
Universidade Federal de Juiz de Fora

Programa de Pós-Graduação em Engenharia Eletrica

Doutorado em Engenharia Elétrica

Vinícius Lagrota Rodrigues da Costa

A Quantum-Resistant Advanced Metering Infrastructure

Juiz de Fora

2023



Ficha catalográőca elaborada através do Modelo Latex do CDC da UFJF com

os dados fornecidos pelo(a) autor(a)

Costa, V. L. R. da.
A Quantum-Resistant Advanced Metering Infrastructure / Vinícius Lagrota

Rodrigues da Costa. ś 2023.
123 f. : il.

Orientador: Prof. Dr. Moisés Vidal Ribeiro
Coorientador: Prof. Dr. Julio López
Tese de Doutorado ś Universidade Federal de Juiz de Fora, Doutorado em

Engenharia Elétrica. Programa de Pós-Graduação em Engenharia Eletrica, 2023.

1. Advanced metering infrastructure. 2. Smart metering. 3. Post-quantum
cryptography. 4. Security. 5. Privacy. 6. Field programmable gate array. 7.
Processor. 8. Microcontroller. . I. Ribeiro, M. V., orient. II. López, J, coorient. III.
Título.



Vinícius Lagrota Rodrigues da Costa

A Quantum-Resistant Advanced Metering Infrastructure

Tese de doutorado apresentada ao Programa de
Pós-Graduação em Engenharia Eletrica da Uni-
versidade Federal de Juiz de Fora, na área de
concentração em sistemas eletrônicos, como re-
quisito parcial à obtenção do título de Doutor em
Engenharia Elétrica.

Orientador: Prof. Dr. Moisés Vidal Ribeiro

Coorientador: Prof. Dr. Julio López

Juiz de Fora

2023



FEDERAL UNIVERSITY OF JUIZ DE FORA

RESEARCH AND GRADUATE PROGRAMS OFFICE

Vinícius Lagrota Rodrigues da Costa

Quantum-Resistant Advanced Metering Infrastructure

Thesis submitted to the Graduate Program in Electrical Engineering

of the Federal University of Juiz de Fora as a partial requirement for

obtaining a Doctor's degree in Electrical Engineering.

Concentration area: Electronic Systems

Approved on 15 of June of 2023.

EXAMINING BOARD

Prof. Dr. Moisés Vidal Ribeiro – Academic Advisor

Federal University of Juiz de Fora

Prof. Dr. Julio César López Hernández – Academic co-supervisor

State University of Campinas

Prof. Dr. Luciano Manhães de Andrade Filho

Federal University of Juiz de Fora

Prof. Dr. Leandro Rodrigues Manso Silva

Federal University of Juiz de Fora

Prof. Dr. Fábio Borges de Oliveira

National Laboratory for Scientific Computing

Prof. Dr. Luis Antonio Brasil Kowada

Fluminense Federal University

Juiz de Fora, 06/15/2023.

Documento assinado eletronicamente por Luis Antonio Brasil Kowada, Usuário Externo, em 15/06/2023, às 17:39, conforme horário oficial de

Brasília, com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Moises Vidal Ribeiro, Professor(a), em 15/06/2023, às 17:39, conforme horário oficial de Brasília, com

fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Fabio Borges de Oliveira, Usuário Externo, em 15/06/2023, às 17:39, conforme horário oficial de Brasília,

com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Leandro Rodrigues Manso Silva, Professor(a), em 15/06/2023, às 17:39, conforme horário oficial de

Brasília, com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.



Documento assinado eletronicamente por Luciano Manhaes de Andrade Filho, Professor(a), em 15/06/2023, às 17:40, conforme horário oficial de

Brasília, com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Julio César López Hernández, Usuário Externo, em 16/06/2023, às 09:32, conforme horário oficial de

Brasília, com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

A auten cidade deste documento pode ser conferida no Portal do SEI-Ufjf (www2.ufjf.br/SEI) através do ícone Conferência de Documentos,

informando o código verificador 1309881 e o código CRC 65360BBB.



To my wife Larissa

To my parents Luís Guilherme and Tereza Maria

To my brother Vítor



AGRADECIMENTOS

Em primeiro lugar, agradeço a toda minha família. Em especial, à minha esposa, Larissa,

pelo amor incondicional, apoio e parceria durante toda essa jornada. Sem ela, a conclusão desta

etapa não seria possível. Agradeço ao meu pai, Luís Guilherme, pelo incentivo e ajuda em toda

minha caminha acadêmica. Agradeço a minha mãe, Tereza, por todo amor, carinho e suporte em

todos os momentos. Agradeço ao meu irmão, Vítor, por estar sempre ao meu lado e por toda a

paciência. Agradeço ainda as minhas avós, Ezir (in memoriam) e Maria Lúcia, que participaram

ativamente de toda minha educação. Agradeço ainda a cada um dos meus familiares por me

apoiarem durante todo o processo.

Agradeço a todos os meus amigos que me acompanharam na jornada do doutorado.

Em especial, aos amigo Mateus Lima Filomeno, que agradeço pela constante parceria no

doutorado. Agradeço ao amigo Ândrei Camponogara pela troca de experiências, sempre

impulsionando o nosso crescimento pessoal. Ao amigo Leonardo Dib, eu agradeço por toda

sua disponibilidade em me aconselhar neste trabalho. Ainda, agradeço a todos os colegas do

Laboratório de Comunicações (LCom), alunos de iniciação cientíőca, mestrandos, doutorandos e

pós-doutorandos, que estiverem comigo ao longo dos últimos anos.

Agradeço ainda a todos os colegas do Centro de Pesquisa e Desenvolvimento para

a Segurança das Comunicações (CEPESC), em especial à Coordenação-Geral de Pesquisa e

Desenvolvimento (CGPD) e à Coordenação de Pesquisa Avançada (CPA). Gostaria de dedicar

um agradecimento especial ao Rodrigo Pacheco, um grande amigo que me ajudou ativamente na

conclusão deste trabalho e ao Thiago Araújo, por todos seus conselhos proőssionais e pessoais

durante esta jornada. Vocês são modelos de proőssionais e pessoas que eu busco seguir.

Os meus agradecimentos se estendem ainda a todos os proőssionais que direta ou indireta-

mente contribuíram para a minha formação proőssional. Sou muito grato ao Professor Julio López

que aceitou o desaőo de me coorientar e contribuir com o meu trabalho, fazendo parte da minha

formação. Saiba que você foi fundamental nesta jornada. Ao Professor Moisés Vidal Ribeiro,

meu orientador, eu agradeço por me acolher no grupo de pesquisa ainda como aluno de iniciação

cientíőca, há mais de 10 anos, por me levantar nos momentos de desânimo, por enfrentar todos

os desaőos do doutorado ao meu lado e por mais tantas outras coisas. Muito obrigado por tudo,

Professor Moisés.

De forma sincera, agradeço ainda a cada um dos professores que compuseram a banca

de avaliação deste trabalho, tanto pela leitura e análise cuidadosa do meu trabalho como pelas

valiosas contribuições.

Por őm, mas não menos importante, expresso minha gratidão ao povo brasileiro e mineiro

que, direta ou indiretamente, apoiou őnanceiramente este trabalho por meio da Fapemig, Capes,

CNPq e Inerge.



łPeace can only come as a natural consequence of universal enlightenment and merging of races,

and we are still far from this blissful realization.ž

Nikola Tesla.



RESUMO

Esta tese de doutorado foca na discussão e implementação de uma Infraestrutura de Medição

Avançada com Resistência Quântica (do inglês, Quantum-Resistant Advanced Metering In-

frastructure - QR-AMI), que emprega esquemas criptográőcos assimétricos e simétricos com

resistência quântica para suportar ataques proveniente tanto de computadores quânticos, como

clássicos. A solução proposta envolve a integração de um Módulo Criptográőco Dedicado

com Resistência Quântica (do inglês, Quantum-Resistant Dedicated Cryptographic Modules

- QR-DCMs) com Medidores Inteligentes (do inglês, Smart Meter - SM). Os QR-DCMs são

projetados para embarcar esquemas criptográőcos com resistência quântica adequados para

aplicação em AMI. Nesse sentido, é investigado esquemas criptográőcos assimétricos com

resistência quântica baseado em fortes princípios criptográőcos e abordagem com baixo uso

de recursos para AMIs. Além disso, é analisado a implantação prática de um esquema com

resistência quântica em QR-AMIs. Dois candidatos do processo de padronização da criptograőa

pós-quântica (do inglês, post-quantum cryptography - PQC) do Instituto Nacional de Padrões e

Tecnologia (do inglês, National Institute of Standards and Technology - NIST), FrodoKEM e

CRYSTALS-Kyber, são avaliados devido à adesão a fortes princípios criptográőcos e abordagem

com baixo uso de recursos. A viabilidade de embarcar esses esquemas em QR-DCMs em um

contexto de AMI é avaliado por meio de implementação em software em hardwares de baixo

custo, como um microcontrolador e processador, e implementações conjunta hardware/software

usando um sistema em um chip (do inglês, System-on-a-Chip - SoC) com Arranjo de Porta

Programável em Campo (do inglês, Field-Programmable Gate Array - FPGA). Resultados

experimentais mostram que o tempo de execução para os esquemas FrodoKEM e CRYSTALS-

Kyber em dispositivos SoC FPGA é, ao menos, um terço mais rápido que implementações em

software. Além disso, os tempos de execuções atingidos e o uso de recursos demonstram a

viabilidade desses esquemas para aplicações em AMI. O esquema CRYSTALS-Kyber parece

ser uma escolha superior em todos os cenários, exceto quando fortes primitivas criptográőcas

são necessárias, ao menos teoricamente. Devido à falta de SMs no mercado que suportem

esquemas criptográőcos assimétricos com resistência quântica, um QR-DCM embarcando

esquemas com resistência quântica é implementado e avaliado. Quanto à escolha do hardware

para os QR-DCMs, microcontroladores são preferíveis em situações que requerem poder de

processamento reduzido, enquanto dispositivos SoC FPGA são mais adequados para quando é

demandado maior poder de processamento. O uso de recurso e o resultado do tempo de execução

demonstram a viabilidade da implementação de AMI baseada em QR-DCMs, ou seja, uma

QR-AMI, usando microcontroladores e dispositivos SoC FPGA.

Palavras-chave: Infraestrutura Avançada de Medição. Medição Inteligente. Criptograőa Pós-

Quântica. Segurança. Privacidade. Arranjo de Porta Programável em Campo. Processador.

Microcontrolador.



ABSTRACT

This dissertation focuses on discussing and implementing a Quantum-Resistant Advanced

Metering Infrastructure (QR-AMI) that employs quantum-resistant asymmetric and symmetric

cryptographic schemes to withstand attacks from both quantum and classical computers. The

proposed solution involves the integration of Quantum-Resistant Dedicated Cryptographic

Modules (QR-DCMs) within Smart Meters (SMs). These QR-DCMs are designed to embed

quantum-resistant cryptographic schemes suitable for AMI applications. In this sense, it

investigates quantum-resistant asymmetric cryptographic schemes based on strong cryptographic

principles and a lightweight approach for AMIs. In addition, it examines the practical deployment

of quantum-resistant schemes in QR-AMIs. Two candidates from the National Institute of

Standards and Technology (NIST) post-quantum cryptography (PQC) standardization process,

FrodoKEM and CRYSTALS-Kyber, are assessed due to their adherence to strong cryptographic

principles and lightweight approach. The feasibility of embedding these schemes within QR-

DCMs in an AMI context is evaluated through software implementations on low-cost hardware,

such as microcontroller and processor, and hardware/software co-design implementations using

System-on-a-Chip (SoC) devices with Field-Programmable Gate Array (FPGA) components.

Experimental results show that the execution time for FrodoKEM and CRYSTALS-Kyber schemes

on SoC FPGA devices is at least one-third faster than software implementations. Furthermore, the

achieved execution time and resource usage demonstrate the viability of these schemes for AMI

applications. The CRYSTALS-Kyber scheme appears to be a superior choice in all scenarios,

except when strong cryptographic primitives are necessitated, at least theoretically. Due to the

lack of off-the-shelf SMs supporting quantum-resistant asymmetric cryptographic schemes, a QR-

DCM embedding quantum-resistant scheme is implemented and evaluated. Regarding hardware

selection for QR-DCMs, microcontrollers are preferable in situations requiring reduced processing

power, while SoC FPGA devices are better suited for those demanding high processing power.

The resource usage and execution time outcomes demonstrate the feasibility of implementing

AMI based on QR-DCMs (i.e., QR-AMI) using microcontrollers or SoC FPGA devices.

Key-words: Advanced metering infrastructure. Smart metering. Post-quantum cryptography.

Security. Privacy. Field programmable gate array. Processor. Microcontroller.



LIST OF FIGURES

Figure 1 ś A classical scenario where SMs are connected to or embedded a DCM in the

presence of an eavesdropper performing a sniffing attack and making use of a

classical computer to decipher SM data. . . . . . . . . . . . . . . . . . . . 26

Figure 2 ś A quantum-resistant scenario where SMs are connected to or embedded a

QR-DCM in the presence of an eavesdropper performing a sniffing attack and

making use of a quantum computer to decipher SM data. . . . . . . . . . . 27

Figure 3 ś Key elements of an AMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4 ś Block diagram illustrating the PKE. Note that 𝑝𝑘𝑎, and 𝑠𝑘𝑎 stand for a Alice’s

public key and Alice’s private key, respectively. . . . . . . . . . . . . . . . 46

Figure 5 ś Block diagram illustrating the KEM. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a

Alice’s public key, Alice’s private key, and shared secret, respectively. . . . . 46

Figure 6 ś Block diagram illustrating the KEX. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a

Alice’s public key, Alice’s private key, and shared secret, respectively. . . . . 47

Figure 7 ś Simpliőed block diagram of block ciphers. Note that ss stand for shared secret. 48

Figure 8 ś Simpliőed block diagram of stream ciphers. Note that ss stands for the shared

secret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 9 ś Block diagram illustrating the key agreement between parties using KEM

and the encryption/decryption process. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a

Alice’s public key, Alice’s private key, and shared secret, respectively. . . . . 49

Figure 10 ś EK-TM4C129EXL evaluation kit . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 11 ś MicroZed 7010 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 12 ś Operation AS← A×S. Multiplication of four rows of the matrix A by matrix S. 67

Figure 13 ś Operation S′A← S′×A. Multiplication of őrst four elements of the őrst four

rows of the matrix S′, highlighted in dark purple, by four rows of the matrix A. 68

Figure 14 ś Sponge construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 15 ś Schematic representation of the structure. The arrows represent 32-bit buses.

Control signals have been omitted. . . . . . . . . . . . . . . . . . . . . . . 70

Figure 16 ś Schematic representation of block AS ← A × S. Thick arrows represent

32-bits buses and thin arrows 16-bits buses. Control signals have been omitted. 71

Figure 17 ś Schematic representation of S′A← S′ × A. Thick arrows represent 32-bits

buses and thin arrows 16-bits buses. Control signals have been omitted. . . . 72

Figure 18 ś Block diagram representation of the block SHAKE128. Thin lines represent

32-bits buses, thick lines represent 64-bits buses, and double lines represent

1600-bits buses. Control signals have been omitted. . . . . . . . . . . . . . 73

Figure 19 ś Three-dimensional state array of the Keccak- 𝑓 [1600](·) function. . . . . . . 87

Figure 20 ś The Block diagram for the proposed hardware/software implementation. The

arrows represent 32-bit buses. Note that the control signals are omitted. . . . 88



Figure 21 ś Block diagram of the proposed hardware implementation for the CRYSTALS-

Kyber scheme. Interface blocks are highlighted in dark gray, high-level

blocks in light gray, and low-level blocks in purple. Control signals have been

omitted and connections simpliőed. . . . . . . . . . . . . . . . . . . . . . . 89

Figure 22 ś Block diagram of the proposed QR-AMI divided into i) consumer/prosumer

side, ii) communication infrastructure, and iii) electric utility side. . . . . . 99

Figure 23 ś An implementation of the proposed QR-AMI. . . . . . . . . . . . . . . . . 100

Figure 24 ś Memory usage for text, read-only data, and data segments in bytes of the

FrodoKEM and CRYSTALS-Kyber schemes considering Implementations

#1, #2, and #3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 25 ś Hardware resource usage of the FrodoKEM and CRYSTALS-Kyber im-

plementations in terms of Slice LUTs, Slice Register, BRAM, and DSP

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 26 ś Timing performance in ms of the FrodoKEM and CRYSTALS-Kyber schemes

using Implementations #1, #2, and #3. . . . . . . . . . . . . . . . . . . . . 106



LIST OF TABLES

Table 1 ś Overview of FrodoKEM and CRYSTALS-Kyber schemes. . . . . . . . . . . 57

Table 2 ś Parameter values for the FrodoKEM scheme. . . . . . . . . . . . . . . . . . 59

Table 3 ś Summarize of the implementations. . . . . . . . . . . . . . . . . . . . . . . 65

Table 4 ś The relative execution time, in percentage, of the FrodoKEM-640 scheme

based on Implementation #1. . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 5 ś Hardware resource usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 6 ś The average execution time of FrodoKEM for different levels of hardware

implementations with 5000 simulations for each implementation, in ms. . . . 75

Table 7 ś Execution time analysis, in milliseconds (ms). . . . . . . . . . . . . . . . . . 77

Table 8 ś Hardware-only execution and processing time, in ms. . . . . . . . . . . . . . 78

Table 9 ś Parameter values for the CRYSTALS-Kyber scheme. . . . . . . . . . . . . . 80

Table 10 ś The relative time execution, in percentage, of the high-level functions for the

Cryptographic Suite for Algebraic Lattices (CRYSTALS)-Kyber-512 based on

Implementation #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 11 ś Hardware resource usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 12 ś The average execution time of CRYSTALS-Kyber for different levels of

hardware implementations with 5000 simulations for each implementation, in

ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 13 ś Average execution time analysis in 𝜇s. . . . . . . . . . . . . . . . . . . . . . 94

Table 14 ś Hardware processing time analysis in 𝜇s. . . . . . . . . . . . . . . . . . . . 95



LIST OF ABBREVIATIONS AND ACRONYMS

AAD Additional Authenticated Data

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AMI Advanced Metering Infrastructure

