategy was adopted, combining Firmware-Agnostic and Firmware-
Aware models to enable comprehensive testing from standalone HLS components to fully
integrated firmware deployments. Key validation efforts included SOP delay calibration,
metastability window identification, and functional verification of clock synchronization
logic. The integration of the Mini-FEX diagnostic module provided real-time observability
of SOP and CRC errors, both in simulation and during ATLAS system operation. The
methodology developed throughout this work offers a reusable and scalable framework
for validating future firmware upgrades—such as the gFEX path (v6.4) and the User
Code block (v7.x)—and serves as a reference for adopting HLS in other high-throughput,
low-latency FPGA-based systems in high-energy physics experiments.

Keywords: high-level synthesis; latome firmware; atlas liquid argon calorimeter; real-time

trigger system; fpga validation and simulation.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

List of Figures

Overview of the LHC accelerator ring and its four main experimental sites:
ATLAS, CMS, ALICE, and LHCb [5]. 15
Schematic view of the ATLAS detector, illustrating its primary subsystems: the
Inner Detector, Calorimeters, Magnet System, and Muon Spectrometer [11]. 20
Transversal slice of the ATLAS detector, illustrating its primary subsystems
and the typical paths of different particle types as they interact with the Inner
Detector, Calorimeters, and Muon Spectrometer. 21
Cut-away view of the ATLAS calorimeter system, comprising the Liquid Argon
electromagnetic calorimeters and the Tile hadronic calorimeter. 22
Overview of the ATLAS Trigger and Data Acquisition (TDAQ) system, showing
the data flow from detector readout through the Level-1 hardware trigger and
the High-Level software trigger to offline storage [16]. 23
Timeline of the LHC operational schedule, including Runs, Long Shutdowns,
and the transition to the High-Luminosity LHC (HL-LHC) [21]. 25
Diagram of the ATLAS Liquid Argon Calorimeter, showing its four main
regions: EMB, EMEC, HEC, and FCAL. 27
The ATLAS LAr calorimeter trigger readout system. Signals are digitized by
the LTDBs, processed by the LATOMES in the back-end, and transmitted to
both the L1Calo Feature Extractors (eFEX, jFEX, gFEX) for triggering and
the FELIX system for data acquisition and monitoring. 29
Comparison between the legacy Trigger Tower segmentation and the Phase-
I Super Cell segmentation. Super Cells provide finer granularity, preserve

longitudinal layer information, and improve trigger performance. 30

Figure 10 — LAr Carrier (LArC) ATCA board hosting four LATOME boards. 31
Figure 11 — A close-up view of a LATOME board, showing the heat sink, the four MTP-12

optical input connectors (green), and the MTP-48 output connector (black). 32

Figure 12 - LATOME firmware block diagram. The pale brown frame corresponds to

the hardware interface, while the blue boxes represent higher-level functional

blocks [6]. 38
Figure 13 - LATOME firmware clock domains block diagram [6]. 39
Figure 14 — Three-step remapping implementation in the LATOME v5 firmware. . . 40
Figure 15 — Timing diagram illustrating the clock frequencies and word configurations in
the vb LATOME firmware [23]. 41
Figure 16 — Design flow from C++ to VHDL using Siemens Catapult. 45

Figure 17 — VHDL Wrapper Generator GUI. The user pastes the Catapult-generated VHDL

entity (top), selects flattened ports (middle), and receives a new wrapper entity

and package (bottom) for easier signal handling. 46

Figure 18 — Diagram of the switch matrix architecture in the REMAP block. Black dots
indicate programmable interconnections between input and output streams. 48

Figure 19 — Interaction between Cocotb and QuestaSim, showcasing coroutine-based simu-

lation and probing of multiple circuit points. 49
Figure 20 — Monitoring path dataflow in the legacy LATOME firmware (v5). 53
Figure 21 — Demonstration firmware architecture (v6.0.0), with the legacy remapping
replaced by an HLS-based Input Switch Matrix (ISM). 53

Figure 22 — Block diagram of the ISM HLS IP. Each input passes through an S2P converter
with clock transfer, followed by the parallel switch matrix (ISM) and the P2S
converter. e e 54
Figure 23 — Internal structure of a Serial-to-Parallel (S2P) converter with clock transfer,
bridging 320 MHz serialized data to the 240 MHz domain. 55
Figure 24 — Connection between the SOP generator and the SOP phase generator, provid-
ing synchronization and phase selection for the S2P modules. 55
Figure 25 — SOP generator: produces a reference pulse that marks the start of each bunch
crossing and distributes it to the S2P converters. 56
Figure 26 — SOP phase generator: introduces a programmable delay to the reference pulse,

ensuring that data capture in the 240 MHz domain occurs at a stable and

controlled instant. L oo 26
Figure 27 — Structure of the ISM highlighting the two cascaded multiplexers. 57
Figure 28 — Architecture of the P2S adapter used to serialize six 13-bit words from the
User Code output. 59
Figure 29 — Architecture of the RSM HLS IP. The S2P and P2S modules match those in
the ISM, but operate within a single clock domain. 59
Figure 30 — Layer 0: Functional verification of the ISM logic using a C++ implementation
and mapping files. 61
Figure 31 — Python-based RTL validation of the ISM block using Cocotb. Tests include
signal-level monitoring of the VHDL output. 61

Figure 32 — Example waveform from Cocotb/QuestaSim showing synchronization using
the bcid signal to validate output after the fixed latency of the ISM block. 63

Figure 33 — Cocotb testbench for the full monitoring chain of firmware version 6.0.0.

Includes S2P with clock transferring, ISM, RSM, and P2S blocks. . . . 64
Figure 34 — Extended testbench including User Code bypass to directly validate ISM-RSM
compatibility. 64
Figure 35 — LATOME HLS software infrastructure 69

Figure 36 — Simplified trigger path architecture from firmware version 6.2 onward high-
lighting both HLS designed blocks. 70

Figure 37 — Block diagram of the OSUM HLS IP showing the eFEX output path. The
figure highlights the sequential pipeline stages from the User Code to the final

transmission to the FEX system, including key clock domain boundaries and

data formatting blocks. L 70
Figure 38 — Bit layout of the eFEX data frame constructed by efex_data. The CRC field
is not yet valid at thisstage. L. 73
Figure 39 — Structure of the eFEX align frame. 75
Figure 40 — Firmware Aware and Agnostic Models 80

Figure 41 — Simulation strategy for Layer 1: isolated HLS block verification in a single
clock domain. 81
Figure 42 — Simulation strategy for Layer 2: verification of blocks across clock domain
boundaries using SerDes. oL 82
Figure 43 — Simulation strategy for Layer 3: full-firmware validation including User Code
and output logic.o 82
Figure 44 — Mini-FEX diagnostic output during laboratory testing. All counters incre-
mented as expected and no SOP-related or CRC errors were observed. . 85
Figure 45 — Grafana dashboard from a P1 run showing OSUM SOP-delay values (top) and
corresponding CRC error counters (bottom). The highlighted period shows

stable operation after configuration. 86
Figure 46 — OSUM block diagram showing the integrated jFEX path. 88
Figure 47 — Bit layout of the jJFEX data frame constructed by jfex_data. The K28.5
symbol replaces SATUR[7:0] when no saturation is detected. 91
Figure 48 — Structure of the jFEX align frame. Includes FEX ID, fiber ID, full BCID,
LATOME identifiers, and frame boundary markers. 91
Figure 49 — Comparison between golden model and firmware outputs for the REMAP
block. All values match. 95

Figure 50 — Example of mismatch detection in OSUM output: BC, frame, word, expected
value (model), and actual value (DUT) are shown. 96
Figure 51 — Cocotb simulation summary showing successful validation of the complete
LATOME HLS DUT (REMAP and OSUM blocks included). 96
Figure 52 — SOP period error counters for the REMAP and OSUM blocks during ATLAS
online testing. Errors are observed at startup but converge to zero after
sop_refreshisdisabled.o 101
Figure 53 — Evolution of CRC errors and sop_refresh values over time. The drop in

errors aligns with the moment the sop_refresh signal is set to zero. . . 102

Table 1 —

Table 2 —

Table 3 —

Table 4 —

Table 5 —

Table 6 —

Table 7 —

Table 8 —

Table 9 —

Table 10 —

Table 11 —

Table 12 —

List of Tables

Active Super Cell inputs per region according to the official LATOME input
mapping files. 58
Percentage of success on complete tests for firmware version v6.0.0 using the
EMBA__ 1 mapping (50 completed tests). 66
Percentage of success on complete tests for firmware version v6.0.0 across
LATOME mappings. oo vt 66
Percentage of success on complete tests for firmware version v6.1.0 using the
EMBA _ 1 mapping (50 completed tests). 67
Percentage of success on complete tests for firmware version v6.1.0 across
LATOME mappings. o 67
Percentage of success on complete tests for firmware version v6.2.0 using the
EMBA__ 1 mapping (50 completed tests). 84
Percentage of success on complete tests for firmware version v6.2.0 across
LATOME mappings. o 84
SOP-delay scan in the Point 1 system with remap fixed at 2 and osum swept
fromOto7.. 87
Percentage of success on complete tests for firmware version v6.3.0 using the
EMBA _ 1 mapping (50 completed tests) 97
Percentage of success on complete tests for firmware version v6.3.0 across
LATOME mappings. o 98
Stress test results for the OSUM block on the EMBA_ 1 mapping, with 50 runs
per sop_delay_select configuration. All values represent the percentage of
tests (out of 50) in which errors were detected or data matched successfully. 99
OSUM validation results with sop_refresh deasserted after 1 second of ini-
tialization, using the EMBA 1 mapping. Each sop_delay_select was tested
over 50 runs. The REMAP SOP was fixed at delay 2 for all tests. All values
represent the percentage of tests in which errors were detected or successful

outcomes achieved. L 100

ADC
ALICE
AMC
ATCA
ATLAS
BC
BCID
CERN
CMS
CRC
CDC
DAQ
EMEC
eFEX
FEX
FPGA
gFEX
HEC
HEP
HLS
HLT
jFEX
LAr
LArC
LATOME
LDPB
LHC
LHCb
L1

LLI
LTDB
OSUM
PU

SC

SM
SOP
TDAQ
TDR
TTC
ucC

LISTA DE ABREVIATURAS E SIGLAS

Analog-to-Digital Converter

A Large Ion Collider Experiment
Advanced Mezzanine Card
Advanced Telecommunications Computing Architecture
A Toroidal LHC ApparatuS

Bunch Crossing

Bunch Crossing Identifier

Conseil Européen pour la Recherche Nucléaire
Compact Muon Solenoid

Cyclic Redundancy Check

Clock Domain Crossing

Data Acquisition

Electromagnetic Endcap Calorimeter
Electromagnetic Feature Extractor
Feature Extractor
Field-Programmable Gate Array
Global Feature Extractor

Hadronic Endcap Calorimeter
High-Energy Physics

High-Level Synthesis

High-Level Trigger

Jet Feature Extractor

Liquid Argon

LAr Carrier Board

LAr Trigger prOcessing MEzzanine
LAr Digital Processing Blade
Large Hadron Collider

LHC beauty experiment

Level-1 (Trigger)

Low-Level Interface

LAr Trigger Digitizer Board
Output Summing

Processing Unit

Super Cell

Switch Matrix

Start of Packet

Trigger and Data Acquisition
Technical Design Report

Timing, Trigger, and Control

User Code

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
0.6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.5.1

Contents

Introduction 15
Motivation Lo 16
Objectives L 17
Thesis Structureo 18
The ATLAS Experiment 20
ATLAS Overview e 20
ATLAS Subsystems 21
ATLAS Trigger and Data Acquisition System (TDAQ) 22
The ATLAS Detector Upgrade Program 24
The Liquid Argon Calorimeter Trigger Readout Architecture 26
Structure of the LAr Calorimeters 26
Overview of the LAr Trigger Readout Path 28
Phase-I Upgrade and the Introduction of Super Cells 29
Back-End Electronicso 30
Front-End Electronics oo 32
Timing and Synchronization 33
Monitoring and Data Validation 34
LATOME Firmware o v vt v v v v vt vt v v 36
Firmware Functional Overview 36
Firmware Architecture Lo 37
Legacy Design: Version 5 40
Methodology and Tools, 43
Field-Programmable Gate Arrays (FPGAs) 43
High-Level Synthesis (HLS) 44
Wrapper Generator for HLS-VHDL Integration 45
Switch Matrix Architecture 47
Coroutine-Based Co-Simulation with Cocotb and QuestaSim 48
Simulation and Validation Strategy 49
Firmware Evolution and Validation: Versions 6.0 to 6.3 51
Overview of the Firmware Evolution 51
Demonstration Firmware Integration and HLS Validation (v6.0.0 and v6.1.0) 52
S2P Converter and Clock Domain Crossing 54
The Input Switch Matrix (ISM) 56
Parallel-to-Serial (P2S) Adapter 58
RSM HLSIP 58
Validation Strategy and Test Campaigns 60
Cocotb Simulation 62

6.2.5.2
6.2.5.3
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.7

6.3

6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.3
6.3.3.1
6.3.3.2
6.3.3.2.1
6.3.3.2.2
6.3.3.2.3
6.3.3.2.4
6.3.4
6.3.4.1
6.3.4.2
6.4

6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.4
6.4.2
6.4.2.1
6.4.2.2

Full Demonstration Firmware Simulation 63

Transition to Firmware Version 6.1.0 65
Clock Domain Transfer Validation: SOP Delay Tests 65
Hardware Test Environment 65
Firmware v6.0.0 Test Results 66
Firmware v6.1.0 Test Results 66
LATOME HLS Software Infrastructure 67
Firmware Version 6.2 69
OSUM HLS Architecture 70
Masking oL 70
EMEC Adapter 71
eFEX MLE: Multi-Linear Encoder 71
Data Encoder: Construction of the eFEX Data Frame 73
Output Switch Matrix (OSM) 73
Frame Select Block 74
CRC-9 Calculation 75
Clock Transfer and SerDes 76
Serial-to-Parallel Conversion 76
Parallel-to-Serial Conversion and Clock Domain Crossing 77
Mini-FEX Monitoring Logic 78
Simulation Strategy and Models, 79
Firmware Agnostic and Firmware Aware Models 79
Layered Simulation Strategy 80
Layer 0 o 80
Layer 1 o o o e 81
Layer 2 o 81
Layer 3 82
Validation Results 82
REMAP Validation 83
OSUM Validation 84
Firmware Version 6.3 87
Adder Path 88
jASM (JFEX Adder Switch Matrix) 88
Adder Blocks 89
jFEX MLE: Multi-Linear Encoder 89
Data Encoder: Construction of the jFEX Data Frame 90
Single Path o 92
jSSM: Single Switch Matrix 0oL 92

jFEX SMLE: Multi-Linear Encoder for Single Path 92

6.4.3
6.4.4
6.4.5
6.4.6
6.4.6.1
6.4.6.2

Al
A2
A3

Integration into OSM 93
Timing Closure and Clock Tree Improvements 93
Simulation Campaign 94
Hardware Validation 96
REMAP Validation 97
OSUM Validation 98
Conclusion i i i i e e e e e e e e e e e e e 103
HLS Wrapper Generator Output 105
Original Entity Generated by Catapult 105
Generated Wrapper Entity oL 105
Generated Package File 107

Example of LATOME Mapping Configuration: EMBA_1 .. 108
Bibliography o oo e 110

15
1 Introduction

High-energy physics (HEP) is the field dedicated to studying the fundamental
constituents of matter and the forces governing their interactions. Its primary goal is to
answer open questions about the nature of mass, the composition of dark matter, and the
possible unification of fundamental forces. Over the past decades, research in this area
has not only advanced our understanding of the universe but also driven technological

developments in computing, medical imaging, and materials science.

Founded in 1954, the European Organization for Nuclear Research (Conseil Eu-
ropéen pour la Recherche Nucléaire, CERN) is the world’s largest center for particle physics
research. CERN hosts the Large Hadron Collider (LHC), the most powerful particle
accelerator ever built, which enables the study of matter under extreme conditions by

colliding proton beams at unprecedented energies [1, 2.

The LHC consists of a 27-kilometer underground ring located at the border between
France and Switzerland, as shown in Figure 1. Proton beams are accelerated in opposite
directions and are steered to collide at four designated interaction points. Each interaction
point hosts a major experiment: ATLAS and CMS are general-purpose detectors designed
to explore a broad range of physics phenomena, while ALICE and LHCD are dedicated to

more specialized studies [3].

Figure 1 — Overview of the LHC accelerator ring and its four main experimental sites:
ATLAS, CMS, ALICE, and LHCb [5].

16

1.1 Motivation

Having established the broader context of the LHC and its experiments, this section
narrows the focus to the technical challenges that motivate the development and validation

of the firmware described in this thesis.

The efficacy of high-energy physics experiments, such as ATLAS, is contingent
upon instrumentation capable of processing data at extreme rates with stringent precision
and reliability requirements. The LHC operates in multi-year data-taking periods known
as Runs, each separated by long shutdowns dedicated to maintenance and upgrades. With
each successive Run, the LHC delivers higher luminosities, leading to increased data

throughput and placing more stringent demands on real-time data processing systems.

A key performance indicator of a collider is its luminosity, which quantifies the
number of potential particle collisions per unit area per second [4]. During Run 3, the
LHC operates with proton-proton collisions at a center-of-mass energy of 13.6 TeV and
achieves a peak luminosity of 3 x 103* cm~2s7! [6]. This high luminosity increases the
probability of observing rare physics processes but also results in significant pile-up—an
average of about 80 simultaneous interactions per bunch crossing. Such conditions place
considerable demands on the ATLAS detector’s data acquisition and trigger systems, which
must process vast amounts of information in real time while maintaining high accuracy

and low latency.

The ATLAS calorimeters play a central role in the trigger decision by providing
precise energy measurements. In particular, the Liquid Argon (LAr) calorimeter, responsi-
ble for detecting electromagnetic showers from particles such as electrons and photons,
delivers fine-granularity energy data that is essential for accurate event selection at the

hardware trigger level [7].
Operating under the LHC’s high collision rate of 40 MHz, the ATLAS detector

generates an enormous volume of data every second [8]. To manage this, the Level-1 (L1)
Trigger system plays a vital role by reducing the event rate from 40 MHz to a manageable
100 kHz. This rapid filtering ensures that only the most relevant events are retained for
further processing, significantly reducing the burden on downstream systems. The L1
Trigger relies on precise energy measurements from the LAr calorimeter, making real-time

signal processing a crucial component of ATLAS’s functionality.

In preparation for Run 3, the LAr calorimeter underwent a significant upgrade
to handle the increased collision rates and improve trigger decision performance [6].
This included the introduction of Super Cells (SC)—aggregations of multiple calorimeter
cells—which provide finer spatial granularity for more precise energy reconstruction. To
process this increased data volume, the LATOME (LAr Trigger prOcessing MEzzanine)

boards were developed as a central element of the upgraded back-end electronics. These

17

boards are responsible for aggregating, filtering, and preparing SC data for the Level-1

trigger system, enabling fast and accurate event selection.

To cope with the increased data throughput and architectural complexity, the
LATOME firmware is undergoing a major redesign. Two critical processing blocks—REMAP
and OSUM—are being re-implemented using High-Level Synthesis (HLS), enabling a more
modular and flexible architecture. This approach aims to improve both maintainability
and performance while meeting the stringent latency and reliability requirements of the
ATLAS trigger system. Ensuring the correctness of these upgrades requires a rigorous

validation and simulation framework.

This thesis is dedicated to the simulation and verification of these HLS-based
upgrades to the LATOME firmware. By implementing a multi-layered verification strategy,
it verifies functionality and timing across increasing levels of integration. This work
contributes to ensuring the reliability and performance of the LATOME firmware as part
of the ATLAS Phase-I trigger upgrade. The specific objectives of this thesis are outlined

in the next section.

1.2 Objectives

This work focuses on the HLS-based upgrades to the LATOME firmware. Its

primary objectives are:

o To redesign and implement the critical REMAP and OSUM blocks of the LATOME
firmware utilizing High-Level Synthesis (HLS). These components are crucial for
reorganizing, processing, and aggregating real-time Super Cell data across multiple

clock domains.

e To leverage HLS for enhanced development efficiency, improved maintainability, and
optimized firmware performance. HLS allows for describing functionality in high-level

languages, reducing development effort and promoting rapid design iteration.

» To conduct functional simulation and verification of the upgraded LATOME firmware,
specifically validating the integrated HLS-based components . This involves C-level

simulations and Python-based testbenches using Cocotb and QuestaSim.

o To establish and apply a robust multi-layered verification methodology, systematically
addressing various levels of integration and complexity within the firmware. This
includes a strategy with four distinct layers, from unit-level tests to full system

simulations.

o To ensure that the LATOME firmware adheres to stringent functional and timing

requirements for stable operation within the demanding environment of the ATLAS

18

trigger system . This objective is supported by extensive hardware validation and

real-time ATLAS tests, including SOP delay calibration and CRC error monitoring.

These objectives collectively support the readiness of the LATOME firmware to handle
the increased data rates and processing demands of the upgraded ATLAS trigger system.

1.3 Thesis Structure

This thesis is organized into seven chapters, designed to progressively build the
reader’s understanding from the high-level context of the ATLAS experiment to the
detailed validation results of the LATOME firmware upgrade.

e Chapter 1: Introduction. This chapter presents the motivation behind the
research, outlining the technical challenges in real-time signal processing for the
ATLAS experiment and the context of the firmware upgrade. It also defines the

objectives of this thesis and details its overall structure.

o Chapter 2: The ATLAS Experiment. This chapter provides a broader context
for the work by giving an overview of the ATLAS experiment and the Large Hadron
Collider (LHC). It describes the ATLAS detector’s subsystems, the role of the Trigger
and Data Acquisition (TDAQ) system, and the ATLAS Detector Upgrade Program.

o Chapter 3: The Liquid Argon Calorimeter Trigger Readout Architecture.
This chapter delves into the technical background of the ATLAS Liquid Argon (LAr)
calorimeter and its upgraded trigger readout chain. It covers the physical structure
of the LAr calorimeters, the overview of the LAr trigger readout path, the Phase-I
upgrade with the introduction of Super Cells, and the design of the front-end and
back-end electronics (LTDBs, LDPB, and LATOME boards). It also explains the
timing and synchronization infrastructure and monitoring and real-time trigger paths

essential for system operation and validation.

e Chapter 4: LATOME Firmware. This chapter describes the overall functional
overview and architectural foundation of the LATOME firmware, including its various
processing blocks, data flow, and clock domain organization. It also details the
characteristics of the legacy firmware (Version 5), providing essential context for

understanding the subsequent High-Level Synthesis (HLS)-based upgrades.

o Chapter 5: Methodology and Tools. This chapter introduces the key hardware
platforms and software tools employed in this work, including Field-Programmable
Gate Arrays (FPGAs) and the principles of High-Level Synthesis (HLS) using Siemens
Catapult. It also presents the HLS Wrapper Generator for VHDL integration, the

19

Switch Matrix architecture as a foundational design pattern, and the Coroutine-
Based Co-Simulation with Cocotb and QuestaSim. This chapter concludes with an
overview of the multi-layered simulation and validation strategy that underpins the

verification efforts.

Chapter 6: Firmware Evolution and Validation: Versions 6.0 to 6.3. This
comprehensive chapter details the evolution of the LATOME firmware from Version
6.0 to Version 6.3, outlining the architectural modifications and the corresponding
simulation and validation strategies for each release. It presents the HLS-driven
redesigns of key components such as the Remapping (REMAP) and Output
Summing (OSUM) blocks, and their integration and validation on the monitoring
and trigger paths (eFEX and jFEX). This chapter also provides a detailed explanation
and application of the multi-layered simulation strategy (Layers 0 to 3), encompassing
C-level simulations, RTL co-simulations, and full-firmware validation with both
Firmware-Agnostic and Firmware-Aware models. Furthermore, it includes hardware
tests, both in laboratory and deployed in ATLAS, particularly the SOP delay
calibration campaigns and the integration of the Mini-FEX diagnostic module for

real-time error observability.

