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“Our intelligence is what makes us human, and Al is an extension
of that quality.” — (Yann LeCun)



RESUMO

A coleta de dados no &mbito da pecuaria de precisao é um sério desafio. A escassez
de conjuntos de dados de imagens anotadas para problemas relacionados a pecuaria
de precisao limita o potencial de algoritmos de aprendizado profundo. As informacoes
aprendidas pelas Redes Adversarias Generativas (GANs) podem ser empregadas para
melhorar o desempenho de tarefas de aprendizado de maquina, como classificagdo. Sub-
regioes especificas da regiao facial de bovinos, como focinho, orelhas e olhos, sdo indicadores
significativos de dor, desconforto e estresse nos animais, além de serem utilizadas para a
identificacao individual. Nesse contexto, o presente trabalho propde uma nova arquitetura
que reforga a localizacao espacial de sub-regites faciais de interesse. O método proposto
integra médulos de caixa delimitadora com uma GAN conhecida na literatura, denominada
BigGAN. A hipétese é que a incorporacao de informacoes de localizagao espacial, fornecidas
por caixas delimitadoras de sub-regides de interesse, como focinho, orelhas e olhos, pode
aprimorar a geracao de imagens sintéticas de faces de bovinos. Assim, propoe-se uma
nova configuracao desses modulos, baseada no provimento de multiplos objetos em uma
cena. Os modulos sdo acoplados em diferentes profundidades no gerador, formando uma
piramide de resolugao, e em um nivel especifico no discriminador. Também propoe-se a
utilizagdo de caixas multi-escalas para representar as sub-regides de interesse. A premissa
é suavizar as areas de transi¢ao entre os objetos e o plano de fundo, a0 mesmo tempo em
que reforga as caracteristicas dos objetos. Para treinar o modelo, filtrou-se um conjunto
de dados pré-anotados para a tarefa de detecgdo, adaptando-o a tarefa de geragao. O novo
conjunto de dados inclui 9.495 faces de bovinos e um subconjunto de anotacoes de caixas
delimitadoras. Para avaliar a viabilidade da proposta, realizou-se uma analise extensiva,
tanto quantitativa quanto qualitativa. Os resultados experimentais mostraram ganhos
proporcionados pela insercao de informagoes adicionais de sub-regides de interesse via
modulos de caixa delimitadora. A capacidade de inserir arbitrariamente a posicao das

sub-regides permite possiveis aplicagdoes como a geragao facial personalizada pelo usuério.

Palavras-chave: Geracgao facial de bovinos. Aprendizado profundo. Redes Adversarias

Generativas. Modulos de caixa delimitadora.



ABSTRACT

Data collection in precision livestock farming is a serious challenge. The scarcity
of annotated image datasets for precision livestock problems limits the potential of deep
learning algorithms. The information learned by the Generative Adversarial Networks
(GANs) can be employed to improve the performance of machine learning tasks, such
as classification. Specific subregions of the facial cattle region, such as the muzzle, ears,
and eyes, are significant indicators of pain, discomfort, and stress in animals, as well as
being used for individual identification. In this context, in the present work we develop a
new architecture that enhances the spatial localization of facial interest subregions. The
proposed method combines bounding box modules with a GAN known in the literature,
named BigGAN. The hypothesis is that the incorporation of spatial location information,
provided by interest subregions bounding boxes, such as the muzzle, ears, and eyes,
can improve the generation of synthetic cattle faces images. Thus, we proposed a new
configuration of these modules, based on providing multiple objects in a scene. The
modules are attached at different depths in the generator, forming a resolution pyramid,
and at a specific level in the discriminator. We also propose to use a multiscale boxes to
represent the interest subregions. The premise is to smooth out the transitions between
the objects and the background, while reinforcing the objects’ features. To train the
model, we filtered a pre-annotated dataset for the detection task and adapted it for the
generation task. The new dataset includes 9,495 cattle faces and a subset of bounding box
annotations. To assess the feasibility of the proposal, we conducted extensive analysis, both
quantitative and qualitative. The experimental results showed improvements provided
by the inclusion of additional information for the interest subregions via bounding box
modules. The capacity to arbitrarily insert the subregions’ position allows for possible

applications such as facial generation designed by user.

Keywords: Cattle facial generation. Deep learning. Generative Adversarial Networks.

Bounding box modules.
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1 INTRODUCTION

Cattle facial features provide distinctive information about phenotype and animal
welfare. This information have great importance for Precision Livestock Farming (PLF),
whose aim “is to manage individual animals by continuous real-time monitoring of health,
welfare, production/reproduction and environmental impact” (BERCKMANS, 2017). With
the implementation of PLF technologies over the last years, one of the main concerns is

the data acquisition.

Ensuring the quantity and quality of livestock data is a relevant challenge. Overall,
cattle monitoring methods are based on electronic sensors. Specific sensors detect different
physical and environmental conditions. Therefore, the merits of each sensor system need
to be assessed, considering the expensive investment of some technologies, loss or noise
measurement, and implantation process that can cause stress and lesions in the animals.
(STYGAR et al., 2021). Other factors such as adverse weather conditions, farm location
and devices with short battery life can hinder data collection (PAPAKONSTANTINOU et
al., 2024).

Image data types can be acquired by cameras of different spectra or by the processing
of other signal sources. In the context of PLF, a natural image captured by a conventional
RGB camera carries a dense amount of information, from primary aspects related to the
animal, such as individual identification, behavior and socialization, health status, etc., to
secondary ones, such as confinement system, sky conditions (rainy, cloudy or sunny) and
vegetation (indicating the season), etc., enabling sophisticated, non-invasive, and real-time
computer vision systems (OLIVEIRA et al., 2021). Computer vision is a field of computer
science dedicated to developing algorithms for extracting and processing information from
digital images and videos (SZELISKI, 2022).

Recently, deep learning techniques became prominent in many computer vision
applications, such as object detection (DIWAN; ANIRUDH; TEMBHURNE, 2023), image
classification and segmentation (TAN; LE, 2019; MINAEE et al., 2021), and super-
resolution (BASHIR et al., 2021), especially by the capacity of the Convolutional Neural
Networks (CNNs) to process large data volumes. However, the scarcity of annotated
image datasets for livestock activities is limiting the potential of deep learning algorithms
(LU et al., 2022). Generative Adversarial Networks (GANs), introduced by Goodfellow
et al. (2014), are capable of learning good data representations and generating realistic
synthetic samples, being widely employed to augment existing datasets and improve the

performance of machine learning models.

The primary motivation of this work is how to enhance facial generation of cattle
introducing the spatial localization information provided by bounding boxes into a GAN.

An annotation example is shown in Figure 1. The demarcated regions (muzzle, ears and
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eyes) can be easily annotated semi-automatically, creating a facial layout. Those regions
are good predictors of pain, discomfort and stress in cattle (GLEERUP et al., 2015).
Furthermore, Singh, Devi and Varish (2021) used GANSs in the cattle identification based
on the muzzle pattern. In that sense, this work is inspired by the generation of scenes
with multiple objects (HINZ; HEINRICH; WERMTER, 2019). The facial layout and
background make up the scene, while the interest subregions are the objects. The premise

is that this configuration can induce the generation of the face as a whole.

Figure 1 — Annotation example of the interest subregions: muzzle (green), left and right
ears (red and gold, respectively), and left and right eyes (blue and purple, respectively).

Source: Created by the author (2024).

One of the most advanced states of the art in GANs is the human facial generation,
trained on available datasets with hundreds of thousands of images. In contrast, this work
has a dataset with only a few thousand of cattle faces, which requires the application of
existing methods in the literature to deal with the GANs training under limited datasets.
Zhao et al. (2020) proposed a differentiable data augmentation method in both real and
fake images, and Tseng et al. (2021) added a regularization term to the discriminator
loss function. Both works conducted their experiments on the leading class-conditional
BigGAN (BROCK; DONAHUE; SIMONYAN, 2019). In a similar way, this work also uses
the BigGAN, adapting its architecture into bounding box modules.

1.1 PROBLEM DEFINITION

The research hypothesis of this work is that it is possible to generate cattle faces
where the spatial location information provided by bounding boxes of interest subregions,
such as muzzle, ears and eyes, can be incorporated into a GAN, in order to quantitatively
and qualitatively improve the generation of synthetic images. An important restriction of
this work is the use of a limited dataset due to the inherent challenges of collecting and

annotating a large number of samples for this problem.
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1.2 OBJECTIVES

The main objective of this work is to generate cattle faces through the integra-
tion of modules that reinforce the spatial localization of salient facial regions with a
GAN, improving the quality of generated images. Several experiments are conducted to
quantitatively and qualitatively assess the synthetic images through generative model
performance measures and visual analysis. The secondary objective is to explore new
configurations of the bounding box modules that are more adapted to the facial generation.
The expectation is that the model can assist phenotyping approaches, such as breed, age

and pose classifications, and health status inference.