AMR Automatic Meter Reading

ANEEL National Agency of Electric Energy

API Application Programming Interface

ARM Advanced RISC Machine

ASIC Application-Speciőc Integrated Circuit

AXI-MM Advanced eXtensible Interface Memory Mapped

BB Broadband

BRAM Block Random Access Memory

BSI German Federal Office for Information Security

CEMIG Minas Gerais Electric Power Company

CRYSTALS Cryptographic Suite for Algebraic Lattices

COSEM Companion Speciőcation for Energy Metering

CTR Counter

DCM Dedicated Cryptographic Module

DCU Data Concentrator Unit

DER Distributed Energy Resources

DLMS Device Language Message Speciőcation

DH Diffie-Hellman

DMA Direct Memory Access

DoS Denial of Service

DSP Digital Signal Processing

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

FF Flip Flop

FIPS Federal Information Processing Standards

FPGA Field Programmable Gate Array



GeMSS Great Multivariate Short Signature

GCM Galois Counter Mode

GPU Graphics Processing Unit

HQC Hamming Quasi-Cyclic

IND-CCA2 Adaptive Chosen Ciphertext Attack

IoT Internet of Things

ISA Instruction Set Architecture

JSON JavaScript Object Notation

KEM Key Encapsulation Mechanism

KEX Key Exchange

LWE Learning With Errors

LUT Lookup Table

ms milliseconds

MDMS Meter Data Management System

M-LWE Module-Learning With Errors

M-LWR Module-Learning With Rounding

N-V Nitrogen-Vacant

NAN Neighborhood Area Network

NIST National Institute for Standards and Technology

NTRU 𝑁-th degree Truncated polynomial Ring Units

NTT Number Theoretic Transform

PKE Public-key encryption

PL Programmable Logic

PLC Power Line Communication

PLL Phase-Locked Loop

PQC Post-Quantum Cryptography

PS Processing System

QKD Quantum Key Distribution

QR-AMI Quantum-Resistant AMI

QR-DCM Quantum-Resistant - Dedicated Cryptographic Module

RF Radio Frequency



R-LWE Ring-Learning With Errors

RSA Rivest-Shamir-Adleman

SHAKE Secure Hash Algorithm and Keccak

SG Smart Grid

SM Smart Meter

SoC System-on-a-Chip

SoM System on Module

SVP Shortest Vector Problem

TLS Transport Layer Security

WAN Wide Area Network



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 DISSERTATION OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 ADVANCED METERING INFRASTRUCTURE . . . . . . . . . . . . . 30

3.1 KEY ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Consumer/prosumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Communication Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Electric Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 SECURITY ISSUES IN AMI . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 POST-QUANTUM CRYPTOGRAPHY . . . . . . . . . . . . . . . . . . 40

4.1 QUANTUM COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Quantum physics principles . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Classical vs quantum computers . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 The challenges of quantum computer . . . . . . . . . . . . . . . . . . . . 44

4.2 CRYPTOGRAPHIC FUNDAMENTALS . . . . . . . . . . . . . . . . . . . 45

4.2.1 Asymmetric cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Symmetric cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Asymmetric and symmetric schemes working together . . . . . . . . . . 49

4.3 POST-QUANTUM CRYPTOGRAPHIC SCHEMES . . . . . . . . . . . . . 50

4.3.1 NIST algorithms classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Lattice-based cryptography . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2.2 The LWE problem and its variants . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2.3 Promising PQC schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



4.3.2.4 Schemes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 THE FRODOKEM SCHEME . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 BACKGROUND OF THE FRODOKEM SCHEME . . . . . . . . . . . . . 59

5.1.1 The Frodo Key Encapsulation Mechanism Scheme . . . . . . . . . . . . 59

5.2 HARDWARE DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 SOFTWARE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION . . . . . . 69

5.4.1 The Block AS← A × S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 The Block S′A← S′ × A . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.3 Block SHAKE128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Hardware Resource Analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.2.1 Comparison between the implementations . . . . . . . . . . . . . . . . . . . 75

5.5.2.2 Execution Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.2.3 Hardware processing time analysis . . . . . . . . . . . . . . . . . . . . . . 77

5.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 THE CRYSTALS-KYBER SCHEME . . . . . . . . . . . . . . . . . . . . 79

6.1 BACKGROUND OF THE CRYSTALS-KYBER SCHEME . . . . . . . . . 80

6.1.1 The CRYSTALS-Kyber scheme as a Key Encapsulation Mechanism . . . 80

6.2 SOFTWARE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION . . . . . . 88

6.4 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Hardware Resource Analysis . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2.1 Comparison between the implementations . . . . . . . . . . . . . . . . . . . 92

6.4.2.2 Execution Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.2.3 Hardware processing time analysis . . . . . . . . . . . . . . . . . . . . . . 94

6.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 AN IMPLEMENTATION OF A QUANTUM-RESISTANT AMI . . . . 97

7.1 THE QUANTUM-RESISTANT AMI . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Suitable Cryptographic Schemes For a Quantum-Resistant AMI . . . . 98



7.1.2 A Description of a Quantum-Resistant AMI . . . . . . . . . . . . . . . . 98

7.1.3 Implementation of the Quantum-Resistant AMI . . . . . . . . . . . . . . 99

7.1.3.1 Smart Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.3.2 Quantum-Resistant Dedicated Cryptographic Module . . . . . . . . . . . . 100

7.1.3.3 Communication Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.3.4 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1.1 Memory Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1.2 Hardware resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.2.1 Asymmetric cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.2.2 Symmetric cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.3 Quantum-Resistant AMI Analysis . . . . . . . . . . . . . . . . . . . . . . 106

7.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDIX A – List of Publications . . . . . . . . . . . . . . . . . . . . 122



18

1 INTRODUCTION

Smart Grid (SG) have recently emerged as a vital solution for long-standing challenges

in the electricity sector [1ś3], including handling numerous loads, integrating renewable energy

sources, and ensuring reliability, efficiency, sustainability, and ŕexibility, among others. Electric

power systems worldwide are rapidly transforming from manual operations and on-site control to

remote, intelligent, and efficient control based on SGs. For instance, power generation plants are

evolving from centralized large-scale facilities to smaller, distributed power plants and community

power generation (i.e., prosumers). Although SG is a powerful concept, it is only effective

when communication between parties occurs, and consumers, prosumers, and equipment are

adequately sensed, controlled, and communicate with each other [4, 5], which raise the necessity

of deploying Advanced Metering Infrastructures (AMIs). In this context, intelligent devices,

such as Smart Meters (SMs), emerge as essential equipment for large-scale AMI deployments.

However, SMs generate sensitive personal data containing users’ conődential information (i.e.,

energy consumption proőles) [6].

Recently, interest in deploying AMIs has grown, with SM pilot projects launched primarily

in European nations. By 2024, approximately 225 million SMs for electricity and 51 million

for gas will be installed in Europe, with 44% of European consumers having smart gas meters

and 77% having smart electric meters [7]. In North America, it is expected that over 85% of

households in Canada and 70% in the US will be equipped with SMs. Conversely, the situation in

Brazil is distinct. While European AMI implementation aligns with a broader policy framework

related to climate change, Brazilian efforts stem primarily from National Agency of Electric

Energy (ANEEL) and are limited to the electricity sector. Recently, Enel Brasil, a Brazilian

electric utility, installed 150 thousand SMs in São Paulo, with a goal of reaching 300 thousand

[8]. The budget for installing 300 thousand SMs is around US$ 45.4 million1, with US$ 24.2

million őnanced by ANEEL for research and development, and the remaining US$ 25.2 million

contributed by Enel Brasil. Additionally, Minas Gerais Electric Power Company (CEMIG), a

publicly traded electric utility controlled by the state of Minas Gerais, is replacing its meters with

smart ones, having already replaced around 100 thousand units in Belo Horizonte. The goal is to

replace at least 500 thousand meters in the coming months, requiring an investment of around

US$ 40 million [9]. Apart from these initiatives, no other wide-scale deployment projects for

SMs are known.

In the coming years, an annual investment of US$ 600 billion is anticipated through

2030 in the energy sector, which is expected to boost the AMI market from US$ 19.24 billion in

2021 to US$ 77.37 billion by 2029. Consequently, research, development, and innovation efforts

will involve public and private organizations working in partnership to achieve common energy

goals. This vision is primarily implemented in Europe, where eight major electric utilities have

partnered with large technology companies like Intel. Furthermore, equipment integrated into

1 Conversion calculated based on an approximate exchange rate of US$ 1.00 equivalent to R$ 5.00.



19

the AMI must be as low-cost as possible, given that millions (or even billions) of such devices

will be dispersed across countries and continents, forming part of the AMI.

Considering the widespread use and importance of AMI for utilities, it is essential to

raise security and privacy awareness regarding potential vulnerabilities in AMIs to avoid and/or

minimize security breaches and unauthorized access to SMs data [10ś13]. For example, key

generation and distribution in cryptographic schemes may result in security breaches when

transmitting SM data [14,15]. In this context, numerous research efforts have been devoted to

the security of AMI, with the majority focusing on cryptography to ensure security and privacy

for customers and utilities [16ś20]. These studies, however, focused on cryptographic schemes

mainly aimed at securing data against attacks from classical computers. When it comes to

practical asymmetric cryptography ś e.g., Public-key encryption (PKE) and Key Encapsulation

Mechanism (KEM) ś the security is typically based on the hardness of factoring integers

or computing discrete logarithms ś e.g., Rivest-Shamir-Adleman (RSA) and Elliptic Curve

Cryptography (ECC) [19]. Such asymmetric cryptographic schemes, however, will no longer

be secure when a sufficiently powerful and stable quantum computer runs Shor’s algorithm, a

polynomial-time quantum algorithm for integer factorization and discrete logarithm problem [21].

Regarding symmetric cryptography, it will not be signiőcantly impacted as asymmetric will be

with the advent of quantum computers. Grover proposed a quantum algorithm for database search

[22] and, based on this algorithm, an attack, called Grover’s attack, on symmetric cryptography

was proposed [23], which reduced the security of the key to half its length. Although relevant, it

does not threaten symmetric cryptography security as longer keys can be used to securely protect

the information. Consequently, all secure and standardized symmetric schemes are potentially

quantum-resistant.

Aiming to overcome the quantum threat, quantum-resistant asymmetrical and symmetric

cryptographic schemes are mandatory for securing data [24]. The former performs a quantum-

resistant key agreement, while the latter encrypts/decrypts and authenticates sensitive data. In

this sense, investigations focusing on asymmetrical Post-Quantum Cryptography (PQC) schemes

ś i.e., schemes based on quantum-resistant primitives ś targeting SG and SM are of utmost

importance. In this respect, Cheng et al. [25] proposed a scheme for mutual authentication

between SMs and gateway based on PQC. Borges et al [26] proposed a security comparison of key

agreement protocols between PQC primitives and traditional problems. Moreover, Ahn et al. [27]

evaluated quantum-resistant key distribution based on either Quantum Key Distribution (QKD)

and PQC techniques in Distributed Energy Resources (DER).

Despite the recent efforts to address several matters on the AMI and PQC, to the extent

of the authors’ knowledge, the literature lacks investigations of practical implementation of

a Quantum-Resistant AMI (QR-AMI) ś i.e., an AMI based on quantum-resistant asymmetric

and symmetric schemes. These timely investigations are of utmost importance to point out

the beneőts of an AMI capable of dealing with the threats of quantum computers in electric

power systems. Moreover, no study compared different platforms ś e.g., microcontrollers and



20

System-on-a-Chip (SoC) Field Programmable Gate Array (FPGA) devices ś to enable a QR-AMI.

This analysis must be carefully evaluated as large-scale implementations of AMIs present cost

constraints, indirectly affecting the choice of platforms that embed quantum-resistant schemes.

As a powerful quantum computer moves closer to being a reality, this type of analysis is of utmost

importance as current sensitive data traveling through AMIs might already be at risk if they are

being stored for future use in quantum computers.

1.1 OBJECTIVES

This dissertation addresses the feasibility of practical implementation of quantum-resistant

schemes in AMIs. In this sense, this dissertation has the following objectives:

• To discuss the necessity of PQC schemes in a quantum era and identify promising candidates

with interesting characteristics for AMIs. To this end, a brief review of PQC schemes and

the National Institute for Standards and Technology (NIST) PQC standardization process

is presented. Among all candidates in the competition, two PQC schemes (i.e., FrodoKEM

and CRYSTALS-Kyber) are deeply assessed because they are promising schemes to be

applied in AMIs as KEM.

• To investigate the use of a PQC scheme to perform a KEM, using a conservative approach

(i.e., FrodoKEM) for ensuring quantum-resistant functionality in AMIs. In this regard,

a thorough analysis is provided, approaching different hardware (i.e., microcontrollers

and SoC FPGA devices) with different implementation techniques (i.e., software and

hardware/software co-design implementations). Also, the most time-consuming routines

are properly evaluated, and efficient hardware acceleration is provided.

• To assess the use of a lightweight quantum-resistant approach (i.e., CRYSTALS-Kyber) for

performing KEM in AMIs. To do so, a meticulous analysis is provided based on different

hardware (i.e., microcontrollers and SoC FPGA devices) with different implementation

techniques (i.e., software and hardware/software co-design implementations). The most

time-consuming routines are identiőed and evaluated, and optimized hardware acceleration

provided.

• To propose a QR-AMI, which relies on Quantum-Resistant - Dedicated Cryptographic

Modules (QR-DCMs), a dedicated cryptographic module embedded with quantum-resistant

schemes. To do so, it is discussed the scenarios that best suit the QR-DCM be based

on microcontrollers, low-cost processor, or SoC FPGA devices. Also, the asymmetric

FrodoKEM and CRYSTALS-Kyber schemes are compared and their use in each scenario

is discussed. The use of the symmetric Advanced Encryption Standard (AES)-256-Galois

Counter Mode (GCM) scheme is also evaluated.



21

1.2 DISSERTATION OUTLINE

The remainder of this document is organized as follows:

• Chapter 2 presents a revision of the state-of-the-art and the problem formulation regarding

AMI inserted in a quantum era. In this sense, this chapter makes a complete literature

review of works in which security in AMI is discussed and points out gaps that must be

őlled. Also, a problem formulation is presented, which considers the gaps in the literature,

and the research questions approach in this dissertation are presented.

• Chapter 3 analyzes the importance of AMIs for the success of SGs. The current global

scenario of AMIs and its key elements and concepts are discussed. Also, an extensive

discussion regarding the security and privacy issues in AMIs is provided.

• Charter 4 discusses the physical principles of a quantum computer and how its power can

be explored. A brief review of cryptographic principles is provided and a deep discussion

regarding PQC schemes is presented, highlighting the NIST PQC standardization process

and its main candidates. Finally, suitable PQC schemes for AMIs are deeply discussed.

• Chapter 5 investigates the use of the FrodoKEM scheme as KEM for ensuring quantum-

resistant key exchange between parties. The background of the FrodoKEM is discussed,

and software analysis is provided. Based on this analysis, an optimized proposal of a

hardware/software co-design implementation of the FrodoKEM scheme is introduced,

accelerating the most time-consuming routines.

• Chapter 6 assesses the use of the CRYSTALS-Kyber scheme as KEM also for ensuring

quantum-resistant key exchange between parties. Similarly, the background of the

CRYSTALS-Kyber is presented and analyzed based on the software provided. Relying on

this analysis, an optimized proposal of a hardware/software co-design implementation of

the CRYSTALS-Kyber scheme, accelerating the most time-consuming routines.

• Chapter 7 proposes a practical implementation of a QR-AMI based on QR-DCMs. This

proposal is based on the FrodoKEM and CRYSTALS-Kyber asymmetric cryptographic

schemes and on the AES-256-GCM symmetric cryptographic scheme, all of them quantum-

resistant. Implementations using different hardware are provided and a discussion regarding

the best use-case scenario for each hardware and implementation technique is assessed.

• Chapter 8 ends this dissertation by stating concluding remarks.



22

2 PROBLEM STATEMENT

The discussion of quantum-resistant cryptographic schemes has gained relevance recently,

but several issues must be mastered to advance their effective and widespread introduction in

AMIs. While theoretical results have supported the introduction of new and effective PQC

schemes, several gaps related to implementation aspects remain open. Aiming to advance this

discussion, this chapter has the following objectives:

• Provide a literature review about security in AMIs and the state-of-the-art of PQC schemes

for AMIs. Also, it pays attention to several issues that must be investigated for advancing

the widespread use of PQC schemes in AMIs.

• Detail the problems raised by quantum computers on AMIs if only non-quantum (classical)

cryptography is considered to ensure data security and privacy. Also, present the research

questions investigated in the following chapters.

In this chapter, Section 2.1 presents a literature review, highlighting the state-of-the-art

and future trends in AMI security, particularly those based on cryptography, and identiőes a few

gaps related to the implementation of PQC schemes requiring pressing attention. Section 2.2

formulates the investigated problem and concisely describes the research questions pursued in

this dissertation.

2.1 LITERATURE REVIEW

It is well-known that AMIs transmit sensitive data among consumers, prosumers, and

utilities. Therefore, ensuring security and privacy is a critical concern that must be carefully

addressed today and in the future, particularly with the advent of quantum computers. To ensure

the security of SM data transmitted through AMIs, techniques can be employed to ensure data

conődentiality and integrity. Cryptography is one of the most used ones. With respect to

cryptography targeting AMIs, there are different approaches to providing data security, especially

when hardware-constrained equipment applies. Currently, traditional cryptographic schemes are

widely recommended and used to protect sensitive data through some guidelines and security

standards, such as AGA-12 [28] and IEC 623511 [29, 30].

Regarding asymmetric cryptography, the schemes recommended by AGA-12 and

IEC 62351 may not be efficient enough for embedding in hardware-constrained equipment

[31]. In this sense, Philips et al. [32] proposed an enhanced-RSA scheme to authenticate

SMs equipment in AMI, while He et al. [33] introduced a lightweight anonymous key distri-

bution based on ECC to provide anonymity to SMs equipment. Molina-Markham et al. [34]

presented a feasible implementation of a cryptographic scheme that certiőes the SM’s read of

1 IEC 62351 recommends RSA and ECC as asymmetric cryptographic schemes and AES as a symmetric
cryptographic scheme to protect power data.



23

őne-grained electricity using a low-cost MSP430 microcontroller. Further research of asymmetric

cryptography applied to AMI are discussed in [20, 35ś37] and references therein.

On the other hand, symmetric cryptography requires less computation power than

asymmetric cryptography [19]. Consequently, traditional schemes are usually efficient enough

to be deployed in hardware-constrained equipment, as discussed in [38ś41]. In AMI context,

Saxena et al. [17] proposed dynamic secrets and shared secret schemes while Liu et al. [18]

suggested a secure mechanism between SMs and Meter Data Management System (MDMS).

Homomorphic cryptography is also evaluated in [42], in which data are stored in the cloud,

and any calculation required is performed directly on encrypted data. Unfortunately, it requires

powerful servers when it needs to handle a large amount of data. Other techniques and approaches

to provide secrecy in AMIs can be found in [43, 44].

Based on this discussion, traditional cryptographic schemes can provide data security

in AMIs. However, as will be further discussed in Section 4.3, the advent of quantum

computers imposes that data security cannot be guaranteed anymore because a polynomial-time

quantum algorithm, called Shor’s algorithm [21], can quickly solve traditional problems (i.e.,

discrete logarithm problems and integer factorization problems) on which current asymmetric

cryptographic schemes rely on. Even more, if an eavesdropper is collecting and storing data that

travels through AMIs, then, in the future, it might be capable of deciphering it and accessing

sensitive information. Based on this discussion, two approaches stand out as possible options for

quantum-resistant asymmetric cryptography: QKD and PQC.