Chapter 7: Conclusion. This final chapter summarizes the main contributions of
this thesis, discusses its impact on the ATLAS trigger system, and outlines potential

future improvements to the firmware and validation methodologies.

20

2 The ATLAS Experiment

The ATLAS (A Toroidal LHC ApparatuS) experiment, where this work is situated,
is the largest general-purpose particle detector ever built. It is operated by a collaboration
of more than 5,500 scientists from 245 institutes across 42 countries [9]. The detector is
designed to identify and measure the properties of particles produced in proton-proton
collisions at the LHC by reconstructing their trajectories, momenta, and decay products [10].
ATLAS enables a broad physics program, ranging from precision tests of the Standard
Model—including the discovery of the Higgs boson in 2012—to searches for physics beyond

the Standard Model, such as dark matter candidates and extra spatial dimensions.

2.1 ATLAS Overview

Figure 2 shows the ATLAS detector, a cylindrical structure measuring approxi-
mately 25 meters in height and 44 meters in length and weighing approximately 7000 tons.
It is designed to provide nearly complete coverage around the collision point, spanning
a solid angle close to 47. This hermetic coverage enables the precise reconstruction of

particle trajectories and energy deposits across a wide range of physics processes [17].

barrel New Smail Whee! (NSW)
muon chambers muaon chambers

N

barrel taroid magnet

endcop

muon chambers inner detectors

endcag toroid
magnet

endcap colorimeters

barrel electromagnetic calorimeter

solenoid magniet

OATLAS

EXPERIMENT

barrel hadronic calorimeter

Figure 2 — Schematic view of the ATLAS detector, illustrating its primary subsystems:
the Inner Detector, Calorimeters, Magnet System, and Muon Spectrometer [11].

21

2.2 ATLAS Subsystems

Figure 3 presents a cross-sectional view of the ATLAS detector, illustrating how
various particles interact with its subsystems. The ATLAS detector consists of sev-
eral concentric subsystems, each optimized for a specific role in particle detection and

measurement.

Muon
Spectrometer

Hadrenic
Calorimeter

The dashed tracks
are invisible to
the detector

Electromagnetic
Calorimeter

Solenoid magnet
Transifion
Rodiation

Trucki ng TI'UCkEI’
Pixel /SCT detector

Figure 3 — Transversal slice of the ATLAS detector, illustrating its primary subsystems
and the typical paths of different particle types as they interact with the Inner Detector,
Calorimeters, and Muon Spectrometer.

Closest to the collision point, the Inner Detector (ID) tracks charged particles with

high precision, measuring their direction, momentum, and charge [12].

The Magnet System, shown in gray in Figure 3, consists of a central solenoid
providing the magnetic field for the Inner Detector, and large toroidal magnets positioned
around the calorimeters and muon spectrometer to enable momentum measurements of

muons [13].

The Muon Spectrometer, located in the outermost layers, detects and measures

the momentum of muons, which can penetrate the entire detector [14].

22

The ATLAS calorimeter system, shown in orange and blue in Figure 3 and rendered
in Figure 4, is positioned between the Inner Detector and the Muon Spectrometer. It
measures the energy deposited by particles as they pass through, producing ionization
signals proportional to that energy. The calorimeter system consists of the Liquid Argon
Calorimeter (LAr), designed to measure the energy of particles that interact electromagnet-
ically, such as electrons and photons, and the Tile Calorimeter (TileCal), which measures
the energy of particles undergoing hadronic interactions, such as protons, neutrons, and
pions [15].

In addition to its role in offline physics analysis, the calorimeter system provides
critical input to the Level-1 (L1) trigger — a hardware-based system responsible for rapidly
selecting potentially interesting collision events in real time. This capability relies on
accurate and fast energy measurements from the calorimeters. The next section discusses
how this functionality is implemented within the Trigger and Data Acquisition (TDAQ)

system.

Tile Calorimeter
hadronic extended barre!

LAr Calorimeter
electrarmagnetic forward
{FCal)

Tile Calorimeter

; LAr Calorimeter
hodroric barrel

— > 4 = hadronic forward

\"— : (FCal)
S e M= ™ - -TicS
s /, F 7

LAr Calorimeter o A5y
electromagnetic barrel

(EMB) : (_.

LAr Calorimeter
hadronic endcop

LAr Calorimeter {HEC)

electromagnetic endcap
JTLA (EMEC)
E

XPERIMENT

Figure 4 — Cut-away view of the ATLAS calorimeter system, comprising the Liquid Argon
electromagnetic calorimeters and the Tile hadronic calorimeter.

2.3 ATLAS Trigger and Data Acquisition System (TDAQ)

Figure 5 provides an overview of the ATLAS Trigger and Data Acquisition (TDAQ)
system, which handles the large data volume produced by LHC collisions. Proton bunches
cross at a frequency of 40 MHz, known as Bunch Crossings (BC), where each crossing

can potentially produce one or more proton-proton collisions. Each bunch crossing occurs

23

every 25 ns, aligned with the LHC’s 40 MHz collision frequency. The resulting data volume

far exceeds the storage and processing capabilities of conventional systems [16].

Calorimeter detectors
LAr TileCal ‘_
Muon detectors (including NSW) 1 LHC collision rate & event size

40 MHz 3.0mMB

Detector
Read-Out

Level-1 Calo Level-1 Muon ‘

Pre-processar TieCal Endcap Barel

& TREX i sector logic | sector logic |FE FE| fFE
- mlEx I 1 L. Level-1 accept rate
‘l l 4 ———% ——% ——— FELIX — —
SR | = : . .
CP(e,y,m | JEP (jet, E) I E > ! I

aljig | -
CMX CMX FEX MUCTPI §
o
ff DataFlow
LiTopa | N
— Legacy LiTopo = |]
| L cTP]
L s CTBCORE!
] CTPOUT *

Lewvel-1 Trigger

Data Storage P kg i
High Level Trigger 3 kHz & GBls

(HLT) l—.fl

Figure 5 — Overview of the ATLAS Trigger and Data Acquisition (TDAQ) system, showing
the data flow from detector readout through the Level-1 hardware trigger and the High-
Level software trigger to offline storage [16].

To manage this challenge, ATLAS employs a sophisticated filtering architecture
designed to identify and retain only the most relevant events for physics analysis. The
data processing is divided into two stages: online and offline. Online processing occurs in
real time and is responsible for selecting events during collisions, while offline processing
occurs after data recording and involves detailed analysis using advanced reconstruction
algorithms. Offline processing includes full event reconstruction, calibration, alignment

corrections, and detailed physics analysis, performed after data recording.

The TDAQ system reduces data through a multi-level filtering strategy that
progressively decreases the event rate while preserving essential physics information. It is

structured into two main levels:

« Level-1 (L1) Trigger: A hardware-based filtering stage that processes data from
the calorimeters and muon detectors. Operating with a fixed latency of 2.5 us, it
reduces the event rate from 40 MHz to approximately 100 kHz. A key component
is the Level-1 Calorimeter Trigger (L1Calo), which receives data from the
electromagnetic and hadronic calorimeters and identifies high-energy electromagnetic

showers, hadronic jets, and global event quantities for early event selection [16].

24

« High-Level Trigger (HLT): A software-based stage that receives events selected by
L1. Tt applies full event reconstruction and more sophisticated selection algorithms
to further reduce the event rate to about 3 kHz, storing only the most relevant events

for offline analysis [16].

A key input to the L1Calo system comes from the upgraded Liquid Argon (LAr)
calorimeter. Signals from the calorimeter are digitized by the front-end electronics and pro-
cessed in real time by the back-end trigger readout system, including the LATOME boards,
which prepare the energy information used by the Level-1 trigger. The processed data
is then transmitted to the L1Calo Feature Extractors—eFEX, jFEX, and gFEX-—which

identify electromagnetic clusters, jets, and global event properties for triggering purposes.

This hierarchical filtering system, combining both real-time and offline analysis,
is essential for the success of the ATLAS experiment, allowing researchers to select rare

physics signals while discarding the majority of non-relevant collision events.

2.4 The ATLAS Detector Upgrade Program

The ATLAS Phase-I upgrade was designed to prepare the detector for the higher
luminosity conditions of Run 3 and beyond. This program involved upgrades to several
subsystems, including the muon detectors, the forward proton system, and the trigger and
data acquisition (TDAQ) infrastructure. A key component of this effort was the upgrade
of the Liquid Argon (LAr) calorimeter trigger readout, which is the focus of this thesis.

The LHC follows a structured schedule alternating between Runs and long shut-
downs, as shown in Figure 6. Each Run corresponds to an operational phase of the
accelerator, delivering proton-proton collisions for data collection by experiments. In
contrast, a long shutdown is a planned maintenance and upgrade period, during which
major technological improvements are implemented to prepare the LHC and its detectors

for the next operational cycle.

The LHC began its first operational cycle, Run 1, from 2010 to 2013, reaching a
center-of-mass energy of up to 8 TeV and leading to the discovery of the Higgs boson.
After Long Shutdown 1, extensive hardware upgrades allowed Run 2, from 2015 to 2018, to
operate at a center-of-mass energy of 13 TeV, significantly increasing the dataset available

for precision measurements and new physics searches.

Following the conclusion of Run 2, the LHC and its experiments, including the
ATLAS detector, entered Long Shutdown 2 in December 2018. Over the next years, critical
upgrades were implemented as part of the Phase-I upgrade program. These improvements
aimed to maintain trigger efficiency and detector performance under the higher pile-up
conditions expected in Run 3 and the future High-Luminosity LHC (HL-LHC) era.

25

) LHC/HL-LHCPlan = € HiLUM Y

LHC HL-LHC
b ik
B - s 136 Tov AR 13.6- 14 TeV
DHodes Canaotidatian -
splice canscldation & LI Insstatiat X
7 TeV BTeV iuion octlimators 2 8 O o Wipiet HL-LHC
— AZE wrojoct Civil Eng. P1.PS pibert bmam rachabon it Installation

ATLAS - CMS

—— upgrada phase | ATLAS - CMS
baarn pipe y 2 x nominal Lues o 2 ¥ noriral Lurd - Spyy
nomimlLum 2 omeal Lum, ALICE - LHCb —ixromhalun L
76% nominal Lum /_ upgrade
ke '] 3000 fb!
EXrs [190 " | 450 1 [N 4000 fb

DESIGN STUDY 3 PROTOTYPES o CONSTRUCTION | INSTALLATION & COMM, H PHYSICS

Figure 6 — Timeline of the LHC operational schedule, including Runs, Long Shutdowns,
and the transition to the High-Luminosity LHC (HL-LHC) [21].

Among these, the LAr calorimeter received a major trigger readout upgrade.
This enhancement replaces the previous analog summing approach with a fully digitized
readout, providing higher spatial granularity in the calorimeter data for the Level-1 trigger
system. This change significantly improves event selection capabilities, allowing the
trigger to operate reliably at higher luminosities while maintaining the precision of energy

measurements at the trigger level.

A detailed examination of the Liquid Argon calorimeter, the architecture of its
upgraded trigger readout system, and the motivation for the firmware development

presented in this thesis is provided in the following chapter.

26
3 The Liquid Argon Calorimeter Trigger Readout Architecture

The Liquid Argon (LAr) calorimeter system is a critical component of the ATLAS
detector, providing high-resolution energy measurements that are essential for both offline
physics analysis and real-time trigger decisions. This chapter presents the architecture of
the LAr trigger readout chain, with a focus on the back-end electronics where the firmware

development and validation described in this thesis are implemented.

The chapter begins with an overview of the physical structure and segmentation of
the LAr calorimeter, which is essential for understanding the data organization, channel
mapping, and firmware configuration. This is followed by a description of the data flow
from the calorimeter to the Level-1 Calorimeter Trigger (L1Calo) and the Front-End Link
eXchange (FELIX) systems. The Phase-I upgrade and the introduction of Super Cells are
then discussed, providing the context for the increased data granularity that drives the
architecture of the upgraded readout chain. These descriptions are intended to contextualize
the operation and design of the back-end processing system—the Liquid Argon Digital
Processing Blade (LDPB) and the LATOME boards—which are responsible for real-time
energy reconstruction, data formatting, and delivering the processed information to the
trigger and data acquisition systems. The chapter concludes with descriptions of the
front-end electronics, the timing and synchronization infrastructure, and the monitoring

paths that ensure coherent operation and enable real-time validation of the system.

Together, these sections provide the operational and architectural background
necessary to understand the firmware development, the High-Level Synthesis (HLS)

upgrades, and the validation methodologies presented in this thesis.

3.1 Structure of the LAr Calorimeters

The ATLAS Liquid Argon (LAr) calorimeter is a sampling detector designed to
measure the energy of electromagnetic particles—such as electrons and photons—and
hadronic particles in the forward region. Its geometry and segmentation directly influence
the design of the trigger readout and the firmware processing chain described in this work.
It operates by alternating layers of passive absorber material with active liquid argon gaps.
Particles traversing the detector produce ionization in the liquid argon, which is then
collected by electrodes and converted into electrical signals proportional to the deposited

energy.

The LAr calorimeter is divided into four distinct detector regions, each optimized

for different pseudorapidity ranges and physics goals, as illustrated in Figure 7:

« Electromagnetic Barrel (EMB) — Covers the central region of the detector

(In] < 1.475). Tt is responsible for precise energy measurements of electrons and

27

photons produced near the interaction point.

+ Electromagnetic Endcap (EMEC) — Extends the coverage to the forward
regions (1.375 < |n| < 3.2), maintaining high resolution for electromagnetic showers

at larger pseudorapidities.

« Hadronic Endcap Calorimeter (HEC) — Positioned behind the EMEC, it mea-
sures hadronic showers from strongly interacting particles, providing complementary

coverage to the TileCal in the central region.

« Forward Calorimeter (FCAL) — Covers the extreme forward region (3.2 < |n| <
4.9), where particle fluxes are highest. It is designed to withstand high radiation

and measure both electromagnetic and hadronic energy.

-

LAr eleciromagnetic
end-cap (EMEC)

LAr electromagnetic

barrel &4 :
LAr forward (FCal)

Figure 7 — Diagram of the ATLAS Liquid Argon Calorimeter, showing its four main
regions: EMB, EMEC, HEC, and FCAL.

The geometry of the calorimeter features fine segmentation in both lateral (n-¢)
and longitudinal layers, optimized for particle identification, energy resolution, and pile-up
mitigation. The electromagnetic calorimeters (EMB and EMEC) consist of multiple
longitudinal layers with different granularity: a finely segmented front layer for shower
position determination, a middle layer for the bulk of energy measurement, and a coarse

back layer to capture shower leakage.

28

This segmentation is not only crucial for offline physics reconstruction but also
directly impacts the design of the trigger readout system. The mapping of calorimeter cells
into Super Cells (SCs), the channel distribution into front-end and back-end electronics, and
the configuration of firmware processing blocks are all intrinsically tied to the calorimeter
geometry. Different detector regions have different numbers of Super Cells, data rates,
and processing requirements, which are reflected in both the hardware and firmware

architecture of the trigger readout chain.

The following sections present the architecture of the trigger readout system,
providing the operational context for the back-end processing and firmware development
described in this thesis.

3.2 Overview of the LAr Trigger Readout Path

The Liquid Argon (LAr) calorimeter provides real-time transverse energy measure-
ments and digitized Super Cell (SC) data to the ATLAS Level-1 (L1) trigger system and
data acquisition. This information is essential for event selection, allowing the trigger
to identify electromagnetic clusters, hadronic jets, and global event properties such as
missing transverse energy (E7*), while simultaneously ensuring that the raw digitized

signals are available for detector monitoring and full event reconstruction.

As illustrated in Figure 8, the LAr trigger readout chain consists of multiple stages.
Signals generated in the calorimeter are digitized by the front-end electronics, the Liquid
Argon Trigger Digitizer Boards (LTDBs), operating at 40 MHz. The digitized Super Cell
(SC) data is transmitted optically to the back-end system — the Liquid Argon Digital
Processing Blade (LDPB) — which hosts four LATOME boards.

The LATOME boards process the SC data in real time, performing energy calcula-
tion, basic filtering, and data formatting. The output is simultaneously transmitted to

two destinations:

o The Level-1 Calorimeter Trigger (L1Calo) Feature Extractors (FEX): eFEX, jFEX,
and gFEX, where the trigger decision is formed.

o The Front-End Link eXchange (FELIX) system, which handles data acquisition,

detector monitoring, and validation streams.

The following sections describe the Phase-1 upgrade that introduced this trigger
readout architecture, as well as the implementation of its back-end and front-end electronics,
the Super Cell mapping, the timing and synchronization infrastructure, and the data

validation paths.

29

P : LTDB configuration & monitoring, > Trigger Timing|Control
' [GBT]

'
1
: ATCA shelf m
! LTDB monitoring [GbE]
ATCA management &
Shelf Manager
LDPB momtonng [IPMB]

[GbE]

monltorlng

LDPB configurati
______ ? ‘(’.B"bg]“_'a.'ml - Partltlon Master

[GBT]

_————— -
LTDB configuration

LDPB

(LArC+LATOME+IPMC)
Super Cells ADC & ET

—_C S

ATLAS readout network

Super Cells ADC & Et L.
e —mmmm a _ocal Monitoring & »g LAr local processing
(10 GbE]

100 kHz [GBT Full Mode]

Super Cells ET

' .

! 40 MHz [custom] —— Optical link [protocol]

] === Copper link [protocol]

'
‘ Trigger Towers (Analog) = Trigger readout

- - |] > Trigger System .
= ATLAS global monitoring readout

: =P LAr local monitoring readout
Front End 1 Back End Triager. Timi d Control
(on detector) . (off detector) rigger, Timing and Control

Figure 8 — The ATLAS LAr calorimeter trigger readout system. Signals are digitized by

the LTDBs, processed by the LATOMESs in the back-end, and transmitted to both the

L1Calo Feature Extractors (eFEX, jFEX, gFEX) for triggering and the FELIX system for
data acquisition and monitoring.

3.3 Phase-I Upgrade and the Introduction of Super Cells

The Phase-I upgrade of the ATLAS Liquid Argon (LAr) calorimeter introduced
substantial improvements to the Level-1 (L1) trigger system, most notably by replacing
the legacy Trigger Tower-based readout with a fully digital path based on high-granularity
Super Cells (SCs). This enhancement increased the spatial resolution by up to a factor
of ten in key calorimeter regions, enabling finer energy measurements and more selective

event triggering.

In the legacy system, Trigger Towers (TTs) covered an area of Anx A¢ =0.1x0.1
and summed energy from all longitudinal layers into a single value. In contrast, SCs
retain layer-specific information, with the middle layer achieving a finer granularity of
An x A¢p = 0.025 x 0.1. This segmentation allows for more precise reconstruction of
electromagnetic showers and improves the identification of electrons, photons, and tau
leptons [6].

Figure 9 illustrates this improvement. The left side shows a single Trigger Tower
summing transverse energy across all layers, whereas the right highlights the enhanced

segmentation of Super Cells. By maintaining separate energy measurements per layer,

30

SCs enable better discrimination of overlapping energy deposits and provide more detailed

input to the trigger algorithms.

Existing System Phase-| Upgrade
Level-1 Trigger Granularity (Trigger Towers) Level-1 Trigger Granularity (Super Cells)
60 cells per Trigger Tower; all layers summed 10 Super Cells per Trigger Tower
EM layer 3
Back: 2x4
(AnXA}=0.05%0.025)
EM layer 2 —
Miadle: 4x4
(AnxA9=0.025x0.025) — EM layer 2
Middle: 1x4
EM layer 1 | (AnxAp=0.025x0.025)
Front: 32x1
(Arpev=0,003125x%0.1) EM layer 1
¢ Front: 8)(1m:?"I S
‘l (A1xA¢=0. :
EM layer 0 o)
Presampler: 4x1 | T
(AnxAg=0.025x0.1
EM layer 0
Presampler: 4x1
(AnxA¢=0.025x0.1)

Figure 9 — Comparison between the legacy Trigger Tower segmentation and the Phase-I
Super Cell segmentation. Super Cells provide finer granularity, preserve longitudinal layer
information, and improve trigger performance.

The increase in granularity results from both longitudinal and lateral segmentation.
Each Trigger Tower is typically divided into four longitudinal layers, and for certain
layers — particularly the middle layer — additional lateral segmentation reduces the An
granularity from 0.1 to 0.025 while keeping A¢ = 0.1. This finer segmentation directly
impacts the design of the trigger readout system by significantly increasing the volume of

data that must be processed in real time.

To handle this increase in data, the readout architecture was completely redesigned.
The front-end Liquid Argon Trigger Digitizer Boards (LTDBs) digitize the SC signals
at 40 MHz, while the back-end processors — the LATOME boards — perform real-time
energy calculation and data formatting for the Level-1 trigger system and the FELIX data
acquisition path. The next sections describe the implementation of these electronics and

their roles in the trigger readout chain.

3.4 Back-End Electronics

The back-end electronics of the LAr trigger readout system are responsible for
receiving the digitized Super Cell (SC) data from the front-end, performing real-time energy

reconstruction, and delivering the processed information to both the Level-1 Calorimeter

31

Trigger (L1Calo) and the Front-End Link eXchange (FELIX) for trigger decision-making
and data acquisition.

At the core of the back-end system is the Liquid Argon Digital Processing Blade
(LDPB), an ATCA carrier board that hosts four Advanced Mezzanine Cards (AMCs)
known as LATOMESs, as shown in Figure 10. Each LATOME is equipped with an Intel
Arria 10 FPGA, which implements the full processing chain required for the trigger path.

Figure 10 — LAr Carrier (LArC) ATCA board hosting four LATOME boards.

Each LATOME receives data from 48 optical input links operating at 320 MHz.
These links, connected via four MTP-12 connectors visible on the right side of the LATOME
board in Figure 11, carry serialized SC data from the Liquid Argon Trigger Digitizer
Boards (LTDBs). The incoming data is deserialized, realigned, and grouped by bunch
crossing in the LATOME firmware to ensure proper timing and data integrity.

The real-time processing performed in the LATOME includes pedestal subtraction,
basic filtering, noise suppression, and the computation of the Super Cell transverse energy
(E7). The processed output is then formatted according to the interface specifications
of the downstream systems. Data is transmitted simultaneously to the L1Calo Feature
Extractors (FEX) via a MTP-48 connector located on the right side of the board, and to

the FELIX system for data acquisition, monitoring, and validation.

32

The L1Calo FEX processors are divided into three systems:

« eFEX (Electromagnetic Feature Extractor) — responsible for electron and

photon identification;
« jJFEX (Jet Feature Extractor) — responsible for jet and tau detection;

« gFEX (Global Feature Extractor) — responsible for computing global event

properties, such as missing transverse energy ([E7*%).

Figure 11 — A close-up view of a LATOME board, showing the heat sink, the four MTP-12
optical input connectors (green), and the MTP-48 output connector (black).

The LATOME firmware must meet latency constraints imposed by the ATLAS
trigger system. All data alignment, energy computation, and output delivery occur within

the fixed latency window required for the L1 trigger decision.

The next section describes the front-end electronics, which digitize the analog
signals from the calorimeter and deliver the Super Cell data to the LATOME boards for

processing.

3.5 Front-End Electronics

The front-end electronics are responsible for digitizing the analog signals generated
by the LAr calorimeter and transmitting the digitized Super Cell (SC) data to the back-end
system. This task is performed by the Liquid Argon Trigger Digitizer Boards (LTDBs),

which are located on-detector in the radiation environment.

Each LTDB receives up to 320 analog SC signals sampled at 40 MHz. The signals
are digitized with 12-bit resolution using custom radiation-hard ADCs. After digitization,
the SC data is serialized and transmitted optically to the back-end electronics via 48

optical output links operating at 320 MHz.
In addition to the digital output for the upgraded trigger system, the LTDBs

maintain backward compatibility by providing summed analog signals to the legacy Trigger

33

Tower-based system. This dual-output architecture allows for a smooth transition between

the old and new trigger paths during commissioning and initial data-taking phases.

The LTDBs are designed with radiation-tolerant components to ensure stable
operation in the high-radiation environment of the ATLAS calorimeter. Each board
interfaces directly with the back-end LATOME boards hosted in the LAr Digital Processing
Blade (LDPB), delivering the digitized SC data for real-time processing in the Level-1

trigger system.