1.3 CONTRIBUTIONS

The main contributions of this work are:

1. Integration of bounding box modules with a GAN known in the literature, named
BigGAN, to improve facial generation of cattle. This methodology can be adapted
for other GAN;

2. A novel facial generation approach, reinforcing the spatial localization of interest
subregions, such as muzzle, ears and eyes, to induce the generation of the face as a

whole;

3. Generation quality gains provided by the insertion of additional information for
the interest subregions via bounding box modules. Subregions can be inserted at
arbitrary positions, allowing the control to specify the bovine pose. This can be

useful for applications such as facial generation designed by user;

4. A filtered dataset for cattle facial image analysis and synthesis applications.

1.4 OUTLINE

This work is structured as follows: Chapter 2 presents relevant works in the
literature to the focus of this dissertation; Chapter 3 describes the fundamentals that
supports the proposed method; Chapter 4 details the proposed methods; Chapter 5
organizes the experiments and results; Chapter 6 discusses the conclusions obtained and

possible future work.
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2 RELATED WORK

This chapter highlights existing works in the literature related to this dissertation.
At the limits of our knowledge, no works were found that specifically generate cattle faces.
However, the problem of cattle face generation is intimately related to the facial generation

of human and other animals, as well as conditional image generation.

The synthesis of human faces represents one of the most advanced fields in image
generation. This progress is supported by the availability of large-scale datasets containing
hundreds of thousands of samples, such as the CelebA (LIU et al., 2015) and FFHQ (KAR-
RAS, 2019) datasets. Large data volumes typically lead to more robust and generalizable

deep learning models.

Recent methods, characterized by their absence of convolution, have been shown to
enhance the realism and diversity of the generations in certain circumstances. Zhang et al.
(2022) explored the use of pure transformers (VASWANI, 2017) to build GANSs for high
resolution image synthesis on established benchmarks, e.g., FFHQ and CelebA-HQ (LIU et
al., 2018), a high resolution version of the CelebA dataset. Zhang et al. (2022) emphasized
the importance of attention mechanisms to balance computational efficiency and the
capacity to model local features, otherwise, blocking artifacts caused by transformers
can occur. In a different vein, Kim et al. (2022) utilized the CelebA dataset in their
score-based diffusion (HO; JAIN; ABBEEL, 2020) model that employs a data-adaptive
nonlinear diffusion process. A limitation of the approach lies in the training and inference
time. Despite the promising results presented by those methods, CNNs retain specific
advantages, such as better preservation of local spatial correlations and reduced parameter
complexity. Therefore, convolutional-based networks are often the most suitable choice for

tasks involving limited data.

Animal face datasets tend to be smaller and less common than human face datasets.
Additionally, most datasets are not specialized in a single species, such as the AFHQ (CHOI
et al., 2020) dataset. Therefore, various state-of-the-art studies on those benchmarks apply

techniques to address data limitations.

Karras et al. (2020) proposed an adaptive discriminator augmentation mechanism
that significantly stabilizes training, particularly in moderate data scarcity scenarios.
In addition to exploring limited datasets such as AFHQ, the authors studied how the
quantity of available training data affects GANs performance by artificially subsetting
larger datasets, such as LSUN (YU et al., 2015). Because Karras et al. (2020) used a broader
set of augmentation techniques that rely on dynamic tuning of the application probability,
in extreme data scarcity scenarios, it can be more challenging to properly adjust such
adaptive parameters. In this work, we adopt the approach proposed by Zhao et al. (2020),

which applies a differentiable data augmentation on both the discriminator and generator



15

updates during the training phase. While the method restricts the transformation options,
it stands out for its easy implementation, generalization across different architectures and

the ability to generate high-fidelity results even with extremely small datasets.

Kumari et al. (2022) investigated the use of an ensemble of pretrained discrimi-
nators to optimize the performance of GANs. Their results demonstrated improvements
in both limited data scenarios and large datasets. However, the reliance on multiple
pretrained discriminators substantially increases memory requirements during training,
posing challenges for setups with limited computational resources. In turn, Tseng et al.
(2021) introduced a regularization technique for the discriminator’s loss function, grounded
in the LeCam divergence. In contrast to the empirical approach of Kumari et al. (2022),
the method by Tseng et al. (2021) offers a solid theoretical foundation for stabilizing
GAN training. Additionally, it is designed to complement data augmentation techniques,

maximizing performance in scenarios of limited data availability.

In recent years, conditional scene generation has garnered significant attention from
the image generation community, particularly in creating scenes with multiple objects.
Various conditional image generation tasks have been developed using different subsets of
annotations, including text-based image generation with natural language description of
the scene (REED et al., 2016; ZHANG et al., 2018). These methods frequently employ
datasets such as MS-COCO (LIN et al., 2014), which pair images with textual descriptions,

thereby enabling models to learn the correspondence between language and visual content.

Other works use scene graphs as input and learn to generate layouts as interme-
diate representations (SYLVAIN et al., 2021), which utilize the Visual Genome dataset
(KRISHNA et al., 2017) for training. This dataset provides detailed annotations of objects
and their relationships within images, facilitating the learning of structured scene repre-
sentations. Meanwhile, other methods focus on directly generating images from bounding
box layouts (HINZ; HEINRICH; WERMTER, 2019). One advantage of generating from
layouts is the controllability of the generation. This controllability enables the development

of a tool for generation based on user design.

Bounding boxes layouts can enhance the information transmitted to the network.
This in itself can mitigate data limitation. Therefore, in this dissertation, we propose a
method capable of providing this information via bounding box modules, inducing the

generation of the face as a whole.
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3 FUNDAMENTALS

This chapter presents the fundamentals that underpin the proposal of this work.
Section 3.1 details the multiple objects generation method based on bounding box modules
that insert the spatial location information provided by bounding boxes into a GAN (HINZ;
HEINRICH; WERMTER, 2019). Section 3.2 approaches the GANs theory through the
BigGAN architecture (BROCK; DONAHUE; SIMONYAN, 2019). Lastly, Section 3.3
explains the regularization methods for GANs training under limited data (ZHAO et al.,
2020; TSENG et al., 2021).

3.1 MULTIPLE OBJECTS GENERATION

Hinz, Heinrich and Wermter (2019) have introduced an image generation approach
which allows to arbitrarily control the spatial location of objects within a scene by adding
as inputs of a GAN only bounding boxes and their respective labels. Figure 2 shows an
example of a scene from the MS-COCO dataset and its input configuration. An object is
represented by a label [ and a bounding box byoy = [Tmins Ymin, W, h], Where (Zomin, Ymin)
are the coordinates of the top left corner, with width w and height h, normalized between
0 and 1.

Given a maximum number of objects 0,,4:, & scene sets a dictionary d of fixed size
Omaz With bounding boxes indexed by their labels. The label [ = 0 and the bounding
box by, = [—1,—1,—1, —1] are reserved to complete the dictionary d in scenes with a
number of objects Ogcene < Omaz- Additionally, if available, a natural language caption can
be provided describing the scene, e.g., “A woman, man, and a dog standing in the snow”.
Subsection 3.1.1 presents the proposed customizations for a GAN to support these inputs,
while Subsection 3.1.2 details how objects are manipulated through affine transformations
parameterized by the coordinates of the bounding boxes.

(0, 0)

w ) ..
- e

7 4
Tmin 3 yllllﬂ

Ju

3 (1,1)
Figure 2 — Example of a scene from MS-COCO dataset and its input configuration.

Source: Created by the author (2024).
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3.1.1 Global and object pathways

Both the generator and the discriminator are adapted into two modules, called
global pathway and object pathway. The global pathway focuses on the scene layout and
image background, while the object pathway focuses on individual objects. Figure 3 shows
the global and object pathways method for the generator. Initially, the global pathway of
the generator is responsible for creating a overall layout encoding of the scene. To do this,
the label of each object is encoded as a one-hot binary vector l,,c.not, where the digit 1 is
assigned to the index of the respective object label [, while the other indexes are set to 0.

The layout input is obtained by the spatial replication of each lynepot 10 Lone-hot € R*¥*®X¢

given a resolution h x w and the number of channels ¢ = 0444, + 1 as function of the number
of object classes 044t Of the dataset, which are iteratively transformed and inserted into

an empty canvas, initialized with zeros, at the locations given by their respective bounding

boxes.
16x16 E X x16 noise z 16x16
2L L | layout fully - fglobal
B[ romena 2 o encoding|connected eatures
= [ ﬁ . Fgmhul
- - 8 ! caption
Y e s
A replicate empty i i layout
as ! !
% 0 @ e H ; concat
. 12, oeeyiOongs
. 7 ../qu R il |
o 1616 fiexas 1616 o
o :
2|y 2l pocal Hisi ]| 2
B mehot || 5| features @ ‘ 8
_& P | tocat ﬁ o .
d‘: Tepiicate ; empty L layout N
-g... ] canvas | :
8 - 102, o O

Figure 3 — Global and object pathways method for the generator.

Source: Created by the author (2024).

A series of convolutional layers are then applied in order to obtain a high-level
latent representation of the layout encoding. Following this step, the layout encoding is
concatenated with a random noise distribution 2z and, if available, a processed natural
language caption of the scene. The output concatenation feeds a fully connected network,
which in turn is reshaped as the input of further convolutional layers to generate a global
feature map Fgopq. The object pathway of the generator is responsible for generating
a local feature map of the objects. In similar way to the global pathway, the one-hot
binary vectors are spatially replicated at a predefined resolution. However, before being
transformed and inserted into an empty canvas at the locations provided by their respective
bounding boxes, convolutional layers are applied, creating high-level feature maps F,cq
inside the object regions, while areas outside of the bounding boxes remain zero. Finally,
both the global and the object feature maps are concatenated and the result used by

further convolutional layers to generate the image with its final resolution.
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Figure 4 shows a global and object pathways method for the discriminator. The
global pathway of the discriminator is not conditioned to the bounding box information. It
takes as input only a real or a fake image, synthesized by the generator, and applies multiple
convolutional layers to extract a global discriminative feature map F gopq. The first stage
of the object pathway of the discriminator consists of extracting and transforming each
object from within the region given by the bounding box and concatenating it with the
respective spatially replicated one-hot binary vector L ,e.pot- Next, convolutional layers
are applied, creating a local discriminative map F',.,;. The features are newly transformed
and reinserted into an empty canvas within the corresponding bounding box. Like the
generator, the outputs of both global and object pathways are concatenated along the
channel axis. New convolutional layers are applied in order to obtain a merged feature
representation, which is concatenated with the sum of all one-hot binary vectors and, if
available, a processed natural language caption of the scene, both spatially replicated at
the same resolution as the merged representation. The output is then classified as real or
fake.