QKD is a hardware-based solution that relies on quantum mechanics principles to protect

key distribution between parties. In this sense, some researchers use these principles to guarantee

privacy against eavesdroppers. A review of QKD protocol and their application in SGs are

presented in [45]. Fabio et al. [46] described two privacy-enhancing protocols based on

QKD focusing on customers’ privacy. In [47], QKD is employed for enhancing the security of

cloud-based AMIs. Although theoretically possible, a practical implementation of QKD faces

challenges such as secret key rate, distance, size, cost, and practical security [48].

On the other hand, PQC stands out as a simpler solution since it is algorithm-based.

Regarding asymmetric PQC, there are a considerable number of implementations focusing on

speciőc targets. For instance, Nejatollahi et al. [49] presented a complete survey highlighting

the most relevant implementations using software, hardware, and hardware/software co-design

techniques. Gupta et al. [50] presented a software implementation of CRYSTALS-Kyber,

FrodoKEM, and NewHope using Graphics Processing Unit (GPU) seeking higher performance,

while Huang et al. [51] proposed pure hardware implementation of the CRYSTALS-Kyber

scheme using FPGA focusing on high performance and seeking to reuse resources. Note that [50]

and [51] may not be suitable for AMIs due to their high hardware resource usage and high-cost

platforms. In contrast, Buchmann et al. [52] presented a lightweight PKE lattice-based scheme

on small 8-bit ATXmega128 and 32-bit Advanced RISC Machine (ARM) Cortex-M0. To do so,

the authors replaced the Gaussian noise distribution with a uniform binary error distribution,



24

reducing key and ciphertext sizes at the cost of performance. Next, in [53], it is proposed a new

compact Learning With Errors (LWE) scheme suitable for ultra-low-cost devices, such as the

MSP430. Moreover, the authors in [54] proposed a lightweight implementation of the NTRU

Prime using a high-cost FPGA.

Besides the hardware and software implementations previously discussed, the literature

also reports hardware/software co-design implementations. For instance, Fritzmann et al. [55]

detailed a RISC-V co-processor for lattice-based cryptography using hardware to accelerate

the Number Theoretic Transform (NTT) and hash generation using an SoC FPGA device.

Also, Fritzmann et al. [56] discussed an Instruction Set Architecture (ISA) for lattice-based

cryptography based on a so-called RISQ-V architecture implemented on an SoC FPGA device

and Application-Speciőc Integrated Circuit (ASIC). Furthermore, Banerjee et al. [57] and Xin et

al. [58] presented a crypto-processor for PQC schemes based on lattices, fabricated in TSMC

40 nm and 28 nm low-power CMOS process, respectively. Finally, as far as the authors know, the

only implementation that adopts SoC FPGA devices focusing on only one speciőc scheme is

addressed in [59]. This study details the implementation of the CRYSTALS-Dilithium using

a softcore processor and hardcore processor. In both implementations, the NTT and inverse

NTT are hardware accelerated. However, Zhou et al. [59] lacks a comprehensive analysis

regarding other bottlenecks in the CRYSTALS-Dilithium scheme, which could also have been

hardware accelerated. Also, a relevant discussion about the overhead and bottleneck in the data

communication between the FPGA and processor are missing.

Considering PQC in AMI, Borges et al. [26] presented a concise security comparison

of key agreement protocols between PQC primitives and traditional problems. Ahn et al. [27]

evaluated quantum-resistant key distribution based on either QKD and PQC techniques in

DER. Also, Cheng et al. [25] proposed a scheme for mutual authentication between SMs and

gateway based on PQC. In [26], a security comparison of key agreement protocols between PQC

primitives and traditional problems was presented.

Symmetric cryptography will be considerably less impacted by the advent of a quantum

computer than asymmetric cryptography. Grover proposed a quantum algorithm for database

search [22], on which Grover’s attack [23] is based. This attack can reduce the security of

the key to half its length as it is a brute-force attack with complexity 𝑂 (
√
𝑁), where 𝑁 is the

key length in bits. Since the security level of 80-bit is considered secure against brute-force

attacks [60], AES-192 and 256 will not be threatened by Grover’s attack, at least in the near

future, because it reduces the security of these schemes to 96 and 128-bits [61], respectively. Yet,

Bogomolec et al. [62] proposed a new quantum-resistant symmetric scheme, based on the AES,

called eAES, which offers an enhanced complexity regarding the quantum cryptanalysis Grover’s

attack compared to AES-256.

The awareness about the role and signiőcance of PQC schemes in providing security and

privacy in AMIs is growing because theoretical advancements and relevant initiatives, such as

the NIST PQC standardization process, have resulted in the introduction of a few PQC schemes



25

that can also be feasible for the electricity sector. However, the literature still presents several

gaps regarding practical aspects of quantum-resistant schemes in AMIs. Among these gaps, the

following ones deserve attention:

• A comprehensive evaluation of PQC schemes that can be effectively introduced in AMIs,

considering their unique characteristics, requirements, and constraints. It requires delving

into the strengths and weaknesses of different PQC schemes to determine the most suitable

option for secure communication within AMIs.

• A thorough analysis of the performance and computational burden of PQC schemes. By

identifying the primary bottlenecks, insights can be provided for advancing acceleration

techniques for efficient and effective implementation of PQC schemes in cost-effective

hardware in AMIs. This examination involves exploring trade-offs between performance,

power consumption, and cost.

• A systematic investigation of how to deploy PQC schemes in AMIs, bearing in mind

the processing limitations of SMs. This discussion also needs to include strategies for

integrating PQC schemes with existing communication protocols, updating őrmware, and

interoperability issues.

• A detailed examination of integrating quantum-resistant asymmetric and symmetric

cryptographic schemes within AMIs. As large-scale AMI deployments impose cost

constraints that motivate the search for cost-effective hardware solutions.

Drawing from the gaps observed in the literature, it is clear that there exists an urgent

need to undertake practical investigations to facilitate the design of large-scale AMIs employing

quantum-resistant schemes, especially for dealing with SMs, which are hardware-constrained

devices, play a crucial role.

2.2 PROBLEM FORMULATION

An illustration of how an eavesdropper uses a classical computer to breach the security

of an AMIs is shown in Figure 1. In this illustration, SMs connect to or embed a Dedicated

Cryptographic Module (DCM), which implements cryptographic schemes for key agreement

between parties and ciphering/deciphering and authentication functionalities. On the electric

utility side (i.e., MDMS), another DCM is available to pair with the DCM located on the

consumer/prosumer side. Currently, DCMs only embed classical cryptography schemes, which

is sufficient for protecting sensitive data transmitted through AMIs given the current computing

power of classic computers. In other words, even in the presence of an eavesdropper with a

powerful classical computer, the communication between parties remains secure and private.

However, this sense of security may not be entirely justiőed as the development of

quantum computers continues to progress rapidly. Currently, several companies and governments



26

Figure 1 ś A classical scenario where SMs are connected to or embedded a DCM in the presence of an
eavesdropper performing a sniffing attack and making use of a classical computer to decipher SM data.

DH

H E G

F

C

A

B

D

Source: Personal collection.

are investing in the development of quantum computers, with a powerful quantum computer

anticipated to be realized within the next two decades. Based on quantum mechanics, the

underlying principles of quantum computers render it possible to break both asymmetric and

symmetric cryptography, albeit in distinct ways. Although quantum computers are not yet

available and may not be for several years, current data communication remains at risk. For

example, an eavesdropper could store all communication between parties and decrypt it using a

quantum computer in the future. Consequently, relying on classical ciphers in DCMs of AMIs

to safeguard sensitive data is no longer secure, considering the looming threat that quantum

computers represent, even if it is a future concern.

In light of the current scenario and the impending arrival of powerful quantum computers,

it is crucial to employ quantum-resistant schemes to withstand attacks from both quantum

and classical computers and, ultimately, to come up with truly secure communication within

AMIs. Consequently, it is essential for DCMs to incorporate quantum-resistant schemes, leading

to their evolution into the so-called QR-DCMs, which are DCM implementations utilizing

quantum-resistant schemes. Figure 2 depicts a scenario where DCMs are replaced by QR-DCMs.

Importantly, even in the presence of an eavesdropper with a powerful quantum computer or

when sensitive data are stored, data communication between parties remains secure in the

long-term using quantum-resistant schemes. In this context, the proposal of QR-AMIs that

rely on QR-DCMs, which are equipped with quantum-resistant asymmetric and symmetric

cryptographic schemes, is a timely and signiőcant issue to be addressed, as the presence of

QR-DCMs is essential for ensuring the security of sensitive data transmitted through the AMI.

An existing problem is that off-the-shelf SMs do not have enough processing power to

run quantum-resistant schemes in their processing unit because these devices are produced at the

lowest cost. Moreover, the manufacturers of SMs follow the standards; however, the established

standards do not contemplate a quantum-resistant scheme, as this is a recent issue in the electricity

sector. As the development of QR-DCMs is vital for securing sensitive data transmitted through

AMIs in the quantum era, it is necessary to advance the implementations of quantum-resistant

schemes in SMs. For a feasible implementation of QR-DCM, the following approaches can be

considered for including quantum-resistant asymmetric and symmetric cryptographic schemes

into SMs:



27

• Approach #1: This approach entails increasing the processing capacity of the processor

used by a SM, as the QR-DCM would be implemented on it. However, for current SMs,

this call for signiőcant hardware redesign, as the processor must be replaced, requiring

new certiőcations. Moreover, this approach does not isolate keys since only one processor

is available.

• Approach #2: This approach involves adding a dedicated cryptographic processor, where

the QR-DCM would be implemented, to the SM that already contains a general-purpose

processor. This method also demands considerable hardware redesign for existing SMs,

and new certiőcations would be necessary. Different from Approach #1, it provides an

additional layer of security, as the keys would be stored in an isolated processor. In this

sense, an attacker would need to break the communication layer security to access the

general-purpose processor and then break the another layer of security provided by the

dedicated cryptographic module. In this sense, compared with Approach #1, this approach

is safer.

• Approach #3: This approach proposes designing a speciőc module containing quantum-

resistant cryptographic primitives connected to the interfacing ports of SMs and the

communication infrastructure. It is the easiest and most straightforward way to enable

existing SMs to access quantum-resistant cryptographic primitives and it is the convenient

choice for avoiding new hardware redesigns and certiőcation processes. However, since the

QR-DCM is external to the SM, it may present potential security issues, such as facilitating

physical access to the QR-DCM.

Regarding the electric utility side (i.e., MDMS), cryptographic schemes must be imple-

mented within the MDMS, which can have its processing capacity effortlessly upgraded to run

quantum-resistant schemes. In this case, Approach #1 or #2 applies. The MDMS can also

utilize a speciőc quantum-resistant module, referring to the use of Approach #3.

Furthermore, quantum-resistant cryptographic primitives must be implemented in both

SMs and MDMS to be effective. However, no standards or protocols exist for quantum-resistant

Figure 2 ś A quantum-resistant scenario where SMs are connected to or embedded a QR-DCM in the
presence of an eavesdropper performing a sniffing attack and making use of a quantum computer to
decipher SM data.

DH

H E G

F

C

A

B

D

Source: Personal collection.



28

communications in AMI, and numerous SMs are already installed in the őeld. In this scenario,

a viable direction for promptly protecting AMIs against security attacks executed by classical

and quantum computers is to foster Approach #3. Consequently, a QR-DCM can be designed

and implemented to provide a QR-AMI, which is an AMI based on quantum-resistant schemes.

Moreover, QR-DCMs can be easily connected to the existing interfacing ports of SMs and

MDMS. In this context, a QR-DCM can overcome the hardware constraints in existing SMs

for performing quantum-resistant communications. Note that Approach #3 can be deemed a

short-term solution because it can be easily attached to the current AMIs to provide quantum

resistance. Long-term solutions, on the other hand, should be based on Approaches #1 or #2, as

they integrate the QR-DCM within the SM, eliminating potential security ŕaws that an external

QR-DCM might present. Among Approach #1 and #2, based on a security perspective, the latter

is a superior option, as it adds a security layer by isolating keys in a dedicated cryptographic

processor but it may be more expensive. For advancing Approach #3, the following research

questions are systematically investigated in this dissertation:

• What kind of quantum-resistant schemes can be feasible and useful for SMs belonging to

QR-AMI? To answer this question, Chapters 4 details two quantum-resistant asymmetric

schemes that offer different trade-offs between security levels and processing costs.

• How feasible is it to implement a quantum-resistant asymmetric cryptographic scheme

that, in theory, prioritizes strong cryptographic principles? The answer to this research

question should consider analyzing resource usage and timing performance on various

hardware using different implementation techniques. Chapter 5 thoroughly discusses this

research question.

• How feasible is it to implement a quantum-resistant asymmetric cryptographic scheme that

is categorized as a lightweight cryptographic scheme? Like the previous research question,

the answer must be based on analyzing resource usage and timing performance on various

hardware using different implementation techniques. This research question is extensively

debated in Chapter 6.

• How does a QR-AMI perform? And, what kind of hardware resources are required to

implement a asymmetric cryptographic scheme based on strong or lightweight crypto-

graphic principles? To answer this research question, Chapter 7, drawing on the results of

Chapters 5 and 6, determines the best combination of hardware, implementation techniques,

and quantum-resistant schemes for possible scenarios.

2.3 SUMMARY

This chapter has presented a thorough literature review focusing mainly on AMI security.

In this sense, the review approach works which uses cryptography to protect sensitive data



29

exchange between parties in AMI using asymmetric and symmetric schemes. Works focused

on quantum computer algorithms are also presented, which threats the security of classical

cryptography. Aiming to approach this issue, works based on QKD and PQC are cited and

discussed. Regarding the latter, works based on this approach are discussed, highlighting the

hardware and implementation techniques already studied by the academic community and their

suitability for AMIs. Based on the literature review, the gaps in the literature are pointed out.

This chapter also assess the problem formulation approached in this dissertation. Brieŕy, AMIs

nowadays are not prepared to secure sensitive data in a quantum era as nowadays AMIs are only

equipped with classic cryptography. Considering the rapid advances in the quantum computer

development, it is vital to come up with solutions aiming to protect the sensitive data traveling

through AMIs from the threat of quantum computers. In this regard, the research questions of

this dissertation are presented.



30

3 ADVANCED METERING INFRASTRUCTURE

In the electricity sector, AMIs play a crucial role in the successful implementation of

SG [44]. It is a concept that extends Automatic Meter Reading (AMR). Recently, AMR arose

as a step forward to conventional energy metering, where data collection and billing were done

manually and on-site. In AMRs, the device (e.g., SMs) automatically sends reports periodically

to the utility, enabling one-way communication with consumers. Note that in AMRs, utilities

cannot send commands to the metering devices, only the other way around. Aiming to improve

this communication infrastructure, the AMI was introduced to allow two-way communication,

enabling the utility to send commands to meters, favoring both parts.

In this sense, as sensitive data, such as personnel information, travels through the

communication infrastructure, security and privacy are vital for a trustworthy AMIs. Therefore,

this chapter seeks to discuss this concerns, although, before approaching the security issues in

AMI, it is important to have a big picture of its architecture, discussing its key elements, their

responsibilities, and roles. With the AMI architecture in mind, the security issues in AMI must

be discussed. As sensitive data travel through the AMI, vulnerabilities and threats faced by AMIs

must be mapped, identiőed, and discussed, aiming to determine the source of these issues and

alternatives to avoid them. Furthermore, concepts regarding security and privacy in AMI must be

deőned and discussed. These concepts are the pillar for a secure AMI and must be considered in

the initial phase of it, seeking to avoid future vulnerabilities and threats. The main contributions

of this chapter are as follows:

• An introduction of the architecture of an AMI highlighting its main key elements: con-

sumers/prosumers, communication infrastructure, and electric utility. Their importance

in the AMI is discussed along with their interaction with each other. Also, their main

responsibilities are pointed out and discussed.

• A thorough discussion regarding security issues in AMIs. In this sense, vulnerabilities,

threats, security, and privacy issues in AMIs are presented and classiőed. The former

two present ways that an attacker might explore vulnerabilities and how it threats AMIs

security, while the latter two present security and privacy principles that must be followed

by all AMIs.

This chapter is organized as follows: In Section 3.1 it is presented the key elements of

AMIs and its architecture and Section 3.2 will discuss the vulnerabilities, security, privacy, and

threats to provide a better understanding of the security concerns related to the AMI.

3.1 KEY ELEMENTS

The main task of AMIs is to enable two-way communication between customers and

utilities beneőting both parties. Customers can beneőt from remote consumption control, dynamic



31

Figure 3 ś Key elements of an AMI.

B

A

C

G

F H

J

K

L

Source: Personal collection.

electricity pricing, consumption forecast, and other functionalities. Electric utilities, on the other

hand, can beneőt from fault and outage detection, loss measurement, asset monitoring, remote

connection and disconnection of customer loads, and non-technical loss detection. Moreover,

AMI enables the collection of a vast amount of data to understand load patterns and design

automated systems to optimize energy distribution. An AMI with all the aforementioned features

contributes to enhancing power quality and energy delivery reliability, beneőting customers and

electric utilities alike.

The AMI mainly comprises three key elements: consumers/prosumers, communication

infrastructure, and electric utilities, as shown in Figure 3. To comprehensively understand

each of these elements, the following subsections will detail their features and requirements.

Subsection 3.1.1 focuses on consumers/prosumers, highlighting their functionalities and needs.

Subsection 3.1.2 discusses the communication infrastructure, including the technologies involved

in two-way communication between consumers/prosumers and the electric utility. Finally,

Subsection 3.1.3 explores the electric utility, including the necessary infrastructure and equipment

for data collection, processing, and management.

3.1.1 Consumer/prosumer

The term consumer/prosumer in the context of SGs refers to entities such as individuals,

households, or organizations that consume energy from the grid while also having the ability to

generate and sell energy back to it through distributed energy resources like solar panels, wind

turbines, or energy storage systems. This ability to consume and produce energy breaks down the

traditional boundaries between energy producers and consumers and plays a vital role in creating

more efficient, reliable, and sustainable electric power systems.

The consumer/prosumer side primarily comprises meters, such as SMs, responsible for

collecting data and sending periodic readings to the utility. They can also receive requests

from the utility, such as connecting/disconnecting loads or reading grid parameters, and reply



32

accordingly.

The SMs are a critical component of the AMI due to their ability to perform tasks beyond

metering electricity consumption. They facilitate bidirectional communication with utilities,

allowing for dynamic electricity pricing, power outage alerts, power quality monitoring, and

real-time access to data for consumers/prosumers. The data obtained from these SMs are valuable

for effective and dynamic energy planning, leading to improved electric power system stability,

efficiency, and reliability.