The next section describes the timing and synchronization infrastructure that

ensures coherent data transfer between the front-end and back-end electronics.

3.6 Timing and Synchronization

Precise timing and synchronization are essential for the operation of the LAr
trigger readout system, ensuring that Super Cell (SC) data is correctly aligned to the
corresponding bunch crossing (BC) and processed within the strict latency constraints of
the Level-1 (L1) trigger.

The timing distribution is managed by the Trigger, Timing, and Control (TTC)
system, which provides a global 40 MHz clock derived from the LHC machine clock. This
clock synchronizes both the front-end and back-end electronics, aligning data sampling,

digitization, and processing across the entire readout chain.

In addition to the clock signal, the TTC system distributes several critical timing

commands:

e Bunch Counter Reset (BCR) — resets the bunch counter at the start of each

LHC orbit to ensure consistent bunch crossing identification.

« Event Counter Reset (ECR) — resets the event counter, maintaining unique

event identifiers within a run.

o Level-1 Accept (L1A) — signals the acceptance of an event, initiating the transfer

of selected data to the readout system.

These signals are distributed optically to both front-end and back-end electronics
using Gigabit Transceiver (GBT) links. The LTDBs use the 40 MHz clock to sample and
digitize analog SC signals synchronously with the LHC bunch crossings. The back-end
LATOME boards receive the same TTC-derived clock and commands, using them to

correctly deserialize, realign, and process the incoming SC data with deterministic latency.

This timing infrastructure ensures that data from the same bunch crossing is
consistently associated throughout the readout chain, from the calorimeter front-end to
the Level-1 Calorimeter Trigger (L1Calo) and the FELIX data acquisition system.

34

The next section describes the monitoring paths that enable real-time validation of

the trigger data and ensure system integrity during operation.

3.7 Monitoring and Data Validation

In addition to its primary role in providing real-time energy information to the Level-
1 (L1) trigger, the LAr trigger readout system incorporates dedicated monitoring paths.
These paths are essential for verifying data integrity, validating energy reconstruction, and

ensuring the overall performance of the system during operation.

Two main monitoring streams are implemented in the back-end electronics:

e Global Monitoring Path — A Full Mode data stream from the LATOME to the
Front-End Link eXchange (FELIX). This stream includes both the raw digitized
ADC values and the computed transverse energy (E7) for each Super Cell. It
allows real-time validation of the energy reconstruction performed in the firmware

by comparing the raw inputs with the processed outputs.

« Ethernet-Based Monitoring Path — A separate path connected via a 10 Gigabit
Ethernet (GbE) link from the LATOME to a dedicated monitoring server. This
path provides flexible, user-configurable access to internal signals, firmware debug
information, and status registers, offering a complementary tool for online debugging

and validation.

The Global Monitoring Path is crucial for ensuring consistency between the online
trigger data and the offline reconstructed data. By capturing both the ADC inputs and
the processed Er values, it allows the system to detect potential discrepancies caused by

firmware errors, hardware faults, or data corruption.

The Ethernet-Based Monitoring Path enhances the system’s operability by offering
access to diagnostic information without interfering with the main trigger or data acqui-
sition streams. This includes features such as firmware counters, data alignment status,

error flags, and live snapshots of internal processing blocks.

These monitoring infrastructures are critical not only for detector commissioning
and firmware development but also for long-term operations, providing the tools necessary
to maintain data quality and system reliability under the demanding conditions of high-

luminosity LHC running.

This chapter has detailed the architecture of the Liquid Argon trigger readout
system, from signal generation in the calorimeter to real-time data processing in the
back-end LATOME boards. While this overview focused on the hardware and data flow,
the focus of this thesis resides in the LATOME firmware itself.

35

The next chapter presents the internal architecture of this firmware, describing how
it handles data de-serialization, alignment, energy calculation, and output formatting. It
also discusses the evolution of the firmware from version 6.0 to 6.3, highlighting the design

changes and upgrades that directly motivated the validation work described in this thesis.

36
4 LATOME Firmware

This chapter describes the internal architecture of the LATOME firmware, focusing
on its functional blocks and how data is received, processed, and transmitted. Each
block is responsible for a specific stage in the data path, from input processing to output

formatting.

The discussion begins with an overview of the firmware’s functional responsibilities
and data flow organization, followed by a detailed description of its clock domains and
processing pipeline. The firmware is structured into four functional blocks: the Input Stage
(IS), Remap (ISM), User Code (UC), and Output Summing (OSUM), each responsible for
a distinct step in the data path. In addition, support components manage monitoring,

slow control, and timing synchronization.

The chapter also details the characteristics of the legacy firmware (Version 5),
providing essential context for understanding the subsequent High-Level Synthesis (HLS)-
based upgrades. This technical foundation is essential for understanding the firmware and
the validation strategies discussed in the following chapters, particularly the comprehensive

evolution and validation of firmware versions 6.0 to 6.3 which are presented in Chapter 6.

4.1 Firmware Functional Overview

The LATOME firmware performs real-time processing of Super Cell data in the
ATLAS LAr calorimeter trigger readout chain. It receives digitized input from 48 high-
speed optical links connected to the Liquid Argon Trigger Digitizer Boards (LTDBs),
processes the data for each LHC bunch crossing, and delivers transverse energy (FEr) values
to the Level-1 Calorimeter Trigger (L1Calo) Feature Extractors (FEXes) and the Trigger
and Data Acquisition (TDAQ) system.

The main data path is implemented through four sequential processing stages:

1. Deserialization and De-scrambling: The firmware converts serialized 12-bit
ADC data from each optical input into parallel data streams, aligns them temporally,

and prepares them for processing.

2. Geometry-Based Remapping: The incoming SC data is reorganized into log-
ical groupings that reflect the detector geometry. This remapping step simplifies
downstream processing and aligns the data layout with the expectations of the FEX

algorithms.

3. Transverse Energy Calculation and Bunch Crossing Tagging: Digital filtering

techniques are applied to each SC to compute its transverse energy (FEr), while

37

associating each measurement with the correct bunch crossing identifier (BCID),

synchronized to the LHC’s 25 ns cycle.

4. Output Summing and Formatting: The processed Er values are optionally
summed (for JFEX and gFEX paths), encoded, and formatted into structured data
frames. These are then transmitted at fixed latency to the L1Calo and FELIX

systems.

In addition to the main trigger path, which transmits real-time Er data to the
L1Calo, the LATOME firmware also supports a parallel monitoring and data acquisition
(TDAQ) path. This path provides raw and processed SC data for event readout, diagnostics,

and validation.

To ensure reliable operation, the firmware includes additional support modules for:

e Clock Management and TTC Decoding: Ensures alignment with the LHC
timing structure by decoding the 40 MHz clock and control signals (BCR, ECR,
L1A) distributed by the ATLAS TTC system.

o Slow Control Interface: Enables remote configuration, register access, and status

monitoring via the IPbus protocol.

e Monitoring Infrastructure: Allows continuous access to internal signals and data
streams through dedicated Ethernet and FELIX-based links, facilitating real-time
validation and debugging.

These auxiliary systems are integrated alongside the main data path and are
critical for maintaining synchronization, enabling configuration and control, and supporting

continuous performance validation across all operating conditions.

4.2 Firmware Architecture

The LATOME firmware is organized into four functional blocks, each corresponding
to a specific stage in the processing pipeline. These blocks operate under a pipelined
architecture to meet the fixed latency and high-throughput constraints of the ATLAS
Level-1 trigger system.

Figure 12 shows the high-level organization of the firmware, with the main data
path spanning from the LTDBs to the Feature Extractor (FEX) output links. The main

data path is structured as follows:

« Input Stage (IS): Deserializes and de-scrambles 12-bit ADC samples from 48
optical input links at 320 MHz. It aligns the SC data temporally and ensures

synchronization across channels.

38

« Configurable Remapping: Reorganizes the data received from the Input Stage
(IS) at 320 MHz, mapping Super Cell information into Trigger Towers according
to the geometry of the detector for each bunch crossing. The reorganized data is
then transferred to the User Code block operating at 240 MHz. Given that the
spatial arrangement of Super Cells varies across the detector, the remapping block
is configured individually for each of the 116 LATOMESs during initialization.

o User Code (UC): This block processes the Super Cell data provided by the
REMAP stage at 240 MHz. It computes the transverse energy (Er) for each Super
Cell using digital filters and appends the corresponding Bunch Crossing ID (BCID).
The results, together with the associated data quality bits, are forwarded to the
OSUM block with fixed latency for each bunch crossing.

e Output Summing (OSUM): The final aggregation stage of the LATOME pro-
cessing chain. It receives, at 240 MHz, the transverse energy values and quality bits
produced by the User Code, and performs regional summations according to the
detector granularity required by the trigger system. These sums are then encoded,
formatted, and transferred to the Feature Extractor (FEX) output fibers at 280 MHz.
Similar to the REMAP, its configuration is defined during initialization for each of
the 116 LATOMESs based on the detector geometry.

TIC

- TDAQ/Monitoring -
@
) = g .o
= 8 A =, >¢
E p E‘: = User Code g- &
= 2 <8 (=)
CR -5 - A
[&]
i 3 s

IPBus controller
1GhE 4==p Avalon® Memory Mapped interfaces
Avalon® Streaming interfaces

Figure 12 — LATOME firmware block diagram. The pale brown frame corresponds to the
hardware interface, while the blue boxes represent higher-level functional blocks [6].

Figure 13 illustrates the three clock domains used in the LATOME firmware, which
separate the high-speed input stage, the processing logic, and the output serialization.
This organization reflects the functional requirements of the trigger path and ensures

proper synchronization between stages.

39

])
1
1
WNCVRRx J TTC 4, TIC JXCVRTx
320MHz 1} 320MHz } 240MHz 1 280MHz
1 1
i
i @)
o E E’ o2
q 8 Ea 512
E‘ - g = User Code =
~ 3 <& 5
] s & i
&)
CVR Rx ok TTC A LLLY ¢ XCVR Tx t
320MHz |} 320MHz 240MHz 280MHz

4s=b Avalon® Memory Mapped interfaces
Avalon® Streaming interfaces

Figure 13 — LATOME firmware clock domains block diagram [6].

e Input Stage at 320 MHz: This domain handles the deserialization and de-
scrambling of 12-bit ADC data from the 48 optical input links. Each Super Cell

sample, produced at 40 MHz, is serialized across eight 320 MHz cycles to accommo-

date the required input throughput.

o Processing Stage at 240 MHz: Once deserialized and realigned, data enters the
240 MHz domain for energy reconstruction and bunch crossing tagging. Operating
at a lower frequency simplifies routing within the FPGA fabric and reduces logic
congestion while maintaining throughput. Internally, the number of streams expands

from 48 to 62 to reflect the remapping of Super Cells into Trigger Towers.

o Output Stage at 280 MHz: The final output is transmitted to the Feature
Extractor (FEX) subsystems using an 11.2 Gbps protocol. This requires data to be
encoded and sent over seven LHC clock cycles (40 MHz) using seven 32-bit words

per frame, resulting in a 280 MHz transmission clock.

The boundaries between these domains are managed using dedicated clock domain
crossing (CDC) mechanisms to preserve timing determinism and data integrity. The entire
pipeline is fixed-latency and fully synchronized with the 40 MHz LHC bunch crossing
clock, ensuring alignment with the correct event window.

In parallel to the main path, the firmware includes auxiliary modules essential for

control and validation:

e Monitoring (MON): Provides access to internal data via FELIX or Ethernet for

diagnostics and validation.

40

« Slow Control (IPCTRL): Manages configuration and control using the IPbus

protocol.

o Timing, Trigger, and Control (TTC): Decodes LHC clock and control signals
(BCR, ECR, L1A) for system-wide synchronization.

« Low-Level Interface (LLI): Serves as the integration layer between hardware

logic and the configuration/monitoring infrastructure.

This architectural foundation establishes the basis for the firmware evolution and

validation efforts discussed in the following sections.

4.3 Legacy Design: Version 5

The current operational LATOME firmware, referred to as Version 5 (v5), was
developed entirely using VHDL. In this design, data remains serialized throughout its
processing path, with clock domain transitions occurring within the logic blocks. This
time-multiplexed architecture contributes to the complexity of the firmware. For instance,
the remapping stage exemplifies these challenges, spanning three distinct steps and multiple
clock domains to align, reorder, and process the data before delivering it to the User Code

block.

As shown in Figure 14, the remapping stage begins with input synchronization at
320 MHz, followed by data reordering and multiplexing. The data enters the remapping
stage through 48 physical input links, each delivering 8 consecutive words per bunch
crossing, totaling 384 input words. In the final step of the remapping stage, the clock
frequency transitions from 320 MHz to 240 MHz, reducing the number of words per frame
from 8 to 6. This results in 62 output streams, totaling 372 words. The reduction from
384 to 372 accounts for the suppression of inactive or empty SC inputs, which are filtered
out during the remapping process.

ARy E9wR EIvE
48x8 A8x8 b2x8 B2xE

@320 MHz 320 MHz @320 MHz @240 MHz

Input stage Input stage
synchronisation reordering Resmp ML RERIRp fefync Usex code

!
4

b 1%

¥

3-step remapping implementation / 2 clock frequencies

Figure 14 — Three-step remapping implementation in the LATOME v5 firmware.

The LATOME firmware must operate its internal blocks at multiples of 40 MHz to

maintain synchronization with the LHC rate of collisions. At the initial remapping stage,

41

each data frame consists of 8 words processed at 320 MHz. As the data progresses through
the design, the number of words per frame reduces to six, corresponding to a frequency
of 240 MHz. The FEX systems, however, expect frames consisting of seven 32-bit words,

which requires a frequency of 280 MHz for the output data protocol.

The timing diagram in Figure 15 shows these operational frequencies, where eight,

six, and seven words are processed at 320, 240, and 280 MHz, respectively.

Frame length

< >
< >

Bunch Crossing Clock 40MHz | | ,_

Clock 320MHz |_| |_| |_| |_| |_| |_| |_| |_|
Data Frame 320MHz WORDOXWORDlXWORD2XWORD3XWORD4XWORD5XWORD6XWORD7X:
Clock 280MHz |_, |_, |_, |_, |_, |_, I_,
Data Frame 280MHz _WORDO XWORDIXWORDZXWORD3XWORD4XWORD5XWORD6X:
Clock 240MHz

Data Frame 240MHz WORDO X WORD1 X WORD2 X WORD3 X WORD4 X WORDS5 X:

Figure 15 — Timing diagram illustrating the clock frequencies and word configurations in
the v5 LATOME firmware [23].

While being functional, the v5 firmware has timing violations that became evident
after eight years of development. These violations are a common challenge in FPGA
designs and occur when the design fails to meet timing constraints, such as setup and hold
times for flip-flops. Setup time refers to the period required for an input to stabilize before
the clock edge, while hold time refers to the period needed to remain stable after the clock
edge. Failing to meet these constraints can lead to metastability, causing unpredictable
behavior, as documented in [23], which references the metastability model introduced
in [24].

In addition to timing challenges, the v5 firmware exhibits high FPGA resource
utilization. For instance, maintaining 62 Processing Units (PUs) in the User Code block
to process the 62 data streams output from the remapping stage significantly increases
resource consumption. The serialized nature of the design and the need for multiple
clock domain transitions further exacerbate the complexity of maintaining timing closure.
These architectural choices also hinder maintainability and increase the effort required for

debugging and upgrading the firmware.

To address these challenges, a new LATOME firmware architecture based on

High-Level Synthesis (HLS) was proposed by Dr. Marcos Vinicius Silva Oliveira. The

42

redesigned firmware replaces the time-multiplexed processing architecture with a parallel
logic structure, making use of switch matrices to manage configurable routing. HLS offers
a higher level of abstraction, reducing development time and simplifying design iterations.
By optimizing resource usage and addressing timing performance, the new architecture

sets the foundation for future firmware improvements.

43
5 Methodology and Tools

This chapter is dedicated to outlining the essential tools and methodologies that
underpinned the implementation, optimization, and verification of the LATOME firmware
upgrade. It commences by introducing Field-Programmable Gate Arrays (FPGAs), which
serve as the fundamental reconfigurable hardware platform, highlighting their benefits for
rapid prototyping and iterative improvements due to their reprogrammability and massive

parallelism.

Following this, High-Level Synthesis (HLS) is explored, detailing its role in enabling
hardware functionality description using high-level languages like C++ to reduce develop-
ment effort and enhance design flexibility, with the Siemens Catapult HLS tool central to
generating synthesizable RTL code from these descriptions. Additionally, the chapter then
presents a HLS Wrapper Generator for VHDL Integration, a custom Python-based tool
developed to streamline the integration of top-level HLS modules by restructuring flat-
tened Catapult HLS ports into more modular, array-based VHDL interfaces for improved

simulation and ease of use.

A novel switch matrix architecture is subsequently introduced as a foundational
design pattern, vital for enhancing data routing and synchronization within the firmware
by replacing sequential operations with a single-step, unified clock domain approach,
thereby simplifying timing closure.

The discussion then moves to the chosen verification approach, elaborating on
Coroutine-Based Co-Simulation with Cocotb and QuestaSim for comprehensive functional
testing, enabling concurrent and asynchronous tasks, internal signal probing, and integra-
tion with Python libraries for accelerated debugging. Finally, the chapter concludes by
detailing the overarching multi-layered simulation and validation strategy, which employs
both firmware-agnostic and firmware-aware models across unit-level, block-level, and
full-system simulations to ensure the correctness and robustness of the upgraded design

across various levels of integration.

5.1 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable Gate Arrays (FPGAs) are reconfigurable integrated circuits
that allow digital logic circuits to be defined and modified by the user after manufacturing.
Unlike Application-Specific Integrated Circuits (ASICs), which have fixed functionality,
FPGAs offer reprogrammability and flexibility, making them ideal for evolving requirements,

rapid prototyping, and iterative improvements.

FPGAs are composed of a matrix of programmable logic blocks interconnected
through configurable routing channels. These blocks implement combinational and sequen-

tial logic, while modern FPGAs also include embedded memory, digital signal processing

44

(DSP) units, and high-speed transceivers.
In the ATLAS experiment, FPGAs are central to the Level-1 trigger system and

the LAr calorimeter readout, where real-time processing of detector signals is essential.
Their massive parallelism enables operations on hundreds of data channels simultaneously,

while their low-latency response supports the stringent 25 ns bunch-crossing cycle of the
LHC.

Crucially, their reconfigurability allows firmware upgrades, enabling performance
improvements without replacing hardware. This is particularly important for systems such
as LATOME, which must evolve in parallel with detector upgrades and higher luminosities.
To fully leverage this potential, the LATOME upgrade employs High-Level Synthesis to

streamline design and validation.

5.2 High-Level Synthesis (HLS)

As FPGA systems grow in complexity, traditional Register Transfer Level (RTL)
design using VHDL or Verilog becomes increasingly difficult to manage. HLS addresses
this challenge by allowing developers to describe functionality in high-level languages
such as C, C++, or SystemC. The synthesis tool then converts this high-level algorithmic
description into RTL, applying optimizations for area, latency, and throughput.

With HLS, the designer focuses on functionality rather than hardware-level timing,
clocking, and signal control. The tool’s ability to automate the generation of control
logic, pipelining structures, and datapath elements typically leads to performance levels

comparable to hand-written RTL while significantly reducing development time.

One of the main advantages of HLS is rapid design iteration. Architectural
explorations, trade-offs, and optimizations can be evaluated by modifying high-level code,
instead of rewriting low-level RTL. The LATOME firmware benefits from this flexibility,

especially in the transition to fully parallel processing architectures.

In the LATOME upgrade, the tool used for HLS is Catapult, developed by Siemens
EDA. Catapult supports fine-grained control of synthesis through directives (pragmas)

that influence loop unrolling, pipelining, array partitioning, and resource sharing.

Among these directives, loop unrolling is particularly relevant to the LATOME
firmware. Unrolling duplicates the hardware for each iteration of a loop, enabling multiple
iterations to be executed in parallel instead of sequentially. This optimization increases
throughput at the cost of higher resource utilization, and is especially well suited for
workloads that process independent data streams, such as the parallel treatment of Super
Cell inputs. When applied with a full unroll, every iteration of the loop is mapped to a

distinct hardware structure, producing a fully parallel architecture.

Beyond its architectural benefits, full unrolling also has a practical advantage in

45

Lighi TEEE; b (UARTUS
USE IEEE.STD LOGIC 1164.ALL;
USE TEEE.STD LOGIC ARITH,ALL; Catapult Design exploration wrapper EB'M_‘E /

ENTITY efex mle IS
PORT(
et : IN STD LDGIC VECTOR (17 DOWNTO 0);
code : OUT STD LOGIC VECTOR (9 DOWNTD 0)

——nargy—s my —»

U
B0 ofex_ale; —vii—s w — gfex_mle — ™ —ooes

|MICHITECTURE v1 OF efex mle IS
Default Constant —maskod-+ g —
Frax

T 30479 Mz

Quick simulations Quick Fmax, latency
and functionality and area
v change iterations eslimations, Final RTL
respective characterization,
) - implementation and area and Fmax
CI‘CD Svnpiify Pro QUARTHS trade-offs, and RTL validation using
}ﬂ[) lf\’ ro ?)B!HE / simulation design explorer, see
slide 8 from [1]

Figure 16 — Design flow from C++ to VHDL using Siemens Catapult.

simulation. Since each loop iteration corresponds to an explicitly generated signal in the
synthesized RTL, all signals become directly visible and traceable in waveform inspection
tools. This significantly improves observability during debugging and validation campaigns,
allowing engineers to monitor each data path individually and verify that the remapping
and summing logic behave as intended. In the LATOME HLS workflow, this feature was
instrumental in correlating C++ models with the generated VHDL code and RTL-level

simulations in Cocotb.

The tool translates C++ into synthesizable VHDL, abstracting control logic while
preserving timing behavior. As shown in Figure 16, this process simplifies the transition

from algorithm to hardware, with accurate latency modeling and efficient resource mapping.

In the context of LATOME, Catapult facilitates rapid prototyping of components
such as the switch matrices used in the REMAP and OSUM blocks. These blocks
benefit from HLS’s ability to manage multiple data streams concurrently, enforce latency
constraints, and minimize logic utilization. Coupled with dedicated verification, the

Catapult workflow ensures that generated RTL is both performant and reliable.

5.3 Wrapper Generator for HLS-VHDL Integration

To facilitate the integration of top-level HLS modules into the LATOME firmware
simulation environment, a custom graphical tool was developed using Python and the
tkinter library. This utility generates VHDL wrapper files that restructures flattened
Catapult HLS ports into array-based interfaces, making them more modular, readable,

and easier to integrate into existing simulation infrastructure.

46

inpEma VHDL Wrapper Generator
Paste the YHEL enticy hera:
,Ec’:_‘gx.r 1om I8

1k : A sTO_tasto;

rak ; IF STOLAGID.

pghehb I8 B LRI veET 14991 powT 03
y_Le - qUT ST0LOATE:

: arl 1u STD_L00TG_EGTOR: {1595 DUNNTO 1)

s na I ,rm nmc‘\nm 310 COMNTD O}

yoear dak . OOF D0T0 VECTOR {4150 DONWTY)

Tieioeris Ju'rn _LonTa,

Annlyes VHOL | Finken Sgnal | Gonerste Wrapper Chear |
gl Manmu D b Type R Frattom Oplsores.
ok L] STD_LO0IC
it] ST0_LOGEE
wnc_te n STD_LOGIC_VECTOR 4351 DOWNTO 0 3413
Fimey_lz ouT

1599 DORITDN0

5_Ena N STD_LOGIC_VECTOR 18 DOWHTO @
w_rec_dat ouT STD_LOGIC_VECTOR 4158 DOWKTO 0 Im1a

y_hivay_tx out STD_LOGIC
Bd_m_ric_dal L] STO_LOGIC_VECTIR 11.DOWNTE 1)
Deid_in_hiowy_iz T ST0_LOGIC

Genersed VHOL Wrapper
ert'iry u- urapper 1s n
F

Calk m ST0_LO0IC;
e T LooTn,
1 t nr .:u,-u ern g 2w
Ty L oL
I arrﬂ‘: &0l #n 319
N ST0_LOOIE VECTOR{I18 COUNTY o)
7. O erapld £ ta J1~3|
E_u,c.n_L; aL.'r sto_Locxe:
Fid dm T - M Frnorantn warTm (11 oo i v

WHDL Packngo Ciafinitian:

Ln:aﬁ' lur n
e_1154.all

packags |;.r...-_.-|1;_r-=
e acroesl Ly 18 rr*? {paturcal tenge 03) of atd_logic_vertac(12 dnmes 014
H!fa T is aczay (matursl Tange <) of std Logic Weeterid dowee 00
end lnbcme_hls fkg:

Figure 17 — VHDL Wrapper Generator GUI. The user pastes the Catapult-generated
VHDL entity (top), selects flattened ports (middle), and receives a new wrapper entity
and package (bottom) for easier signal handling.