Feu > Y S 5 i
- g e caption
1 'q ...
s 2 l‘g‘lobal : 1 sum of all
: & ' eatures 4x4 Looiior
g .g replicate[*[2]1] - [0]
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Figure 4 — Global and object pathways method for the discriminator. The initial position
of the vector resulting from the sum of all 1., receives a value (denoted by “x”) equal
to the difference between the maximum number of objects 0,,., and the number of objects
in the scene 0geene-

Source: Created by the author (2024).

Hinz, Heinrich and Wermter (2019) used both the dataset MS-COCO that contains
natural language descriptions of the scenes and GANs proposed for the text-to-image
task (ZHANG et al., 2017; XU et al., 2018). Since the dataset used in this work does not
have this type of annotation, and the BigGAN architecture is not designed to accept text
information, the proposed method in this dissertation only takes as input the object label

[ and the bounding box by,

3.1.2 Spatial Transformer Network

The insertion of spatially replicated one-hot binary vectors and high-level feature

maps into empty canvas, as well as the extraction of objects from their regions given by
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the coordinates of the bounding boxes, are carried out by a module based on a Spatial
Transformer Network (STN) (JADERBERG et al., 2015). This module takes as input an
image or a feature map U € R"**¢ with height h, width w and number of channels c,
and applies a spatial transformation 7T conditioned on the particular input, where 6 is the
parameters, e.g., of an affine transformation matrix Ay. Those parameters can be given as
input or predicted through convolutional or fully connected networks. The output is set

Rh/xw/xc

on a regular grid GG, forming an feature map V € , where h/ and w’ are the new

height and width, maintaining the same number ¢ of channels.

The affine transformation case is expressed as

2t xt
5 ! 0 0 0 !
(Dl I e e I I (3.1)
i 1 01 O 0o 1

where for each target coordinate (xf,y!) of the regular grid G in the output map, is
determined from the corresponding source coordinate (z%,y$) sampled in the input map,
both normalized between —1 and 1. To perform the spatial transformation of the input
map U, a sampling kernel is applied to get each particular pixel in the output map V.

This can be written as
h w
=3 3Ul k(x5 —m; @) k(y; —nm;®,) Vie[L... Fw| Viel...q, (3.2)

where @, and @, are the parameters of a generic sampling kernel k (e.g. bilinear interpo-
lation), U7, is the value at location (n,m) in channel j of the input, and V7 is the value
of the output pixel 7 at location (zf,y!) in channel j. In order to allow backpropagation
of the loss function, it is possible to define the gradients with respect to U and G. For a

bilinear sampling, the partial derivatives are

R%:
ou?

h w
= > max(0,1 — |2} —m|) max(0,1— [y —nl), (3.3)

. 0 if jm—2a3 >1,
ZZUnm max (0,1 — |yj —n|)q1  if m > %, ) (3.4)

-1 if m <4z}

and similarly to Eq. 3.4 for y; :
The effects of the affine transformations applied in the global and object pathways
presented in the previous Subsection are shown in Figure 5. The composite transformation

matrix
s, 0 t, w 0 2((Tmin + Sw) — 1)
A= 0 s, ty | =| 0 h 2(ypin +10)— 1) (3.5)
0 0 1 0 0 1
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allows translation (¢, and t, therms) and non-uniform scaling (s, and s, therms), as a
function of the bounding box by,,, defined in the introduction of this section. In the object
pathway of the discriminator, the input map U represents a real or a synthetic image,
and the output map V' the transformed image of current object (Figure 5a). In the global
and object pathways of the generator, the input feature map U represents the spatially
replicated one-hot binary vector, and the output feature map V the partial layout of the

scene (Figure 5b), obtained by the inverse matrix

L & 20 22((3 - Bmin + 3w))
A7t = s —2 =10 3 235~ (Ymn+3h) |- (3:6)
0 0 1 0 0 1
Grid Grid
generator generator
9—v§:T§l(G) ‘ESaInpler
U \ %4
(a) To(G) (b) T;(G)

Figure 5 — Parameterised sampling grid G applied to an input map U producing the
output map V. Note that the transformations are inversible.

Source: Created by the author (2024).

3.2 BIGGAN

The modeling proposed by Goodfellow et al. (2014) involves training two adver-
sarial networks, the generator (G) and the discriminator (D). While D is tasked with
distinguishing its input data between real and fake, G learns to map random noise to
data in order to maximize the probability of D making a mistake. Formally, the original

objective function of Goodfellow et al. (2014) puts D and G in a Minimax problem
it max By, 0108 D(x)] + By o log(1 ~ D(G(2)))], (3.7)

where D(x) returns the probability of x belonging to the training set distribution pgua
instead of the generator p,. Both networks are trained simultaneously, however optimizing
D every step is computationally prohibitive, and on limited datasets can lead to overfitting.

Instead, D is optimized at each k steps, keeping the G optimization for each single step.
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Proposed by Brock, Donahue and Simonyan (2019), the BigGAN belongs to a
group of models known as conditional GANs (MIRZA; OSINDERO, 2014), which extend
the objective function (Eq. 3.7):

minmax Exp,,,, 00108 D(xy)] + Exrpugs)log(1 — D(G(zly))]. (3.8)

by conditioning both D and G on some extra information y, like sample class label. The
BigGAN architecture for 128 x128 resolution is shown in Figure 6. The embedding layer
(yellow box), initialized from a N'(0, 1) distribution, learns to represent each class label
of the dataset in a weight vector ¥.,eqaing- The noise vector z (blue box), drawn from
distribution p, such as A(0,1) or U(—1,1), is split into consecutive parts of equal size.
The number of splits is determined by the tensors’ resolutions along the generator, i.e.,
4x4,8%8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128 (six splits).
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Figure 6 — BigGAN architecture for 128 x128 resolution. Where it reads “Indices x to y”
refers to the noise vector z partition that feeds that forward.

Source: Created by the author (2024).

The first part (indices 1 to 20) feeds the initial fully connected (FC) layer (green
box). The other parts (indices 21 to 40, indices 41 to 60, etc.), after concatenated (denoted
by “||”) with the shared y,,,pcq4iny, feeds skip connections to deeper FC layers in the G
residual blocks. The conditional batch normalization (CBN) layers (cyan box) allow its
gain and bias parameters to establish specific patterns according to the FC layers outputs.
This design enables the z and y.,,pe44ing vectors to directly influence features at different

resolutions.

The reshaped feature map F moves forward through G via residual blocks containing
2-dimensional convolutional (C2D number of output channels, kernel size, stride, padding)

layers with the Rectified Linear Unit (ReLU) activation function, as well as CBN layers.
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Before the initial and skip convolutional layers, which are enabled to reduce the number
of channels from ¢ to ¢/2, there is an upsampling by a factor of 2 using an interpolation
function. The architecture also includes Non-local (ZHANG et al., 2019) blocks, capable
of capturing interactions between distant pixels. Finally, the resulting tensor with the
desired resolution goes through another ReLLU activation function, followed by a batch
normalization (BN) layer, before undergoing a final reduction in the number of channels to
¢ = 3 by a C2D layer, and normalization with the hyperbolic tangent (Tanh), generating
the fake image I fqke (red box).

In turn, D has a more simplified architecture, moving forward a real or fake image
I cqi/fake (red box) through residual blocks containing C2D with ReLU. Within each
residual block, after the final and skip convolutional layers, which are enabled to increase
the number of channels from ¢ to 2¢, there is a downsampling by a factor of 2 using average
pooling (AvgPool) layers. In the last residual block, as the resolution of the output tensor
is not reduced, there are no AvgPool layers. The resulting feature map undergoes a final
downsampling using a global sum (denoted by “}-”), obtaining a feature vector f, which
then feeds two flows. One extracts a single value from f using an FC layer, and the other
performs the element-wise product (denoted by “®©”) between f and y.,,pcaging> USING a
global sum to also extracts a single value from the resulting vector. Both values are added
(denoted by “+7) together, giving the probability of I,cq/fare being real (positive) or fake
(negative).

Brock, Donahue and Simonyan (2019) explored the trade-off between sample fidelity
and variety for a given G. Taking a model trained with 2 ~ N(0,0?), where o2 is the
variance, it is possible to use a different latent distribution for sampling. By truncating
the z vector resampling the values with variance above a chosen threshold, there is an
improvement in the individual sample quality at the cost of reducing the overall variety.
This procedure is called Truncation Trick. However, this distribution shift in the latent
space can produce saturation artifacts in the generated samples. Brock, Donahue and
Simonyan (2019) increased the chances to avoid this effect by stimulating orthogonality
in the G and D weights through the following regularization condition Rg(W') modified
from Brock et al. (2016):

Ry(W) = B[WW' o (J - 1P, (3.9)

where W is the weight matrix, § a penalty hyperparameter, I the identity matrix and J a

all-ones matrix.