3.1.2 Communication Infrastructure

The communication infrastructure is critical in the AMI as it enables two-way commu-

nication between customers/prosumers and utilities for data transmission. Its main goal is to

ensure secure and reliable data exchanges between SMs and the MDMS. The communication

network comprises three key elements: Neighborhood Area Network (NAN), Data Concentrator

Unit (DCU), and Wide Area Network (WAN) [63]:

• NAN. This element provides the infrastructure to connect SMs with the DCU. Typically,

short-range communication technologies such as Power Line Communication (PLC)-

Prime [64, 65], Radio Frequency (RF)/PLC [66ś70], G3-PLC [64, 65], Wi-SUN [71],

Wi-Fi [72], RF [66,73ś75], Ethernet [76], among others, are used. The NAN is responsible

for collecting energy data from SMs and transmitting them to the DCU. It is essential for

enabling real-time data collection from SMs to utilities.

• DCU. This element is responsible for receiving and sending data to and from SMs through

the NAN, as well as for receiving and sending data to and from the utility through the

WAN. The DCU acts as a mediator between SMs and the utility, aggregating data from

multiple SMs and sending them to the utility. It is equipped with hardware and software

to store and manage the collected data and handle communication protocols between the

NAN and WAN. If the NAN or WAN services are temporarily unavailable, the DCU stores

the data in its database and forwards it to its destination when the services are restored.

• WAN. This element provides the medium for connecting the DCU to the utility. Typically,

long-range communication technologies such as GPRS/3G/4G/5G [77,78], optic őbers [79],

Broadband (BB)-PLC [80ś83], and the Internet [84], among others, are used. The WAN

is responsible for transmitting data from the DCU to the utility’s server for further analysis

and processing. It enables utilities to manage the collected data, perform real-time analysis,

and use the information to optimize energy distribution.

The communication infrastructure is a crucial element in the AMI and must be carefully

speciőed and designed to ensure reliable and secure information exchanges between SMs, the

DCU, and the electric utilities. Using standardized communication protocols and security



33

mechanisms such as encryption and authentication is mandatory to preclude unauthorized access

to data and safeguard the privacy of consumers/prosumers.

3.1.3 Electric Utility

The electric utility side of the AMI is responsible for managing and processing data

received from the consumer/prosumer side through the communication infrastructure. The

MDMS is the core element at the electric utility side, and it plays a crucial role in data collection,

storage, and analysis.

One of the primary functions of the MDMS is to store and manage large amounts of data

from SMs and other devices in the AMI. This data is analyzed for various purposes such as billing,

peak load management, grid parameters monitoring, and energy management. The MDMS also

has the ability to remotely control and manage SMs by ordering their connecting/disconnecting

and requesting power status veriőcation. Moreover, it can acquire energy consumption data

on-demand, enabling better energy management by the utility.

In addition to its real-time monitoring and control capabilities, the MDMS has long-term

data storage, which enables it to provide valuable insights and perform demand forecasts. The

data can also be used to identify patterns and trends in energy consumption, which can be used

for energy planning and management. Furthermore, an MDMS typically offers an Application

Programming Interface (API), which allows third-party applications and services to access and

control SMs and other devices in the AMI. This API enables the development of new services

and applications that can improve energy efficiency, reduce costs, and enhance the overall

functionality of the AMI.

3.2 SECURITY ISSUES IN AMI

Ensuring the security, privacy, and reliability of AMIs is crucial for maintaining the

stability of electric power systems. Vulnerabilities can exist in different components of the

AMI, including the communication infrastructure, SMs, and data management systems. In

Subsection 3.2.1, we will discuss some of the most common vulnerabilities of AMIs, such

as insufficient access control, lack of encryption, and vulnerabilities in the communication

protocols. Later, Subsection 3.2.2 presents the main threats that AMIs face, including cyber

attacks, physical attacks, natural disasters, and human errors. By understanding these threats,

appropriate measures can be taken to mitigate them and ensure the security and reliability of

electric power systems.

To address these vulnerabilities and faced threats, Subsection 3.2.3 delves into security

considerations that should be considered in the design and implementation of AMIs. This includes

strong authentication mechanisms, encryption, and secure communication protocols. Privacy is

also a key concern in AMIs, as energy consumption data can reveal sensitive information about

customers/prosumers. In the sequel, Subsection 3.2.4 discusses privacy aspects that can enable



34

secure data exchange, such as data anonymization, data minimization, and consent-based data

sharing.

3.2.1 Vulnerabilities

An AMI can be seen as a collection of interdependent systems (e.g., SM, sensors,

gateways, among others). Each of these systems can present a vulnerability that an attacker can

exploit. Moreover, an adversary can use multiple vulnerabilities to orchestrate a sophisticated

attack on the AMI [85]. The following are some of the main vulnerable elements in the AMI:

• Applications. They manage metering data and value-added services, such as billing.

Common vulnerabilities in software, such as ŕaws and misconőgurations, can be exploited

by adversaries to deliver altered data to customers or utilities, resulting in cyber attacks [86].

• Embedded hardware. It is a signiőcant source of vulnerabilities in the AMI. Hardware

design ŕaws, őrmware ŕaws, or outdated őrmware can all serve as potential weak points for

attackers, especially if they have physical access to the device [11,12,87]. An attacker who

exploits these vulnerabilities can cause a blackout in a house or perform other malicious

actions.

• Data networks. They provide the largest attack surface for the AMI. An attacker can

exploit protocol ŕaws through devices like SMs, routers, and gateways to execute various

attacks [13]. Without strong key management, such as symmetric or asymmetric keys,

data networks lack authentication, conődentiality, and integrity, leaving them vulnerable to

successful attacks.

3.2.2 Threats

The security threats faced by the AMI can be categorized into three main classes: threats

to the system-level security, threats (or theft) to services, and threats to privacy. To address these

threats, countermeasures have been identiőed as follows::

• Threats to the system-level security. These threats can compromise numerous customers

simultaneously. For example, an adversary or a group of adversaries (e.g., a colluding

group) may exploit embedded hardware ŕaws or ŕaws in the data network to access and

alter the program instructions of SMs, changing their alarm threshold. The adversary may

then send a command to all SMs (e.g., a disconnection command) impersonating the utility.

If successful, this attack can cause all the affected SMs to shut off the power, leading to a

blackout. The two main types of attacks in this threat are radio subversion (or takeover)

and denial of service (DoS). They are explained below:

– Radio subversion or takeover. In this type of attack, the adversary attempts to take

control of the communication channel used by SMs. Once the attacker has control,



35

they can inject malicious őrmware into the SM or send commands, potentially taking

over buildings, houses, or facilities and causing a loss of availability and integrity.

To mitigate this threat, it is necessary to use encrypted communication, such as the

OpenSSL protocol, which establishes secure TLS-based communication between the

SM and the electric utility [88]. Another option, proposed in [89], is a secure scheme

based on ECC that authenticates control commands in the AMI. Although secure,

this scheme requires high computational cost and data rate link due to the number of

messages exchanged by the entities.

– Denial of Service (DoS). This type of attack aims to weaken the data networks’

performance or even interrupt data communication. The success of this attack can

severely impact the services provided by the AMI, making them unavailable or

with poor performance. DoS attacks can be carried out in several ways, including

RF spectrum jamming, where a radio emitter device is used to interfere with the

communication between SMs and the DCU, interrupting the data communication

[90,91]. Routing attacks are another efficient technique to execute a DoS attack. A

compromised node in a multihop data communication can pose as the shortest path

and mislead the SM data from its intended destination (e.g., a compromised node

posed as the shortest path receives SM data to be retransmitted, but does not forward

it) [91]. Jabbering is another DoS attack that uses a compromised SM to transmit so

much traffic (i.e., ŕooding) that other SMs cannot communicate [13]. To mitigate

the jamming attack, Premarathne and Atiquzzaman [92] designed a solution using

a cognitive radio sensor network in AMI. Additionally, Lee et al. [93] developed a

new mechanism to detect the misbehavior of neighboring nodes in a SM mesh data

network. On the other hand, Hu and Gharavi [94] proposed a novel security approach

based on authentication protocols to prevent DoS attacks.

• Threats or theft via smart metering services. This threat refers to an adversary

compromising a SM to prevent utilities from collecting revenues. One technique involves

intentionally sending incorrect energy consumption data, reducing the amount to be paid

in the monthly bill [95]. The main theft techniques are cloning, compromise/intrusion, and

location fraud, which are brieŕy discussed below:

– Cloning. Usually, with the help of insiders (i.e., electric utility employees), an

adversary can produce a copy of a SM, including its keys and IDs. In possession

of the cloned SM, the attacker can impersonate the original SM to lower their own

energy consumption report by changing the data message or even sending a zero usage

report. Consequently, electric utilities might have signiőcant revenue loss if many

SMs are cloned [96]. A possible countermeasure is to perform őrmware encryption to

ensure that it is impossible for the attacker to tamper with it. Another countermeasure,



36

although expensive, is based on RFID tags for ensuring authentication, as proposed

in [96].

– Compromise/intrusion. One possible way to perform energy theft is by disconnecting

the communication module from the SM, making sending energy consumption

reports to the electric utility impossible. This method can be easily detected by

electric utilities due to the lack of reports, although report tampering might be much

harder to identify. For instance, a perpetrator can send a zero usage report, or a

mischievous customer can replay the last energy consumption usage report to the

electric utility. Moreover, the customer can pose as a green energy producer, altering

the report by increasing the units of fake production. A possible countermeasure is

based on a cryptographic approach using a signcryption algorithm with the help of a

trusted authority [97]. Other countermeasures are based on behavioral analysis of the

compromised SM and adversaries [98, 99].

– Location fraud. With the advent of dynamic pricing, an adversary can exploit ŕaws

to change the SM location from a site that charges high energy prices to another site

where it charges low energy prices [100]. A countermeasure for this kind of theft is

a location-aware key management system [101], where the secret key is associated

with the SM location coordinates. If a SM changes its location, it is possible to detect

it by analyzing the secret key.

• Threats to privacy in AMI. As extensively discussed, privacy is paramount for AMIs. A

message alteration or leakage can have fatal outcomes for the target customer, possibly

revealing their identity and personal information to unauthorized entities. The main techni-

ques that compromise customers’ privacy are interception/eavesdropping and forwarding

point compromise.

– Interception/eavesdropping. Packet collection by an unauthorized person (i.e., an

eavesdropper) could invade customers’ privacy if the attacker manages to read the

messages. For instance, energy consumption usage reports can be collected and

analyzed to determine the customer’s routine and even other personal information

[102]. To mitigate eavesdropping, encryption and authentication approaches are

adopted. Due to the importance of this topic, Chapter 4 will bring more details about

it.

– Forwarding point compromise. If a forward entity (e.g., a data concentrator) is

compromised, it can forward SM messages toward an adversary. The adversaries can

extract a signiőcant amount of privacy information if they manage to read the message.

Countermeasure is proposed in [103], in which a novel broadcast authentication

protocol was described.



37

3.2.3 Security

Security is a critical aspect of AMI systems, given the sensitive information that ŕows

through the heterogeneous data networks. Therefore, it is essential to consider the following

security aspects from the earliest stages of AMI design [16, 104, 105]:

• Availability. The deployment of SM and AMI has enabled customers to generate and sell

their own energy to utilities, providing greater control and ŕexibility. This new paradigm

places high importance on the availability of SMs as they play a key role in determining

dynamic energy pricing. The ability to remotely connect and disconnect customers and

accurately bill them depends on the availability of SMs. However, it is important to note

that availability is subjective and can vary depending on the application’s purpose. For

instance, alerts of anomalies detected in the grid require immediate reporting while pricing

does not, but both rely on the availability of SMs. Therefore, ensuring the availability of

SMs is one of the main aspects of a reliable and effective AMI.

• Integrity. In AMI, integrity is a critical security aspect, as it guarantees that data,

commands, and alerts transmitted through data networks are generated by authorized

entities and have not been modiőed during transmission. Lack of integrity can result in

incorrect decisions by the systems’ operators, such as mistaken alerts or wrong billing,

which can have severe consequences for customers and electric utilities. Therefore, ensuring

the integrity of AMI is essential for properly functioning electric power systems.

• Confidentiality. It is another vital security aspect of AMI. It is linked to customers’

privacy, and the disclosure of consumption usage data can reveal their way of life and even

indicate if someone is at home. This information can be used for nefarious purposes such

as burglary, espionage, or blackmailing. Hence, it is crucial to ensure that consumption

usage data is conődential and only accessible to authorized entities. The conődentiality

aspect in AMI is ensured by encrypting the data while transmitting through data networks

and ensuring that only authorized entities can access it.

• Authentication. In the context of AMI, authentication is crucial to prevent unauthorized

access to the system and protect sensitive information. Authentication methods can

include passwords, digital certiőcates, biometric identiőers, or other forms of identity

veriőcation. Note that the strength of the authentication mechanism depends upon its

security level. A weak authentication mechanism can be easily bypassed by attackers,

compromising the entire system’s security. Therefore, designing and implementing a robust

authentication mechanism is mandatory for ensuring the security of AMIs. Moreover,

continuous monitoring of authentication mechanisms and updates to strengthen them helps

to prevent potential attacks.

• Non-repudiation. It is an essential aspect of AMI security since it provides evidence of

the origin and authenticity of data, commands, and alerts exchanged within the system.



38

Non-repudiation ensures that the parties involved in information exchanges cannot deny

their participation or the authenticity of their messages. This means that once a message

is sent, it cannot be denied by the sender or the receiver, providing accountability in

case of disputes or legal issues. Non-repudiation is often implemented using digital

signatures, which provide a unique and veriőable signature for each message. Therefore,

non-repudiation is a critical security aspect of AMI that ensures the authenticity and

accountability of the exchanged information.

• Access control. It is critical to AMI security, managing access to sensitive data with

procedures and rules for granting or denying access. It can monitor and audit user activities

to detect unauthorized or suspicious access. However, balancing security and utility

is challenging since utilities require access to some data for efficient grid management.

Access control policies must be carefully designed, regularly audited for compliance, and

supplemented with encryption to protect sensitive data during transit and at rest. Careful

management of encryption is necessary to avoid a negative impact on system performance

or usability.

• Auditing. Periodic auditing is crucial in AMI to detect potential security breaches, assess

security controls, and ensure regulatory compliance. Regular audits of system logs,

access controls, and other security measures provide a comprehensive view of the security

posture. It also helps identify areas for improvement, patterns of suspicious behavior, and

unauthorized access. Moreover, auditing is essential in establishing trust with customers

and other stakeholders.

3.2.4 Privacy

A signiőcant amount of data generated by SMs is transmitted through the AMI, and

the volume of data is increasing steadily. Electric utilities previously collected readings on a

monthly basis per meter, but with the implementation of AMI, the frequency of data collection

has increased. For instance, collecting a reading every 15 minutes generates over 8, 000

readings monthly per consumer/prosumer. This increase in data volume can help electric

utilities operate more dynamically and efficiently. However, collecting personal information

through SM data raises concerns about privacy. This data can reveal detailed information about

individual behaviors, activities, and time patterns, potentially exposing sensitive information

about customers. For example, data can reveal the number of occupants in a building, allowing

one to determine whether the property is empty or not.

To address these privacy concerns, several approaches have been proposed in the literature

[106ś109]. These approaches enable the collection of energy consumption usage data while

maintaining customer privacy and usefulness for practical applications such as billing and

demand-supply management. Short descriptions of them are as follows:



39

• Anonymity. It refers to the inability to identify which entity sent a given data in an AMI.

This is a crucial privacy target, as it prevents adversaries from determining the source of

sensitive information even if they can collect and interpret the data.

• Unlinkability. It is the characteristic that prevents an adversary from establishing a

relationship between two entities in the system. This privacy feature ensures that observing

the system does not reveal any additional information about the entities if they are unlinked.

• Undetectability. In an AMI with many entities, undetectability is an essential feature that

prevents adversaries from determining whether an item (e.g., a SM or a message) exists or

not.

• Unobservability. It refers to a system’s inability to be observed by an outside observer. In

an AMI, this feature prevents an adversary from detecting whether an entity is transmitting

or not, such as whether a SM is sending an energy consumption message or in an idle state.

• Pseudonymity. To enhance privacy, each SM in AMI should have several identiőers or

pseudonyms to avoid easy recognition of energy consumption data by unauthorized entities.

This feature ensures that only the entities communicating with each other can determine

the other party’s identity, enhancing the privacy of customer data.

3.3 SUMMARY

This chapter has presented an overview regarding AMIs focusing mainly on its security

issues. To do so, őrstly, the key elements of the AMI ś i.e, consumers/prosumers, where the SMs

are placed; communication infrastructure, composed by NAN, DCU, and WAN; and electric

utility, where the MDMS is deployed ś are presented and detailed. Regarding AMI security

issues, it can be divided into four main areas: vulnerabilities, security considerations, privacy

aspects, and threats faced by AMIs. Vulnerabilities in AMI can be exploited when applications

are ŕaw or misconőgured, hardware are not securely deployed, and/or data networks present

breaches. Security in AMI is another concept that must be considered in early stages of AMIs

where availability, integrity, conődentiality, authentication, non-repudiation, access control,

and auditing are its vital aspects. Privacy aspect is another essential feature in AMI aiming to

unable an eavesdropper to extract any sensitive information. To do so, a system which guarantee

privacy must offer anonymity, unlinkability, undetectability, unobservability, and pseudonymity.

Finally, threats faced by AMIs are further divided into threats to the system-level security, where

a numerous customers are simultaneously compromised; threats of theft via smart metering

services, where an adversary compromises SMs preventing revenue collection by electric utilities;

and threats to privacy in AMI, where customer’s privacy is compromised.



40

4 POST-QUANTUM CRYPTOGRAPHY

Nowadays, cryptography is present in many aspects of our daily life, often unnoticed.

For example, wire transfers and credit card payments rely on cryptography to ensure that no

attacker corrupts the transaction, providing users with security and reliability. Safe data storage

is another useful application, as logins, passwords, and personal information are protected using

cryptography when stored in databases. Another recent application is a cryptocurrency, which

uses asymmetric cryptography, symmetric cryptography, and hashing. Asymmetric cryptography

is used as a digital signature to allow secure, anonymous, and non-repudiable transactions,

meaning that there is no longer a need for a central player (e.g., a bank) and it is not necessary

to know anything about anyone in the chain. Furthermore, asymmetric cryptography is also

required to perform key exchange between parties for further use as a symmetric key. In turn,

symmetric cryptography is used to encrypt/decrypt sensitive messages. Finally, hashing is used

as proof of work to verify the accuracy of new transactions that are added to the blockchain as it

is a decentralized system.

In addition to the aforementioned applications, the most common use of cryptography

is in communication systems where parties require secure communication protected against

eavesdroppers or interference by a third party. In this scenario, asymmetric and symmetric

cryptography play an important part, enabling secure key exchange between parties, authentication,

and encryption/decryption of messages. Although applications secured by cryptography might

be at low risk, the signiőcant advances in the accomplishment of quantum computers with

the sponsorship of major technology companies put classical cryptography at risk, as already

developed quantum algorithms can easily break it. This concern has increased even more

recently as the quantum computer achieved its őrst quantum supremacy in a particular application,

meaning that a quantum computer solved a problem that a classical computer cannot solve in a

reasonable timeframe.