Catapult HLS, when translating C++ code to VHDL, flattens arrayed ports into

a single wide std_logic_vector. For example, a C++ input defined as an array of N

elements, each with B bits, such as input [N], is synthesized into the following VHDL
signal:

flat_ signal : std logic_vector(N - B — 1 downto 0) (5.1)

While this format is functionally correct, it complicates testbench development
and debugging, as the logical structure of the original array is lost. To restore modularity,
the tool generates wrapper entities that reinterpret these wide vectors as VHDL arrays of

std_logic_vector, following the inverse mapping:

array signal : array(0 to N — 1) of std_logic_vector(B — 1 downto 0) (5.2)

To support this structure, the tool also produces a reusable VHDL package with

custom type definitions:

type arrayB_t is array(natural range <>) of std_logic_vector(B —1 downto 0)
(5.3)
For instance, array13_t defines an array of 13 elements, while array5_t defines an array

of 5 elements.

47

The flattening and unflattening logic is implemented automatically using generate

statements in VHDL. The assignment rule for each array index ¢ is:

flat signal[(i+1)-B—1:i- B] + array signal(i) (5.4)

The GUI abstracts this process: the user pastes the Catapult-generated entity,
selects ports and their bit-widths, and receives a fully generated wrapper entity with a

supporting package, ready for integration into the LATOME simulation framework.
This methodology was used for the top-level HLS blocks ISM and OSUM, where

flattened ports needed to be reconstructed to interact with standard VHDL structures.
Internal HLS modules, which operate directly on scalar or small vector signals, do not

require this conversion.

By automating this process, the wrapper generator eliminates repetitive manual
coding, reduces the risk of indexing errors, and improves the readability of simulation
waveforms, all without introducing any additional logic or resource overhead. The full

Python source code and representative VHDL output are provided in Appendix A.

5.4 Switch Matrix Architecture

A major innovation of the HLS-based LATOME firmware is the introduction of
configurable switch matrices, which replace the sequential remapping logic of the legacy
design with a fully parallel interconnection fabric. A switch matrix is a programmable
structure that connects multiple inputs to multiple outputs in parallel, according to a

user-defined mapping that reflects the geometry of the calorimeter region.

In the legacy firmware, the remapping process relied on sequential transfers across
multiple clock domains. In contrast, the switch matrix introduced in version 6 executes
all remapping in a single cycle within a unified clock domain, avoiding time-multiplexed

operations and reducing synchronization complexity.

Figure 18 illustrates the principle. Each black dot denotes a possible programmable
connection between an input and an output stream. Only the subset of connections
required by the detector mapping is instantiated, resulting in a sparse implementation

that conserves FPGA resources while maintaining full flexibility.

This architecture delivers input data to the correct output in a single cycle,
simplifying timing closure and minimizing latency. This architecture delivers input
data to the correct output in a single cycle, simplifying timing closure and minimizing
latency. It provides a uniform interface that facilitates testing, reuse, and potential partial
reconfiguration. Beyond these immediate benefits, the switch matrix abstraction makes
the design scalable to different calorimeter regions and adaptable to evolving firmware

requirements.

48

O 00 N O 1 B~ W N = O

Figure 18 — Diagram of the switch matrix architecture in the REMAP block. Black dots
indicate programmable interconnections between input and output streams.

5.5 Coroutine-Based Co-Simulation with Cocotb and QuestaSim

Simulation plays a dual role in the LATOME workflow. On the one hand, it
ensures that the VHDL generated by HLS remains consistent with its C++ source. More
importantly, it validates that the firmware implementation as a whole complies with
the functional specifications of the trigger system, such as correct remapping, summing
behavior, latency constraints, and error handling. To achieve this, the LATOME project

adopts a coroutine-based co-simulation strategy combining Cocotb and QuestaSim.

Cocotb is a Python framework that allows testbenches to be written in Python
rather than VHDL or Verilog. Its coroutine-based execution model enables test code
to behave like concurrent hardware processes, while remaining readable and concise.
Multiple asynchronous tasks—such as input stimulation, output monitoring, and internal

probing—can be executed in parallel, improving observability and accelerating debugging.

The interaction between Cocotb and QuestaSim is illustrated in Figure 19, where
the Python scheduler coordinates multiple coroutines that probe and drive the VHDL

design through the simulator interface.

This setup supports:

Functional testing under nominal and edge-case scenarios.

Probing of internal signals and registers during runtime.

» Comparison against reference models for bit-accurate validation.

Result analysis and visualization through Python tooling.

49

e

QuestaSim Simulator

pseudo-random dut
data output
\J

'S =

Python CoCotb

Figure 19 — Interaction between Cocotb and QuestaSim, showcasing coroutine-based
simulation and probing of multiple circuit points.

Although QuestaSim is limited to functional verification and does not provide
post-synthesis metrics such as timing closure or FPGA resource utilization, it is essential
for establishing behavioral correctness. Low-level implementation insights are obtained

later through synthesis and place-and-route tools such as Vivado.

5.6 Simulation and Validation Strategy

Given the complexity of the upgraded firmware and the reliance on HLS-generated
RTL, a structured simulation and validation strategy is necessary to confirm that the
implementation behaves as intended. The LATOME project therefore adopts a modular and
hierarchical methodology that balances early debugging efficiency with full-system coverage.
While early firmware versions were validated mainly through direct stimulus and waveform
inspection, later versions—starting from v6.2—introduced a layered approach based on

firmware-aware and firmware-agnostic models to enable more systematic verification.

e Modular DUT Design: Each firmware component (e.g., REMAP, ISM, OSUM) is
encapsulated and simulated independently. This helps isolate design errors, simplifies

debugging, and allows reuse of targeted testbenches.

« Layered Testing: Verification progresses through multiple stages: unit-level tests

for isolated functionality, block-level integration for interface verification, and full-

20

system simulations for end-to-end behavior. This stepwise approach makes it possible

to build confidence progressively.

e Dual Modeling Strategy: Two complementary reference models support valida-

tion:

— The firmware-agnostic model checks high-level functionality based on input-

output relationships.

— The firmware-aware model reproduces the bit-level transformations of the

HLS-generated design, allowing detailed comparisons.

Cross-checking results between the models and the DUT improves coverage and

reduces the likelihood of undetected discrepancies.

o Full-System Validation: After component-level checks, the entire firmware is
simulated in system mode with realistic inputs and timing. These runs confirm

synchronization, latency alignment, and compliance with output formatting.

This methodology verifies the firmware implementation against its specifications
before hardware deployment and provides the basis for the validation results discussed in

the following chapter.

51
6 Firmware Evolution and Validation: Versions 6.0 to 6.3

This chapter describes the evolution of the LATOME firmware from Version 6.0 to
Version 6.3, outlining the architectural modifications introduced in each release together
with the corresponding simulation and validation strategies. The shift from a time-
multiplexed to a fully parallelized architecture required a redesign of key components, most

notably through the adoption of switch matrices and the modularization of functional
blocks.

To assess behavior and stability during this transition, a layered simulation method-
ology was progressively introduced. Beginning with Version 6.2, this approach combined
firmware-aware and firmware-agnostic models, enabling validation at both bit-level and

behavioral levels.

Each version is examined both in terms of architectural intent and validation
methodology, providing a chronological narrative of design improvements and compliance

with the performance and timing requirements of the ATLAS LAr trigger system.

6.1 Overview of the Firmware Evolution

The transition from the legacy LATOME firmware (v5) to the upgraded series
of High-Level Synthesis (HLS)-based designs marked a substantial architectural and
methodological shift. While Version 5 remained operational throughout Run 3, it relied on
time-multiplexed logic distributed across three distinct clock domains, which introduced

persistent challenges in timing closure, maintainability, and scalability.

The HLS initiative addressed these limitations by adopting a fully parallel architec-
ture centered on configurable switch matrices. Implemented in C++ and synthesized with
the Siemens Catapult HLS tool, this redesign enabled a more modular and resource-efficient
firmware structure, while simplifying timing integration. The upgrade unfolded through a
series of incremental firmware versions, each introducing and validating essential elements

of the new design.

A major advancement was the replacement of time-multiplexed processing stages
in the REMAP block with a parallel Input Switch Matrix (ISM). The ISM consolidates the
routing logic into a single processing step, where Super Cell signals are directed through
a sparse switch matrix that eliminates sequential multiplexing. This approach removes
the overhead of serial data transfers, reduces synchronization complexity, and better
aligns with the constraints and strengths of HLS-based synthesis. The new architecture
also preserved compatibility with the broader LATOME firmware ecosystem, including

downstream modules and monitoring tools.

In parallel, the OSUM block was redesigned to adopt the same parallel processing

92

paradigm. While the internal structure of OSUM is examined in later sections, it is
important to note that this transformation was central to achieving an HLS-based, high-
throughput data pipeline. Together, these changes established the foundation for a
production-ready architecture and enabled the introduction of structured simulation and

validation frameworks, refined progressively in subsequent versions.

The HLS-based implementation began with a proof-of-concept known as the
demonstration firmware (versions 6.0.0 and 6.1.0). These releases introduced the ISM
block and maintained compatibility with the legacy monitoring infrastructure using a
transitional Readout Switch Matrix (RSM). The RSM reversed the effects of the new
mapping, enabling test flows without modifying the byte-stream decoder used by the
ATLAS Athena software. In version 6.1.0, the RSM was removed once the software mapping
was updated to recognize the HLS output format. These early versions focused exclusively
on the monitoring path and were not yet intended for full trigger path validation. Their
main purpose was to demonstrate that HLS-generated components could be integrated
and simulated within the LATOME ecosystem.

Version 6.2.0 marked the transition from validating the monitoring path to exercising
the full trigger path, connecting the REMAP and OSUM blocks into a cohesive processing
chain. This release introduced support for the eFEX data path and was the first to adopt
a layered simulation methodology. Validation was carried out using a combination of
firmware-aware and firmware-agnostic models, enabling detailed verification of bit-level
behavior, timing alignment, and bunch crossing synchronization through cross-comparison

at multiple abstraction levels.

In version 6.3.0, this architecture was extended to support the jFEX path. The
internal design remained consistent, allowing reuse of the same simulation infrastructure
with only minor adaptations. This release demonstrated the scalability of the architecture
and confirmed that the processing pipeline could accommodate different data sources

without loss of timing alignment or functional behavior.

Although not covered in this thesis, version 6.4.0 is expected to finalize the 6.x series
by integrating the gFEX path. Future developments—beginning with version 7.x—will
focus on the HLS reimplementation of the User Code block, completing the migration to

a fully synthesizable HLS architecture across the entire LATOME trigger path.

6.2 Demonstration Firmware Integration and HLS Validation (v6.0.0 and v6.1.0)

The first step in the HLS-based upgrade of the LATOME firmware was the demon-
stration firmware (versions 6.0.0 and 6.1.0), designed to test the feasibility of integrating
HLS blocks while preserving compatibility with the existing monitoring infrastructure.
These releases focused exclusively on the MON (monitoring) path, with a complete re-

design of the configurable remapping logic as their central architectural change. Figure 20

23

illustrates the architecture of the legacy monitoring path prior to HLS integration.

TDAQ Monitoring

Configurable Output
remapping User Code Summing

Input
stage

Low Level Interface

Figure 20 — Monitoring path dataflow in the legacy LATOME firmware (v5).

This design, though stable in operation, was based entirely on hand-written VHDL
and implemented using time-multiplexed logic across multiple clock domains. These
constraints posed recurring challenges in timing closure and limited flexibility for scaling

or refactoring the design as requirements evolved.

To evaluate the feasibility of HLS within the LATOME firmware, version 6.0.0
introduced a modified monitoring path architecture, shown in Figure 21. The legacy
Configurable Remapping block was replaced by the ISM HLS IP, designed and synthesized
with the Siemens Catapult HLS tool. To maintain compatibility with the legacy monitoring
infrastructure—particularly the byte-stream decoding routines in Athena—a transitional
block called the Readout Switch Matriz (RSM) was added. The RSM reverted the ISM
output format back to the structure expected by downstream software, allowing validation

and monitoring to proceed without modifications to the software stack.

TDAQ Monitoring

Output

User Code Summing

Low Level Interface

Figure 21 — Demonstration firmware architecture (v6.0.0), with the legacy remapping
replaced by an HLS-based Input Switch Matrix (ISM).

o4

6.2.1 S2P Converter and Clock Domain Crossing

Figure 22 shows the high-level architecture of the ISM HLS IP. A total of 48 identical
S2P converters operate in parallel—one per input stream—enabling deserialization and
alignment of the incoming data. Once transferred into the 240 MHz domain, the ISM
block performs the remapping using static multiplexers, and the P2S block reorders the

output to match the User Code format.

ISM HLS IP

(48x8)x13bits (384)x13bits (320)x13bits (54x6)x 1 3bits
@I20MH:2 (@240MHz {@240MHz @240MHz
_ U
Input s2p Clock C;;re
Stage conversion | transferring Bypass

[0...47] [0...53]

—

Input . 15M M| User Code - -
stage HLS IP B

Figure 22 — Block diagram of the ISM HLS IP. Each input passes through an S2P converter
with clock transfer, followed by the parallel switch matrix (ISM) and the P2S converter.

Each S2P module receives a continuous stream of 13-bit serialized Super Cell data
at 320 MHz. Over eight input cycles (25 ns), these words are buffered and presented as a
parallel frame of eight values synchronized to the 240 MHz domain. In effect, each S2P

delivers one complete parallel frame per 240 MHz cycle, as illustrated in Figure 23.

The clock transfer relies on a dedicated enable signal, denoted as valid_240, which
acts as the latch command for capturing the buffered 320 MHz data into the 240 MHz
shadow registers. Rather than representing data validity, this signal serves as the strobe
that guarantees the safe handover of one complete frame per bunch crossing. The precise
position of this strobe is defined by a phase selection circuit, avoiding sampling near

metastability regions.

The alignment of valid_240 is governed by the SOP generator and SOP phase
generator, shown in Figures 24-26. The SOP generator produces a periodic reference pulse
marking the start of each bunch crossing. The SOP phase generator then introduces a
programmable delay, allowing the strobe to be shifted within the transfer window until

a stable capture point is reached. Extensive validation campaigns demonstrated the

95

s2p adapter
240
dﬂllul"_/_n [0 ol s [4| ! o 5 a} - y daim_mg[7]
o a0 1 bl 2 T B A : i
P | T s o
r_,,[:'—a _ Fam | | I A,) ot rugis]
L (N e
;%n 3 gl B ‘J_m._ > data_regls]
o g data_ragl4|
,E[—,Ln—' o
- u[ﬁLu—» data_regla]
5 o data_mgi1]
e > oata_reg(0]
i f s » walld_reg
(L8
SRS .
SRR 240 i

Figure 23 — Internal structure of a Serial-to-Parallel (S2P) converter with clock transfer,
bridging 320 MHz serialized data to the 240 MHz domain.

criticality of selecting an optimal delay setting for reliable operation.

Fre ™
sop_a sop_b S0P
i) SoP T phase |SOP-C_
Generator Generator
(clk_1) (clk_2) (clk_2)
o _J

Figure 24 — Connection between the SOP generator and the SOP phase generator, providing
synchronization and phase selection for the S2P modules.

During initialization, an additional control known as sop_refresh can be enabled
to periodically realign valid_240 with every incoming SOP. This guarantees that any
phase errors or jitter at startup are corrected. Once the optimal delay configuration has
been identified, sop_refresh is disabled, leaving the internal counter to generate valid_-
240 autonomously and ensuring stable operation without disturbances from external SOP

fluctuations.

Together, the S2P converter, valid_240 strobe, SOP generator, SOP phase gener-
ator, and optional sop_refresh form the backbone of the data synchronization strategy.
This design reliably transfers all 48 input streams into the 240 MHz processing domain,

enabling the ISM to perform remapping with consistent timing. Validation confirmed

26

a-D— D ég’ sop_clk2
rst_clk1 | sirst Q———» sync_biis edge_detacior_bolf >
clk1 —(Zena >
sop_clk1 | |7
clk2
Figure 25 — SOP generator: produces a reference pulse that marks the start of each bunch
crossing and distributes it to the S2P converters.

S0P Generatnr}l

Sop phase generator
s00_in

¥
|

v
i

sop_dy_sel

1 reset to '100000' Y

| | \ i circular shifting /.'

rst st et [st T8t e St S0p_out

Figure 26 — SOP phase generator: introduces a programmable delay to the reference
pulse, ensuring that data capture in the 240 MHz domain occurs at a stable and controlled
instant.

stable operation across all tested phase settings and refresh strategies.

6.2.2 The Input Switch Matrix (ISM)

The ISM is responsible for routing the 13-bit Super Cell data across predefined
output positions according to a detector-specific mapping. In the demonstration firmware,

the ISM receives a total of 384 parallel SC inputs per bunch crossing while working in the
240 MHz domain.

Internally, the ISM is structured as an array of 320 instances of two cascaded
multiplexers. Each instance corresponds to one output stream and selects its input based

on a configurable index and an optional enable bit. The first multiplexer selects which of

o7

the 384 deserialized input positions will be routed to the output, while the second acts
as a conditional gate: if the enable signal is deasserted, the selected value is masked to
zero. The mapping between the LATOME input streams and the first-stage multiplexer
inputs is fixed and identical for all configurations; only the selection indices and enable
flags are updated to reflect each detector region’s layout. This flexible architecture allows
the ISM to implement region-specific mappings while maintaining full parallelism across
the data path. The precise mapping configurations were defined during the LATOME
HLS system-level studies, which fall outside the scope of this thesis.

Figure 27 shows the internal composition of the ISM multiplexer structure, with

the two cascaded stages allowing flexible and configurable routing.

sel &na

WK e O

[0...319]

Figure 27 — Structure of the ISM highlighting the two cascaded multiplexers.

The choice of having exactly 320 outputs is not arbitrary—it reflects the interface
expectations of the downstream User Code block, which processes the remapped Super
Cell data. This expectation, in turn, arises from a comprehensive analysis of official
ATLAS detector mappings. For any valid region, the number of active (non-zero) Super
Cell inputs routed through the LTDBs into the LATOME never exceeds 320. This bound
results from the physical partitioning of the detector and the topology of the LATOME
input fibers. The ISM was therefore dimensioned with 320 output channels to match the
processing capacity of the User Code, ensuring compatibility across all detector regions

and eliminating the need for dynamic resizing or complex routing strategies.

Table 1 summarizes the number of enabled and disabled Super Cell inputs for
several representative detector mappings. This analysis demonstrates that, even in the
densest configurations, 320 parallel outputs suffice to capture all relevant information

without omission.

As an illustrative case, the full mapping for the EMBA__1 region is included in
Appendix B, showing the complete correspondence between input fibers and Super Cell
identifiers. This concrete example confirms the rationale behind the 320-output ISM design

and reinforces its universality across the LAr calorimeter front-end.

o8

Table 1 — Active Super Cell inputs per region according to the official LATOME input
mapping files.

Region Enabled SC Inputs Disabled SC Inputs
EMBA 1 320 64
EMBA_EMECA 1 304 80
EMECA_1 296 88
EMECA_ HECA 1 288 96
FCAL1A 192 192
FCAL2A 176 208

By supporting static remapping for all valid configurations, the ISM enables
deterministic routing and significantly simplifies validation, synthesis, and integration
workflows within the HLS-based LATOME firmware.

6.2.3 Parallel-to-Serial (P2S) Adapter

To interface the output from the ISM at 240 MHz with the input of User Code
block — which expects serialized, time-sliced input streams — the P2S adapter performs

a controlled serialization of the data.

Figure 28 shows the internal architecture of one of the 54 P2S modules. Each
module receives six 13-bit parallel words from the User Code block, updated once per
bunch crossing. These inputs are fed directly into a 6-to-1 multiplexer, which selects
one word per clock cycle, synchronized to the 240 MHz processing clock. This controlled

selection produces a serialized 13-bit output stream across six consecutive cycles.

At the heart of the adapter is a counter that increments every clock cycle and
drives a multiplexer, selecting one word at a time from data_reg[i]. The counter is reset at
the start of each transmission cycle using the valid reg signal, which marks the beginning

of a new valid packet from the User Code.

This structure also includes a 5-cycle delay register (z25) that aligns the valid_ reg
signal with the sixth and final word of the group. This delayed signal is used to assert the
final valid output, which indicates to downstream modules that the serialized packet has

been completed and can be latched or forwarded.

Two pipeline registers are placed at the output of the multiplexer: one for the 13-bit
data path and another for the corresponding valid flag. These help balance combinational

delays and ensure synchronous data propagation across the design.

6.2.4 RSM HLS IP

To validate the integration of HLS-generated modules in the LATOME firmware
without modifying the existing software infrastructure, the Readout Switch Matrix (RSM)

29

. y p2s adapter \
f \
clk_240
—— RST
counter |
data_reg[5) ;“' iER b ‘
S - T
data_rag[4] —-—-/—
data_regf3] ———71—
data_regl2] ———7L
data_reg[1] ——/—
data_regl0] A » p ol =
_’Eﬂ al—1! "
valid_reg Z'5
| - T /

Figure 28 — Architecture of the P2S adapter used to serialize six 13-bit words from the

User Code output.

was introduced as a transitional block. Synthesized entirely using the Catapult HLS tool,

the RSM reverts the remapped Super Cell data back to the format expected by the existing

byte-stream decoder in Athena. This makes it possible to verify the correct behavior of the

ISM HLS IP and the full data flow through the firmware, without requiring any changes

on the software side.

REM HLSIP
($4xa)x | Ibits (32021 3bits (3721 3bits (62x6)x | 3hits
(@240MHz @240MHz (e 240MHz (@240MHz
User -
Code = s2p conversion MON
Bypass

Input I5M
stage HLS 1P

m
Bypass

Figure 29 — Architecture of the RSM HLS IP. The S2P and P2S modules match those in
the ISM, but operate within a single clock domain.

As shown in Figure 2

9, the RSM replicates a structure similar to the ISM HLS

60

IP, with a parallel data processing pipeline built around Serial-to-Parallel (S2P) and
Parallel-to-Serial (P2S) modules. However, unlike the ISM, there is no need for clock
domain crossing since both the input and output data operate at the same 240 MHz

frequency.

Each RSM output stream is reconstructed using only the 13-bit transverse energy
information produced by the User Code. While the full Super Cell format includes 75
bits (e.g., for saturation, quality, and metadata), the demonstration firmware intentionally
limits the scope to 13 bits per Super Cell. This decision avoids the additional complexity
and area cost of serializing full-width outputs—particularly since the RSM is meant only

for transitional testing and will be removed in version 6.1.0

The RSM thus serves as a proof-of-concept module to demonstrate that the HLS
framework can be successfully embedded in the LATOME firmware, enabling validation

workflows while keeping downstream tools unchanged.

In summary, the demonstration firmware (v6.0.0) successfully replaced the legacy
remapping infrastructure with an HLS-based implementation. The ISM HLS IP introduced
a fully-parallel architecture for region-specific remapping, while the RSM HLS IP enabled
seamless integration with existing software tools by reverting the processed data to its
original format. This transitional architecture proved that HLS modules could be embedded

in the LATOME firmware without disrupting downstream workflows.