A contribution of this dissertation is the adaptation of the BigGAN architecture
into bounding box modules called global and object pathways, detailed in the Section
3.1. It is important to note that the peculiarities of this architecture, such as the skip
connections supplied by the concatenations of the z chunks and the class embedding y,

allow new configurations of the global and object pathways.
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3.3 DIFFERENTIABLE AUGMENTATION AND LECAM-DIVERGENCE LOSS

A limited training dataset can deteriorate the GAN performance, since the discrim-
inator tends to memorize the training set. An overfitted discriminator penalizes excessively
any generated sample that is not exact to the real data distribution, leading to poor
generalization. Zhao et al. (2020) proposed a simple method that improves data efficiency
through data augmentation applied not only on the real samples x, but also on the fake
G(z) ones, in both D and G updates (Figure 7), optimized by the discriminator Vp and

generator Lg training objectives, given loss functions fp and fg:
08X VD = Expy 0l (D(T)))] + Expo o fo(D(T(G(2) @), (3.10)

min L = Esp.[fa(D(T(G(2)) ™)), (3.11)

where T represents the transformations in the data augmentation, such as translation,

cutout and color. The G update (iii) requires T to be differentiable as gradients should
be backpropagated through T to G.

D(T(G(2)))

Figure 7 — Differentiable Augmentation for D (left) and G (right) updates.

Source: Created by the author (2024).

Tseng et al. (2021) proposed a regularized discriminator loss that improves the
performance of GANs learning dynamics especially under limited training data. They
introduced a 2 norm between the current real and fake image predictions and moving
average variables called anchors that tracks the historical discriminator predictions. Based
on Eq. 3.10:

H}Din Lp = —Vp + ARy, (3.12)

the regularization term Ry is written as:

RLC = Expiara (0 [ (D (%) = ar, [°] + B, () [ (D(G(2)) — ez, [I7], (3.13)

where aj, and aj, are the anchors for the real and fake images, respectively, and A an
empirically adjustable hyperparameter. At first glance, although it appears counterintuitive,
the regularization term Ry¢ encourages D to mix the predictions between real and generated
images. Tseng et al. (2021) demonstrated that Ry can enforce the minimization of the
weighted divergence called LeCam-divergence, which plays a crucial role in GANs since it

is an underlying measure to align the data distribution pg.:, and the generated distribution

Pz-
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The simultaneous application of the Differentiable Augmentation and the LeCam-
Divergence Loss is crucial for the convergence of the original BigGAN architecture trained
on the dataset used in this work. An important contribution of this dissertation is the
non-dependence of both methods for the convergence of the adapted BigGAN architecture
into global and object pathways, even though they contribute to improving data efficiency.
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4 PROPOSED METHOD

This chapter introduces the main contribution of this dissertation, which consists
of the integration between the bounding box modules, called global and object pathways,
and the BigGAN architecture, both presented in the Chapter 3. First, Section 4.1 presents
a multiscale boxes proposal to represent the objects. Next, Section 4.2 describes our
proposal for the BigGAN generator architecture, while Section 4.3 describes our proposal

for the BigGAN discriminator architecture.

4.1 MULTISCALE BOXES

Instead of spatially locating an object by a single bounding box by, according
to the Section 3.1, this work proposes the use of multiscale boxes. Figure 8 shows an
example of a scene from MS-COCO dataset and its input configuration with multiscale
boxes. A scene stores a dictionary d of fixed size 0,4, (maximum number of objects)
where each element, indexed by a label [, becomes a set of b concentric bounding boxes
with the same aspect ratio. Given a scale increase factor s, a bounding box is defined by
byor = [Tmin — (J — 1) 3W, Ymin — (§ — 1) 3R, w+ (§ — 1)sw, h+ (j — 1)sh], where j = 1,2, ..., b.
When j = 1, we get the original bounding box with coordinates (Z,in, Ymin, W, ).

In this way, the transformations applied to create the layouts in the global and the
object pathways of both the generator and the discriminator are iterated through a nested
1oop Omaz X b, where 1 = 1,2, ..., 04 and j = 1,2, ..., b. The intuition behind the use of
bounding boxes with multiple scales is to smooth out the transition regions between the
objects and the background. Furthermore, as the overlapping areas are added together,

the objects’ features are reinforced.

(1, 1)

Y

Figure 8 — Example of a scene from MS-COCO dataset and its input configuration with
multiscale boxes.

Source: Created by the author (2024).
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4.2 PROPOSED GENERATOR

Our customization proposal for the BigGAN generator architecture is shown in
Figure 9. The integrated modules are highlighted in dotted boxes with specific colors.
The processing pipeline for these modules are maintained as proposed by Hinz, Heinrich
and Wermter (2019). In this proposal, a sampling grid G is applied to an input map
represented by a spatially replicated one-hot binary vector L,,..n.: Or a local feature map
Fiocar. The sampler (denoted by “®”) performs an inverse affine transformation T9_1
parameterized by a bounding box by, generating an output map. The iterative sum of
each output map with an empty canvas creates the layout. More details are described in
Subsections 3.1.1 and 3.1.2. Our proposed modification comes from the use of multiscale
boxes (described in the previous Section), which inserts an extra loop (dotted rounded

arrow) into the layout creation.
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Figure 9 — Customization proposal for the BigGAN generator architecture. Where it reads
“Indices x to y” refers to the vector partition (in black the noise vector z, and in red the
layout encoding) that feeds that forward.

Source: Created by the author (2024).

For this work, the encoder architecture adopted by Hinz, Heinrich and Wermter

(2019) is also maintained. Three C2D layers of stride 2 and padding 1 perform consecutive
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downsamplings, while obtaining a high-level latent representation of the layout. Leaky
Rectified Linear Unit (LeakyReLU) activation functions amplify the range of convolutional
layers weights to negative values normalized by a slope coefficient of 0.2, and BN layers
follow the last two C2D layers.

The layout encoding (red dotted box) is inserted into the network input. We
propose to split it into consecutive parts of equal size as Brock, Donahue and Simonyan
(2019) have proposed for the noise vector z. The number of splits is determined by the
tensors’ resolutions along the generator, i.e., 7 x 7, 14 x 14, 28 x 28, 56 x 56 and 112 x 112
(five splits). The encoder produces a 256-element layout. In turn, we opted to initialize the
noise vector z with 128-elements, half of the layout encoding. In order to obtain five parts

of equal size, the last layout encoding index and the last three z indexes are discarded.

The initial FC layer receives the first part of the noise vector z (indices 1 to 25)
concatenated with the first part of the layout encoding (indices 1 to 51). The remaining
parts of z and the layout encoding are also respectively concatenated with each other
(indices 26 to 50 || indices 52 to 102, indices 51 to 75 || indices 103 to 153, etc.) and
with the shared class weight vector ¥, peqaing- The resulting vector with 208 elements
feeds deeper FC layers into residual blocks. We add to the initial FC layer the same
normalization of the last two C2D layers of the encoder, i.e, BN followed by LeakyReLU
(orange dotted box). The reshaped output then establishes the global feature map F gopq.
Due to the skip connections, the global network inputs also directly influence the features

of different resolutions along the generator.

The approach proposed by Hinz, Heinrich and Wermter (2019) establishes a single
object pathway. Its output layout has a resolution of 1/4 of the fake image I f44. resolution,
and is generated from spatially replicated one-hot binary vectors Lpe.po with 1/16 of the
I, resolution. This configuration can lead to objects being underrepresented, especially
those at smaller scales, depending on the network final resolution. In this work, we propose
multiple object pathways, whose output layouts form a resolution pyramid (1/2, 1/4, 1/8
and 1/16 of the I s resolution). In this way, the objects’ features are reinforced from the
input resolution up to highest resolutions capable to capture more information. Figure 10
compares the inputs and outputs resolutions of the object pathways proposed by this work
with the object pathway proposed by Hinz, Heinrich and Wermter (2019) (shaded layout).

The output layout of the first object pathway (cyan dotted box) is concatenated
with the global feature map F . The output layouts of the two middle object pathways
(green and blue dotted boxes) are concatenated with the output tensors of the first two
generator residual blocks. The output layout of the last object pathway (magenta dotted
box) is concatenated with the output tensor of the penultimate generator residual block.
Note that the first three object pathways preserve their L, ..o resolutions. On the other

hand, the last object pathway obtains local feature maps F'j,..; with twice of their L ,c_pot
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Lone~hot 1/16

Lone«hot 1/8 J v

5

layout 1/16

layout 1/4

layout 1/2

Figure 10 — Comparison of the input and output resolutions of the object pathways
proposed by this work and the one proposed by Hinz, Heinrich and Wermter (2019)
(shaded layout).

Source: Created by the author (2024).

resolution. The idea is to prevent that the upsampling occurs for the lowest network
resolutions and, when applied, occurs by a single factor of 2x. Unlike the generator’s
residual blocks, the object pathways’ residual blocks are not conditioned to the Y.,,peqqing-
Consequently, they have no FC layers, and the CBN layers are replaced by BN layers.
Finally, after the last residual block, the generator follows its original configuration,

generating the fake image I ¢4

Brock, Donahue and Simonyan (2019) proposed different depth — number of residual
blocks — and width — number of output channels of the residual blocks — configurations
for 128 x 128, 256 x 256 and 512 x 512 resolutions. Due to the particularities of the
dataset explored in this work (detailed in the Section 5.1), and the computational resources
available, we opted to fix the resolution at 112 x 112. In this sense, based on the original
BigGAN architecture for 128 x 128 resolution (Figure 6), we propose a configuration with

one less residual block in both the generator and the discriminator.