In this sense, with the advent of a quantum computer in the near future, all systems

that rely on classical cryptography are potentially insecure. This means that wire transfers and

credit cards will no longer be secure, stored logins and passwords might be compromised, and

encrypted communications might not be private anymore, among other applications, leading to

complete global chaos and instability. To anticipate this issue, in 2016, NIST initiated a contest

to evaluate and standardize one or more quantum-resistant asymmetric cryptographic schemes,

called NIST PQC standardization process. In 2022, the őrst four schemes were standardized,

one for KEM and three for digital signature. The standardization process is not yet concluded,

as the NIST intends to standardize more quantum-resistant asymmetric cryptographic schemes.

Aiming to advance in this discussion, this chapter has the following contributions:

• A concise review regarding the background and future trends of quantum computation

and how it threatens classical cryptographic schemes. To do so, the basics of quantum

physics are presented; a comparison between classical and quantum computers is discussed;



41

and, őnally, what challenges must be overcome to turn quantum computers scalable and

powerful.

• A discussion of cryptographic fundamentals which will be used throughout this dissertation.

In this sense, asymmetric cryptography is discussed highlighting the KEM. Symmetric

cryptography is also presented by approaching block and stream ciphers. A brief discussion

on how asymmetric and symmetric cryptography interact with each other is also provided.

• A complete scrutiny of the NIST PQC standardization process, presenting the classes

presented in the contest and in what principle they rely on. A deep analysis regarding lattice-

based cryptography is provided, taking a deeper look into FrodoKEM and CRYSTALS-

Kyber schemes.

Based on this discussion, this chapter aims to present the background and future trends

of quantum computation in Section 4.1, discuss the cryptographic fundamentals which allow

data security nowadays in Section 4.2, and őnally, approach the NIST candidates, their classes

schemes, and their differences aiming for security in a quantum era in Section 4.3.

4.1 QUANTUM COMPUTER

In 1927, Werner Heisenberg introduced the uncertainty principle, which asserts that it is

impossible to know everything about a quantum particle simultaneously. The more precisely its

momentum is determined, the less precisely its position can be predicted, and vice versa. Later,

Earle Hesse Kennard and Hermann Weyl derived the inequality that relates the standard deviation

of position 𝜎𝑥 and the standard deviation of momentum 𝜎𝑝:

𝜎𝑥𝜎𝑝 ⩾
ℏ

2
, (4.1)

where ℏ is the reduced Plank constant.

However, it was only in 1962 that the phrase "quantum information theory" was coi-

ned [110], and the suggestion that entanglement might be used as a communication resource was

introduced. In 1981, the theoretical physicist Richard Feynman challenged a group of computer

scientists to develop a new breed of computers based on quantum physics. This challenge has yet

to be fully realized, but signiőcant progress has been made in recent years.

According to the literature, it was not until 1994 that a large number of interesting

theoretical and experimental results appeared in the őeld of quantum computing. That year, Peter

Shor demonstrated that it is possible to efficiently factor large numbers into their primes and

solve the discrete logarithm problem using a quantum computer running a speciőc algorithm

(later known as Shor’s algorithm) [21]. This result signiőcantly impacted the cryptography

community, as many cryptographic algorithms rely on the hardness of integer factorization

or discrete logarithm problem. Due to its importance, Shor’s algorithm will be discussed in

Section 4.3.



42

Three years later, in 1998, Isaac Chuang and his team built the őrst quantum computer

with only 2-qubits at the IBM Almaden Research Center [111]. Later, in 2007, the startup

D-Wave revealed its 28-qubit quantum annealer processor1 [112], and in 2011, this company

presented the D-Wave One, the őrst commercially available quantum annealer processor [113].

Only four years later, in 2015, D-Wave announced that the 1000-qubit barrier was broken [114]

and in 2017 the D-Wave 2000Q, a 2000-qubits quantum annealer processor was presented [115].

Yet in 2017, IBM unveils a 17-qubit quantum processor [116] and, in 2018, Google

and Intel presented a 72-qubit and 49-qubit quantum processor [117, 118], respectively. In

2021, IBM presented the IBM Eagle [119], a 127-qubit quantum processor and, in 2022, the

successor of IBM Eagle, called Osprey [120], the most powerful quantum processor known

with 433-qubits. Note that the quantum processors developed by IBM, Intel, and Google aims

universal applications, therefore they are capable of execute the Shor’s algorithm. In the same

year, D-Wave presented its end-to-end quantum platform based on the Advantage quantum

annealer processor with more than 5000-qubits [121].

However, despite these advances, quantum computers are not yet as reliable as state-

of-the-art classical computers. It is essential to emphasize that even though the principles of

quantum computing have been proven to work, quantum computers are not yet powerful enough

to break 2048-bit RSA keys, and it is unlikely that they will be in last than 10 years.

4.1.1 Quantum physics principles

To facilitate the understanding of the basic principles of a quantum computer, it is

essential to address a few important principles of quantum physics, namely superposition and

entanglement. Each of them is brieŕy detailed as follows:

• Superposition. Much like waves in classical physics, quantum states can be added together

and superposed to yield a new valid quantum state. Conversely, every quantum state can be

seen as a linear combination of other distinct quantum states. The double-slit experiment

visually demonstrates the superposition phenomenon by shooting quantum particles at

two narrow slits. A classical particle will always pass through the top or bottom slit, but

a quantum particle can be put in a superposition of two paths: one through the top slit

and the other through the bottom slit. This experiment leaves a pattern that shows that

the quantum particle also behaves as a wave, a concept called wave-particle duality. The

superposition state is the characteristic that allows the so-called quantum parallelism.

• Entanglement. Entanglement is a special connection between particles. A pair or group of

particles is said to be entangled when it is not possible to describe the quantum state of each

particle independently from the quantum states of the other particle(s). The whole quantum

1 Quantum annealer is a branch of quantum computing that approach a restricted set of problems,
commonly optimization problems. Therefore, they are not universal quantum computers and are not
capable of run the Shor’s algorithm, for instance.



43

state of the system can be described, but each part of the system cannot. Entanglement can

be created by bringing two particles close together, performing an operation to entangle

them, and then moving them apart again. If two particles are entangled, they will remain

entangled even if they are separated by large distances. The entanglement will manifest in

the outcome of measurements on these particles, which will be correlated regardless of the

distance between them.

Understanding the aforementioned principles, the qubit, which is the foundation of a

quantum computer, can be explained. It is well-known that an electron has a spin, either up

or down (i.e., |1⟩ or |0⟩, respectively, using Dirac notation), with both choices being equally

probable. Until measured, the electron is in a superposition of the two states |1⟩ and |0⟩, known

as a single qubit. A magnetic őeld can be used to initialize a qubit to either spin up or down,

which will maintain for a short period of time until outside inŕuences degrade it. This short

period of time is called coherence time.

For example, some properties of a hydrogen molecule with two electrons can be

represented by a system with two qubits, with the possibility of measuring four different states

(|00⟩, |01⟩, |10⟩, and |11⟩). If the electrons are not entangled, before the measurement, the system

is in a superposition of all four states equally likely. If two qubits are entangled, for instance,

in state ( |00⟩ + |11⟩)/
√

2, if the measurement of the őrst qubit is |0⟩, then the probability of

measurement of the second qubit is |0⟩. This manipulation enables quantum logic, where input

qubits control the behavior of output qubits.

4.1.2 Classical vs quantum computers

Classical and quantum computers differ greatly in how they are built, what they rely on,

how they approach a problem, and how they are programmed. Classical computers have been a

part of our everyday lives for a long time, and technology continues to evolve, with smaller, more

powerful, and more efficient architectures. However, the quantum computer is still in its infancy

and presents many challenges that have yet to be solved, as described in Subsection 4.1.3.

Classical computers are based on bits, which can only assume two values: 0 or 1. In

contrast, quantum computers are based on qubits, which can assume either |0⟩ or |1⟩. Furthermore,

a qubit can be in a coherent superposition of both states simultaneously. Additionally, while

measuring a bit would not disturb its state, measuring a qubit would destroy its coherence and

break the superposition state.

Another signiőcant difference between classical and quantum computers is how they

approach a problem. For instance, consider an optimization problem. A classical computer

using a brute force algorithm would calculate every possible outcome one at a time, eventually

őnding the best solution. On the other hand, a quantum computer with enough qubits can solve

the problem at once because of superposition. A classical 2-bit computer has four possible

states (00, 01, 10, and 11), while a quantum 2-qubit computer has four possible states (|00⟩, |01⟩,



44

|10⟩, and |11⟩). However, due to superposition, it can represent all four states simultaneously.

Mathematically, an 𝑛-qubit quantum computer can simultaneously represent 2𝑛 states. This

explains why quantum computers are deemed to be astonishingly more efficient than classical

computers in solving certain classes of problems. For instance, Grover’s algorithm [22] explores

this characteristic to perform efficient searches.

The programming of classical and quantum computers is also distinct. Classical computers

rely on logic gates such as AND, OR, and NOT, which output deterministic values (true or false).

In contrast, quantum computers are based on reversible quantum gates. Each applied constraint

makes some states more likely than others. The states in a quantum computer are unknown until

a measurement is performed, breaking the superposition state.

4.1.3 The challenges of quantum computer

An operable and reliable quantum computer must fulőll the following constraints:

• Stability. The quantum state must have a long coherence time to perform calculations.

• Scalability. It must be possible to create a large number of identical qubits, enabling

interaction over distances while preserving the superposition of the quantum state.

• Manipulation. It must be possible to set an initial state of the qubits at the beginning of

the computation and to measure the result at the end.

The requirements for qubits, particularly stability and scalability, are challenging and

tend to be in conŕict with each other. For example, maintaining stability in large systems can be

difficult. An isolated system is essential for enhancing qubit stability by shielding it as much as

possible from disturbances. Thermal vibrations are detrimental, and quantum computers must

operate at very low temperatures, near zero Kelvin, to provide a feasible coherence time.

A few chemical structures provide the required characteristics to be a qubit candidate.

One such structure of interest is the nitrogen-vacancy center in diamonds. In the diamond

structure, each carbon atom is bound to its four neighbors with covalent bonds. Replacing

one carbon atom with a nitrogen atom creates a new covalent bond that is slightly weaker than

the surrounding carbon-carbon bonds. If a second carbon is removed, a vacancy is created,

resulting in an Nitrogen-Vacant (N-V) center with an extra electron trapped in a rigid carbon

lattice. More details about the N-V center are beyond the scope of this dissertation, but it is

important to mention that this structure has complex optical and electrical behavior. For instance,

the appropriate use of a certain wavelength of light can be used to initialize and measure the spin

of the associated electron.

All the aforementioned characteristics make N-V centers a promising technique as a qubit

technology. A roadmap focused on diamond-based quantum computers is gaining momentum

among researchers; however, there are challenges to overcome. One of them is the ability to



45

construct an array of identical qubits, as only a small fraction of implanted nitrogen atoms lead

to the creation of an N-V center, which impacts the scalability of the quantum computer.

Furthermore, light propagation between qubits requires waveguides and other photonic

structures. Diamond is one of the most inert structures known, and this characteristic makes

instrumentation difficult. Despite all the challenges that the N-V center-based qubit presents, the

literature shows that it remains one of the best choices. Overall, the implementation of quantum

computing is still complex and challenging.

4.2 CRYPTOGRAPHIC FUNDAMENTALS

Cryptographic schemes are the most used techniques to protect sensitive data against

adversaries. In an AMI, an infrastructure with multiple entities which require constant messages

exchange, the attack surface is vast. The main countermeasures against these adversaries are

strong encryption and authentication schemes. In this regard, this section seeks to present classical

cryptographic fundamentals useful for AMIs, such as symmetric and asymmetric cryptographic

schemes.

4.2.1 Asymmetric cryptography

Asymmetric cryptography, also known as public-key cryptography, relies on a pair of

keys ś i.e., public and private key. A public key is a key that can be distributed to interested

parties, while private keys (also known as secret keys) can never be shared and must be stored

securely by each part. In this research őeld, there are numerous techniques to provide message

security and key agreement. Three of them are PKE, KEM, and Key Exchange (KEX).

• PKE. It aims to provide encrypted communication between parties. The PKE can be

divided into three steps: (i) key pair generation, where Alice generates a public key 𝑝𝑘𝑎

and private key 𝑠𝑘𝑎 and shares the latter with Bob. This step is required to be performed

only once; (ii) encryption, in which Bob uses Alice’s public key 𝑝𝑘𝑎 to encrypt a message;

and (iii) decryption, where Alice received the encrypted message and uses its own private

key 𝑠𝑘𝑎 to decrypt it. The PKE block diagram is presented in Figure 4 where Bob sends a

message to Alice.

• KEM. It aims to share between parties (e.g., Alice and Bob) a shared secret key ss ś also

known as an ephemeral key ś usually a key for symmetric cryptography. The KEM is

divided into three-step: (i) key pair generation, where Alice generates public key 𝑝𝑘𝑎 and

private key 𝑠𝑘𝑎 and shares the former with Bob; (ii) encapsulation, in which Bob uses

Alice’s public key 𝑝𝑘𝑎 to generate a shared secret key ss and returns an encapsulated key

to be sent do Alice as a ciphertext; and (iii) decapsulation, where Alice uses its private key

𝑠𝑘𝑎 to decapsulate the shared secret key ss, achieving the same one as Bob. This process



46

Figure 4 ś Block diagram illustrating the PKE. Note that 𝑝𝑘𝑎, and 𝑠𝑘𝑎 stand for a Alice’s public key and
Alice’s private key, respectively.

A

D

B

E

H

J

F

M

C

I

Source: Personal collection.

must be repeated occasionally to renew the shared secret key ss, raising security. Figure 5

depicts the KEM.

• KEX. As the KEM, it is also used for key agreement, but the KEX requires both Alice

and Bob to generate their own private key 𝑠𝑘𝑎 and 𝑠𝑘𝑏, respectively. Alice executes a

mathematical operation using its private key 𝑠𝑘𝑎 to generate its public key 𝑝𝑘𝑎, while

Bob does the same generating its public key 𝑝𝑘𝑏 using its private key 𝑠𝑘𝑏. Both public

keys 𝑝𝑘𝑎 and 𝑝𝑘𝑏 are exchanged and a common shared secret key ss can be achieved by

performing another mathematical operation using the other’s public key. The KEX block

diagram is shown in Figure 6.

Figure 5 ś Block diagram illustrating the KEM. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a Alice’s public key,
Alice’s private key, and shared secret, respectively.

A

D

B

E

H

H J

M

C

I

Source: Personal collection.



47

Figure 6 ś Block diagram illustrating the KEX. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a Alice’s public key,
Alice’s private key, and shared secret, respectively.

A

E

C

D

G

F

B

H

C

J

G

F

Source: Personal collection.

Note that to perform PKE, KEM, and KEX, it is required to rely on a cryptographic scheme,

which performs mathematical operations to generate key pair, perform encryption/decryption

or encapsulation/decapsulation. Two popular examples that are usually used for these purposes

are RSA and ECC. The RSA relies on the hardness of factoring the product of two large prime

numbers. On the other hand, ECC relies on the assumption that őnding the discrete logarithm of

a random elliptic curve element with respect to a publicly known base point is infeasible. Both

algorithms are relatively slow compared to symmetric cryptography, so they are not often used

for encryption/decryption (i.e., as PKE). Instead, they are used to exchange a shared secret key

(i.e., as KEM or KEX), which is then used for encryption/decryption.

Regarding KEM and KEX, it can be seen in Figure 6 that the KEX requires both parties

to generate public and private keys. On the other hand, KEM demands that only one party

performs this step, as illustrated in Figure 5. In this sense, KEM is usually preferable, especially

when one party of the key agreement relies on hardware-constrained equipment, leaving the key

pair generation to the pair that has more processing power.

4.2.2 Symmetric cryptography

Symmetric cryptography relies on the same key (i.e., a shared secret key) for encryption

and decryption. The shared secret key can be obtained using asymmetric cryptography, as

described in Subsection 4.2.1. In this sense, Alice and Bob can use symmetric cryptography to

encrypt/decrypt sensitive data using the same shared secret agreed previously (i.e, performing

KEM or KEX). This class of cryptography consists of two main categories: block ciphers and

stream ciphers.

• Block ciphers. It encrypts/decrypts data by taking blocks of 𝑛-bits at a time. For encryption,

the block cipher receives the shared secret key ss and 𝑛-bits of the plaintext and outputs

𝑛-bits of the ciphertext. In the decryption, the process is similar but the shared secret key ss



48

Figure 7 ś Simpliőed block diagram of block ciphers. Note that ss stand for shared secret.

A

CCD

E

F

B

CCD

G

Source: Personal collection.

and 𝑛-bits of the ciphertext are the inputs, while the output is 𝑛-bits of the recovered plaintext.

Block ciphers offer high diffusion since a single plaintext block can be used in multiple

encryption iterations, although it can cause a high error propagation rate. Block ciphers

have two common operation modes: (i) conődentiality-only, which focused on keeping the

communication private (e.g., Counter (CTR) mode); and (ii) Authenticated Encryption

with Associated Data (AEAD), which ensures data authentication and conődentiality (e.g.,

GCM mode). AES, TwoFish, and Camellia are very popular block ciphers. Figure 7

depicts a simpliőed block diagram for the block cipher.

• Stream ciphers. It encrypts/decrypts data by taking one byte at a time. More speciőcally,

using the shared secret key ss, the stream cipher generates a keystream, which is xored with

the plaintext, generating the ciphertext. To reverse, the same process is repeated but xoring

the keystream with the ciphertext, recovering the plaintext. This process is repeated until

all plaintext is encrypted and all the ciphertext is decrypted. Stream ciphers are simple to

implement and present good performance. Although, they lack diffusion because each

plaintext digit is mapped to one ciphertext output. Salsa20 and ChaCha20 are relevant

examples of stream ciphers. They can also be combined with AEAD for data authentication

and conődentiality. Figure 8 shows a simpliőed block diagram for the stream cipher.

Nowadays, the most popular symmetric cryptographic schemes are AES and Chacha20.

The AES is a block cipher of 128-bits, with three possible key sizes: 128, 192, and 256-bits. It

can be combined with the GCM (AES-GCM), which is a stream cipher mode for AES2. Also,

the AES is speciőed in NIST Special Publication 800-38D [122] for providing authenticated

encryption (conődentiality and authentication). The Chacha20, speciőed in RFC 7539 [123], on

the other hand, is a stream cipher that supports only a 256-bits key. Based also on the RFC 7539,

the Chacha20 can be combined with the Poly1305 (Chacha20-Poly1305) for also providing

2 Besides the AES is a block cipher, when combined with the GCM it is transformed in a stream cipher
mode.



49

Figure 8 ś Simpliőed block diagram of stream ciphers. Note that ss stands for the shared secret.