With the RSM removed in version 6.1.0, and the Athena decoder updated to decode
the native output of the new HLS pipeline, the system became fully HLS-integrated on
the monitoring path. The next step was to validate its functional correctness and timing
behavior through targeted simulation campaigns. These validation strategies and results

are detailed in the next subsection.

6.2.5 Validation Strategy and Test Campaigns

The validation of the demonstration firmware (v6.0.0 and v6.1.0) was carried out
through a comprehensive simulation campaign combining C-level simulations, Python-
based testbenches, and hardware tests performed at the laboratory. These tests aimed to

validate the intended functionality of the newly integrated HLS components.

Initially, the ISM logic was verified at the functional level using C++ simulations.
As illustrated in Figure 30, a 384-input array of 13-bit Super Cell values was passed to a
pure C++ model of the ISM algorithm. The output was then checked against the expected
result derived from the LATOME mapping configuration files. These tests provided a
rapid functional check of the logic and were later referred to as Layer 0 of the simulation
framework. However, this setup did not test the generated RTL code, nor did it simulate

any timing behavior or clock domain intricacies.

To address this limitation, the validation workflow transitioned to a Python-based

61

/ ;] Latome-mapping
@ —b—_:,_-:;._d—

320x13

384x13

Figure 30 — Layer 0: Functional verification of the ISM logic using a C++ implementation
and mapping files.

testbench built with the Cocotb framework. This second environment, shown in Figure 31,
allowed the direct simulation of the RTL generated by the Siemens Catapult HLS tool.
Specifically, the ISM VHDL description was automatically synthesized from the same C++
source code used in the initial functional tests. Unlike the C++ simulation—which only
evaluated logic correctness at the algorithmic level—these Cocotb-based tests operate at

the VHDL, enabling full verification of the synthesized hardware under a realistic clocked

/ -y J Latome-mapping

Al -8

environment.

384x13

320x13

Figure 31 — Python-based RTL validation of the ISM block using Cocotb. Tests include
signal-level monitoring of the VHDL output.

A key motivation for adopting Cocotb was the inability of the Siemens SCVerify
framework to simulate modules that perform clock domain crossing, such as the S2P
converter. Consequently, while C++ tests remained useful for initial functional validation,

all deeper verification activities moved to Cocotb.

62

The transition to Cocotb-based simulation leveraged the VHDL output generated
by the Catapult HLS tool, with the LATOME VHDL wrapper generator playing a key role
in facilitating the integration. As discussed in Section 5.3, this wrapper was particularly
useful for adapting the flattened array interfaces produced by Catapult into more accessible

signal structures for simulation.

Specifically, for the ISM block, Catapult generated a single flattened vector of
384 x 13 = 4992 bits to represent the entire input array. The wrapper unpacks this
structure into 384 individual 13-bit signals, matching the expected interface for the ISM’s
input ports. While this transformation was not strictly required for functional validation,
it greatly simplified the connection between testbench signals and the HLS-generated RTL,

streamlining the simulation workflow.

The simulation environment was designed to support all 116 distinct LATOME
mapping configurations required to cover the full geometric coverage of the ATLAS Liquid
Argon Calorimeter. Each mapping defines a specific configuration of the select and
enable signals that control the ISM’s 320 output multiplexers, ensuring correct routing

for the corresponding detector region.

For each mapping, randomized 13-bit values were assigned to all 384 input channels
of the ISM and propagated over a large number of bunch crossings. To ensure reproducibil-
ity, the pseudo-random generator was seeded with a fixed value for each test run. The
resulting outputs were automatically compared to the expected remapped values, derived
from the corresponding LATOME mapping files. This systematic and high-coverage
testing strategy provided strong assurance of the ISM block’s correctness and stability,

establishing a solid foundation for system integration and subsequent hardware validation.

6.2.5.1 Cocotb Simulation

To analyze the timing behavior of the ISM block, a waveform-based validation
approach was implemented using the Cocotb simulation framework in combination with
QuestaSim. Cocotb supports asynchronous test routines, where checking logic must
explicitly wait for the appropriate simulation condition before verifying signal values. In
our testbenches, the bcid (Bunch Crossing ID) signal was used as a synchronization hook.
Since the ISM block has a fixed latency, the expected output timing can be inferred directly

from the input cycle and the known propagation delay.

Figure 32 illustrates a typical waveform trace used in these simulations. It is
possible to observe the synchronization between the input data and the bcid_in, as well
as the alignment between the output y signal and the propagated bcid_out of the ISM
block. This precise timing relationship enables robust validation routines that check signal

correctness only when the output is valid.

A representative Cocotb synchronization routine is shown below:

=W N =

63

await ReadOnly ()

while dut.bcid_out.value != 0:
await RisingEdge (dut.clk)

await RisingEdge (dut.clk)

Listing 6.1 — BCID-based output synchronization in Cocotb.

This structure guarantees that the output is checked exactly at the aligned latency
point, preventing premature or invalid assertions. It also ensures reproducibility and

stability in waveform-based validation workflows.

A . W - =
E E Cursor 1 | 2083335 ns _

Figure 32 — Example waveform from Cocotb/QuestaSim showing synchronization using
the bcid signal to validate output after the fixed latency of the ISM block.

6.2.5.2 Full Demonstration Firmware Simulation

After verifying the correctness of the ISM block in isolation, the validation campaign
advanced to encompass the complete data processing pipeline shown in Figure 33. This
testbench integrates all major functional blocks in the monitoring path: the Serial-to-
Parallel (S2P) converter with clock transferring, the ISM HLS IP, the RSM HLS IP, and
the final Parallel-to-Serial (P2S) adapter. Each of these components was instantiated
using the RTL generated by the Siemens Catapult HLS tool and verified using the Cocotb

simulation framework.

The configuration shown in Figure 33 implements the end-to-end dataflow from
48 input streams at 320 MHz to 62 output streams at 240 MHz, mirroring the actual
operational setup of the LATOME firmware. This final test ensured that all interfaces and
synchronization boundaries were respected, including the use of the intermediate 320x13
format from the ISM to the RSM and the final 62x6 stream serialization.

To further mimic the real firmware scenario, the full testbench also included a
placeholder block representing the User Code. However, for the purpose of validating the
dataflow between the ISM and RSM blocks, a simplified bypass mode was introduced. This
bypass configuration—consisting solely of S2P and P2S adapters connected by a single-
cycle delay—enabled direct comparison of ISM and RSM behavior without introducing

64

,:J] Latome-mapping
(48RE113 384x13 320x13 ATaxld [62x6)x13
@30MHz {@240MHz @2A0MHz (i) 240MHz (@240MHz
[

i

Figure 33 — Cocotb testbench for the full monitoring chain of firmware version 6.0.0.
Includes S2P with clock transferring, ISM, RSM, and P2S blocks.

the algorithmic complexity of the actual processing logic. As shown in Figure 34, this

setup allowed precise verification of the remapping and serialization pipeline in isolation.

P I

e @

[ELEL RS (38413 (320)x13 (SdxE)xld (SdxEm1d (320px13 (372)x13 {62x6)x13
EI20MHE @ 240MHz (@240MHz (@AM Hz @24IMHz {E@240MHz {E20MHz {E240MHz

Figure 34 — Extended testbench including User Code bypass to directly validate ISM—RSM
compatibility.

In simulation, the sop_delay parameter, which governs the clock transferring
stage, exhibited no practical impact on data alignment. All sop_delay configurations
successfully transferred data without timing violations, as expected in an ideal simulation
environment devoid of clock jitter, routing delays, and metastability. However, in hardware,
the precise setting of sop_delay is critical, and the corresponding tests are detailed in

the next subsection.

65

6.2.5.3 Transition to Firmware Version 6.1.0

Following the successful validation of the full demonstration chain in version 6.0.0,
the RSM block was removed in firmware version 6.1.0. This transition marked the final
step toward full HLS integration in the monitoring path. The Athena decoder was updated
to interpret the ISM output format directly, eliminating the need for reformatting and

confirming the system’s readiness for native HLS-based data handling.

Importantly, the simulation and validation framework remained unchanged, allowing
seamless reuse of the testbenches and test scenarios. The verification strategies continued
to operate directly on the ISM output, now decoded natively by the software stack. The
next set of simulations thus focused on timing-critical behavior, in particular the validation

of the sop_delay parameter within the clock domain transfer logic.

6.2.6 Clock Domain Transfer Validation: SOP Delay Tests

To ensure robust and stable clock domain transfer between the 320 MHz and
240 MHz domains, a comprehensive set of validation tests was performed using the target
hardware. These tests focused on verifying the reliability of the sop_delay parameter,
which defines the precise instant at which data is latched into the 240 MHz domain. This
timing parameter is critical to avoid metastability and ensure deterministic data capture
in the Serial-to-Parallel (S2P) converters.

The laboratory tests served two main objectives:

« Validate the correct functionality of the upgraded firmware on real hardware using
the LATOME stand-alone test setup.

o Characterize the operational margin of the sop_delay parameter for multiple detector
mappings under stress conditions.
6.2.6.1 Hardware Test Environment
All tests were performed using the LATOME standalone readout infrastructure,
composed of the following components:
« LATOME 40: Configured as a pattern generator to emit predefined Super Cell
signals.
« LATOME 108: The Device Under Test (DUT), running the upgraded firmware.

« FELIX system: Hosted on pcemf-felix-03, connected to both LATOMEs.

o Test server: pc-emf-fw-03, acting as the main interface for controlling test se-

quences.

66

o IPbus access: Managed through a control hub hosted on pcemf-pm-02, allowing

remote register access and configuration.

6.2.6.2 Firmware v6.0.0 Test Results

For version 6.0.0, stress testing was performed using the EMBA 1 detector region
mapping. Table 2 shows the total of 50 configuration cycles that were executed for each of
the six sop_delay values (0 through 5) over a continuous period of 10 hours. Failures were
observed only for sop_delay 0. The remaining delay values yielded stable and error-free

operation.

sop_delay_select EMBA_1 (%)

0 46.00
100.00
100.00
100.00
100.00
100.00

Gl W N~

Table 2 — Percentage of success on complete tests for firmware version v6.0.0 using the
EMBA__ 1 mapping (50 completed tests).

All other LATOME mapping families were tested over a 24-hour period using 10
configuration cycles per delay value. The results confirmed the same safe operating margin,

as shown in Table 3.

sop_delay_select‘ EMBA 1 EMBC 1 EMBA EMECA 1 EMBC EMECC 1 EMECA 1 EMECC 1
0 55.56% 47.62% 50.00% 71.43% 58.82% 45.45%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

sop_delay_select ‘ EMECA HECA 1 EMECC_HECC 1 FCAL1A FCAL1C FCAL2A FCAL2C
0 76.92% 50.00% 50.00% 52.63% 40.00% 40.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 3 — Percentage of success on complete tests for firmware version v6.0.0 across
LATOME mappings.

6.2.6.3 Firmware v6.1.0 Test Results

Firmware version 6.1.0 removed the RSM HLS IP block, simplifying the data path
to connect the User Code directly to the monitoring interface. This architectural change

was enabled by updated Athena software mappings, which aligned the User Code outputs

67

with the expected readout format. The same validation tests were repeated to ensure
that this simplification preserved functional correctness and stable behavior across bunch

crossings.

The results for version 6.1.0 mirrored those obtained with version 6.0.0. For the
EMBA_ 1 mapping, 50 configuration cycles per delay value were executed over a continuous
period of 10 hours, as shown in Table 4. The remaining LATOME mappings were tested
over 24 hours, with 10 cycles per delay value, and the results are summarized in Table 5.
Identical behavior was observed across all tests, confirming the robustness and stability of

the clock transfer mechanism.

sop_delay_select EMBA_1 (%)

56.00
100.00
100.00
100.00
100.00
100.00

T W N~ O

Table 4 — Percentage of success on complete tests for firmware version v6.1.0 using the
EMBA_ 1 mapping (50 completed tests).

sop_delay_select EMBA 1 EMBC 1 EMBA EMECA 1 EMBC EMECC 1 EMECA 1 EMECC 1
0 50.00% 60.00% 70.00% 30.00% 30.00% 40.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

sop_delay_select ‘ EMECA_HECA 1 EMECC_HECC 1 FCALIA FCAL1C FCAL2A FCAL2C
0 40.00% 50.00% 30.00% 30.00% 20.00% 60.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 5 — Percentage of success on complete tests for firmware version v6.1.0 across
LATOME mappings.

6.2.7 LATOME HLS Software Infrastructure

The validation campaigns for firmware versions 6.0.0 and 6.1.0 were supported not
only by simulation and hardware tests, but also by a dedicated LATOME HLS software
infrastructure. Developed in parallel with the firmware itself, this infrastructure provided

a unified foundation for general configuration across all systems that use/interface with
the LATOME firmware.

68

At its core, the system is based on structured input and output specification
files that define the mapping between LATOME inputs and the corresponding Feature
Extractor (FEX) outputs. From these specifications, the infrastructure produces all
necessary configuration files required by the LDPB software — the production-level
toolchain used to initialize and configure LATOMES in the Phase-I system. It ensures
alignment between firmware output and the decoding conventions adopted by the ATHENA

software framework.

Figure 35 illustrates the full pipeline. The process begins with the IN and OUT
mapping specifications, which are used in the LATOME HLS system level studies to
produce files such as the configurations of the ISM ism_mapping.csv, ism_enable.csv,
and ism_settings.csv. These drive the internal behavior of the ISM HLS IP. The same
input mappings are used by the ISM & RSM mapping generator to create pu_list -
latome.txt files — artifacts which describe the association between Super Cells and
processing units at the monitoring level and is also used by other tools within the LAr

software ecosystem, such as LAr Soup and LAr Skill.

This mapping is then converted into the firmware-readable mon_mapping.txt
format, which defines how Super Cell data is organized and presented at the readout
interface (the Mon block). To ensure software-level compatibility, the information is
further translated into the mon_mapping athena.txt format using Super Cell Online IDs
extracted from the LArID database. This allows the same HLS-based data format to be
fully compatible with the ATHENA decoder, ensuring identical treatment of data in both

test benches and the operational data acquisition system.

With the validation of the initial firmware stages and the LATOME HLS software
infrastructure firmly established, development proceeded toward firmware version 6.2.0.
This version marked the beginning of the OSUM block implementation using High-Level
Synthesis, with initial focus placed exclusively on the eFEX output path. Version 6.2.0
thus served as a transition point between foundational architectural validation and the inte-
gration of new HLS-based output logic. The following section presents the design strategy,

integration details, and validation results associated with this first HLS implementation of
the OSUM block.

69

LDPB software
.ini files

IN Mapping ——> appli pu_list_latome.txt 3 SN

System Specification |

LATCME RTL Generstor Tools

. LATOME MLS Generator Tools lsm_mapping.csv
ism_enable.csv i mon_mapping.txt
. Generated Files ism_settings.csv
. Configuration files that drives
firmweare and software
deveiopment
mon_mapping_athena bt

Figure 35 - LATOME HLS software infrastructure

OUT Mapping

6.3 Firmware Version 6.2

With the monitoring path fully validated in firmware versions 6.0.0 and 6.1.0,
development efforts shifted toward the trigger path, aiming to progressively replace the
legacy Output Summing (OSUM) block with a High-Level Synthesis implementation.
The architectural scope of this transition is shown in Figure 36, where the previously
designated ISM HLS IP is now labeled HLS REMAP, and a new block named HLS OSUM
is introduced to handle FEX-oriented outputs. This marks the beginning of a broader
effort to implement the LATOME FEX path entirely in HLS.

The primary goal of firmware version 6.2.0 was to implement the eFEX-specific
output path of the OSUM block, which operates at full SC granularity. Unlike jFEX
and gFEX paths, which aggregate energy deposits over coarser —¢ areas to form Trigger
Towers, the eFEX system transmits the transverse energy Er of each SC individually.
This design is essential for achieving high-resolution selection of electrons, photons, and
tau leptons through topological discrimination and hadronic background rejection. As
such, the eFEX path bypasses any summation logic in n—¢ space, focusing instead on the

direct transmission of fine-grained SC transverse energy (E7) toward the eFEX output
fibers.

The HLS OSUM implementation for eFEX in version 6.2.0 therefore consisted of
a dedicated data path designed to preserve the original spatial resolution of Super Cells
while ensuring correct timing, formatting, and integrity for readout. This version also
introduced a new clock domain crossing (from 240 MHz to 280 MHz) as part of the output

interface — a detail explored in future sections.

70

TDAQ Monitoring

HLS REMAP User Code 1 HLS OSUM

|

Low Level Interface

Figure 36 — Simplified trigger path architecture from firmware version 6.2 onward high-
lighting both HLS designed blocks.

6.3.1 OSUM HLS Architecture

The OSUM HLS architecture designed in firmware version 6.2.0 follows a structured
pipeline to process Super Cell data from the User Code and deliver it to the FEXes output
fibers with full granularity. This pipeline is illustrated in Figure 37, and comprises several

interconnected processing blocks operating across distinct clock domains.

Pesisln
Buad
er (v o Commen | -
|| iack Transier
I | a0 s gen

e
Prass (De]

HLS IP

Figure 37 — Block diagram of the OSUM HLS IP showing the eFEX output path. The
figure highlights the sequential pipeline stages from the User Code to the final transmission
to the FEX system, including key clock domain boundaries and data formatting blocks.

6.3.1.1 Masking

The first block in the OSUM pipeline is the masking stage. Its primary function
is to allow the selective disabling of individual Super Cell inputs based on a per-channel
enable flag. This feature is particularly useful during calibration runs, error isolation
procedures, or debugging campaigns where certain channels need to be suppressed without

altering the firmware structure.

This block receives the Super Cell energy value along with its associated metadata
and a control bit. Specifically, it takes as input the 18-bit signed energy value (x), a
validity flag (vld_i), a saturation flag (sat_i), and an enable bit (ena) that determines
whether the data should be forwarded or masked.

71

When ena is high, the input value and its validity flag are passed through unchanged.
When ena is low, the output value is replaced with a predefined constant mask_value, and
the validity flag is forcibly set to high (vld_o = 1) to ensure downstream stages receive a

consistent data frame structure. The saturation flag (sat_o) is forwarded transparently.

This masking logic is applied independently to all 320 channels in parallel at the
beginning of the OSUM HLS architecture. It operates within the same 240 MHz clock
domain as the incoming User Code data and introduces no latency, preserving deterministic

timing for downstream encoding stages.

6.3.1.2 EMEC Adapter

The EMEC Adapter block performs dedicated preprocessing for Super Cell data
originating from the Endcap Electromagnetic Calorimeter (EMEC) region. Due to specific
geometrical and readout characteristics in this region, each adapter processes six input

channels corresponding to spatially related Super Cells.

Internally, the adapter implements a weighted recombination of inputs to produce
four effective energy values. The calculation splits one of the shared inputs across two
outputs to preserve spatial consistency, while the remaining two outputs are zeroed. This

transformation can be expressed as:

T
Yo =To + =

2’
a1
y1:x2+<$1—2),

Ty
Yo = T3 + —,

2
Ty
y3:$5+<$4—2),
y4:07 y5:0

Validity and saturation flags are propagated using logical combinations of the
original inputs, ensuring reliable status tracking through the processing pipeline. All
computations employ 18-bit signed saturated arithmetic to guarantee reliable operation

without overflow.

A total of 16 EMEC adapter instances are instantiated in parallel in the firmware —
8 for the EMEC-A side and 8 for the EMEC-C side — ensuring full coverage of the EMEC

region and standardized formatting before the encoded data enters the next pipeline stage.

6.3.1.3 eFEX MLE: Multi-Linear Encoder

The efex_mle block is responsible for converting 18-bit signed transverse energy
(E7) values, provided in ADC counts, into 10-bit encoded values compatible with the

eFEX transmission format. This transformation is crucial for reducing the data bandwidth

72

while preserving precision over a large dynamic range. The encoded values are later packed

into the eFEX frame and transmitted to the trigger system.

In this context, ADC (Analog-to-Digital Converter) units represent digitized
values of the analog energy deposited in the calorimeter Super Cells. While the LATOME
firmware processes these values entirely in integer ADC counts, ATLAS documentation
and downstream physics analysis workflows conventionally express energy in physical units
of MeV. This convention is adopted because MeV is more interpretable in the context of
high-energy physics, allowing physicists to relate trigger decisions and reconstructed energy
values to known physical processes. To bridge these representations, a fixed conversion
factor is used:

1 ADC count = 12.5 MeV (6.1)

This implies, for example, that an internal threshold of et = -60 corresponds
to —750MeV, and an upper bound of et = 11584 represents 144 800 MeV, matching
precisely the endpoints of the eFEX encoding table described in the LATOME firmware

documentation.

The efex mle block uses this correspondence to assign a specific code to each
energy range. The conversion is implemented through a piecewise-linear encoding scheme

divided into four dynamic linear regions:

Region 1: from —750MeV to 5600 MeV, encoded in 25 MeV steps,

Region 2: from 5600 MeV to 18400 MeV, encoded in 50 MeV steps,

e Region 3: from 18400 MeV to 44 000 MeV, encoded in 100 MeV steps,

Region 4: from 44 000 MeV to 144 800 MeV, encoded in 400 MeV steps.

In addition to these dynamic ranges, the encoding logic reserves specific values to

represent special conditions:

o Code 1023 (0x3FF): indicates saturation during energy calculation,
« Code 1022 (0x3FE): indicates invalid or missing input data,

« Code 0 (0x000): used when encoding is disabled.

This encoding allows for a compressed yet accurate representation of calorimeter
Er, with a resolution matched to physics needs across energy scales. The implementation
ensures that all outputs are compliant with the expected interpretation downstream in

the eFEX processing chain.

73

6.3.1.4 Data Encoder: Construction of the eFEX Data Frame

After the MLE encoding step, the 10-bit energy values corresponding to 20 Super
Cells must be organized into a structured 224-bit frame, compatible with the eFEX format.

This function is performed by the data encoder block.
This block packs the 20 codes into a fixed structure that includes:

« 20 10-bit slots (DATAO to DATA19): These contain the MLE-encoded Super Cell

Er values,

« BCID (Bunch Crossing ID): The 7 least significant bits of the BCID are spread
across three locations in the frame (BCID[6:5], BCID[4:3], and BCID[2:0]),

o K28.5 field: A fixed comma symbol used by the GBTx receiver for frame boundary

synchronization,

« CRC placeholder: Although a 9-bit slot for the CRC is defined in the last word
of the frame, the CRC is not yet calculated at this stage. The actual checksum is
computed only after the OSM step.

wi#[mJao[o[as[7[w[s[a[n[e]a]ofwalirlelis[d[@[z[n]jofe[asa]7]6]s5]a]al2a]1To
o [BCIDME) DATAL[S:0] DATAD]®0] BCID[E:5]

| [DaTadse:s) DATA4[B:] DATAS|@0] DATAE]

T DATATSE]| DATAT7[3:0] DATAG[2:0] DATASID]

3 |DATALSEH]| DATALO{E.0] DATAS|®0] DATASD

4 |DATAT93:2] DATALIH0] DATALZ[9:0] DATALL[:0]

5 [DATALSLD] DATALE{B.0] DATALS]9:0] DATAL4[2:0]

6 CRCED] [BciDpa) DATALB[%:0] DATAL7[3:0]

Figure 38 — Bit layout of the eFEX data frame constructed by efex_data. The CRC field
is not yet valid at this stage.

The frame is divided into seven 32-bit words, totaling 224 bits. All the seven words
are used to encode the 20 data fields and embed selected BCID bits for event alignment
and integrity. The final word includes a reserved space for the CRC checksum, which

remains zero until calculated by the crc9 block later in the pipeline.
This encoding step concludes the preparation of eFEX data frames. At this point,

each of the 16 encoders has generated a valid 224-bit word containing physics information,

ready to be multiplexed and routed by the Output Switch Matrix (OSM).

6.3.1.5 Output Switch Matrix (OSM)

After the data encoder builds 16 eFEX frames in parallel, these must be routed
to up to 48 physical output fibers in the LATOME architecture. This task is handled by
the osm block, which implements the Output Switch Matrix (OSM) using a bank of 48

configurable 4-to-1 multiplexers.