4.3 PROPOSED DISCRIMINATOR

Our customization proposal for the BigGAN discriminator architecture, shown in

Figure 11, differs in two main aspects from the customization proposal for the BigGAN
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generator architecture, described in the previous section. The first one is the maintenance
of a single object pathway. The second one is the global feature map F gy, resolution,
i.e., from 1/16 to 1/4 of the input image I, cq/ fqke resolution. Both aspects preserve the
structure proposed by Hinz, Heinrich and Wermter (2019) for the discriminator. The aim
is to keep the discriminator architecture simpler than the generator. Adversarial training
involves the progressive adaptation of one network to another. So, if a discriminator is too

difficult to be deceived, the generator won’t know how to update its weights.
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Figure 11 — Customization proposal for the BigGAN discriminator architecture. o044, iS
the number of object classes of the dataset. The initial position of the vector resulting
from the sum of all one-hot binary vectors l,,e ot receives a value (denoted by “x”) equal
to the difference between the maximum number of objects 0,4, and the number of objects

in the scene 0gcene. The class weights vector Y.,,peq4in, InCOrporation flow was excluded
(shaded forward).

Source: Created by the author (2024).

The object pathway processing pipeline (blue dotted box) is maintained as proposed
by Hinz, Heinrich and Wermter (2019). In this proposal, there are two stages. In the
first one, a sampling grid G is applied to an input map represented by a real or a fake
image Iycq/fake- The sampler (denoted by “®”) then performs an affine transformation
Ty parameterized by a bounding box by, extracting the interest object from the scene

with 1/4 of the input image resolution.

In the second stage, the extracted object is concatenated with its respective spatially
replicated one-hot binary vector l,,cnot. From the resulting tensor, two residual blocks
extract a local feature map F),., preserving the resolution (no AvgPool layers). The
number of channels of those two residual blocks corresponds to the two residual blocks
that extract the global feature map F' o5 in the generator. The output layout is created
just like in the generator object pathways. More details are described in Subsections 3.1.1
and 3.1.2. Our proposed modification comes from the use of multiscale boxes (described
in the previous section), which inserts an extra loop (dotted rounded arrow) into the whole

process.
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After the concatenation between the global feature map F g, and the object
pathway output layout, two residual blocks are applied in order to obtain a merged feature
representation. The resulting tensor is concatenated with the spatially replicated sum of
all one-hot binary vectors l,,cnot- A new residual block is performed, followed by a ReLLU
activation function. A global sum (denoted by “3>”) of all the elements from the same
channel obtains a feature vector f. Finally, a FC layer extracts from f the probability of

I,cq)fake being real or fake.

In the original BigGAN discriminator architecture, proposed by Brock, Donahue
and Simonyan (2019), f feeds a second flow, responsible to incorporate the class weights
VeCtor Yempedding: 10 Our work, the sample class annotation is obtained through a conversion
of the sum of all 1,,,¢.50¢, described in the Section 5.1. Experimentally, the spatial replication
of this sum, concatenated with the penultimate residual block output, proved to be more

efficient. Therefore, ¥.,,peqdin, flow is excluded (shaded forward in Figure 11).
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5 EXPERIMENTAL RESULTS

This chapter presents the experiments to evaluate the proposed method both
quantitatively and qualitatively. Section 5.1 describes the dataset used in this work.
Section 5.2 describes the hyperparameters’ setting and the training protocol. Section 5.3
presents the quantitative analysis and Section 5.4 the qualitative analysis of the results.

Finally, in the Section 5.5, there is a general discussion about the results.

5.1 DATASET

This work uses a dataset created in the context of the project entitled Happy
Cow ID as part of the Digital Zootechnical Residency program, a Brazilian Agricultural
Research Corporation (Embrapa — Dairy Cattle) initiative in collaboration with the Federal
University of Juiz de Fora (UFJF) and other Higher Education Federal Institutions. The
dataset contains bovine images, where each face and interest subregion is spatially localized
by a bounding box and annotated by a label. The labels are: cow (face), muzzle, left
ear, right ear, left eye and right eye (subregions). The images have different aspect
ratios, multiple individuals, wide scale, rotation, background, illumination and sharpness
variation, as well as occlusion situations. Originally designed for the object detection task,

we adapted the dataset for the facial generation task.

Figure 12 describes the pre-processing steps (gray boxes) applied to adapt the
dataset for the facial generation task. The aim is to extract the faces, preserving only the
annotations of their respective interest subregions. The figure shows an example selected
from the original dataset (“cow_3061”) that involves bounding boxes distributions that
are important to point out. Notice that some face bounding boxes (drawn in black) do
not fully encompass the bounding boxes of their respective interest subregions (drawn
in the other colors). Another perceptible condition is the intersection of bounding boxes
of interest subregions with more than one face bounding box. In addition, some interest
subregions are not linked to any face region. Those situations, often found along the
original dataset, combined with the wide pose variation, make it difficult to build an
algorithm able to automatically determine which interest subregions belong to which faces,

if they do. For this reason, the pre-processing is carried out semi-automatically.

In the facial selection step, each facial region is detached from the source image
along with the interest subregions whose bounding boxes intersect the respective face
bounding box. A manual analysis then checks whether each particular interest subregion
matches the current face, in order to define the facial layout. If so, the respective interest
subregion is allocated to the face in question. Otherwise, it is disregarded from the current

check. With the facial layout defined, each facial region is extended following three criteria:
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Figure 12 — Pre-processing steps (gray boxes) applied to adapt the dataset for the facial
generation task. The outputs of each step are displayed in columns, and the rows show
the progress of the steps for each face detached from the source image. The facial layout
provides a binary descriptor that, when converted to decimal, represented the image class.

Source: Created by the author (2024).
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1. Fully encompass the interest subregions. One or more coordinates of the face
bounding box (Zmin, Ymins Tmazs Ymaz) can be adjusted to the coordinates of a interest
subregion bounding box (2 min, ¥ mins ' mazs Ynas)s i Tonin < Tomins Ynin < Ymins

/ /
T maz = Tmaz O Y max > Ymaz -

2. Stretch the face bounding box. The intention is to accentuate the face borders
where they could be over-adjusted, without drastically interfering on the scale. Each
direction is extended by up to 16 pixels, i.e., (Zmin — 16, Ymin — 16, Tmaz + 16, Ymaz +16),

respecting the image boundaries.

3. Set the aspect ratio of the face region to 1. With the face bounding box centered,
the lowest dimension is filled with background regions. If it exceeds the image

boundaries, a zero padding is applied.

Following the same representation described in Subsection 3.1.1, the label of each
bounding box allocated to a facial layout is encoded as a one-hot binary vector l,,cpot,
where the bit 1 is assigned to the index of the respective interest subregion label [, while
the other indices are set to bit 0. The bit-by-bit sum of all l,,..,.; of a facial layout
provides a number on the binary base that, when converted to the decimal base, represents
the image class. For example, in the Figure 12, the facial layout configuration of the
sample “cow_ 3061 _face 17 corresponds to the number 10101 on the binary base, 21 to
the decimal base. In this way, we can insert the class information into the BigGAN, via

weights vector Y., peqding: @ described in the Section 3.2.

In total, two datasets were pre-processed. The first one contains 6, 182 images
collected through web searching, resulting in 9,495 face images distributed in 32 classes.
The second one contains 500 images collected manually on farms, resulting in 939 face
images also distributed in 32 classes. The first dataset was used to train the models and
quantitatively evaluate their performance. In turn, the facial layouts of the second dataset

were used in the qualitative analyses.

Table 1 presents the number of matched and mismatched instances of the interest
subregions after pre-processing, as well as their frequencies in the new dataset (percentage
of face images containing that subregion), and their average resolutions. Proportionally,
the mismatched instances are minimal compared to the matched ones. The ears and eyes
have lower frequencies than the muzzle in the dataset, mainly due to pose variations.
In addition to smaller frequencies, the eyes have the lowest average resolutions. The
average resolution of the web searching and the manual collection datasets face images is
729.61 x 729.61 pixels and 744.04 x 744.04 pixels, respectively.

Figure 13 shows the number of images per class. The classes are arranged according
to the number of interest subregions. The legend displays the proportion of images per

number of interest subregions. Analyzing the web searching dataset, with 40.51%, the
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Table 1 — Information about the interest subregions after pre-processing.

Label Matched Mismatched Dataset Average Average
instances instances frequency (%) width (px) height (px)

muzzle 8622 71 90.81 216.15 168.73
Web left ear 7386 197 77.79 205.76 184.22
searching right ear 7359 168 77.50 218.56 191.96
left eye 6145 34 64.72 76.69 88.19
right eye 6285 51 66.19 82.20 93.66
muzzle 791 8 84.24 224.88 164.06
Manual l.eft ear 652 22 69.44 245.09 206.84
collection right ear 620 15 66.03 267.70 224.47
left eye 485 4 51.65 89.65 102.83
right eye 473 4 50.37 100.88 115.91

Source: Created by the author (2024).

image class 31, which contains all five interest subregions (frontal pose), is the most
significant, even though most of the dataset contains four or less interest subregions. Next,
the most representative image classes are 21 and 26, typified by the visibility of one side
of the face (lateral poses), including the muzzle. Two other notable image classes are 29
and 30, characterized by a partial horizontal inclination that allows the annotation of
both ears, but obstructs the simultaneous visibility of both eyes, also including the muzzle.
Those five image classes (31, 30, 29, 26 and 21) concentrate 74.79% of the dataset. Note
that the manual collection dataset follows a similar distribution, although with a smaller

deviation.