A

CCD

F

E

B

CCD

G

E

H

Source: Personal collection.

authenticated encryption. The Chacha20 is by its construction time constant. Comparing AES

and Chacha20, many processors make intrinsic implementations of the AES available, resulting

in better performance than Chacha20. However, Chacha20 is faster than AES in pure-software

implementation ś i.e., when intrinsic implementation of AES is not available. Overall, both

schemes are secure, as far as it is known, lightweight, and perform well.

4.2.3 Asymmetric and symmetric schemes working together

This section shows the relationship of two important cryptographic concepts: (i) the

secure key agreement between parties (i.e., KEM) and (ii) the encryption/decryption of sensitive

data. They are performed by asymmetric cryptography and symmetric cryptography, respectively.

Figure 9 illustrates these two concepts to provide secure communication between parties, which

are explained in the following.

The upper part of Figure 9 illustrates the KEM, composed of key pair generation,

Figure 9 ś Block diagram illustrating the key agreement between parties using KEM and the encryp-
tion/decryption process. Note that 𝑝𝑘𝑎, 𝑠𝑘𝑎, and ss stand for a Alice’s public key, Alice’s private key, and
shared secret, respectively.

C

A

D

B

E

F G

H

H

I

J

K L

M

N

O

P

H H

Source: Personal collection.



50

encapsulation, and decapsulation. One of the parties, in this case, Alice, starts the process of

generating a key pair composed of a public key 𝑝𝑘𝑎 and a private key 𝑠𝑘𝑎. Alice safely stores

the 𝑠𝑘𝑎 and sends a public key certiőcate of 𝑝𝑘𝑎 to Bob, whom randomly generates a shared

secret key ss and encapsulates it using Alice’s 𝑝𝑘𝑎 producing a ciphertext. The ciphertext is

sent to Alice, which uses its stored 𝑠𝑘𝑎 to decapsulate the ciphertext, revealing the ss generated

previously by Bob. After these three steps, both parties hold the same ss, which can be used as a

symmetric key.

After the key agreement between parties, the symmetric cryptography, depicted in the

lower part of Figure 9, can be used to securely transfer data from Alice to Bob and vice-versa.

When data is required to be transmitted by one party, it uses the ss to encrypt data and authenticate

it using a symmetric cryptographic scheme with AEAD. The ciphered data is sent to the other

party, which uses the same ss to decrypt the data and verify it, guaranteeing that the other

party actually sent the data. Besides the ss, other parameters are required by the symmetric

cryptography, but they are public ś e.g., nonce, Additional Authenticated Data (AAD), tag ś and

due to that were omitted in Figure 9.

4.3 POST-QUANTUM CRYPTOGRAPHIC SCHEMES

A quantum computer can potentially outperform a classical computer in some tasks,

which will consequently be exploited to remarkably enhance some areas that heavily depend

upon intensive computation such as artiőcial intelligence, molecular modeling, őnancial mo-

deling, weather forecasting, particle physics, and cryptography, among others. Concerning the

cryptography area, Shor’s Algorithm [21] is going to be a severe threat because it has the capacity

to őnd prime factors of an integer in polynomial-time 𝑂 ((log 𝑁)3), where 𝑁 is the number

to be factorized3. Therefore, if one cannot rely anymore on the hardness of integer factoring

assumption or computing discrete logarithm, the asymmetric cryptography based on large primes

will no longer be secure because an adversary will be allowed to easily factor large numbers or

solve the discrete logarithm problem, which severely compromises popular schemes such as RSA

and ECC. Consequently, the PKE, KEM, and KEX based on these schemes will no longer be

secure, compromising the security of communication.

Note that Shor’s algorithm will only be feasible for large numbers when a quantum

computer with a sufficient number of qubits could operate with very small error ś i.e., without

succumbing to quantum noise and other quantum decoherence phenomena. It is estimated that to

break 2048-bits RSA would take at least one million qubits demanding a time interval longer

than 8 hours. Nowadays, there are very few quantum computers with more than a hundred qubits,

such as the IBM’s Osprey chip with only 433 qubits. Researchers estimate that it will take more

than one decade, maybe two, to achieve the capability to break a 2048-bits RSA.

3 The most efficient known classical factoring algorithm runs in a sub-exponential time
𝑂 (𝑒1.9(log 𝑁 )1/3 (log log 𝑁 )2/3). Shor’s algorithm is almost exponentially faster than the fastest classi-
cal algorithm.



51

Since introducing Shor’s algorithm, the scientiőc community has sought solutions to

secure communications. Two main approaches against powerful quantum computers are known

as QKD and PQC. QKD is a hardware-based approach that uses the principle of quantum

mechanics to detect eavesdroppers. As mentioned before, in quantum mechanics, the act of

observing states has an effect on the observed state. Consequently, Alice and Bob know that the

key is secure because an interception will disturb the key, leading to transmission errors, which

can be detected by a legitimate user. This approach needs only a few algorithm replacements or

modiőcations, although it requires an entirely specialized hardware infrastructure (i.e., quantum

enable devices and quantum repeaters) because QKD only works with optical communication

(i.e., optical őber or free space optical). Consequently, it is a very expensive solution due to its

costly infrastructure. QKD also struggles to communicate over long distances, requiring the

use of quantum repeaters. As an alternative, the use of satellites is being investigated using

line-of-sight to overcome the distance issue.

On the other hand, the PQC is a more feasible approach because it is an algorithm-based

solution. In this sense, it can use most of the hardware and data communication infrastructure

that exists today without any distance issues. PQC algorithms will act as current PKE, KEM,

KEX, or digital signature, although instead of being based on the hardness of factoring large

numbers or computing discrete logarithms, which is easily solved by Shor’s algorithm, it will be

based on algorithms that are theoretically hard for quantum (and classical) computers to calculate.

4.3.1 NIST algorithms classes

With all the aforementioned concerns, the NIST, since 2016, has been holding a

PQC process to standardize a quantum-resistant algorithm. For the őrst round, NIST PQC

standardization process received 69 submissions divided into two applications: PKE/KEM

and digital signature. These 69 submitted algorithms can also be divided into six classes:

lattice-based, multivariate, hash-based, code-based, supersingular elliptic curve isogeny, and

symmetric key quantum resistance [124]. A short discussion about them is as follows:

• Lattice-based. It is the general term for primitives that use lattices in their construction or

in security proof. Generally, they are based on problems such as LWE, Ring-Learning

With Errors (R-LWE), Module-Learning With Errors (M-LWE), Module-Learning With

Rounding (M-LWR), 𝑁-th degree Truncated polynomial Ring Units (NTRU), among others.

These schemes have been extensively studied and no successful feasible attacks have been

found so far. Studies suggest that NTRU algorithms have more secure properties than

other lattice-based algorithms. Lattice-based NIST candidates are the majority with more

than 40% of the submissions. FrodoKEM (LWE-based), NTRU Prime (NTRU-based),

CRYSTALS-Kyber (M-LWE-based), NTRU (NTRU-based), and Saber (M-LWR-based)

are PKE/KEM candidates for Round #3 in the NIST PQC standardization process in

the class of lattice-based cryptography. The őrst two remained as alternate candidates,



52

while the last three were őnalists with the CRYSTALS-Kyber being the winners of the

contest. In digital signature application, CRYSTALS-Dilithium (M-LWE-based) and

Falcon (NTRU-based) are lattice-based standardized schemes in this class.

• Multivariate. It is a cryptographic system based on the difficulty of solving systems of

multivariate equations. Previous attempts to build a secure system based on multivariate

have failed, although, Rainbow is a őnalist of the NIST PQC standardization process and

Great Multivariate Short Signature (GeMSS) remained as an alternate candidate, both in

the digital signature application.

• Hash-based. A Hash signature-based cryptographic system is one of the oldest signature

methods and has been mostly treated as one alternative for a number-theoretic digital

signature like RSA. Due to the limitation that a hash-based public key can only sign

a limited number of signatures using the corresponding set of private keys, there was

reduced interest in the hash-based signature schemes. Recently it has been revived due

to its resistance to the attack of quantum computers. In the NIST PQC standardization

process, the SPHINCS+, a hash-based scheme for digital signature application, remains an

alternate candidate.

• Code-based. This cryptographic system relies on error-correcting codes, such as the

McEliece encryption algorithm, which has been used for a long date for signatures using

random Goppa codes without being broken. Variants of the McEliece encryption algorithm,

which added structures to reduce the size of keys, have been shown to be insecure. The

Classic McEliece, Hamming Quasi-Cyclic (HQC), and HQC encryption algorithms were

in Round #4 of the NIST PQC standardization process in the PKE/KEM application group.

• Supersingular elliptic curve isogeny. This cryptographic system relies on supersingular

elliptic curves and supersingular isogeny graphs. The combinations of them result in a

Diffie-Hellman (DH) replacement with forwarding secrecy, which can serve as a quantum-

resistant replacement for DH and Elliptic Curve Diffie-Hellman (ECDH) key exchange, a

widely used method nowadays. In Round #4 of NIST PQC standardization process, SIKE

was evaluated in the PKE/KEM application group. Supersingular elliptic curve isogeny

cryptographic system has no őnalist in digital signature applications. Recently, Castryck

and Decru [125] present an isogeny cryptanalysis that breaks the SIKE in a very short time

interval.

• Zero-knowledge proof. It is a method by which one party (the prover) must prove

to another party (the veriőer) that they possess the knowledge of a value, but without

revealing it. The challenge relies on how to prove such possession without revealing the

information itself. Regarding the NIST PQC standardization process, the Picnic scheme

is an alternate candidate in the digital signature application. However, a zero-knowledge



53

proof cryptographic scheme has no őnalists either in PKE/KEM or in digital signature

applications.

4.3.2 Lattice-based cryptography

Lattice-based cryptography is a very promising construction for providing data security

and privacy in the quantum era. This trend was conőrmed in the NIST PQC standardization

process, in which the great majority of őnalist candidates were lattice-based and the őnal process

resulted in three out of four standardized schemes being Lattice-based. As this dissertation

focused on lattice-based asymmetric cryptography to provide security and privacy against attacks

from adversaries in possession of quantum computers, this section provides a discussion about it.

In this sense, Subsection 4.3.2.1 presents the notation used throughout this dissertation, while

Subsection 4.3.2.2 introduces the LWE problem and its variants, which are problems that some

lattice-based schemes rely on. In the following, Subsection 4.3.2.3 introduces two promising

PQC schemes (i.e., FrodoKEM and CRYSTALS-Kyber), which besides being lattice-based, use

different approaches and, őnally, Subsection 4.3.2.4 compare both of them.

4.3.2.1 Notation

The notation used in this dissertation is the same one used in the supporting documentation

of the FrodoKEM [126] and CRYSTALS-Kyber scheme [127]. The input and output of functions

of the schemes are byte arrays, and B = {0, ..., 255} is a set of unsigned integers of 8-bits or

a byte. Also, it is assumed that B𝐾 is the set of byte arrays of length 𝐾 and B∗ is the set of

byte arrays of arbitrary length (i.e., a byte stream). The | | symbol denotes the concatenation of

two-byte arrays. ⌈𝑥⌉ = min{𝑚 ∈ Z|𝑚 ≥ 𝑥} is the ceiling function. Given a byte array 𝑎 and a

non-negative integer 𝑘 , 𝑎 + 𝑘 is the byte array starting at byte 𝑘 of 𝑎 (with indexing starting at

zero). The rings 𝑅 and 𝑅𝑞 are denoted by Z[𝑋]/(𝑋𝑛 + 1) and Z𝑞 [𝑋]/(𝑋𝑛 + 1), respectively,

where Z is the set of all integers, Z𝑞 = Z/𝑞Z is the quotient ring of integers modulo 𝑞, and 𝑛 =

2𝑛
′−1 such that 𝑋𝑛+1 is the 2𝑛

′
-th cyclotomic polynomial. The inner product of two 𝑛-dimensional

vectors a, b is represented by ⟨a, b⟩ = ∑𝑛−1
𝑖=0 𝑎𝑖𝑏𝑖. Uppercase and lowercase bold letters are used

for matrices and vectors, respectively, while A𝑇 denotes the transpose of Â and the NTT of the

matrix A, respectively.

4.3.2.2 The LWE problem and its variants

This subsection aims to present an overview of the LWE problem and its variants,

presenting its mathematical basis and comparing them. The LWE problem, proposed by Regev

in [128], requests to recover a secret 𝑠 ∈ Z𝑛𝑞 knowing a sequence of łapproximatež random

linear equations on 𝑠. Formally: set a size parameter 𝑛 > 1, a modulus 𝑞 ⩾ 2, and an error

probability distribution 𝜒 on Z𝑞. Let 𝐴𝑠,𝜒 on Z𝑛𝑞 × Z𝑞 be the probability distribution obtained by

choosing a vector a ∈ Z𝑛𝑞 uniformly at random, choosing 𝜖 ∈ Z𝑞 according to 𝜒, and outputting



54

(a, ⟨a, s⟩ + 𝜖), where additions are performed in Z𝑞. Therefore, an algorithm solves the LWE

problem with modulus 𝑞 and error distribution 𝜒 if, for any 𝑠 ∈ Z𝑛𝑞, given an arbitrary number of

independent samples from 𝐴𝑠,𝜒 it outputs s (with high probability).

Later, Lyubashevsky in [129] proposed the R-LWE, a variant of the LWE problem based

on ideal lattices. A lattice is considered ideal when it corresponds to an ideal in a particular

algebraic structure, such as polynomial rings. They are very similar, but while the LWE works

with integer elements, the R-LWE works with elements over polynomial rings. Based on the

R-LWE ideas, Albrecht in [130] introduced the M-LWE. The M-LWE problem can be seen as an

R-LWE problem but with the dimension of the polynomial ring greater than 1 ś i.e., the R-LWE

is an M-LWE problem but with a single dimension.

Comparing the LWE and R-LWE problems, they are distinct in many aspects. The LWE

is a mature and well-studied cryptographic primitive that relies on the hardness of the worst

case of Shortest Vector Problem (SVP) in a standard lattice. It is easily scalable, facilitating the

adaptation for different security levels. Moreover, it is based on very conservative mathematical

principles due to the lack of any additional structure, but it also degrades performance and

requires long keys and ciphertext. On the other hand, R-LWE has an additional algebraic

structure and relies on the worst case of an ideal lattice. Due to such additional algebraic, ideal

lattices are more efficient than standard lattices because they need a small memory and perform

better, but the addition of a structure that is difficult to scale might facilitate malicious attacks.

Furthermore, while standard lattices are based mainly on matrix-by-vector (or matrix-by-matrix)

multiplications, ideal lattices are based on polynomial multiplication, which considerably reduces

the complexity and increases efficiency [131].

The M-LWE tries to get the best of the LWE and R-LWE. It indeed has an additional

structure but it is less structured than R-LWE. According to recent cryptanalytic progress, an

attack against schemes relying on the M-LWE problem seems to be less likely than against

schemes relying on the R-LWE [132]. It also presents a similar performance when compared

with the R-LWE and similar keys and ciphertext sizes. Finally, the M-LWE has better scalability

than the R-LWE problem.

Based on this discussion, it can be said that the LWE problem is the most conservative

one, privileging consolidated principles by the academic community, while the R-LWE is

focused on performance. The M-LWE evaluates a trade-off between consolidated principles and

performance.

4.3.2.3 Promising PQC schemes

This subsection aimed to describe in more detail the quantum-resistant asymmetric

cryptographic schemes investigated in this dissertation (i.e., FrodoKEM and CRYSTALS-Kyber

schemes). Both schemes belong to the same class, lattice-based cryptography; however, each of

them relies on different mathematical principles.



55

Regarding the FrodoKEM scheme, it is important to emphasize that it is based on a

conservative approach, relying on the LWE problem, which reduces its performance and requires

a signiőcant amount of memory usage. Although, the LWE problem, and as a consequence,

the FrodoKEM scheme, does not present extra structures (such as used in R-LWE to increase

performance and memory usage), which are not yet well studied and might present weaknesses in

the future. On the other hand, CRYSTALS-Kyber scheme uses a lightweight approach, relying

on the M-LWE problem, which is focused on performance and reduced memory usage. Besides

it uses a few extra structures in the M-LWE problem, this scheme does not jeopardize security

because it is still similar to unstructured lattices used in the LWE problem.

Note that there is an evident contrast between both schemes. The former is very

conservative in secure premises and, as a consequence, compromises performance, while the

latter performs very well but can present security ŕaws in the future. Due to that contrast,

these two schemes are suitable to be compared and evaluated as possible choices to provide

security for AMI. In the following, it is highlighted the main characteristics of these schemes

and Subsection 4.3.2.4 compares both of them. Deeper analysis regarding FrodoKEM and

CRYSTALS-Kyber schemes are approached in Chapters 5 and 6, respectively.

• The FrodoKEM scheme. It is an alternate candidate in the NIST PQC standardization

process in the class of lattice-based cryptography and PKE/KEM category. This scheme

is designed to be conservative yet practical post-quantum constructions whose security

derives from parameterizations of the well-studied LWE problem, not being exposed to

the possible weakness of the added structures in variants of this problem (e.g, R-LWE,

M-LWE). As requested in the NIST PQC standardization process, FrodoKEM is designed

for Adaptive Chosen Ciphertext Attack (IND-CCA2) security at three levels:

– Level 1 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-128): FrodoKEM-640.

– Level 3 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-192): FrodoKEM-976.

– Level 5 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-256): FrodoKEM-1344.

Each of the above schemes is provided with AES-128 or Secure Hash Algorithm and

Keccak (SHAKE)128 algorithms to pseudorandomly generate a large public matrix.

The use of the AES-128 variant is suitable for devices having intrinsic AES hardware

acceleration, while SHAKE128 provides a competitive or better performance in comparison

with the AES variant in the absence of hardware acceleration. For all security levels,

the only operations required are additions and multiplications. FrodoKEM-976 and

FrodoKEM-1344 are post-quantum schemes recommended by the German Federal Office



56

for Information Security (BSI) as cryptographically suitable for long-term conődentiality

[133].

• The CRYSTALS-Kyber scheme. It is the winner in the NIST PQC standardization

process in PKE/KEM category. CRYSTALS-Dilithium, a CRYSTALS-Kyber variant for

digital signature, is also one of the winners in the digital signature category. This scheme

derives its security from the M-LWE problem, which uses modules lattices. This type of

lattice can be thought of as a lattice that lies between the ones used in the LWE problem

and those used in the R-LWE problem. They inherit the efficiency of the R-LWE but the

only operations required are additions and multiplications in the Z𝑞 őeld and the NTT.

Moreover, the lattices used in this scheme have less algebraic structure than those used

in R-LWE problems, being closer to the unstructured lattices used in the LWE problem.

Consequently, if an algebraic attack appears in the future against R-LWE, it may be less

effective against M-LWE problems due to its similarity with unstructured lattices. As

requested in the NIST PQC standardization process, CRYSTALS-Kyber is designed for

IND-CCA2 security at three levels:

– Level 1 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-128): CRYSTALS-Kyber-512.

– Level 3 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-192): CRYSTALS-Kyber-768.

– Level 5 in the NIST PQC standardization process (matching or exceeding the brute-

force security of AES-256): CRYSTALS-Kyber-1024.