4

Each multiplexer selects one of four input candidates—statically defined by a
configuration matrix and drawn from the 16 encoded frames—based on a 2-bit runtime
control field. This flexible routing mechanism enables dynamic remapping of logical inputs

to physical outputs without requiring re-synthesis of the firmware.

The interface of the OSM is summarized below:

« x[16]: Sixteen parallel 224-bit input frames from the data encoder,
o s[48]: Forty-eight 2-bit selector fields, one per output,

o y[48]: Forty-eight output frames routed to the LATOME frame builder.

Each output fiber of the OSM is statically mapped to a trigger path destination
corresponding to one of the three L1Calo feature extractors: eFEX, jJFEX, or gFEX. This
association depends on the LATOME’s position in the detector and remains fixed for a
given deployment. For example, a configuration for the EMBA_ 1 assigns the first 36
outputs to eFEX, the next 10 to jJFEX, and the final 2 to gFEX.

The 224-bit frame width is preserved throughout the switching operation, ensuring
that frame contents remain unaltered. Additionally, a 17th grounded input stream is

instantiated at the top level.

The OSM thus provides a reconfigurable and scalable bridge between the data en-
coding and frame construction stages, supporting multiple LATOME deployment scenarios

with region-specific mappings.

6.3.1.6 Frame Select Block

After the 48 output streams are routed by the Output Switch Matrix (OSM), each
must be finalized into either a standard data frame or an alignment frame, depending on

synchronization requirements. This decision is handled by the Frame Select block.

The primary role of this block is to examine the current Bunch Crossing 1D
(BCID) and compare it to a predefined reference value. If the current BCID matches
this synchronization value—typically set to 3500 in the LATOME firmware—the block
overrides the incoming data and constructs a special alignment frame. Otherwise, it passes

the data frame through unchanged.

The alignment frame serves as a synchronization marker across the system. Instead
of Super Cell data, it carries metadata fields that identify the LATOME’s position and

output stream configuration. These include:

« A fixed comma character for framing (K28.5),

« A control character (K28.0),

1)

o The fiber ID, which uniquely identifies the physical output link,

o The FEX ID, indicating the target processing block (eFEX, jFEX, or gFEX),

o The LATOME ID, representing the board instance within the system,

e The LATOME source ID, a 32-bit identifier encoding higher-level routing metadata,
o The 12-bit Bunch Crossing ID (BCID), and

e Reserved fields to ensure fixed-length formatting and alignment.

Depending on the FEX type, the frame format slightly varies: for eFEX outputs
(fex_id = 0), the control metadata follows a specific eFEX convention, while jJFEX and
gFEX outputs use a different encoding, as defined by their control field assignments.

When the frame is not substituted (i.e., for typical data transmission), the original
224-bit data frame is passed unchanged to the next stage. The control metadata is updated
to reflect the nature of the frame — either data or align, and the corresponding FEX

type — ensuring downstream modules can decode the information appropriately.

The alignment frame structure is illustrated in Figure 39, showing the placement
of each metadata field. This frame type is inserted periodically based on the BCID and

plays a key role in downstream synchronization and diagnostic procedures.

MHENEE 1125025 2] 20 [22 121] 20] 19

= Fl

ﬂ'u:_ml'15'1a'13'12'11'|o'9'0'7'6 543]2]1]0

LATOME_SRC_ID[3L0]

CRC[E0] I BCio[iimn]

Figure 39 — Structure of the eFEX align frame.

6.3.1.7 CRC-9 Calculation

Once the data or alignment frame has been selected, a 9-bit Cyclic Redundancy
Check (CRC) code is computed and appended to the frame to ensure data integrity. This
operation is performed by the crc9 block, which implements the encoding algorithm
defined by the LATOME specification.

The CRC is calculated over the first six 32-bit words and the lower 23 bits of the
seventh word of the frame. These constitute the first 215 bits of the 224-bit data frame.
Before computation, the serialized bitstream is formed by concatenating the words in
little-endian order, starting from the least significant bit (LSB) of the first word to bit 23
of the last word.

76

The polynomial used for CRC generation is:
Px)=2"+2"+2%+2° + 2 + 2% + 2! +1
Special handling is applied to the synchronization characters:

o Any occurrence of the K28.5 comma character in the frame is replaced with the byte
0x00 before CRC computation.

o The K28.0 character, if present, is included in the CRC calculation without modifi-

cation.
The resulting 9-bit checksum is inserted into the upper bits of the final word:

 Bit 23 receives the most significant bit (MSB) of the CRC,

« Bit 31 receives the least significant bit (LSB).

This reverse ordering ensures compatibility with the deserialization logic on the
receiver side. When the CRC-9 is correctly calculated and embedded, a subsequent
computation of the CRC over the full 224-bit frame at the receiver will yield a zero result,

confirming error-free transmission.

Once the CRC-9 is computed, it must be appended to the outgoing frame. This is
accomplished by a final step in the pipeline, where the 9-bit checksum is inserted into bits
215 to 223 of the 224-bit frame as shown in Figure 38 and Figure 39. This operation is
purely structural: it concatenates the existing 215-bit payload with the calculated CRC,
producing the final word-aligned output to be serialized and transmitted over the optical
fibers.

6.3.2 Clock Transfer and SerDes

The Output Summing (OSUM) HLS IP communicates with the surrounding
LATOME firmware through parallel inputs. However, the data from the User Code arrives
in serial streams, while the HLS IP blocks expects fully parallel inputs. To bridge these
two interfaces, dedicated Serial-to-Parallel (S2P) and Parallel-to-Serial (P2S) adapters are
instantiated at the input and output boundaries of the OSUM logic. These adapters also
manage the necessary clock domain crossing, ensuring a seamless transfer of data between
the 240 MHz and 280 MHz domains.

6.3.2.1 Serial-to-Parallel Conversion

Before data enters the OSUM HLS IP arithmetic blocks, each input stream under-
goes de-serialization via a series to parallel converter. This logic transforms serial 20-bit

words into parallel blocks over six clock cycles, matching the 320 outputs of the ISM.

7

The deserialization structure consists of:

o A top-level wrapper that instantiates 54 independent deserializers in parallel.

o Each deserializer accumulates six consecutive serial samples from its stream into
a cascaded shift register structure, which converts the serial input into six parallel

words.

o Upon reception of the start-of-packet flag, the contents of the shift register are

captured into shadow registers, ensuring temporal alignment across streams.

e The outputs are forwarded as a flattened array of 320 parallel values.

All logic runs synchronously with the 240 MHz clock. The sop_out signal marks
the beginning of each new frame, ensuring that the summing logic receives properly aligned
groups of data. This interface preserves both temporal coherence and synchronization
across the 54 input channels to the OSUM.

6.3.2.2 Parallel-to-Serial Conversion and Clock Domain Crossing

After the processing steps inside the OSUM HLS IP, the output frames are still
organized as 224-bit parallel words, grouped in 48 independent output channels. However,
to comply with the FEXes output requirements, these frames must be serialized into 32-bit
words and transferred to the 280 MHz domain.

This transition is managed by a dedicated Parallel-to-Serial (P2S) converter, which

performs two key tasks:

o It serializes each 224-bit data frame into seven consecutive 32-bit chunks. This

ensures compatibility with downstream transmission hardware.

e The conversion into seven 32-bit words aligns with the 280 MHz output domain,
which spans seven clock cycles per 40 MHz frame. This transfer is coordinated
through a valid-flag driven handover mechanism, with synchronization signals such
as sop_240 and sop_280 managed by auxiliary modules like the valid_flag gen

and sop_generator.

The serialization logic converts each 224-bit data frame into seven 32-bit words,
delivering one word per clock cycle at 280 MHz. An internal counter coordinates this
slicing operation, and a circular valid flag mechanism ensures that each word is emitted in

the correct sequence.

This P2S interface guarantees that the 32-bit data and control words are correctly
transmitted to the downstream FEX system, maintaining both temporal alignment and

the integrity of the frame structure established during the OSUM processing.

78

6.3.2.3 Mini-FEX Monitoring Logic

To enhance observability and facilitate debugging during simulation campaigns,
laboratory validation, and Point-1 system integration, a lightweight diagnostic struc-
ture—referred to as the Mini-FEX—was instantiated at the top level of the osum_enc.vhd
wrapper. Although its complete implementation is only present in firmware version 6.4
(which lies outside the formal scope of this thesis), its architecture builds upon mechanisms

developed and tested in earlier versions.

The Mini-FEX provides real-time, non-intrusive monitoring of internal signals
related to the OSUM-to-LLI transmission chain, with particular emphasis on the 240 MHz
to 280 MHz clock domain crossing. Its diagnostic outputs are exposed through IPbus-

readable counters and flags.

e Valid Output Flag: This counter increments on every transmission of a valid
32-bit data word from the P2S block. Under continuous operation, it should saturate
at its maximum value, confirming that the OSUM HLS block is producing output

consistently.

o Start-of-Packet Markers: Three independent counters track synchronization
events: one for SOP pulses generated in the 240 MHz domain, one for the resyn-
chronized SOP used in the 280 MHz domain, and one for a non-delayed SOP path.
These channels help diagnose potential synchronization issues introduced during

clock crossing.

e SOP Period Errors: To ensure that SOP pulses maintain a fixed cadence (e.g.,
every 6 or 7 clock cycles depending on domain), the Mini-FEX accumulates error
flags triggered when a deviation from the expected SOP periodicity is detected. All

such counters should remain zero during stable operation.

o« CRC Errors: For each of the 48 output streams, the integrity of the 224-bit OSUM
output frame is verified using a 9-bit CRC. If the calculated CRC differs from the
expected value, a corresponding error counter is incremented. Nominally, these

counters should remain at zero across all channels.

o Control Word Activity: A set of counters also tracks the emission of control words
used by the serializer. These counters reflect the presence of control markers (e.g.,
packet delimiters or padding), and their saturation can be indicative of consistent

framing logic.

By consolidating these observability features in a centralized structure, the Mini-

FEX offers a robust toolset for firmware validation. It enables rapid identification of subtle

79

issues—such as SOP misalignment, CRC mismatches, or control flow irregularities—across

both simulation and hardware contexts.

6.3.3 Simulation Strategy and Models

To validate the functional behavior of the firmware logic for remapping and output
summing, two complementary models were introduced starting with firmware version 6.2:
the Firmware Agnostic Model and the Firmware Aware Model. These models implement
independent verification strategies and are integral to a layered simulation structure
designed to support systematic validation of the LATOME HLS Device Under Test
(DUT).

6.3.3.1 Firmware Agnostic and Firmware Aware Models

The Firmware Agnostic Model simulates expected behavior using only the input
and output mapping specifications. It does not rely on knowledge of the internal firmware
structure. This makes it a powerful tool for verifying the logical correctness of remapping

and summing operations against known configurations.

In contrast, the Firmware Aware Model incorporates detailed knowledge of the
firmware, using as inputs the exact configuration files used by the ISM and OSUM blocks.
This model mimics the internal structure of the firmware and supports simulation of
individual blocks with high fidelity. It allows inspection of intermediate outputs within

the firmware path—capabilities not available in the agnostic model.

Both models are mutually exclusive and are cross-validated using the same seeded
random input to generate comparable input data as shown in Figure 40. This design
ensures consistency and enables cross-validation between models, minimizing the risk of

propagating systematic errors.

__

LATOME BAR B LATOME aFex:B_1A_F1,B_1A_B1
LATOME specifications | mapping i mapping [Fex: B_IA_F1 +B_1A_B1
input output gFex:B 1A F1+ ..,

simulated

output

random
input

firmware agnostic model 48x224b

384x18Bb

simuisted

firmware aware model i ien

(configuration K‘"\l configuration \I
files K files /

e // o -f/ .
—— ———— system level design

Figure 40 — Firmware Aware and Agnostic Models

6.3.3.2 Layered Simulation Strategy

To progressively test and integrate simulation complexity, the validation framework

is structured into four layers:

6.3.3.2.1 Layer 0

This layer simulates each one of the new blocks, individually, using a C4++ testbench.

This stage is divided in two types of simulations:

o C++ simulation: Executed in software and compiled with gcc, it compares the
outputs of the HLS synthesizable code against the output from the testbench code

(non-synthesizable).

o RTL co-simulation: Performed using Siemens Questa Advanced Simulator and
the SCVerify flow. The C++ testbench interfaces with VHDL code generated by
Catapult via an automatically generated SystemC adaptor. This ensures that both

simulation modes use the same testbench and allows detailed register-transfer-level

81

(RTL) validation. However, the C++/RTL co-simulations are significantly slower

due to the generated circuit at the register transfer level.

6.3.3.2.2 Layer 1

The goal of this simulation layer is to validate the functionality of the High-Level
Synthesis (HLS) blocks synthesized from C++ code, focusing on the Input Switch Matrix
(ISM) and Output Summing (OSUM) modules. These two blocks, implemented in C++
and translated to RTL using the Catapult HLS tool, are tested with parallel interfaces
operating in a single 240 MHz clock domain. The aim is to identify and resolve any
functional issues in the HLS logic before introducing additional complexities such as clock
domain crossings and serial to parallel and parallel to serial conversions. The Device Under
Test (DUT) used in this layer is shown in Figure 41, has the ISM on the left connected
directly to the OSUM with no User Code Bypass or Serializers in between. This initial
verification phase ensures the correctness of internal data paths and control logic, providing

a stable foundation for more integrated simulations in subsequent layers.

DUT: Layer 1
384x13b 320x13b 48x224b
@240MHz @240MHz

Figure 41 — Simulation strategy for Layer 1: isolated HLS block verification in a single
clock domain.

6.3.3.2.3 Layer 2

Layer 2 builds upon the foundation established in Layer 1 by introducing serial-
ization and clock domain crossing, which are required to interface the newly developed
HLS blocks with existing firmware structures. As illustrated in Figure 42, the DUT for
this layer includes serializers and deserializers surrounding the ISM and OSUM blocks.
These additional components enable time-division multiplexing by converting data from a
320 MHz serial format to a 240 MHz parallel format before the ISM, and from 240 MHz
parallel back to 280 MHz serial after the OSUM.

The primary objective of this simulation layer is to validate the behavior of the
SerDes blocks and their interaction with the HLS-generated modules, ensuring proper clock
synchronization and data integrity across three different clock domains. This architecture
allows integration with legacy components while maintaining the performance of the new

firmware. To ensure consistency, this layer also verifies that serialization and deserialization

82

do not introduce any data corruption or timing issues as signals traverse the firmware
pipeline.

In addition, Layer 2 incorporates a user code bypass block. This module mimics
the user code behavior when it applies unity FIR coefficients, effectively routing input
signals directly to their corresponding outputs. This allows thorough testing of the entire

data path while isolating the influence of the user code logic itself.

DUT. Layer 2
,,,,,
Sanal iy Peabel Cock Transier
i Comwmdon S4BL | H + s
. PamtbimSoral L UswCod s) Geraio Fumisl Paaliol o Berel |y
BTOMHz ik Translie Conraion S240MHz 3 By ' @M Conenson Commesion BOMHE
OMHE ~ 24004z i H Be0ME o 2EOMHE

...............

Figure 42 — Simulation strategy for Layer 2: verification of blocks across clock domain
boundaries using SerDes.

6.3.3.2.4 Layer 3

Integrates the full LATOME top-level firmware, including User Code and Python
simulations of the low-level software stack. This layer exercises the entire chain from
serialized input to final output and is used to validate the connectivity, configuration, and

synchronization of the real-time trigger path. Figure 43 illustrates the Layer 3 setup.

DUT: Layer 3
REMAPPING BLOCK OSUM BLOCK
sag:lnhmﬁlﬂanr:lu Pasallel Lo Serial
+ Parallel to Sarial | Seral to Paratel Moweoman i |
Clock Transfer Conversion Conversion Clock Transfer
240MHz — 290MHz

320MHz -+ 24DMHzZ

Figure 43 — Simulation strategy for Layer 3: full-firmware validation including User Code
and output logic.

This simulation methodology has been used to validate all 116 mapping configura-
tions from firmware versions v6.2.0 and onward, ensuring alignment between the firmware

outputs and the expected outputs from both models.

6.3.4 Validation Results

The validation campaign for firmware version 6.2 focused on the finalized integration

of the remap and osum blocks regarding the eFEX path, following the architectural

33

simplifications introduced after the removal of the rsm logic. This version successfully
passed all stages of the layered simulation strategy. It began with Layer 0, where each block
was tested in isolation through stand-alone simulations using C++. Layer 1 introduced the
functional simulation of the generated RTL in a single clock domain, validating the behavior
of the blocks with parallel interfaces. In Layer 2, the serializers, deserializers, and clock
domain transfer logic were introduced, enabling the verification of data transfers between
the 320 MHz, 240 MHz, and 280 MHz domains. Finally, Layer 3 integrated all components
into the full LATOME firmware and confirmed the system’s functional behavior using the

top-level user code and the Python-based low-level software.

6.3.4.1 REMAP Validation

After the successful completion of the simulation campaign, it was time to proceed
with hardware validation. The main objective of this phase was to verify the firmware’s
clock domain transfers, particularly within the REMAP block, as done for firmware
versions 6.0.0 and 6.1.0, and now extended to include the clock domain crossing present
in the OSUM block. The first step was to determine the optimal sop_delay_select
value for remap. To achieve this, the same mon_tdaq testing infrastructure used in earlier

versions was employed in the laboratory.

The procedure included a stress test on the EMBA_1 mapping, in which each of the
six possible delay configurations was exercised over 50 consecutive configuration cycles,
running continuously for 10 hours. In addition, a broader test campaign was carried
out for all representative mapping families, with 10 configuration cycles per delay value.
Both tests revealed the same operating margin, and the full testing campaign lasted

approximately 24 hours.

Tables 6 and 7 summarize the observed success rates for each sop_delay_select
configuration. The best results were consistently obtained for delay values 1, 2, and 5,
which achieved full or near-full success across all regions. Delay 2 emerged as the most
robust and stable choice, achieving 100% success in both the stress test and the full
mapping sweep.

It is important to note that, version 6.2 was compiled with minor timing violations
due to constraints during implementation. These violations did not prevent functional
operation but are likely the cause of isolated failures seen in otherwise valid configurations,
such as delays 0, 3, and marginally 5. Delay 4, in particular, showed complete failure

across all mappings and was therefore discarded as a viable configuration.

Despite the slightly lower success rates in some configurations, the overall outcome
confirms the firmware’s stability in real-world conditions. The test results validate the
correct behavior of the clock domain crossing logic in the remap block under diverse

mapping scenarios and long-duration operation.

84

sop_delay_select EMBA_1 (%)

0 98.00
98.00
100.00
96.00
0.00
98.00

U W N~

Table 6 — Percentage of success on complete tests for firmware version v6.2.0 using the
EMBA_ 1 mapping (50 completed tests).

sop_delay_select EMBA 1 EMBC 1 EMBA EMECA 1 EMBC EMECC 1 EMECA 1 EMECC 1
0 90.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 90.00% 100.00% 100.00% 90.00%
4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5 100.00% 100.00% 100.00% 100.00% 90.00% 100.00%

sop_delay_select ‘ EMECA HECA 1 EMECC_HECC 1 FCAL1A FCAL1C FCAL2A FCAL2C
0 100.00% 90.00% 100.00% 90.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 90.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5 100.00% 100.00% 100.00% 100.00% 90.00% 100.00%

Table 7 — Percentage of success on complete tests for firmware version v6.2.0 across
LATOME mappings.

The validation of the osum block, which also introduced a new clock domain
boundary, required a different strategy, as the infrastructure for SOP delay stress testing
was not yet available for the OSUM block at the time of testing.

6.3.4.2 OSUM Validation

Because the required infrastructure was not yet available, the osum block could
not be validated via laboratory SOP-delay stress testing, unlike remap. While remap
already had a working monitoring path that enabled SOP-delay scans in the MON/TDAQ
environment, validating osum required the full trigger readout path, which had not been
commissioned during the osum validation phase. The adopted strategy therefore combined
(i) laboratory diagnostics using the Mini-FEX module and (ii) operational monitoring at
Point 1 (P1), the ATLAS detector site and control room.

The Mini-FEX module, integrated into the osum top-level wrapper, exposes internal
counters and error flags usable in simulation and hardware. In laboratory tests it confirmed
that the expected counters—tracking SOP-aligned streams in the input (240 MHz) and

output (280 MHz) domains—incremented consistently. At the same time, the critical error

85

indicators, including sop_period_errors and the CRC error counters, remained at zero,

indicating stable behavior across the osum clock domains.

o=ffffffff
status
.control.emec_enable:
.control.sop_delay_select:
.control.sop_refresh:
.align_frame.start_bcid: 3500
monitoring
Counters expected to be dwffprent than 0:

.monitoring.valid_counter: 3
.monitoring.sop_240_counter: 3
.monitoring.sop_280_counter: 553
.monitoring.sop_280_not_delayed_counter: 5

counter:

=] W
1

) N

(¥ %]

w
[+ [0 %
1"
~ W
I
M N NMNMNKNMNNMNKNLI

n NN
n

(o]
NN
1%)]
o
%))

[

b

Lhehon o
(S RS S RSy)

b
. O

w
1

(o]
Il
N NN MWD

(o S T]

]

=] W 1l
s

o &

H n

vhoun

w

(%]

nonoan

1L

T
NNNNWO W

[
£
Il
[o B

Lo
W
U s

[N

[« 3 S]
1
[T, 7,

1]
(S B4,)

o
I
]
-] W O
n

L
LS B I
w

W W Ww NN

1]
1
UL
W O U =

e O
I
M NNNN
[CA AR S I ® I Y IS

Lo n
wn

oo,

2
32=2
3

[5]
Il
(%))
n

bhhnon n
]
Lhonbhonn

th o an
= B W w

B h W Ww
=S
o0
I
[

v o
=
/ 1l

wn
9
~

Il
NN
W
w

NN
F- o]
LI |
NN

1l

CountP expeuted to be 0O:
osum.monitoring.sop_240_period_errors:
osum.monitoring.sop_280_period_errors:
osum.monitoring.sop_280_not_delayed_period_errors: ©
CRC errors

1=0

5=0

9=0

13=0

RS
wn

(1)
(o)

W w

-~ W Lo
inn
o o)

B

w =

n uw n

[c ol o)
AW W W
=] W W U =

Figure 44 — Mini-FEX diagnostic output during laboratory testing. All counters incre-
mented as expected and no SOP-related or CRC errors were observed.

To assess behavior under realistic conditions, Point-1 tests were performed and the
results from Grafana dashboards were used to correlate the configured SOP-delay values

with CRC error rates. Figure 45 shows that, once the delay values were correctly set, CRC

86

errors dropped markedly, consistent with correct alignment and timing across all active
links.

LATOME sop delay values

" 1:30 " 154p © T 1550 T 1600 180~ 16:20 18:30

ArhdonParams. LARLDPE. LDRBC_AZ osum_scp_delay_value. LATOME_EMBA_2 Last ™ 5

LArDIgitalTrig. 532, value. LArMonParams. LA LDPB.LDRBC_AZ.osum_sop_delay_value.LATOME EMBALS Last™ 5

LATOME CRC errors

hocss e o |

15:40 15:50 16:00 6:10 16:20 16:30
DFB.LDPBC_A2.CreCheckerOutput LATOME_EMBA_1[S] Last*: 0
DPB.LOPBC_AZ CreCheckerOutput LATOME_EMBA_I[E] Last*: 0
DPB.LDPBC_A2 CrcCheckerQutput LATOME_EMBA 1[7] Last*: 0
DPE.LDPBC_A2 CrcCheckerOutput LATONE_EMBA_1[8] Last*: D

== |ArDigitalTrig.Vector<U32>.value LArMonParams.LArf
== LArDigitalTrig.Vector<U32> value LArMonParams. LA
== LArDigitalTrig.Vector<U32>.value.LArMonParams.LAr
== | ArDigitalTrig.Vector<U32> value LArMonParams.LAr

Figure 45 — Grafana dashboard from a P1 run showing OSUM SOP-delay values (top)
and corresponding CRC error counters (bottom). The highlighted period shows stable
operation after configuration.