Table 2 presents a statistical analysis of the upsizing conditions of the web searching
dataset images for some specific resolutions. Upsizing should be avoided as it generates
artifacts in the image. Note that higher target resolutions require considerable proportions
of upsized images. In addition, the difference between the average resolution of the images
to be upsized and the target resolution increases significantly. Under those conditions,
we decided to apply a reasonable resolution size, where both the proportion and average

resolution of upsized images are tolerable (line highlighted in gray).

5.2 TRAINING PROTOCOL AND HYPERPARAMETERS’ SETTING

The proposed method was implemented using the machine learning library PyTorch,
in the Python language. The use of this library is motivated by the implementation of the
original BigGAN architecture, the baseline model of our proposal. All the models were
run using a 32 GB NVIDIA Quadro GV100 GPU and an Intel Core i7 870 with 12 threads
and 16 GB of RAM. The models were trained from scratch for 1000 epochs, a number
observed along the research as enough for both model’s convergence and the discussion of

the different divergence behaviors.
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Figure 13 — Number of images per class in the two datasets.

Source: Created by the author (2024).

Inspired by the results achieved by Zhao et al. (2020) for the BigGAN, in the
present work, the transformations applied to the Differentiable Augmentation — during
training — include translation (within [—1/8,1/8] of the image size, padded with zeros) and
cutout (masking with a random square of half the image size). A random horizontal flip is
applied — before training — to all experiments, without creating new samples (oversampling).
The translation and horizontal flip transformations are adapted for the bounding boxes
annotations. After a translation, a bounding box is discarded if all its coordinates exceed
the image boundaries. Otherwise, the bounding box coordinates are adjusted and just the
region outside of the image boundaries is discarded. On the horizontal flip, the orientation

of the ears and eyes is also flipped.
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Table 2 — Information about the resolutions of the web searching dataset images. The line
highlighted in gray indicates the resolution used in this work.

Target Upsized Average resolution of
resolution (px) images (%) upsized images (px)
56 x 56 0.09 50 x 50
64 x 64 0.36 57 X 57
112 x 112 15.22 87 x 87
128 x 128 20.09 95 x 95
224 x 224 37.63 130 x 130
256 x 256 41.34 140 x 140

Source: Created by the author (2024).

Table 3 lists the standard training hyperparameters, inspired by the results achieved
by Tseng et al. (2021) for the BigGAN. The discriminator is optimized every k = 4
steps of the generator. Adam is adopted as optimizer on both the discriminator and
generator, setting the learning rate to 2 - 1074, first and second-order momentum to 0 and
0.999, respectively, and weight decay to 0. The weights are initialized from a A(0,0.02)
distribution. During training, the weights undergo an orthogonal regularization described
by Equation 3.9, with a penalty hyperparameter 3 = 1-10~*. To sample the input pixels
for the spatial transformations carried out on the modules integrated into the BigGAN
architecture, the bilinear interpolation method is used (Equation 3.3). Similarly, the
bilinear interpolation is used to upsample the tensors by a factor of 2x in the generator’s

residual blocks.

Table 3 — Standard training hyperparameters.

Parameters Values
Discriminator optimization steps (k) 4
Optimizer Adam
First-order momentum 0
Second-order momentum 0.999
Weight decay 0
Generator learning rate 21074
Discriminator learning rate 21074
Weights initialization N(0,0.02)

Orthogonal regularization penalty (8)  1-107%

Source: Created by the author (2024).

In the LeCam-Divergence Loss, described by Equation 3.12; A is an empirically
adjustable hyperparameter applied to the regularization term Ryc (described in Equation
3.13). Two hyperparameters related to the multiscale boxes (Section 4.1) require empirical

analysis. The first one is the number of concentric bounding boxes b for each interest
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region. The second hyperparameter is the scale increase factor s. Finally, we decided to
vary the batch size and investigate its impact on the results. We performed ablations to

define some hyperparameters, which are discussed in Section 5.3.

Some metrics are used to evaluate the performance of GANs. The Fréchet Inception
Distance (FID), proposed by Heusel et al. (2017), quantifies the fidelity and variability of
the generated samples compared to real ones. The first step of the FID calculation consists
of inputting both the fake and real samples into the Inception-v3 (SZEGEDY et al., 2016)
architecture. The aim is to extract feature vectors at a specific network level. In this work,
the real images — represented by the web searching dataset (9,495 samples) — and the fake
images — 10,000 generated samples — are input with a 112 x 112 resolution. The feature

vectors are extracted at the output of the final AvgPool layer with 2048 elements.
In the second step, the FID is calculated by:

FID = H’l'real - iufake”2 + Ir (Kreal + Kfake - 2\/ Krealeake> s (51)

where p,..,; and p ;.. are the mean vectors and Ky and Kjyqpe are the covariance matrices
for the real and fake feature vectors. Lower FID values indicate the real and fake images
are similar. The whole process is computationally expensive and slow to run. For this
reason, we set fixed intervals of 40 epochs to calculate the FID. For the experiments run
with 1,000 and 1,200 epochs, 26 points (the initial step and more 25) and 31 points (the
initial step and more 30) are sampled, respectively. Checkpoint models are saved for the
last and lowest FID points. Other auxiliary metrics are used in this work to analyze the
model’s training, such as the discriminator predictions and the generator and discriminator

losses for the real and fake images.

5.3 QUANTITATIVE RESULTS

In order to establish a comparison baseline model with our method, we run
experiments with an architecture derived from Figures 9 and 11. This architecture
disconnects all the bounding box modules, i.e., the layout encoding and the object
pathways. Since the image class is derived from the bounding boxes labels, the weights
vector Yempedaing 1S disconnected. The batch normalization layer and the LeakyReLu
activation function, after the initial fully connected layer of the generator, are also removed.
As a result, we have an architecture similar to the original BigGAN (Figure 6), but for
112 x 112 resolution and without the Non-local blocks.

Table 4 shows the FID results and the training times for the experiments with
the baseline model. Initially, we compared the BigGAN with and without the Non-local
blocks. The BigGAN without the Non-local blocks achieved a lower FID (181.41 against
211.14). The Non-local block influences the capture of interactions between distant pixels

on the image. The improvement with the BigGAN without the Non-local blocks can be
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explained by the nature of the dataset, where the images are largely textural, i.e., the
interactions between pixels are predominantly local. In addition, the training time was

reduced by approximately 4 hours due to the parameters reduction.

Table 4 — FID and training time for the baseline model (BigGAN), combinations with
LeCam Divergence Loss (LC) and Differentiable Augmentation (DA) and batch size
variation. BigGAN" indicates that Non-local blocks are kept. Lowest FID for experiments
with and without LC and DA are highlighted in gray.

Batch Training

Model Epochs size FID (1) time (hours)
BigGAN" 211.14 ~18
BigGAN 1000 50 181.41 ~14
BigGAN + LCy—9.01 192.80 ~14
BigGAN + LCy—03 1000 5 62.27 ~14
BigGAN + DA 1000 50 13.44 ~14

40 33.33 ~17
BigGAN + LCy—o3 + DA 1200 50 9.58 ~17

60 11.57 ~17

Source: Created by the author (2024).

The next step was to apply the LeCam Divergence Loss (LC) to the BigGAN
without the Non-local blocks. Tseng et al. (2021) set the regularization weight A to 0.3
and 0.01 for the experiments on the CIFAR (full, 10% and 20% data) and the ImageNet
(full, 10%, 25% and 50% data) datasets, respectively. In the present work, both values
were evaluated and the best one selected. While there is a deterioration of the FID using
A =0.01 (181.41 to 192.80), there is a significant reduction of the FID for A = 0.3 (181.41
to 62.27). This might be related to the fact that the CIFAR dataset with 20% data

includes 12, 000 samples, which is close to the 9,495 samples in our dataset.

To analyze the impacts of the Differentiable Augmentation (DA) separately, we
firstly applied it to the BigGAN without the LeCam Divergence Loss. The FID decreases
considerably, from 181.41 to 13.44. Then, we applied the Differentiable Augmentation and
the LeCam Divergence Loss (A = 0.3) together, and evaluated the batch size variation to
40, 50 and 60. We observed that the model did not finish to converge after 1,000 epochs,
so we extended the training for 200 extra epochs. The combination of both methods
achieved the best result for the baseline model (FID 9.58 for the batch size 50). Notice
that the batch size is a sensitive variable for the baseline model, especially for batch size
40.

Table 5 shows the FID results and the training times for the experiments with
our model (BigGANgy;), which consists of coupling the bounding box modules (BMs)
to the BigGAN architecture, as described in the Chapter 4. Initially, we experimented
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our model keeping the Non-local block on the architecture (BigGAN},). This does not
compromise the structure of our method, and the presence of the Non-local blocks should
be evaluated according to the dataset under study. Our model achieved a lower FID
without the Non-local blocks (15.27 against 22.15), as seen for the baseline model.