Similar to FrodoKEM, each of the above schemes are provided with SHAKE variants or

AES-256 to pseudorandomly generate public keys. As previously mentioned, AES-256

variants are suitable for devices having intrinsic AES hardware acceleration. The design

and implementation of CRYSTALS-Kyber and Dilithium have been supported by IBM,

NXP, and other organizations and are the base of the quantum-resistant cryptography

Transport Layer Security (TLS) for IBM Key Protect (the IBM Cloud key management

solution) [134].

4.3.2.4 Schemes Overview

Table 1 summarizes the main characteristics of FrodoKEM and CRYSTALS-Kyber

schemes. As already mentioned, both schemes are lattice-based, but FrodoKEM relies on the

LWE problem, while the CRYSTALS-Kyber in the M-LWE problem. As a consequence, it

reŕects directly in the public key, private key, and ciphertext sizes, which are more than ten

times larger in FrodoKEM than in CRYSTALS-Kyber. Considering these size differences and the

problem each scheme is based on, it can be said that the FrodoKEM scheme has a conservative

approach, while the CRYSTALS-Kyber scheme is a lightweight approach, see Section 4.3.2.2. In



57

Table 1 ś Overview of FrodoKEM and CRYSTALS-Kyber schemes.

FrodoKEM
640/976/1344

CRYSTALS-Kyber
512/768/1024

Class Lattice Lattice
Mathematical

Problem
LWE M-LWE

Public Key
Size (bytes)

9616/15632/21520 800/1184/1568

Private Key
Size (bytes)

19888/31296/43088 1632/2400/3168

Ciphertext
Size (bytes)

9720/15744/21632 768/1088/1568

Approach Conservative Lightweight

this sense, the CRYSTALS-Kyber scheme tends to consume fewer memory resources and can be

signiőcantly faster than the FrodoKEM scheme.

4.4 SUMMARY

This chapter aimed to contextualize the urgent necessity of works focused on PQC. To do

so, őrstly, a historic regarding quantum computer is provided, starting from quantum mechanics

principles introduced by Heisenberg until the quantum processors already available nowadays. A

brief discussion regarding quantum mechanics is provided along with the comparison between

classical and quantum computers. Later, important cryptographic concepts are discussed,

such as asymmetric and symmetric cryptography. The former mainly used for key agreement

between parties and the latter for ciphering/deciphering and authentication. Based on the

discussion regarding quantum computer and cryptography fundamentals, the importance of PQC

is highlighted. Brieŕy, under the threat of quantum computer running Shor’s algorithm and the

necessity of the modern digitized society to exchange key securely, the PQC arises as a solution.

In this sense, the NIST PQC standardization process was proposed and 69 submission was

received under 6 different classes. Under these classes, due to its characteristics, the lattice-based

one stood out from the others. Among the lattice-based schemes, two of them presented

interesting characteristics for AMIs and are interesting for deeper evaluation: FrodoKEM and

CRYSTALS-Kyber. The former with strong cryptographic principles, at least in theory, while

the latter based on a lightweight approach.



58

5 THE FRODOKEM SCHEME

The asymmetric cryptographic scheme called FrodoKEM [126] is an alternate candidate

in the NIST PQC standardization process and relies on a well-studied principle, called LWE.

Mainly due to that, this scheme is considered cryptographically strong, at least in theory, by the

academic community, and no major vulnerability was reported as far as is known. Although,

it comes at a cost of timing performance and resource usage. In this sense, there are studies

that discuss software and hardware implementations of FrodoKEM [50, 135], which mainly

aims to overcome those constraints. Besides these implementations, the literature also reports

hardware/software co-design implementations.

The FrodoKEM scheme is an option to implement QR-AMI due to its strong cryptographic

principles; however, some aspects must be investigated because of the large-scale implementation

of AMIs impose constraints on costs, which directly reŕects on using hardware-constrained

devices. In this regard, it must be veriőed if it is feasible to implement the FrodoKEM in these

devices. For instance, Fritzmann et al. [55] detailed a RISC-V co-processor for lattice-based

cryptography using hardware to accelerate the NTT transform and hash generation using an

SoC FPGA device. However, the literature lacks evaluations of the FrodoKEM scheme using

a hardware/software co-design implementation on hardware-constrained SoC FPGA, in which

hardware accelerates the main bottlenecks of the scheme. Such evaluations are valuable analysis

for AMIs.

This chapter investigates the usefulness of implementing the FrodoKEM scheme as the

KEM for ensuring quantum-resistant symmetric key exchange between nodes in the AMI relying

on the Approach #3; however its őndings are also valid for Approaches #1 and #2. The choice

of the FrodoKEM scheme relies mainly on its strong cryptographic principles, a conservative

choice since the cryptanalysis shows that attacks on a non-structured lattice (i.e., LWE problem)

are less likely than in a structured lattice (i.e., R-LWE and M-LWE problem). In this regard,

the software implementation of the FrodoKEM scheme using a microcontroller and a low-cost

processor and the hardware/software co-design implementation using an SoC device are detailed.

The main contributions of this chapter are as follows:

• An analysis of functions of the FrodoKEM scheme that are most time-consuming which

are suitable candidates to be hardware accelerated when a hardware-constrained QR-DCM

based on an SoC FPGA device is available. Moreover, a presentation of a hardware/software

co-design implementation of the FrodoKEM scheme on a hardware-constrained QR-DCM

that uses an SoC FPGA device.

• A performance comparison between software implementation of the FrodoKEM scheme

using a microcontroller and a low-cost processor with the hardware/software co-design

implementation using an SoC device in terms of execution time. Also, an analysis of

hardware resource usage demanded by the hardware/software co-design implementation of

the FrodoKEM scheme in an SoC FPGA device.



59

The rest of this chapter is organized as follows: Section 5.1 provides a concise presentation

of the FrodoKEM scheme; In Section 5.2 a detailed description of the hardware used in this

dissertation is provided; Section 5.3 addresses the software implementation of FrodoKEM and

Section 5.4 the hardware/software co-design implementation of the scheme; Section 5.5 discusses

numerical results of hardware resource usage, execution time, and performance comparison

between implementations; őnally, Section 5.6 outlines concluding remarks.

5.1 BACKGROUND OF THE FRODOKEM SCHEME

The FrodoCCS key exchange scheme [136] was designed by exchanging a little efficiency

for high-security trust in the post-quantum era. Its simplicity is conőrmed by applying only

basic operations, such as addition and multiplication. Furthermore, its parameter adjustments

are more ŕexible and easier to scale than ideal lattice-based schemes, such as the NewHope

[137]. The latter has more restrictions as it uses the NTT algorithm for polynomial multiplication.

Consequently, FrodoCCS can achieve different security levels with linear resource expenditure.

Based on FrodoCCS, the FrodoKEM scheme [126], which is a KEM, was submitted to the NIST

PQC standardization process. It was selected for the third round of the competition as one of

eight alternate candidates. The values of the parameters used by Algorithms #1, #2, and #3 are

speciőed in Table 2. Note that 𝐷 is the exponent which deőnes the scheme modulus 𝑞 = 2𝐷 ;

𝑛, 𝑛, and 𝑚 are integer matrix dimensions with 𝑛 ≡ 0 (𝑚𝑜𝑑 8). Observing Table 2, we can

see that the size of public key, private key, and ciphertext are considered large, especially for

hardware-constrained equipment. More details about the choice of these parameters are shown

in [126].

5.1.1 The Frodo Key Encapsulation Mechanism Scheme

The FrodoKEM scheme can be basically divided into three algorithms: key pair generation,

encapsulation, and decapsulation [126] as described in Algorithms #1, #2, and #3, respectively.

A few subroutines are called by these algorithms, see [126] for more details. Brieŕy, the Gen(.)

function receives as input a seed and outputs a matrix A ∈ Z𝑛×𝑛𝑞 which was generated using a

hash function. Similarly, the SampleMatrix(.) function outputs a matrix sampled from the 𝜒

error probability distribution. The Pack(.) function transforms the received matrix into a bit

string, while Unpack(.) function does the opposite. Finally, the Encode(.) function encodes bit

Table 2 ś Parameter values for the FrodoKEM scheme.

FrodoKEM 𝐷 𝑞 𝑛 𝑛 𝑚
Public key
size (bytes)

Private key
size (bytes)

Ciphertext
size (bytes)

640 15 215 640 8 1 9616 19888 9720
976 16 216 976 8 1 15632 31296 15744
1344 16 216 1344 8 1 21520 43088 21632



60

Algorithm #1: Key pair generation
Input: None
Output:
Public key: 𝑝𝑘 ∈ {0, 1}lenseedA+𝐷·𝑛𝑛,
Private key: 𝑠𝑘′ ∈ {0, 1}lens+lenseedA+𝐷·𝑛𝑛 × Z𝑛×𝑛𝑞 × {0, 1}lenpkh

Procedure:
Choose uniformly random seeds: s| |seedSE | |z←$ 𝑈 ({0, 1}lens+lenseedSE+lenz)
Generate a pseudo-random seed: seedA ← SHAKE(z, lenseedA)
Generate Matrix A ∈ Z𝑛×𝑛𝑞 via A← Gen(seedA)
Generate pseudo-random bit string:
(r(0) , r(1) , ..., r(2𝑛𝑛−1)) ← SHAKE(0x5F| |seedSE, 2𝑛𝑛 · len𝜒)

Sample error matrix ST ← SampleMatrix((r(0) , r(1) , ..., r(𝑛𝑛−1)), 𝑛, 𝑛, 𝑇𝜒)
Sample error matrix E← SampleMatrix((r(𝑛𝑛) , r(𝑛𝑛+1) , ..., r(2𝑛𝑛−1)), 𝑛, 𝑛, 𝑇𝜒)
Compute B← AS + E
Compute b← Pack(B)
Compute phk← SHAKE(seedA | |b, lenpkh)
Return:
Public key 𝑝𝑘 ← seedA | |b
Private key 𝑠𝑘′← (s| |seedA | |b, ST, pkh)

strings as mod-𝑞 integer matrices. On the other hand, the Decode(.) function does the inverse

operation. Finally, all bit string lengths (lenseedA , lenseedSE , len𝜇, lens, lenk, lenpkh, lenss, lenz,

len𝜒) are previously known constants; and 𝑇𝜒 is the distribution table for sampling.

The main part of the key pair generation (Algorithm #1) is the calculation of the LWE

sample operation B← AS+E. The matrix A is generated by a pseudo-random seed while seedA

is created from a uniformly random seed hashed by a function. The FrodoKEM scheme can use

two hash functions: a hash based on the AES cipher and the SHAKE128 hash algorithm. The

matrices E and S are sampled according to the distribution 𝜒. Later, matrix B is packed into bit

string b, and the bit string seedA and b are hashed to get a hash value phk. Finally, the public key

𝑝𝑘 is composed of seedA and b, while the private key 𝑠𝑘′ is composed of s (previously uniformly

random generated), seedA, b, ST, and pkh.

In the encapsulation (Algorithm #2), three noise matrices are generated: S′, E′, and E′′.

To create these matrices, a pseudo-random bit string is sampled according to 𝜒. The input of the

algorithm, bit strings seedA and b, are used to retrieve matrices A and B. Later, they are used

to calculate B′ ← S′A + E′ and V ← S′B + E′′. Using the matrix V added by the encoded 𝜇

(previously uniformly random generated), the matrix C is created. Then, matrices B′ and C are

packed, generating bit strings c1 and c2, which concatenated form the ciphertext. Finally, bit

strings c1, c2, and k (pseudo-randomly generated using the hash function) are hashed, creating

the shared secret key ss.

The decapsulation (Algorithm #3) aims to check if the ciphertext (c1 ∥ c2) is valid. To

keep it short, bit strings c1 and c2 are unpacked, retrieving matrices B′ and C. Then, M← C+B′S

is calculated and then decoded, getting 𝜇′. The encapsulation steps are redone, although this



61

Algorithm #2: Encapsulation
Input:
Public key: 𝑝𝑘 = seedA | |b ∈ {0, 1}lenseedA+𝐷·𝑛𝑛

Output:
Ciphertext: c1 | |c2 ∈ {0, 1}(𝑚𝑛+𝑚𝑛)𝐷
Shared secret key: ss ∈ {0, 1}lenss

Procedure:
Choose a uniformly random key: 𝜇←$ 𝑈 ({0, 1}len𝜇 )
Compute pkh← SHAKE(𝑝𝑘, lenphk)
Generate pseudo-random values seedSE | |k← SHAKE(phk| |𝜇, lenseedSE + lenk)
Generate pseudo-random bit string:
(r(0) , r(1) , ..., r(2𝑚𝑛+𝑚𝑛−1)) ← SHAKE(0x96| |seedSE, (2𝑚𝑛 + 𝑚𝑛) · len𝜒)

Sample error matrix S′← SampleMatrix((r(0) , r(1) , ..., r(𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)
Sample error matrix E′← SampleMatrix((r(𝑚𝑛) , r(𝑚𝑛+1) , ..., r(2𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)
Generate A← Gen(seedA)
Compute B′← S′A + E′

Compute c1 ← Pack(B′)
Sample error matrix E′′:
E′′← SampleMatrix((r(2𝑚𝑛) , r(2𝑚𝑛+1) , ..., r(2𝑚𝑛+𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)

Compute B← Unpack(b, 𝑛, 𝑛)
Compute V← S′B + E′′

Compute C← V + Encode(𝜇)
Compute c2 ← Pack(C)
Compute ss← SHAKE(c1 | |c2 | |k, lenss)
Return:
Ciphertext c1 | |c2

Shared secret key ss

time generating matrices B′′ and C′. If matrices B′′ and C′ matches with matrices B′ and C, the

shared secret key returned is the hash of c1, c2, and k′ (pseudo-randomly generated using hash

function based on 𝜇′). Otherwise, the shared secret key returned is the hash of c1, c2, and s (part

of the secret key 𝑠𝑘′).

More information and details about the parameters, the error sampling procedure, the

lattice structure, and security proofs can be consulted in the official speciőcation of FrodoKEM

[126,138].

5.2 HARDWARE DESCRIPTION

This section aims to describe and justify the hardware and implementation choices that

will be used to evaluate the FrodoKEM scheme. Depending on application constraints and relying

on Approach #3, the QR-DCM implementation can be accomplished using a microcontroller- and

SoC-based hardware because both of them offer distinct trade-offs for implementing QR-DCMs.

For instance, adopting a microcontroller results in a low-cost solution that demands a long

execution time, while a SoC-based solution is more expensive but offers hardware acceleration of



62

Algorithm #3: Decapsulation
Input:
Ciphertext: c1 | |c2 ∈ {0, 1}(𝑚𝑛+𝑚𝑛)𝐷
Private key: 𝑠𝑘′ = (s| |seedA | |b, ST, pkh) ∈ {0, 1}lens+lenseedA+𝐷·𝑛𝑛 × Z𝑛×𝑛𝑞 × {0, 1}lenpkh

Output:
Shared secret key: ss ∈ {0, 1}lenss

Procedure:
Compute B′← Unpack(c1, 𝑚, 𝑛)
Compute C← Unpack(c2, 𝑚, 𝑛)
Compute M← C + B′S
Compute 𝜇′← Decode(M)
Parse 𝑝𝑘 ← seedA | |b
Generate pseudo-random values:
seed′SE | |k′← SHAKE(phk| |𝜇′, lenseedSE + lenk)

Generate pseudo-random bit string:
(r(0) , r(1) , ..., r(2𝑚𝑛+𝑚𝑛−1)) ← SHAKE(0x96| |seed′SE, 2𝑚𝑛 + 𝑚𝑛 · len𝜒)

Sample error matrix S′← SampleMatrix((r(0) , r(1) , ..., r(𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)
Sample error matrix E′← SampleMatrix((r(𝑚𝑛) , r(𝑚𝑛+1) , ..., r(2𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)
Generate A← Gen(seedA)
Compute B′′← S′A + E′

Sample error matrix E′′← SampleMatrix((r(2𝑚𝑛) , r(2𝑚𝑛+1) , ..., r(2𝑚𝑛+𝑚𝑛−1)), 𝑚, 𝑛, 𝑇𝜒)
Compute B← Unpack(b, 𝑛, 𝑛)
Compute V← S′B + E′′

Compute C′← V + Encode(𝜇′)
if B′| |C = B′′| |C′ then

k← k′

else
k← s

end
Return:
Shared secret key ss← SHAKE(c1 | |c2 | |k, lenss)

time-consuming routines and, consequently, a short execution time. Brief descriptions of these

hardware are detailed as follows:

• Microcontroller. This hardware has low-energy consumption and, consequently, a not-

so-fast processing unit for performing its tasks. It őts well for low processing power

(e.g., processing a small amount of data). The chosen microcontroller is in the EK-

TM4C129EXL evaluation kit [139], which relies on an ARM Cortex-M4F with 120 MHz

operation, 1024 kB ŕash memory, 256 kB single-cycle System SRAM, 6 kB of EEPROM,

and other features and well-established interfaces. Figure 10 shows the development board

based on this microcontroller, which only allows software implementation.

• SoC FPGA device. The chosen SoC FPGA device is in the MicroZed 7010 Board [140].

Consequently, the development board is a System on Module (SoM) based on the Xilinx



63

Figure 10 ś EK-TM4C129EXL evaluation kit

Source: Texas Instruments.

Zyqn-7000 SoC with 1 GB of DDR3 SDRAM, 128 Mb of QSPI Flash, 33.33 MHz

oscillator, and other features and well-established interfaces. The Xilinx Zyqn-7000 SoC

used is an XC7Z010-1CLG400C, which is composed of a Processing System (PS) and

Programmable Logic (PL). The PS is based on an ARM Cortex-A9 processor with ARMv7

architecture. On the other hand, the PL is based on a FPGA with 28 k programmable

logic cells, 17.6 k Lookup Tables (LUTs), 35.2 k registers, 60 Block Random Access

Memory (BRAM) with 36 kb each, and 80 Digital Signal Processing (DSP) blocks [140].

Using a Phase-Locked Loop (PLL), 666.66 MHz and 100 MHz clocks are derived from the

33.33 MHz built-in oscillator to feed the PS and PL, respectively. This development board

is ŕexible and allows different implementations, such as software implementation (i.e,

using only the ARM Cortex-A9 processor) or hardware/software co-design implementation

(i.e., using ARM Cortex-A9 and FPGA together). Figure 11 shows the development board.

Based on these two development boards, the following implementations are discussed:

• Implementation #1. A bare-metal software implementation using the ARM Cortex-M4F

in the TM4C129EXL-based development board. This implementation is based on a

low-cost microcontroller with low-power processing unit.



64

Figure 11 ś MicroZed 7010 Board

Source: Texas Instruments.

• Implementation #2. A bare-metal software implementation using the ARM Cortex-A9 in

the MicroZed 7010 board. When compared with Implementation #1, this implementation

has more processing capacity because it is based on a high-power processing unit, which

reŕects in a more expensive device. However, among the processors available in the market,

it can yet be considered a low-cost processor.