Finally, a targeted SOP-delay scan for osum was carried out in the P1 environment
with the remap delay fixed at the optimal value of 2. Table 8 summarizes the results for
osum delay settings 0-7: CRC errors appeared for 0-2 and 7, while 3—6 produced stable,
error-free operation. The nominal configuration for firmware version 6.2 was therefore set

to osum_sop_delay_select = 4, the center of the stable window.

This behavior is consistent with the clocking relationship: the osum output domain
runs at 280 MHz and is sampled relative to the 40 MHz system clock. Since 280 = 7 x 40,
there are seven unique phase positions modulo the 40 MHz period; scanning the eight

discrete settings 0-7 covers a full cycle, with settings 0 and 7 effectively equivalent.

87

REMAP OSUM Result

2 0 CRC ERROR
2 1 CRC ERROR
2 2 CRC ERROR
2 3 PASSED
2 4 PASSED
2 5 PASSED
2 6 PASSED
2 7 CRC ERROR

Table 8 — SOP-delay scan in the Point 1 system with remap fixed at 2 and osum swept
from 0 to 7.

Despite minor timing violations in the final 6.2 implementation, the full system was
deployed and exercised at P1 with stable operation on all critical paths, including the osum
clock-domain crossing. These results validated the 6.2 architectural simplifications and
prepared the ground for version 6.3, which introduced the jfex processing path alongside

a comprehensive clock-tree study to improve timing closure and future scalability.

6.4 Firmware Version 6.3

Firmware version 6.3 introduced the jFEX (Jet Feature Extractor) processing
path, extending the LATOME architecture to support multiple FEX destinations in
parallel. Designed for reconstructing transverse energy quantities over broader spatial
windows—such as jets and global sums—this path processes Super Cell inputs through
two dedicated branches: an adder path that accumulates energy deposits across regions of
interest, and a single path that forwards individual Super Cell data without summation.
These dual processing ramifications prepare the data for processing algorithms implemented

downstream in the jFEX system.

The figure below illustrates this architectural addition. The 320 parallel Super Cell
inputs, each 18 bits wide, are routed by two dedicated switch matrices—the jJASM (Adder
Switch Matrix) and the jSSM (Single Switch Matrix)—which drive separate downstream

pipelines for summed and raw data.

38

cccccc

g O
¥ a
i VEFEXCMEDEDE Y
" wouTAKOmOo: |

U1 R S

1]

Figure 46 — OSUM block diagram showing the integrated jEFEX path.

The existing logic for REMAP and OSUM remained unchanged from version 6.2, al-
lowing previously validated configurations to be preserved without introducing architectural

risk.

In addition to this functional enhancement, version 6.3 was the first LATOME
firmware successfully compiled without any timing violations. This result followed a
comprehensive clock tree and constraint analysis by the firmware development team.
The improvements in timing closure increased overall robustness and paved the way for
version 6.4, which will introduce the gFEX path and finalize the routing infrastructure to

all target destinations.

6.4.1 Adder Path

The adder path is responsible for computing regional energy sums from incoming
Super Cell data, as required by the JFEX algorithm. It comprises four processing blocks: the
jFEX Adder Switch Matrix, which performs region-dependent stream routing; the Adders,
which accumulate the selected inputs; the Multi Linear Encoder, which encodes each adder
output into a compact representation based on its energy value and associated control
flags, following the jFEX encoding specification; and the Data Encoder, which formats and
aligns the resulting data for integration into the OSM. The following subsections describe

the structure, functionality, and signal interface of each of these components.

6.4.1.1 jASM (JFEX Adder Switch Matrix)

The adder path begins with the jJASM, a two-stage multiplexer circuit responsible for
routing the 320 Super Cell inputs to downstream processing units. Its internal logic follows
a mechanism analogous to the ISM block and is driven by mapping-specific configuration
settings. For each of the 320 output channels, the jJASM configuration matrix specifies
a statically defined group of 7 candidate inputs, which feed the first stage of a cascaded

89

two-stage multiplexer structure. This matrix statically defines, for each of the 320 output

channels, a set of 7 candidate inputs selected from the global pool of Super Cells.

During firmware initialization, each output is controlled by a selection structure,
which includes a 3-bit sel field to choose one of the 7 candidates in the first multiplexer
and a 1-bit ena field that acts as an enable mask in the second cascaded multiplexer.
These selection values are loaded from configuration files (e.g., osum.ini) and remain
fixed during operation. If enabled, the selected candidate’s data and flags are forwarded

to the output; otherwise, the output is suppressed.

Each jJASM output consists of an 18-bit data word and its associated wvalid, satura-
tion, and enable flags, which are conditionally propagated based on the selected candidate
and enable control. These 320 outputs—now dynamically routed and filtered—serve as
the direct inputs to the subsequent adder instances, where regional energy accumulation

takes place.

6.4.1.2 Adder Blocks

Each of the 320 outputs from the JASM is routed to one of 32 parallel instances
of the adder block. Each instance processes a fixed group of 10 input streams, summing

their values and evaluating their control flags to produce a single aggregated output.

The adder receives 18-bit signed data words along with three 1-bit flags per stream:
valid, saturation, and enable. Internally, each instance computes the arithmetic sum of the
input values and performs a bitwise OR across all flags to indicate whether any of the
inputs were enabled, valid, or saturated. The result is a 22-bit signed output accompanied

by three propagated control flags.

All operations are implemented using fully unrolled combinational logic, allowing the
outputs to be computed in a single clock cycle. This modular and parallel structure ensures
that regional energy contributions from multiple Super Cells are efficiently combined and
forwarded to the MLE block for encoding.

6.4.1.3 jFEX MLE: Multi-Linear Encoder

The jfex_mle block is responsible for converting 22-bit signed transverse energy
(E7) values, produced by the adder blocks, into 12-bit encoded values compatible with the
jFEX transmission format. This transformation is essential for reducing bandwidth while
preserving precision across a wide dynamic range. The encoded values are subsequently

formatted by the Output Switch Matrix (OSM) for transmission to the trigger system.
As in the eFEX path, energy values are represented in ADC counts and may be

translated into physical units of MeV using the fixed conversion factor:

1 ADC count = 12.5 MeV (6.2)

90

For instance, an input value of et = -252 corresponds to —3150 MeV, while et =
64000 maps to 800 000 MeV, matching the endpoints of the jFEX encoding table.

The jfex_mle block implements a five-region piecewise-linear encoding scheme,

with increasing step sizes to accommodate the broad energy spectrum:

e Region 1: from —3150 MeV to 6400 MeV, encoded in 25 MeV steps,

e Region 2: from 6400 MeV to 20480 MeV, encoded in 50 MeV steps,

o Region 3: from 20480 MeV to 102400 MeV, encoded in 100 MeV steps,
e Region 4: from 102400 MeV to 409600 MeV, encoded in 200 MeV steps,

o Region 5: from 409 600 MeV to 799 600 MeV, encoded in 400 MeV steps.

In addition to these dynamic encoding regions, the logic reserves specific output

codes for special conditions:

o Code 0 (0x000): used when encoding is disabled (ena = 0),

» Code 4095 (0xFFF): indicates invalid or missing input data (vld = 0),
« Code 1 (0x001): assigned to inputs below the minimum threshold,

o Code 4048 (0xFDO0): assigned to inputs exceeding the upper bound,

e Other codes such as OxFCF-0xFFE: reserved for future use.

This encoding strategy ensures accurate compression of transverse energy values
across the full operational range, supporting both low-energy and high-energy phenomena
without loss of resolution. Compared to the eFEX MLE, the jJFEX encoder supports a

wider dynamic range and offers finer granularity in handling special cases.

To support full parallelism, 32 instances of the jfex_mle block operate simultane-
ously—one per adder output—executing the encoding in a single combinational cycle. The
logic is fully unrolled and follows precisely the definitions documented in the LATOME

specification.

6.4.1.4 Data Encoder: Construction of the jFEX Data Frame

Following the encoding performed by the jfex_mle blocks, the 12-bit energy values
from 16 Super Cells are organized into a structured 224-bit frame according to the jJFEX
data format. This task is handled by the jFEX data encoder block, which also embeds

additional metadata and synchronization markers.

The jFEX data frame, shown in Figure 47, includes:

91

« 16 12-bit slots (DATAO to DATA15): These fields store the MLE-encoded energy

values for the processed Super Cells.

Saturation flags (SATUR[15:0]): Two 8-bit fields mark saturated Super Cells. If
all of SATUR[7:0] are zero, the field is replaced by the K28.5 comma symbol for

synchronization.
o BCID: A 7-bit subset of the Bunch Crossing Identifier for temporal alignment.

o« CRC: A 9-bit checksum field reserved in the final word. The CRC is computed later
by the Output Switch Matrix (OSM).

WE[31 [0 [29 [2B [27 [26 [5[4 [B[22 [21[D[B [B[I7[6][5[WB[B[2 [N][W0[9[8[7[6[5[4[3[2]1]0
0 DATAZ[7.0] DATAI[LL0] DATAO[LLO)

1 DATAG[ILS] | DATAZ[ILE] DATAA[LL0] DATAS|LL0]

2 DATAS[TH DATAT[110] DATAG[LL0]

3 DATAID[7:0] DATAO[I10] DATAB[1L0]

4 | DATAI3[LB] | DATAIONLS| DATAI2[11.0] DATALL[110]

5 DATAI3[7:0

6

AL3[T:0] DATA15[11:0] DATAT14[11:0
CRC[B0] BCID[6:0] *

Figure 47 — Bit layout of the jJFEX data frame constructed by jfex_data. The K28.5
symbol replaces SATUR[7:0] when no saturation is detected.

In parallel, a second frame known as the align frame (Figure 48) is periodically

generated to convey metadata and assist receiver synchronization:

« FEX_ ID: Set to 1 to indicate the jJFEX path.

« FIBER_ ID: A 6-bit identifier for the output fiber (0 to 47).

o LATOME_ ID: The 8 least significant bits of the LATOME board identifier.
« LATOME SRC _1ID: A 32-bit source identifier.

o BCID: Full 12-bit Bunch Crossing Identifier.

o« Comma symbols: K28.1 and K28.5 mark the frame and boundaries.

o« CRC: A 9-bit reserved field for the CRC checksum, computed downstream.

B[22 (D[[B[1765 [A[B[12[1 W[5 [8][7[6[5[a[3[2[1]0
|Fex_iopm | FIBER_ID[5:0] | | | BCID[11:0]
LATOME SRC ID[31:0]

mmuwm»—loé

CROET BODBT] —] —

Figure 48 — Structure of the jJFEX align frame. Includes FEX ID, fiber 1D, full BCID,
LATOME identifiers, and frame boundary markers.

92

These align frames synchronize the receiver to the LATOME data stream, estab-
lishing clear word and frame boundaries while also conveying identification and timing
information. Together with the data frames, they ensure reliable and correctly interpreted

data delivery to downstream hardware.

6.4.2 Single Path

The jJFEX Single Path is a parallel processing route within the LATOME firmware
that preserves the individual granularity of selected Super Cell signals. Unlike the adder
path, which aggregates energy contributions across regions of interest, the single path
handles one-to-one mappings from input Super Cells to output channels. The Single Path
is composed of three key blocks: the jSSM, which handles input selection and routing; the
jfex_smle, which applies a reduced encoding scheme; and the data encoder block, which

formats the output frame according to the jFEX single path specification.

6.4.2.1 jSSM: Single Switch Matrix

The jSSM block implements the Single Switch Matrix used in the single path
processing chain for the jJFEX output. Its role is to route selected energy values from
320 input streams to 320 output channels based on a predefined configuration. As in the
jASM block used in the adder path, each output channel is associated with two candidate
inputs, and the actual selection is performed dynamically based on two control fields: a

one-bit selector and an enable flag.

The configuration for the two candidate inputs, along with the corresponding
selection and enable behavior, is loaded at initialization from the ‘osum.ini‘ configuration

file. This mechanism allows flexible routing based on detector region.

The block instantiates 320 independent 2-to-1 multiplexers—one for each output
stream. Each multiplexer selects between two predefined inputs and masks the output to
zero if the enable signal is deasserted. This ensures that only active and authorized data

streams are forwarded for further processing.

All relevant control flags—valid, saturation, and enable—are propagated from the
selected input to the output, preserving data integrity. The entire logic operates in a single

combinational cycle and is fully unrolled for maximal throughput.

The 320 resulting streams are passed directly to the jfex_smle encoder, which

compresses the 18-bit energy values into the jFEX transmission format.

6.4.2.2 JFEX SMLE: Multi-Linear Encoder for Single Path

The jfex_smle block performs the same five-region piecewise-linear encoding as

the jfex_mle described in Section 6.4.1.3, including the same special output codes for

93

disabled, invalid, out-of-range, and reserved cases. The encoding logic, thresholds, and
assigned codes are identical and follow the jJFEX specifications to ensure consistent energy

representation across both processing paths.

The key difference lies in the input type and placement within the firmware pipeline.
While jfex_mle receives 22-bit signed energy values resulting from the addition of multiple
Super Cells in the adder path, the jfex_smle processes 18-bit signed energy values coming

directly from individual Super Cells routed through the jSSM switch matrix.

This block is instantiated 320 times—once per output of the jSSM matrix—and
operates fully in parallel, delivering encoded 12-bit energy codes in a single combinational
cycle. The output of each jfex_smle instance is then passed to the data encoder described

in Section 6.4.1.4, completing the single path processing chain for jFEX.

6.4.3 Integration into OSM

Firmware version 6.3 introduced modifications to the OSM block to accommodate
the new data streams generated by the jJFEX processing path. This required extending the
OSM input space while preserving the interface with downstream serialization logic. The

updated configuration, as illustrated in Figure 46, reflects the following input ordering:

o Inputs 0-15: eFEX path outputs,
o Inputs 16-17: jJFEX adder path outputs,

o Inputs 18-33: jFEX single path outputs.

To accommodate the additional 18 jJFEX data streams introduced in firmware
version 6.3, the internal configuration of the OSM switch matrix was expanded to handle
a total of 35 input slots. The selection architecture remained unchanged: each of the 48
output channels is associated with a dedicated 4-to-1 multiplexer that chooses among four
statically assigned inputs. The selection among these inputs is performed dynamically
at runtime using a two-bit select field, enabling flexible routing while preserving full

throughput and compatibility with the existing OSUM output structure.
Despite these internal changes, the OSM block maintained full compatibility with

previous firmware versions. The integration of the jJFEX outputs preserves consistent
formatting, synchronization, and integrity verification across all data paths, enabling

seamless operation within the LATOME downstream infrastructure.

6.4.4 Timing Closure and Clock Tree Improvements

Firmware version 6.3 was the first LATOME release to achieve complete timing

closure across all relevant clock domains. This result was made possible by a dedicated

94

effort from the firmware development team, who conducted a comprehensive analysis of
the LATOME clock tree and placement constraints.

Prior versions employed cascaded PLL structures, which introduced clocking com-
plexity and made it difficult to meet timing requirements across all regions of the firmware.
The new approach adopted in version 6.3 eliminated the cascade, replacing it with a flatter
and more modular clock tree where each domain is served by a dedicated PLL. This
modification improved jitter characteristics, simplified timing constraints, and facilitated

more reliable routing.

These improvements proved critical for ensuring stable clock transfers with the
appropriate SOP delay selection and eliminating CRC inconsistencies previously observed.
The updated clock tree contributed directly to the overall robustness of the design and to
the successful deployment of the new HLS LATOME Firmware.

6.4.5 Simulation Campaign

Firmware version 6.3 introduced the new jFEX processing paths while reusing
validated components such as REMAP and OSUM. To verify the full LATOME HLS data
path prior to hardware deployment, a comprehensive simulation strategy was adopted,

following the same layered approach used in earlier versions.

The campaign was structured as follows:

o Layer 0: Standalone simulation of the new blocks (adder, single path, and updated

osm) using pure C++ models.

o Layer 1: Functional simulation of the complete pipeline in a single clock domain,

validating interactions between HLS-generated and handcrafted components.

o Layer 2: Verification of the serializer/deserializer chain and Clock Domain Crossing
(CDCQ) logic, including transitions from 320 MHz to 240 MHz (pre-ISM) and 240 MHz
to 280 MHz (post-OSUM), confirming data integrity and latency alignment.

o Layer 3: Full integration using the top-level firmware and Python-based low-level

software, covering the complete eFEX and jFEX paths.

Layers 1 through 3 were executed within a Cocotb-based testbench, enabling fast
iterations and precise debugging. The simulations focused on verifying the correctness
of the updated REMAP and OSUM blocks and ensuring seamless integration into the

expanded firmware design.

A new enumeration class was introduced into the testbench infrastructure to
enhance test coverage and streamline debugging. This class allowed the generation of

structured input patterns—including all-zeros, all-ones, sequential indices, boundary

95

values, and custom data—enabling both stress testing and controlled verification of specific

processing scenarios.

The simulation campaign relied on a firmware-aware software model that replicates
the bit-accurate functional behavior of the DUT. Each test compared the DUT outputs
against this golden reference to ensure correctness at each processing stage. Figure 49
illustrates one such comparison for the REMAP block, where all outputs for a single bunch
crossing match exactly. This confirms that the remapping logic, including serializers and
clock transfer blocks, functions correctly in simulation. However, since metastability cannot
be captured in this environment, these results do not guarantee proper timing alignment
in hardware. For this reason, dedicated hardware tests are necessary to determine the
optimal SOP delay and ensure reliable data capture under real-world conditions. For
clarity, custom formatting functions were introduced to present simulation outputs in a

structured and readable layout.

ouT2 OUT3 OUT4 IT5 0OUTeé OUT7 OUTE OUTS
7289 7 58
4933
4451
5895 435
5012 4255 4109
4902

ouTé ouTl
4923

7951

Figure 49 — Comparison between golden model and firmware outputs for the REMAP
block. All values match.

The simulation using cocotb also provides detailed logging of any detected mis-
matches. Figure 50 illustrates this mechanism in action: for a particular bunch crossing,

the output of the OSUM block diverges from the model, and the system flags the exact

96

frame, word index, and values for both the expected and actual results. This fine-grained

feedback significantly accelerates debugging and functional validation of the firmware.

output data not match faor frame 3, word 5. Expected: Bx691a7fe, Got: @xBc227fe
output data not match for B frame 3, word 6. Expected: Bxd471a@68, Got: @xd572308d

output data not match for , frame 8, word 3. Expected: Bx83f1@3fe, Got: BxB3508d7fe
output data not match for B frame 8, word 4. Expected: @x4a517c49, Got: Bx4a58dd34

Figure 50 — Example of mismatch detection in OSUM output: BC, frame, word, expected
value (model), and actual value (DUT) are shown.

Finally, Figure 51 presents a simulation run in which no mismatches were detected
between the firmware-aware model and the DUT. In this example, the complete HLS
dataflow—including REMAP, ISM, OSUM, and output formatting—was validated success-
fully. The test encompassed six representative LATOME mapping families for one detector
side: EMBA_1, EMECA_1, EMBA_EMECA_1, EMECA_HECA_ 1, FCAL1A, and
FCAL2A. Although multiple LATOME mappings exist, these six families cover all relevant
architectural configurations, as the internal structure within each family remains identical
across its variants (e.g., EMBA 1, EMBA 2, etc.). Moreover, the C-side and A-side of
the detector are symmetric in topology and processing requirements, further reducing
the need for redundant tests. As such, this selection ensures exhaustive coverage while
maintaining simulation efficiency. These results collectively confirm the functionality of

the firmware design in simulation, establishing a solid foundation for subsequent hardware

validation.
R L L L L L T L L L R T T T e
*# TEST STATUS SIM TIME (ns) REAL TIME (8) RATID (ns/s) **
..
* 12 sim.12 sim 001 PASS 678.57 7.07 96.00
*# 12 sim.12 sim 002 PASS 682.14 3.08 221.66 w+
* 12 sim.12 sim 003 PASS 682.14 3.21 212.46 ~
* 12 8im.12 sim 004 PASS 682.14 3.31 206.22
* 12 sim.12 aim 005 PASS 6B2.14 .18 215.82
* 12_sim.12_sim 006 PASS 682.14 3.1 214.93
«“« TESTS=6 PASS=6 FAIL=0 SKIP=0 4089.29 32.01 127.74

Figure 51 — Cocotb simulation summary showing successful validation of the complete
LATOME HLS DUT (REMAP and OSUM blocks included).

6.4.6 Hardware Validation

While simulation offers detailed functional verification of the REMAP and OSUM
blocks—including data integrity, latency alignment, and matching against a bit-accurate
software model—it cannot capture the timing uncertainties inherent to real hardware. In
particular, the clock domain crossing logic relies on proper phase alignment between clock

transferring. Since metastability effects and latch timing violations do not manifest in

97

simulation, hardware tests remain essential to determine the correct SOP delay setting for
stable data capture. This phase adjustment ensures that data is reliably latched at the
output of serializers and deserializers, avoiding corruption due to marginal setup or hold

conditions.

The following sections describe the validation procedures used in the laboratory to

determine the optimal SOP delay for each LATOME mapping configuration.

6.4.6.1 REMAP Validation

Following the simulation campaign, the firmware was validated in the laboratory
using the same methodology adopted for previous versions, based on the mon_tdaq
infrastructure. The objective was to determine a metastability-free configuration for the
sop_delay_select parameter, which governs the clock domain crossing from 320 MHz to
240 MHz within the REMAP block. Importantly, due to the revised clock tree design and
improved placement strategies introduced in firmware version 6.3, the optimal delay setting
had to be re-evaluated, as the phase alignment conditions were no longer guaranteed to

match those of version 6.2.

Two types of tests were performed to validate the REMAP block under different
operating conditions. First, a stress test was conducted using the EMBA__ 1 mapping,
consisting of 50 consecutive configuration cycles per sop_delay_select value. This was
followed by a broader mapping sweep, in which 12 representative LATOME regions were
exercised with 10 runs for each delay configuration, ensuring coverage across diverse
mapping topologies.

The results are summarized in Tables 9 and 10. All latching phases except 4 yielded
a 100% success rate. Delay 4 consistently failed across all mappings and was interpreted as
being within the metastability window. Among the successful configurations, delay 1 was

chosen as the optimal operating point due to its maximum margin from unstable regions.

sop_delay_select EMBA_1 (%)

0 100.00%
100.00%
100.00%
100.00%
0.00%
100.00%

Ol W N~

Table 9 — Percentage of success on complete tests for firmware version v6.3.0 using the
EMBA_ 1 mapping (50 completed tests)

98

sop_delay_select EMBA 1 EMBC_1 EMBA EMECA 1 EMBC EMECC 1 EMECA 1 EMECC 1
0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

sop_delay_select ‘ EMECA_ HECA 1 EMECC_HECC 1 FCALIA FCALIC FCAL2A FCAL2C
0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 10 — Percentage of success on complete tests for firmware version v6.3.0 across
LATOME mappings.

Firmware version 6.3 was compiled with full timing closure across all clock domains,
in contrast to version 6.2, which still exhibited minor timing violations. This was achieved
through a dedicated clock tree study and improved placement constraints carried out by the
firmware team. The impact of these improvements is clearly reflected in the results: while
version 6.2 showed high—but not perfect—success rates in several delay configurations,
version 6.3 exhibited a sharp separation between stable and unstable regions, with all
viable delays achieving 100% across all mappings. This unambiguous behavior significantly
simplifies the identification of metastability-free configurations and increases confidence in

the robustness of the REMAP clock domain crossing logic under operational conditions.

6.4.6.2 OSUM Validation

The OSUM validation process evaluates the Start-of-Packet (SOP) generation and
phase selection logic responsible for reliably managing the clock domain crossing from
240 MHz to 280 MHz. As in the REMAP block, a configurable delay selector (sop_dly_-
sel) determines the latching phase, while the sop_refresh control governs whether the
SOP signal must be received externally or maintained internally. When sop_refresh is
disabled, a circular shift register autonomously preserves the SOP pattern, ensuring stable
operation even in the presence of small variations or glitches in the input SOP signal.
Crucially, this mechanism guarantees that the sop_out signal remains unaffected by SOP
period errors on the input, thus providing robust and deterministic synchronization. This

mechanism is consistently used across all LATOME clock domain crossings.