Table 5 — FID and training time for our model (BigGANpys), combinations with multiscale
boxes, LeCam Divergence Loss (LC), Differentiable Augmentation (DA) and batch size
variation. BMs* denotes the proposed bounding box modules by Hinz, Heinrich and
Wermter (2019). BigGANF,,, indicates that Non-local blocks are kept. Lowest FID for
experiments with and without LC and DA are highlighted in gray.

Model Multiscale Epochs Batch FID Training
boxes size time (hours)
BigGANY, 22.15 ~25
BigGANpy - L 20.48 ~25
BigGANps (b=1,5=0) 1000 V| 507 ~24
BigGANpRys (empty inputs) 206.13 ~23
(b=2,5=0.1) 15.09 ~36
BigGANRMs (b=2,s=0.2) 1000 50 14.67 ~36
(b=2,5=0.4) 16.35 ~36
. (b=1,5=0.2) 15.32 ~32
BigGANps (b=3s=01) 000 0 1084 ~A48
BigGANgMms + LCa—o0.01 32.46 ~36
=2,5=0.2 1

BigGANpMs + LCy_o.3 (b=25=02) 000 50 17.58 ~36
BigGANpys + DA (b=2,5s=02) 1000 50 | 10.30 ~64
40 8.67 ~77
BigGANpys + LCaigs + DA (b=2,5=0.2) 1200 50 8.20 ~TT
60 9.67 ~T7

Source: Created by the author (2024).

We compared our model with a version (BigGANgys+) that maintains the specifi-
cations proposed by Hinz, Heinrich and Wermter (2019). This model disconnects all the
generator’s object pathways, except the Object Pathway 1/4 (blue dotted box in Figure
9), which now receives as input a spatially replicated one-hot binary vector Lype po With
7 x 7 resolution, in addition to an extra residual block. Analogous to the discriminator
object pathway, the two residual blocks have the same number of output channels (512
and 256) as the residual blocks prior to the concatenation of the 28 x 28 resolution output
layout to the generator. Our model (BigGANgy;) achieved a better FID (15.27 against
20.48) and with an equivalent training time (~25h).

Finally, we tried out our model by setting the bounding boxes and labels inputs to
zero. Its FID is comparable to the baseline model without the LeCam Divergence Loss
and the Differentiable Augmentation (206.13 against 181.41), although it takes more time
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to train. This contributes to the idea that, without the bounding box annotations, it is

more appropriate to use the model without the bounding box modules.

Next, we explored the number of concentric bounding boxes b and the scale factor
s for the proposed multiscale boxes. First, for b = 2, we range s to 0.1, 0.2 and 0.4. The
FID decreased for s = 0.1 and s = 0.2 compared to the model without multiscale boxes,
while for s = 0.4 the FID increased (15.09, 14.67 and 16.35, respectively, against 15.27).
With the best value for s set to 0.2, we applied this same scaling factor to the original
bounding boxes (b = 1), and a scaling factor of 0.1 (half of 0.2) for b = 3. The idea is to
find evidence that the improvement comes from covering a larger area with one or more
extra bounding boxes. The hypothesis was supported for b = 2 compared to b =1 (14.67
against 15.32). However, the FID increased for b = 3 (14.67 to 19.84). The multiscale
boxes significantly impacted the training time, which is expected due to the nested loop

in the bounding box modules and the scaling factor applied.

For the LeCam Divergence Loss (LC), the Differentiable Augmentation (DA) and
the batch size variation experiments, we follow the same logic used for the baseline model.
In the experiments exclusively with the LeCam Divergence Loss, both values for A (0.01
and 0.3) increased the FID from 14.67 to 32.46 and 17.58, respectively. For the experiment
solely with the Differentiable Augmentation, the FID decreased from 14.67 to 10.30. Both
methods combined yielded the best FID (8.20) for a batch size 50. Our model appeared
less sensitive to batch size variation than the baseline model. In this way, it is possible to

balance the computational cost with a reduced impact on the FID score.

Figure 14a shows a comparison of the main FID results between the baseline model
(BigGAN) and our model (BigGANgy;), highlighted in gray in Tables 4 and 5, respectively.
Our model (orange line) achieved better FIDs in all experiments with and without the
LeCam Divergence Loss and the Differentiable Augmentation. The baseline model (gray
line) becomes competitive with our model in the experiments with the Differentiable
Augmentation. According to the FID graphics over the epochs (Figures 14b and 14c),
without Differentiable Augmentation (black and blue lines), our model converges to lower
FID scores (14.67 and 17.58, respectively), and presents a more controlled divergence
behavior. With Differentiable Augmentation (green lines) and Differentiable Augmentation
plus LeCam Divergence Loss (red lines), our model converges to lower FID scores (10.30
and 8.20), but nearer to the baseline (13.44 and 9.58). In other words, we can argue
that our model reveals better stability compared to the baseline, at the cost of spending
considerably higher training times, reported in the “Training time (hours)” column of
Tables 4 and 5.

Figure 15 depicts the discriminator predictions for both the baseline (BigGAN)
and our model (BigGANpgy;). The discriminator assigns greater positive prediction values

for samples that it considers to be real, and lower negative prediction values for samples
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Figure 14 — Comparison of the main FID results between the baseline model (BigGAN)
and our model (BigGANpgy;), highlighted in gray in Tables 4 and 5, respectively. (a)
compares both models for the experiments combinations with LeCam Divergence Loss and
Differentiable Augmentation. (b) and (c) present the FID curves over the epochs of the
corresponding experiments plotted in (a). “x” denotes the lowest FID score for each curve.

Source: Created by the author (2024).

that it deems to be fake. The D(x) curve points (blue and red lines) were acquired by the
prediction’s average of all the dataset samples, and the D(G(z)) curve points (purple and
orange lines) by the prediction’s average of the exact 10,000 images generated for the FID
calculation, sampled at intervals of 40 epochs. The proximity of D(x) and D(G(z)) is
indicative of the confusion degree between the two distributions. Note that the D(x) and
D(G(z)) curves tend to lower absolute values with the LeCam Divergence Loss (graphics
(b) and (d)), for both the baseline and our model. Without the LeCam Divergence Loss
(graphics (a) and (c)), our model reduces the absolute values for the D(x) and D(G(z))
predictions (red and orange curves). However, it maintains a divergent behavior over the

training, as well as the baseline.

Figure 16 depicts the generator and the discriminator losses (Lg and Lp real/fake,
respectively) curves for both the baseline (BigGAN) and our model (BigGANgy). The

Lp real/fake curve points are acquired by the loss’s average of all the dataset samples,
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Figure 15 — Discriminator predictions for both the baseline (BigGAN) and our model
BigGANgps. The graphics from (a) to (d) are grouped according to the LeCam Divergence
Loss and the Differentiable Augmentation applications.

Source: Created by the author (2024).

and the Lg curve points by the loss’s average of the exact 10,000 images generated for
the FID calculation, sampled at intervals of 40 epochs. Without the LeCam Divergence
Loss (graphics (a) and (c)), the Lp curves (green and orange lines) stabilize at too low
value, providing insufficient feedback to the generator. Consequently, the Lg curves (blue
lines) deteriorate during training. With the LeCam Divergence Loss (graphics (b) and
(d)), the Lp curves stabilize at higher values, preventing the Lg curves from diverging.

Both the baseline (continuous lines) and our model (dashed lines) behaved similarly.

5.4 QUALITATIVE RESULTS

In this section, we present a qualitative analysis of the cattle faces generated by
the best model — in terms of FID — for the baseline and for our method, both with LeCam
Divergence Loss plus Differentiable Augmentation. Our model’s images were generated
using the 939 facial layouts derived from the manual collection dataset. The same number

of images were generated for the baseline. To establish a selection criterion, we initially
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Figure 16 — Generator and discriminator losses for both the baseline (BigGAN) and our

model (BigGANgys). The graphics from (a) to (d) are grouped according to the LeCam
Divergence Loss and the Differentiable Augmentation applications.

Source: Created by the author (2024).

analyzed the output values of the models’ discriminators. Figure 17 depicts the boxplot
graphic of the discriminator predictions by model. The greater the positive prediction
value, the more the discriminator considers the image to be real. Conversely, the lower
the negative prediction value, the more the discriminator deems the image to be fake.
Our model’s discriminator assigned more positive prediction values, with an upper limit,
third quartile and median above zero. In contrast, the baseline discriminator had more
negative predictions, with few outliers above zero. It is essential to acknowledge that the
discriminators have learned to distribute their predictions in distinct manners, linked to
their respective generators. Consequently, the distributions cannot be employed for a

qualitative comparison between the models.

For each model we selected the images nearest to the following boxplot elements:
minimum value (position at 0%), first quartile (position at 25%), median (position at
50%), third quartile (position at 75%) and maximum value (position at 100%). Near
the minimum, we expect to see images with less representative features. From the first

quartile to the third quartile, we expect to gradually get more representative images
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Figure 17 — Boxplot of the discriminator predictions by model.

Source: Created by the author (2024).

with different poses and backgrounds. Near the maximum, we expect to see images with
predominant dataset characteristics. Figures 18 and 19 display the 36 images nearest to
each boxplot element for the baseline and our model, respectively. The baseline model
produces images with a greater degree of heterogeneity in background content compared to
those generated by our proposed model. Because our model prioritizes the facial subregions,
the background is treated in a secondary manner. Consequently, the faces generated by

our model exhibit a greater sense of realism compared to the baseline.

Next, we analyzed the effects of the truncation technique, described in Section
3.2. This procedure explores the trade-off between the fidelity and the variability of the
samples generated by increasing the truncation of the noise vector z. To perform this
analysis, we initialized the noise vector z to variance values o € {1,0.5,0.05}, where
0? =1 is the value used during training, as previously demonstrated in Figures 18 and 19.
As 0? is reduced, and the elements of z truncated towards zero, the samples approach the

mode of the generator’s output distribution, at the cost of the features’ variability.

Following the same protocol as for the images generated with o2 = 1, Figures 20 and
21 display the 12 images nearest to the 50% (median) and 100% (maximum) percentiles
for the baseline and our model, respectively. The 02 = 0.5 achieved an interesting trade-off
between fidelity and variability. Looking at the baseline, this balance was pronounced in
the background and pose features, particularly for the maximum percentile. In turn, our
model reflected this balance in the animal’s face colors. For o2 = 0.05, the background
of the samples generated by the baseline begins to merge with the animal’s body and
face. In contrast, our model preserves better the facial features. One possible explanation
for this behavior stems from the fact that our model treats and reinforces the subregions
independently of the background and the animal’s body. The extra information given by

the subregions could have provided more facial features along the training.

In addition, we evaluated the ability of our method to generate images from facial

layouts not extracted directly from real samples. For each of three predominant classes
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(e) Maximum

Figure 18 — Images generated by the baseline (BigGAN + LCy_g3 + DA). From (a) to
(e), there are the 36 images nearest to the percentiles 0% (minimum), 25% (first quartile),
50% (median), 75% (third quartile) and 100% (maximum).

Source: Created by the author (2024).
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(e) Maximum

Figure 19 — Images generated by the proposed model (BigGANgys + LCy—g3 + DA).
From (a) to (e), there are the 36 images nearest to the percentiles 0% (Minimum), 25%
(first quartile), 50% (median), 75% (third quartile) and 100% (maximum).

Source: Created by the author (2024).
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(d) 02 = 0.05 and maximum

Figure 20 — The effects of increasing the noise vector z truncation. Images generated by
the baseline (BigGAN + LCy—¢3 + DA). (a)-(c) and (b)-(d) display the 12 images nearest
to the 50% (median) and 100% (maximum) percentiles of the discriminator’s predictions,
respectively.

Source: Created by the author (2024).



48

e 75N P

(c) ¢ = 0.05 and median

(d) 02 = 0.05 and maximum

Figure 21 — The effects of increasing the noise vector z truncation. Images generated by the
proposed model (BigGANgys + LCy—o3 + DA). (a)-(c) and (b)-(d) display the 12 images
nearest to the 50% (median) and 100% (maximum) percentiles of the discriminator’s
predictions, respectively.

Source: Created by the author (2024).
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in the manual collection dataset — 31 (frontal pose), 29 (partial lateral pose) and 26
(lateral pose) — we obtained a mean facial layout by calculating the average of all bounding
boxes’ coordinates in dataset for each interest subregion. Subsequently, we applied two
distinct transformations. The first one translates each bounding box by a random shift
factor generated by a normal distribution (N (0,0.025) and N(0.025,0.05)), in a random
direction (x or y axis). The second one scales the bounding boxes relative to the canvas’

center (zoom-in and zoom-out of 25%). The objective is to subject the generator to

unconventional facial layouts.

For each configuration, we generated a number of samples corresponding to the
total of the class in question in the manual collection dataset (see Figure 13). The four
highest predictions of the discriminator were selected and displayed in Figures 22, 23 and
24. Class 31 demonstrated a superior adaptability to shifted layouts in comparison to
classes 29 and 26, which is to be expected given the prevalence of frontal faces within the
dataset. Class 29 yielded samples with more unusual features. An apparent restricting
factor was the left ear (left bounding box), which was poorly generated or not present
at all. Class 26 showed a satisfactory adaptability, although the generator struggled to

process zoom effects.

5.5 DISCUSSION

Based on the analyses presented throughout this chapter, it is possible to conclude
that the main objective of this work was achieved. According to the quantitative results
described in Section 5.3, our method yielded lowest FID scores in all scenarios with and
without the LeCam Divergence Loss and the Differentiable Augmentation. The FID curves
over the epochs show that our method converges smoothly, even without such methods to
deal with data limitations. Those results provide an evidence that the bounding boxes’
spatial information coupled to the original BigGAN tends to improve cattle generation.
That is, the new configuration of the proposed bounding box modules is suitable for adding
extra information about the cattle main subregions to the proposition of Hinz, Heinrich

and Wermter (2019).

As seen in the discriminator predictions and the generator and discriminator losses
in Section 5.3, the LeCam Divergence Loss contributed significantly to improving the
adversarial dynamic between generator and discriminator. The fact that this behavior
occurs for both the baseline and our method suggests that the data limitation is probably
a major drawback. However, we cannot discard other possible hyperparameter ablations
— such as learning rates and weight decay — that were fixed in this work. The extensive
time required to train the models, especially for our method, made a more detailed

hyperparameter investigation prohibitive.

Qualitatively, the fidelity and the variability of the faces generated by our method
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(e) Scale factor of 0.75. (zoom-out of 25%)

Figure 22 — Images generated from shifted facial layouts relative to the average facial
layout of class 31 (frontal pose). (a) are the average samples. (b) and (c) are samples
shifted by random translation. (d) and (e) samples shifted by centralized zoom scale.

Source: Created by the author (2024).
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(e) Scale factor of 0.75. (zoom-out of 25%)

Figure 23 — Images generated from shifted facial layouts relative to the average facial
layout of class 31 (frontal pose). (a) are the average samples. (b) and (c) are samples
shifted by random translation. (d) and (e) samples shifted by centralized zoom scale.

Source: Created by the author (2024).
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(e) Scale factor of 0.75 (zoom-out of 25%)

Figure 24 — Images generated from shifted facial layouts relative to the average facial
layout of class 31 (frontal pose). (a) are the average samples. (b) and (c) are samples
shifted by random translation. (d) and (e) samples shifted by centralized zoom scale.

Source: Created by the author (2024).
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are at least competitive with the baseline. The frontal pose — which contains all the
interest subregions — achieved a better level of realism compared to the lateral poses, both
for facial layouts extracted from the dataset itself and for shifted facial layouts unknown
to the generator. This could be associated to the higher presence of frontal poses in the
dataset, and the fact that they provide more subregions to the network. Our method
responded more satisfactorily to the noise vector z truncation, which allows a more precise
control of the trade-off between sample fidelity and variability. Overall, our method has
demonstrated potential to assist phenotype based approaches, such as breed, age and pose
classifications and health status inference. Analyzing the main aspects of our method,
we can point out some advantages and disadvantages compared to the baseline. The

advantages are:

« Greater control over the face generation, allowing to specify the localization and

scale of the subregions of interest, as well as which subregions are visible;

o Lower dependence on methods to deal with data limitations, since the insertion of
bounding boxes via bounding box modules provides significant geometric information

for the network.
As disadvantages, we can mention:

o The necessity to provide a facial layout for the network. This requires a greater

expertise on the user’s part, especially without an auxiliary graphic tool;

o Longer time to train the model.
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6 CONCLUSION

In this work, we seek to answer the following research hypothesis: “It is possible
to generate cattle faces where the spatial location information provided by bounding
boxes of interest subregions, such as the muzzle, ears and eyes, can be incorporated into
a GAN, in order to quantitatively and qualitatively improve the generation of synthetic
images.” To this purpose, we developed a novel facial generation approach, reinforcing the
spatial localization of those subregions of interest to induce the generation of the face as a
whole. The proposed method is inspired by the generation of scenes with multiple objects.
Based on this concept, we customized the architecture of a GAN known in the literature,
named BigGAN, by inserting new bounding box modules configuration. An important
restriction of this work is the use of a limited dataset. To mitigate the effects of data
constraints, we applied two existing methods in the literature, the LeCam Divergence Loss
and the Differentiable Augmentation. We conducted various experiments, quantitative and
qualitative analyses in order to evaluate the proposed method. The experimental results
indicated gains provided by the insertion of extra information for the interest subregions
via bounding box modules. The additional geometric information reduced the dependence
on methods to deal with limited data. On the other hand, the integration of the bounding
box modules required more time to train the model. In addition, the manual insertion of

subregions can allow an user to design the facial generation.

We adapted an existing annotated dataset for the image generation task. We
applied a semi-automatic pre-processing to filter and adjust bounding boxes. This dataset
is another contribution of this work, with information about interest subregions, such as
the muzzle, ears and eyes, forming a layout of the animal’s face. Once available to the
computer vision community, this dataset has potential to be exploited for cattle facial
images analysis and synthesis. In addition, it is possible that the dataset can also be used

in other applications, such as detection and identification tasks.

As future works, we intend to explore new architectures, since the bounding box
modules can be adapted to other GANs. Different generative and feature extraction
approaches can be interesting, such as methods based on transformers or diffusion models.
Other lines to be followed include new data annotation formats. Instead of using bounding
boxes, more complex polygons can better fit into the subregions of interest. Further
interest subregions can be annotated, such as horns and identification tags. Multilabel
information with phenotype based annotations, such as breed, sex and age, and textual
information, such as a natural language description of the image, can also contribute to
refining the methodology. Since the subregions can be inserted at arbitrary positions, we

intend to develop a graphical tool, allowing the user to design the facial generation.
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