For firmware version 6.3, a dedicated hardware test analogous to the mon_tdaq
infrastructure was developed for the OSUM path. This test analyzes the output of
the firmware on all 48 fiber channels and reports a boolean data_result indicating
whether each event passed or failed the validation. The dataset used for this validation
was 48ch-48ch-EMBA 1-3564-constant_id, which belongs to the EMBA mapping and

99

features fixed identifiers per Super Cell stream. This facilitates unambiguous tracking of

data through the full processing chain, making it ideal for mapping verification.

The integration of the Mini-FEX monitoring logic in firmware version 6.3 enabled
real-time observation of internal error counters during both laboratory and ATLAS-level
tests, significantly improving the granularity and interpretability of validation metrics.
This validation, was focused on four indicators: data errors, sop_240_period_errors,

sop_280_period_errors, and CRC errors.

Table 11 summarizes the results of a stress test in which the sop_refresh parameter
was kept enabled throughout. The test was executed 50 times for each sop_delay_select
setting, using the EMBA 1 mapping. The percentages in the table reflect the proportion
of test runs in which errors were observed (or, in the case of data success, correctly matched

results between firmware and expected outputs).

sop_delay_select Data Success (%) CRC Errors (%) 240MHz SOP Errors (%) 280MHz SOP Errors (%
p_delay_ (

0 84.00 14.00 14.00 100.00
1 78.00 14.00 14.00 14.00
2 82.00 16.00 16.00 16.00
3 44.00 56.00 12.00 12.00
4 0.00 100.00 16.00 16.00
5 48.00 52.00 16.00 16.00
6 80.00 20.00 20.00 20.00

Table 11 — Stress test results for the OSUM block on the EMBA 1 mapping, with 50 runs
per sop_delay_select configuration. All values represent the percentage of tests (out of
50) in which errors were detected or data matched successfully.

The initial OSUM validation campaign, with sop_refresh continuously enabled,
revealed unstable behavior and inconsistent error margins across several sop_delay_ -
select values. After observing these issues, a focused debugging session identified that
keeping sop_refresh permanently asserted allowed external SOP timing variations to
interfere with the internal SOP phase generator. This prompted the execution of a second

batch of tests under more realistic conditions.

In this second campaign, sop_refresh was enabled at the start of the run but
deasserted after one second, allowing the circular shift register to autonomously maintain
the SOP signal for the remainder of the test. Table 12 summarizes the results of this
updated configuration. A clear improvement in stability is observed: all sop_delay -
select values, except delays 4, 5, and 6, achieved 100% data success with no period or
CRC errors. Delay 4 once again failed entirely and is identified as the metastability window,
where the sampled SOP phase likely falls near a clock edge and causes non-deterministic
behavior. Delay 5 showed CRC instability, while delay 6 was nearly error-free but showed

a slight reduction in reliability.

100

REMAP SOP sop_delay_select Data Success (%) CRC Errors (%) 240 MHz SOP Errors (%) 280 MHz SOP Errors (%)

2 0 100.00 0.00 0.00 0.00
2 1 100.00 0.00 0.00 0.00
2 2 100.00 0.00 0.00 0.00
2 3 100.00 0.00 0.00 0.00
2 4 0.00 100.00 0.00 0.00
2 5 90.00 74.00 0.00 0.00
2 6 98.00 0.00 0.00 0.00

Table 12 — OSUM validation results with sop_refresh deasserted after 1 second of

initialization, using the EMBA 1 mapping. Each sop_delay_select was tested over

50 runs. The REMAP SOP was fixed at delay 2 for all tests. All values represent the
percentage of tests in which errors were detected or successful outcomes achieved.

These results confirm that disabling sop_refresh after initialization stabilizes the
SOP signal and eliminates residual phase inconsistencies introduced by the external SOP
source. Delays 1 and 2 stood out as the most reliable options, being maximally distant
from the metastability zone and exhibiting no data or synchronization errors across all
50 runs. This test provides the final validation of the OSUM clock domain crossing in

firmware version 6.3.

To further reinforce these results, successful tests performed directly on the ATLAS
detector demonstrated the same behavior in a real deployment. As shown in Figures 52
and 53, both the REMAP and OSUM blocks initially registered a burst of SOP period and
CRC errors during system startup. However, once sop_refresh was programmatically
set to zero across all LATOME instances, all error counters converged to zero. These
operational results validate the robustness of the internal SOP propagation mechanism,
confirming its effectiveness in maintaining synchronization across all fiber channels under

realistic deployment conditions at the ATLAS detector.

101

LATOME osum sop period errors

4000000000
3000000000
2000000000

1000000000

17:30 18:00 18:30 18:00 19:30 20:00 20:3
ATLAS.U32.value.LArMonParams.LAr.LOPB.LDPBC_AZ2.osum_sop._240_period_errors.LATOME_EMBA 1 Last *: 0
ATLAS.U32.value.LArMonParams.LAr.LDPB.LDPBC_AZ2.0sum_sop_240_period_errors.LATOME_EMBA_10 Last *. 0
ATLAS.U32.value.L ArMonParams.LAr.LDPE.LDPBC_A2.0sum_sop_240_period_errors. LATOME_EMBA_11 Last *: 0

ATI AS 1197 valia | ArhdanDarame | Arl NER I NBRM A? Anciim enn 7AN narind arrnre | ATOMME FAMRA 17 | act *: 0

LATOME remap sop period errors

4000000000
3000000000
2000000000
1000000000

0

18:00 : 19:00

e e o e e et raa e x e P R R h Rt i Y e R o N [S o e

== ATLAS.U32.value.LArMonParams.LArLDPB.LDPEC_A2.remap_sop_240_period_errors.LATOME_EMBA_EMECA _4 Las
== ATLAS.U32.value.LArMonParams.LAr.LDPE.LDPBC_A2.remap_sop_240_period_errors.LATOME_EMBA_EMECA_S Las
ATLAS.U32.value.LArMonParams.LAr.LDPB.LDPBC_A2.remap_sop_240_period_errors.LATOME_EMBA_EMECA_E Las

Figure 52 — SOP period error counters for the REMAP and OSUM blocks during ATLAS
online testing. Errors are observed at startup but converge to zero after sop_refresh is
disabled.

102

LATOME CRC errors

1500000000
1000000000

500000000

17:30 18:00 18:30 19:00 19:30 20:00 20:3
ATLAS Vector<U32>.value.L ArMonParams.LAr.LDPB.LDPBC_A2.CrcCheckerOutput. LATOME_EMBA_1[0] Last*: 0
ATLAS Vector<U32>.value.LArMonParams.LAr.LDPB.LDPBC_AZ2.CrcCheckerOutput. LATOME_EMBA_1[1] Last*: 0
ATLAS . Vec <U32>.value.L ArMonParams.LALLDPB.LDPBC_AZ2.CrcCheckerOutput.LATOME_EMBA_1[2] Last*: 0

ATI AS Vartarel 177~ valia | ArbdanParame | Arl RPR | DRRT A7 CreChackarDiutrurt | ATOMME FAMBMBA 17321 | act =0

LATOME sop refresh values

17:30 18:00 18:30 19:00 19:30 20:00
ATLAS.Boolean.value.L ArMonParams.LAr.LDPB.LDPEC_AZ2.osum_sop_refresh_value.L ATOME_EMBA_1 Last *: 0
ATLAS.Boolean.value.LArMonParams.LAr.LDPB.LDPEC_AZ2.osum_sop_refresh_value.LATOME_EMBA_10 Last *: 0
ATLAS.Boolean.value.LArMonParams.LAr.LDPB.LDPBEC_AZ2.osum_sop_refresh_value.LATOME_EMBA_11 Last*; 0

ATI AR Ranlean valie | ArhdanDarame | Arl NDR | NPRC A7 nciim enn rafrach valim | ATOAME FAMRA 17 | act # N

Figure 53 — Evolution of CRC errors and sop_refresh values over time. The drop in
errors aligns with the moment the sop_refresh signal is set to zero.

103
7 Conclusion

This thesis presented the validation and simulation of the upgraded digital signal
processing pipeline implemented through High-Level Synthesis (HLS) on the real-time
trigger path of the ATLAS Liquid Argon Calorimeter, specifically within the LATOME
firmware. A structured and modular approach was adopted to understand, simulate, and
verify the design and integration of the REMAP and OSUM blocks across firmware ver-
sions 6.0 through 6.3, leveraging a multistage simulation strategy and advanced monitoring

mechanisms.

The role of LATOME in the Phase-I upgrade of the ATLAS LAr calorimeter was
first contextualized, emphasizing the importance of fine-grained Super Cell readout and
the need for robust digital signal handling across multiple clock domains. The transition
to HLS-based IP blocks introduced architectural shifts that required careful simulation
and validation. The demonstration firmware introduced in versions 6.0 and 6.1 was used
to dissect the internal structure of the REMAP and the newly introduced Input Switch
Matrix, highlighting their reliance on parallel interfaces, clock domain crossing strategies,
and serializer /deserializer logic. In these initial versions, validation efforts concentrated on

the monitoring path and on the functionality of the REMAP logic.

Firmware version 6.2 marked the introduction of the eF'EX processing path, ex-
tending the validation scope to include the Output Summing (OSUM) block for the first
time, thereby initiating validation of the real-time trigger path. This version also enabled
the application of the full Firmware-Aware simulation model to end-to-end signal paths
involving both REMAP and OSUM. Firmware 6.3 subsequently introduced support for the
JFEX path, further increasing architectural complexity and necessitating precise validation
across multiple high-speed data channels. To support debugging and simulation during
these stages, a lightweight internal monitoring module—the Mini-FEX—was incorporated.
This module exposed real-time counters for SOP period and CRC errors, significantly

enhancing observability both in simulation and during ATLAS deployment.

The multi-layered simulation strategy, structured into three progressive levels of
complexity, enabled thorough testing from standalone HLS components to full LATOME
integration, including interactions with legacy RTL blocks. By employing both Firmware-
Agnostic and Firmware-Aware models, this thesis validated the consistency of remapping
and output summing operations across all 116 mappings, demonstrating strong agreement
between model and firmware outputs, as well as consistent and deterministic behavior

across all tested configurations.

A major contribution of this work lies in the validation of clock synchronization
and data integrity mechanisms introduced in firmware version 6.3. Extensive SOP delay

calibration campaigns were conducted, and the impact of the sop_refresh signal across the

104

OSUM block was systematically analyzed. Stress test results identified the metastability
window and highlighted optimal delay configurations, while lab tests and real-time ATLAS
tests confirmed that disabling sop_refresh after initialization effectively eliminated CRC
and SOP period errors. The Mini-FEX block, integrated at the top-level of OSUM,
proved instrumental in tracking and interpreting these behaviors both in simulation and

operational environments.

The validation workflow developed and exercised throughout this thesis provides
a robust methodology for the future integration of HLS-generated modules into the
LATOME firmware. It ensures that the transition from traditional RTL design to HLS
does not compromise timing closure, functional correctness, or system reliability under

the demanding conditions of the LHC trigger environment.

Future developments, including the implementation of the gFEX path and the User
Code block in firmware version 7.x, will build directly upon the simulation infrastructure
and validation strategies established here. As HLS continues to mature within the LAr
firmware ecosystem, the approaches and results presented in this thesis provide a foundation
for subsequent design phases and for other subdetectors pursuing similar high-throughput,

low-latency digital signal processing solutions.

In conclusion, the work presented provides a foundation for further developments as
the LHC and the LATOME firmware continue to evolve. These enhancements are essential
for adapting to the increased demands of future LHC operations and for ensuring that the
ATLAS experiment remains at the forefront of particle physics research. By tackling the
challenges introduced by higher luminosity and the resulting demands on real-time signal
processing, this work supports the continued evolution of the ATLAS trigger system and

reinforces the technological foundation required for future discoveries at the LHC.

© 00 N O Ot s W N

[e S
[©2 NG B U V=

© 00 N O Ot s W N

e e
=~ W N = O

105

A HLS Wrapper Generator Output
This appendix presents the VHDL code relevant to the HLS wrapper generation
tool described in Section 5.3. It includes the original flattened entity generated by Catapult

HLS, the automatically generated wrapper that restructures the signals using named array

types, and the corresponding package file containing type definitions.

A.1 Original Entity Generated by Catapult

entity ism is

port (
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
x_rsc_dat : IN STD_LOGIC_VECTOR (4991 DOWNTO 0);
x_triosy_1lz : 0OUT STD_LOGIC;
s_sel : IN STD_LOGIC_VECTOR (1599 DOWNTO O0);
s_ena : IN STD_LOGIC_VECTOR (319 DOWNTO O0);
y_rsc_dat : 0OUT STD_LOGIC_VECTOR (4159 DOWNTO O0);
y_triosy_1lz : 0OUT STD_LOGIC;
bcid_in_rsc_dat : IN STD_LOGIC_VECTOR (11 DOWNTO O0);
bcid_in_triosy_1lz : 0OUT STD_LOGIC;
bcid_out_rsc_dat : OUT STD_LOGIC_VECTOR (11 DOWNTO O0);
bcid_out_triosy_1lz : 0OUT STD_LOGIC

)

end ism;

Listing A.1 — Original Catapult-generated ism entity with flattened signals.

A.2 Generated Wrapper Entity

entity ism_wrapper is
port (

clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
x_rsc_dat : IN arrayl13_t (0 to 383);
Xx_triosy_1lz : O0UT STD_LOGIC;
s_sel : IN array5_t(0 to 319);
s_ena : IN STD_LOGIC_VECTOR (319 DOWNTO O0);
y_rsc_dat : 0OUT arrayl3_t (0 to 319);
y_triosy_1lz : 0UT STD_LOGIC;
bcid_in_rsc_dat : IN STD_LOGIC_VECTOR(11 DOWNTO O0);
bcid_in_triosy_1lz : 0OUT STD_LOGIC;
bcid_out_rsc_dat : OUT STD_LOGIC_VECTOR (11 DOWNTO O0);
bcid_out_triosy_1lz : 0UT STD_LOGIC

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

106

)

end ism_wrapper;

architecture Behavioral of ism_wrapper is
signal x_rsc_dat_flat: std_logic_vector (4991 downto O0);
signal s_sel_flat: std_logic_vector (1599 downto 0);
signal y_rsc_dat_flat: std_logic_vector (4159 downto 0);
begin
-- Flatten input signal x_rsc_dat
gen_x_rsc_dat_unflatten: for i in O to 383 generate
x_rsc_dat_flat ((i*13) + (13-1) downto i*13) <= x_rsc_dat (i)
((13-1) downto 0);

end generate gen_x_rsc_dat_unflatten;

-- Flatten input signal s_sel
gen_s_sel_unflatten: for i in O to 319 gemnerate
s_sel_flat ((i*5) + (5-1) downto i*5) <= s_sel(i) ((5-1) downto 0)

end generate gen_s_sel_unflatten;

-- Unflatten output signal y_rsc_dat
gen_y_rsc_dat_unflatten: for i in 0 to 319 generate
y_rsc_dat (i) ((13-1) downto 0) <= y_rsc_dat_flat((i*13) + (13-1)
downto i%*13);

end generate gen_y_rsc_dat_unflatten;

ism_inst: entity work.ism

port map (
clk => clk,
rst => rst,
x_rsc_dat => x_rsc_dat_flat,
x_triosy_lz => x_triosy_lz,
s_sel => s_sel_flat,
S_ena => s_ena,
y_rsc_dat => y_rsc_dat_flat,
y_triosy_1lz => y_triosy_1lz,
bcid_in_rsc_dat => bcid_in_rsc_dat,
bcid_in_triosy_1lz => bcid_in_triosy_1z,
bcid_out_rsc_dat => bcid_out_rsc_dat,
bcid_out_triosy_lz => bcid_out_triosy_1z

);

end Behavioral;

Listing A.2 — Wrapper entity automatically generated for simulation and modular

integration.

(S O

A.3 Generated Package File

107

library ieee;

use ileee.std_logic_1164.all;

package latome_hls_pkg is
type arrayl3_t is array (natural range <>) of std_logic_vector (12
downto O0);
type array5_t is array (natural range <>) of std_logic_vector (4
downto O0);
end latome_hls_pkg;

Listing A.3 — VHDL package used for array signal types in the wrapper.

108

B Example of LATOME Mapping Configuration: EMBA_ 1

This appendix presents the complete mapping configuration for the EMBA 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

region, corresponding to the LATOME input mapping version 03.00.00. This file serves as

the basis for understanding how detector signals are routed into the LATOME firmware
and highlights the correspondence between input fibers, LTDBs, MTPs, and Super Cell

identifiers.

LATOME input mapping v03.00.00

Comments: ATLAS mapping (folder names changed)

AMCType: EMB

Side: A

QuadrantID: O

AMCHashNumber: O

CarrierID: 1

AMCNumberInCarrier: 1

Input information section

Number connected LTDBs: 2

Connected LTDBs: EMB(IO1L) EMB(IO2R)

Number connected input MTPs: 4

Number connected input fibers: 40

Input_ID LTDB_MTP_PIN RX_PIN SC1 ... SC8

IN F3 I0O1L_01_10 RX01_03 B_1A_B1 B_2A_B1 B_4A_B1 B_3A_B1
B_6A_B1 B_5A_B1 B_8A_B1 B_7A_B1

IN F4 I0O1L_01_09 RX01_04 B_2A_ M2 B_2A_ M1 B_2A_M4 B_2A_M3
B_1A_M3 B_1A_M4 B_1A_M1 B_1A_M2

IN F5 I0O1L_01_08 RX01_05 B_3A_M1 B_3A_M2 B_3A_M4 B_3A_M3
B_4A_ M4 B_4A_M3 B_4A_M2 B_4A_M1

IN F6 IO1L_01_07 RX01_06 B_6A_F4 B_6A_F3 B_6A_F2 B_6A_F1
B_5A_F1 B_5A_F2 B_BbA_F3 B_bA_F4

IN F48 IO2R_04_01 RX04_12 B_7D_B1 B_8D_B1 B_6D_B1 B_5D_B1
B_1D_B1 B_2D_B1 B_3D_B1 B_4D_B1

Output information section

Number connected output fibers: 38 (unique=19)

Number eFEX fibers: 30 (unique=16)

Number jFFEX fibers: 6 (unique=2)

Number gFEX fibers: 2 (unique=1)

hash_ID Type C1 C2

OUT F1 eFEX B_7A B_8A

30

31

32

OUT F5 eFEX B_

OUT F48 gFEX B_1A+B_2A+B_1B+B_2B

B_4A+B_3B+B_4B
B_6C+B_5D+B_6D

7A B_8A

B_3C+B_4C+B_3D+B_4D
B_7A+B_8A+B_7B+B_8B

B_1C+B_2C+B_1D+B_2D

B_5A+B_6A+B_5B+B_6B
B_7C+B_8C+B_7D+B_8D

109

B_3A+

B_5C+

[1]

[13]

[14]

110

Bibliography

PERKINS, Donald H. Introduction to High Energy Physics. Cambridge University
Press 2000.

WILLIE, Klaus. The physics of particle accelerators: An introduction. Clarendon
2000.

CERN. The Large Hadron Collider. Available at:
https://home.cern/science/accelerators/large-hadron-collider. Accessed
on: Jan. 16, 2025.

CERN. High-Luminosity LHC. Available at:
https://home.cern/resources/faqs/high-luminosity-1lhc Accessed on: Jan.
16, 2025.

MOUCHE, P Overall View of the LHC. CERN Document Server,
OPEN-PHO-ACCEL-2014-001, Jun 2014.

AAD, G. et al. The Phase-I trigger readout electronics upgrade of the ATLAS Liquid
Argon calorimeters. Journal of Instrumentation, vol. 17, no. 5, P05024, 2022.
Available at: https://doi.org/10.1088/1748-0221/17/05/P05024. Accessed on:
July 18, 2024.

AAD, G. et al. Readiness of the ATLAS Liquid Argon Calorimeter for LHC
collisions. European Physical Journal C, vol. 70, pp. 723-753, 2010. Available at:
https://doi.org/10.1140/epjc/s10052-010-1354~y. Accessed on: Jan. 20, 2025.

ATLAS Collaboration. Trigger and Data Acquisition System. ATLAS Experiment.
Available at: https://atlas.cern/Discover/Detector/Trigger-DAQ. Accessed
on: Jan. 20, 2025.

CERN. ATLAS. Available at:
https://www.home.cern/science/experiments/atlas. Accessed on: Jan. 21,
2025.

EVANS, L. R.; BRYANT, P. LHC' Machine. Journal of Instrumentation, vol. 3, pp.
S08001.164, 2008.

ATLAS Collaboration, ATLAS experiment schematic or layout illustration, CERN
Document Server. Available: https://cds.cern.ch/record/2837191.

CERN. The ATLAS Inner Detector. Available at:
https://atlas-public.web.cern.ch/Discover/Detector/Inner-Detector.
Accessed on: Jan. 27, 2025.

CERN. The ATLAS Magnet System. Available at:
https://atlas-public.web.cern.ch/Discover/Detector/Magnet-System.
Accessed on: Jan. 20, 2025.

CERN. The ATLAS Muon Spectrometer. Available at:
https://atlas-public.web.cern.ch/Discover/Detector/Muon-Spectrometer.
Accessed on: Jan. 20, 2025.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

111

CERN. The ATLAS Calorimeter. Available at:
https://atlas-public.web.cern.ch/Discover/Detector/Calorimeter.
Accessed on: Jan. 20, 2025.

G. Aad et al. The ATLAS Trigger System for LHC Run 3 and Trigger Performance
in 2022. Journal of Instrumentation, vol. 19, no. 6, P06029, 2024. DOI:
10.1088/1748-0221/19/06/P06029. Available at:
https://cds.cern.ch/record/2887853/files/ATL-DAQ-PROC-2024-002. pdf.
Accessed on: Jan. 27, 2025.

ATLAS liquid-argon calorimeter: Technical Design Report. Place: Geneva Series:
Technical design report. ATLAS. 1996. DOI: 10.17181/CERN.FWRW.F00Q. Available
at: https://cds.cern.ch/record/331061. Accessed on: Jan. 22, 2025.

ATLAS Collaboration. Performance of the ATLAS Trigger System in 2010.
European Physical Journal C, vol. 72, 2012, p. 1849. Available at:
https://arxiv.org/abs/1110.1530. Accessed on: Jan. 29, 2025.

ATLAS Collaboration. Upgrading the experiment for LHC' Run 3. Available at:
https://atlas.cern/Discover/Detector/Long-Shutdown-2. Accessed on: Jan.
29, 2025.

ATLAS Collaboration. “The ATLAS Trigger System for LHC Run 3 and Trigger
performance in 2022”. In: Journal of Instrumentation 19.6 (June 1, 2024), P06029.
ISSN: 1748-0221. DOI: 10.1088/1748-0221/19/06/P06029. arXiv:

2401.06630 [hep-ex]. Available at: http://arxiv.org/abs/2401.06630. Accessed
on: Jan. 22, 2025.

CERN. High-Luminosity LHC (HL-LHC). Available at:
https://voisins.cern/en/high-luminosity-1lhc-hl-1hc. Accessed on: Feb. 13,
2025.

ATLAS Collaboration. Technical Design Report for the Phase-1 Upgrade of the
ATLAS TDAQ System. CERN, Geneva, Sep. 2013. CERN-LHCC-2013-018,
ATLAS-TDR-023. Available at: https://cds.cern.ch/record/1602235. Accessed
on: July 18, 2024.

RONDOT, Paolo. Leveraging Space and Time-Division Multiplexing Logic for
Trigger Systems in High Energy Physics using High-Level Synthesis. Master’s Thesis
Nr. 510, Systems Group, Department of Computer Science, ETH Zurich, in
collaboration with CERN, April 2024-September 2024.

KLEEMAN, L.; CANTONI, A. Metastable Behavior in Digital Systems. IEEE
Design & Test of Computers, vol. 4, no. 6, pp. 4-19, Dec. 1987. Available at:
https://doi.org/10.1109/MDT.1987.295189. Accessed on: Jan. 16, 2025.