• Implementation #3. A hardware/software co-design implementation using the ARM

Cortex-A9 and FPGA also in the MicroZed 7010 board. This implementation, when

compared with Implementations #1 and #2, is the one which has the most processing

capacity. However, this reŕects on costs, but even so it is considered a low-cost SoC device

when compared with other SoCs in the market.

Implementations #1 and #2 aim to show the performance difference between low- and

high-power processing units based on a microcontroller (ARM Cortex-M4F) and a low-power

processor (ARM Cortex-A9) only, while Implementation #3 seeks to evaluate the improvement

when hardware acceleration is available. Table ?? summarize this section, systematically showing

the implementation technique, hardware, processing unit, and approach of Implementations #1,

#2, and #3.



65

Table 3 ś Summarize of the implementations.

Implementation
#1

Implementation
#2

Implementation
#3

Implementation
technique

Software Software
Hardware/software

co-design

Hardware Microcontroller
SoC FPGA

device
SoC FPGA

device
Processing

Unit
ARM

Cortex-M4F
ARM

Cortex-A9
ARM Cortex-A9 +

XC7Z010-1CLG400C

Aproach Low-cost
Trade-off between

cost and performance
High performance

5.3 SOFTWARE IMPLEMENTATION

This section details the software implementation of the FrodoKEM scheme on ARM

Cortex-M4F microcontroller (i.e., Implementation #1) and ARM Cortex-A9 processor (i.e.,

Implementation #2). To do so, this section is organized as follows: In Subsection 5.3.1, it is

discussed a preliminary analysis of the CRYSTALS-Kyber scheme implemented on the ARM

Cortex-M4F microcontroller and ARM Cortex-A9 processor, showing the most time-consuming

functions that must be considered to be hardware implemented; and Subsection 5.3.2 provides

additional details about the software implementation of the matrix-by-matrix multiplications and

the SHAKE128 hash function.

5.3.1 Preliminary Analysis

A preliminary analysis of the FrodoKEM scheme is necessary to identify the most

time-consuming functions. As already discussed in Section 5.1, the FrodoKEM scheme relies

on conservative primitives that are more complex to be performed. Due to that, only the

FrodoKEM-640 is approached in this chapter, as the two versions of FrodoKEM with higher

security levels (i.e., FrodoKEM-976 and FrodoKEM-1344) are even more penalized in terms

of timing performance, being prohibitive their deployment in data communication systems

which requires rapid responses and are cost-effective, such as AMIs. For the sake of simplicity,

FrodoKEM-640 will be called only FrodoKEM henceforth.

To identify the main bottlenecks associated with the Implementations #1 and #2 of

FrodoKEM, the code from [124] was executed on an ARM Cortex-M4F microcontroller and

Cortex-A9 ARM processor. After a detailed analysis of the code execution, the following three

operations stood out as the most time-consuming:

• B ← AS + E. It is used in the key pair generation process, has a high computational

burden because of its large matrix-by-matrix multiplication, which requires long loops

with addition and multiplication operations.



66

Table 4 ś The relative execution time, in percentage, of the FrodoKEM-640 scheme based on Implemen-
tation #1.

Operation
Key Pair

Generation
Encapsulation Decapsulation

B← AS + E 28.84% - -
B′← S′A + E′ - 46.79% 45.75
SHAKE128 57.95% 42.53% 43.76%
Others 13.21% 10.68% 10.49%

• B′ ← S′A + E′. It is even more expensive than B ← AS + E because it is used in both

encryption and decryption algorithms.

• SHAKE128 hash function. The most expensive operation is the SHAKE128 hash function,

a speciőc version of the SHAKE hash function. It is time-consuming in all three algorithms

due to its loop-based structure.

These operations demand relevant computational burdens because of the large size of FrodoKEM

keys and the use of a public or private key, directly or indirectly. Table 4 summarizes the relative

time-consuming of the functions used by the FrodoKEM-640 scheme in the ARM Cortex-M4F

microcontroller. Similar results were achieved for the ARM Cortex-A9 processor; however, for

simplicity, they are omitted.

5.3.2 Implementation

Relying on the preliminary analysis presented in Subsection 5.3.1, three functions must

be discussed in more detail to understand why they are the most time-consuming routines:

B← AS + E and B′← S′A + E′, and SHAKE128 hash function.

Starting with the B ← AS + E operation, due to the size of matrix A, it is unfeasible

to generate it all at once in an embedded device due to its memory constraints. Therefore,

matrix A is generated slightly differently as presented in Algorithm #4. To reduce the necessity

of large memory, generating parts of the matrix A on the ŕy and overwritten by a new part

after use is proposed. Due to this technique, the FrodoKEM scheme can be embedded in

hardware-constrained equipment. Therefore, the matrix-by-matrix multiplication AS has three

main loops. Four rows of the matrix A are generated on the ŕy using the SHAKE128 hash

function in the outer loop. The middle loop selects one column from the previously fully

generated matrix S. In the inner loop, four elements, one element of each of four generated rows

of the matrix A, are multiplied by one element from the selected matrix column S, and the four

results are accumulated. Note that there is a trade-off between the number of rows of matrix

A generated at once versus memory resources used. If more rows are generate at once, more

memory is required and vice-versa. Algorithm #4 shows the process in detail, as illustrated in

Figure 12.



67

Algorithm #4: B← AS + E
Input:
Matrix S: S ∈ Z𝑛×𝑛𝑞

Matrix E: E ∈ Z𝑛×𝑛𝑞

Seed: seedA ∈ {0, 1}lenseedA

Output:
Matrix B: B ∈ Z𝑛×𝑛𝑞

Procedure:
A ∈ Z4×𝑛

𝑞 ← {0}4×𝑛
B← E
for 𝑖 ← 0, 4, 8, ..., 𝑛 do
A[0..3] ← 𝑠ℎ𝑎𝑘𝑒128(seedA)
for 𝑘 ← 0, ..., 𝑛 do
𝑠𝑢𝑚 ∈ Z4

𝑞 ← {0}4
for 𝑗 ← 0, ..., 𝑛 do
𝑠𝑢𝑚 [0..3] ← 𝑠𝑢𝑚 [0..3] + A[0..3, 𝑗] · S[𝑘, 𝑗]

end
B[𝑖 + 0..3, 𝑘] ← B[𝑖 + 0..3, 𝑘] + 𝑠𝑢𝑚 [0..3]

end
end

The operation B′← S′A+E′ occurs differently from the previous one. It also (re)generates

the matrix A on the ŕy, although the multiplication process must be adapted. It occurs because

the regenerated matrix A, used in the encapsulation and decapsulation processes, must be the

same as used in the key pair generation. Therefore, each SHAKE128 hash function will generate

a row of the matrix A, which will slightly complicate the logic of the multiplication process,

considering that the matrix A in this operation is on the right-hand side and it is no longer

possible to multiple an entire row of the matrix A by an entire column of the matrix S, in this

case, the matrix S′. The Algorithm #5 presents this matrix-by-matrix multiplication process,

which is also pictured in Figure 13.

Figure 12 ś Operation AS← A × S. Multiplication of four rows of the matrix A by matrix S.

A

..
.

..
.

X ... = ...

..
.

..
.

B C

Source: Personal collection.



68

Algorithm #5: B′← S′A + E′

Input:
Matrix S′: S′ ∈ Z𝑛×𝑛𝑞

Matrix E′: E′ ∈ Z𝑛×𝑛𝑞

Seed: seedA ∈ {0, 1}lenseedA

Output:
Matrix B′: B′ ∈ Z𝑛×𝑛𝑞

Procedure:
A ∈ Z4×𝑛

𝑞 ← {0}4×𝑛
B′← E′

for 𝑖 ← 0, 4, 8, ..., 𝑛 do
A[0..3] ← 𝑠ℎ𝑎𝑘𝑒128(seedA)
for 𝑘 ← 0, ..., 𝑛 do
𝑠𝑢𝑚 ∈ Z𝑛𝑞 ← {0}𝑛
for 𝑗 ← 0, ..., 4 do
for 𝑝 ← 0, ..., 𝑛 do
𝑠𝑢𝑚 [𝑝] ← 𝑠𝑢𝑚 [𝑝] + S′[𝑘, 𝑖 + 𝑗] · A[ 𝑗 , 𝑝]

end
end
for 𝑗 ← 0, ..., 𝑛 do
B[𝑘, 𝑗] ← B[𝑘, 𝑗] + 𝑠𝑢𝑚 [ 𝑗]

end
end

end

Finally, SHAKE128 [141] is a hash function with an output length of 256-bits and a

security level of 128-bits. SHAKE128 is an instance of SHA-3, the latest member of the Secure

Hash Algorithm family of standards, released by NIST. The SHA-3 family is based on the

sponge construction [142], which is shown in Figure 14. The SHAKE128 hash function uses the

Keccak- 𝑓 [1600] function as the transform function composed of őve permutation steps, whose

parameters are the block size 𝑟 equal to 1344-bits and its capacity 𝑐 equal to 256-bits, resulting

in the internal state with 1600-bits. The SHAKE128 hash function can be divided into two main

Figure 13 ś Operation S′A← S′ × A. Multiplication of őrst four elements of the őrst four rows of the
matrix S′, highlighted in dark purple, by four rows of the matrix A.

A

..
.

..
.

X

..
.

= ...

...

B C

...

Source: Personal collection.



69

Figure 14 ś Sponge construction.

c

...

...

...

...

r

a b d e g

h i

f f f f f

Source: Personal collection.

parts: the absorbing and squeezing phases. In the absorbing phase, the input blocks (message)

are xored into the bit string 𝑟 of the internal state. Then, the internal state is inputted in the

Keccak- 𝑓 [1600] function. When the entire input message is absorbed, the squeeze phase begins.

In this case, the outputted blocks are read from the bit string 𝑟 of the state, alternating with the

Keccak- 𝑓 [1600] function until the desired output size is reached.

5.4 HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

This section details the proposed hardware/software co-design implementation using the

ARM Cortex-A9 together with the FPGA (i.e., Implementation #3) of the FrodoKEM scheme.

Considering the results in Table 4, it can be seen that the execution time reduction can be attained

by implementing the most time-consuming functions

Figure 15 shows the block diagram of the proposed hardware/software co-design

implementation of the FrodoKEM scheme. The PS, based on an ARM Cortex-A9, is where the

software implementation is placed. The interconnect instance is responsible for providing an

interface between the PL using the Advanced eXtensible Interface Memory Mapped (AXI-MM)

protocol [143]. Finally, the PL, based on an FPGA, is where the operations AS← A × S and

S′A← S′ × A together with the SHAKE128 hash function are hardware implemented, based on

the results of Table 4. From now on, these operations and functions implemented in hardware

will be called blocks, allowing to distinguish operations and functions from the software and

hardware implementations. The blocks AS ← A × S, S′A ← S′ × A, and SHAKE128 are

detailed in Subsections 5.4.1, 5.4.2, and 5.4.3, respectively.

It is important to mention that it is not used Direct Memory Access (DMA) technique in

this hardware/software co-design implementation of the FrodoKEM because the data exchanged

between the software and hardware are in small fractions; consequently, the reduction of

time in data exchange when this technique is deployed is relatively small and still requires a

considerable amount of hardware resources. Furthermore, it is also important to mention that the

implementation of the blocks AS← A × S, S′A← S′ × A, and SHAKE128 are timing constant

in order to be secure against timing side-channel attacks.



70

5.4.1 The Block AS← A × S

The operation B ← AS + E, which consumes almost 30% of the total time of the key

pair generation, has its matrix-by-matrix multiplication implemented in hardware as the block

AS← A×S. The operation of adding matrix E is performed in software, as it is not an expensive

operation and would not bring signiőcant time saving, under the assumption that the transferring

time of the matrix E from PS to PL is taken into account.

Figure 16 shows the hardware schematic of the block AS ← A × S. The schematic

consists of four main instances: BRAMs of the matrix A, BRAMs of the matrix S, a multiplier

instance, and BRAMs of the matrix AS. Note that BRAMs are where more data are stored.

As mentioned earlier, matrix A is generated on the ŕy to save memory resources. Four

rows are generated and transmitted from the PS to the BRAMs of the matrix A, located in PL,

to be stored. Four 320 × 32-bits BRAMs are ready to receive these rows. Each generated row

is composed of 640 × 16-bits. To speed up the data transfer process, 32-bits are transferred at

a time, which means that two subsequent values are concatenated and stored in the BRAMs.

The matrix S is transmitted from PS to PL. The whole matrix is transferred since it was fully

generated in PS. The transmission process follows the same 32-bits transmit principle as with

matrix A, although, for the matrix S a 2560 × 32-bits BRAM is used.

The multiplication process begins when both matrices are completely stored in their

BRAMs. From BRAMs of the matrix A the 𝑛-element of each BRAM is read. As 2 × 16-bits

words are stored concatenated in a 32-bits BRAM position, eight values are loaded from memory

and sent to the multiplier instance. In parallel, the 𝑛-element of the matrix S is also read. For the

same reason as the concatenated storage, 2 × 16-bits values are loaded and transferred to the

multiplier instance.

In the multiplication instance, each 32-bits element is split into 2 × 16-bits words using

the function 𝑆. Then, the multiplications are properly performed, and their results are added

to the previous iteration results. Any concern about overŕow issues is needed, which is an

advantage of the FrodoKEM scheme in saving hardware resources. While the multiplication

Figure 15 ś Schematic representation of the structure. The arrows represent 32-bit buses. Control signals
have been omitted.

A

E F G

B

C

D

Source: Personal collection.



71

Figure 16 ś Schematic representation of block AS← A × S. Thick arrows represent 32-bits buses and
thin arrows 16-bits buses. Control signals have been omitted.

S

S

S

S

S

E

E

E

E

A

B

C

D

F G

Source: Personal collection.

is performed, the following values from the BRAMs are loaded, keeping the pipeline full to

achieve maximum performance. When all elements of the BRAMs are loaded and processed,

the 4 × 16-bits accumulated values are transferred to the BRAMs of the matrix AS, which has

four 1280 × 16-bits BRAMs.

The next four matrix rows A must be generated and transferred to PL. The matrix S has

already been completely transferred in the őrst iteration and should not be sent again. The next

iteration begins, and the process mentioned above is performed again. When all iterations are

complete, the BRAMs of the matrix AS store the AS← A × S result and transfers it to PS using

a 32-bits bus.

Note that in this case four rows of matrix A are generated at once, but it is ŕexible.

However, there is a compromise between memory usage and performance. If more rows are



72

Figure 17 ś Schematic representation of S′A← S′ × A. Thick arrows represent 32-bits buses and thin
arrows 16-bits buses. Control signals have been omitted.

E
B

C

A D
F G

Source: Personal collection.

generated at once, more memory would be required, but the processing time would be reduced.

On the other hand, if less rows are generated at once, less memory would be required, but the

processing time would increase.

5.4.2 The Block S′A← S′ × A

This operation is responsible for more than 45% of the execution time of encapsulation

and decapsulation. The operation B′← S′A + E′ also has its matrix-by-matrix multiplication

implemented in hardware as block S′A ← S′ × A. Similarly to the operation B ← AS + E,

the addition operation of the matrix E′ is carried out in software due to the same reasons. In

Figure 17 it can be seen that the schematic representation of the block S′A← S′ × A. It also has

four instances: BRAMs of the matrix S′, BRAMs of the matrix A, a multiplier instance, and

BRAM of the matrix S′A.

Two 640 × 32-bits BRAMs are used to store half of the matrix S′. As mentioned earlier,

concatenated values are transferred from PS to PL using 32-bits bus; therefore, each BRAM

can be split in half (upper 16-bits and lower 16-bits), storing two concatenated word by word

columns of the matrix S′, giving a total of four columns. On the other hand, the matrix A and

its transfer process have exactly the same conőguration as used in the block AS← A × S: four

320 × 32-bits BRAMs and 32-bits bus for transfer.

After the matrices are received, multiplication is performed. The 𝑛-element of each

matrix S′ BRAM are loaded. Since 2× 16-bits words are stored concatenated in a 32-bits BRAM

position, four values are read and sent to the multiplier instance in 16-bits buses. The 𝑝-element



73

Figure 18 ś Block diagram representation of the block SHAKE128. Thin lines represent 32-bits buses,
thick lines represent 64-bits buses, and double lines represent 1600-bits buses. Control signals have been
omitted.

A B C

D

E

F G

H

IJ

K

Source: Personal collection.

of each BRAM of the matrix A are read in parallel. Only the upper or lower 16-bits of the four

loaded values are sent to the multiplier instance, depending on the 𝑝 parity.

Therefore, the multiplier instance receives 8 × 16-bits values, four from each matrix.

Finally, the values are correctly multiplied, and the results are added, resulting in a 16-bits

value. Immediately, the multiplication and addition process results are sent to matrix S′A, stored

in one 5120 × 16-bits BRAM, to be added to a previous value stored in a particular position.

Simultaneously, new values from matrices S′ and A are loaded to keep the pipeline full, restarting

the process.

When all iterations are completed, the other half of the matrix S′ and new rows of the

matrix A must be transferred to PL. When the process ends, the BRAMs of the matrix S′A will

store the result of operation S′A← S′ × A and it is transmitted to PS using a 32-bits bus.

5.4.3 Block SHAKE128

FrodoKEM’s most time-consuming operation is the SHAKE128 hash function, which is

responsible for almost 58% of the total execution time of the key pair generation and around 43%

of the total execution time of encapsulation and decapsulation. The proposed scheme can be

organized into three main instances: a BRAM, the sponge construction, and a Keccak- 𝑓 [1600],

as illustrated in Figure 18.

The BRAM is a 2583 × 64-bits memory. This size was chosen based on the maximum

size that FrodoKEM needs. This BRAM is responsible for storing the input values (message)

received by the 32-bits bus. Each 32-bits word is a concatenation of 4 × 8-bits characters.

2 × 32-bits words or 8 × 8-bits characters are concatenated and stored in the BRAM.

When all values are received and stored in the BRAM, 168-bytes are sent to the block

sponge construction instance via a 64-bits bus, starting the absorb phase. These bytes built



74

Table 5 ś Hardware resource usage.

Block
name

Slice LUTs
Slice

Registers
Block
RAM

DSP

AS← A × S 357 272 10 8
S′A← S′ × A 264 301 6 4
SHAKE128 5387 3648 7.5 0
Interconnect 1452 1105 0 0

Others 1097 3295 0 0
Total 8557 8621 23.5 12

the internal state. If necessary in the absorb phase, the Keccak- 𝑓 [1600] instance is called, and

the entire internal state is sent to the Keccak- 𝑓 [1600] instance, which performs its őve steps

(𝜃, 𝜌, 𝜋, 𝜒, and 𝜄) in a single clock. Then, the new scrambled internal state returns to the

sponge construction instance. Next, another 168-bytes are loaded from BRAM and the process

is repeated until the entire inputted message is read, őnalizing the absorb phase.

When the absorb phase ends, the squeeze phase starts using the Keccak- 𝑓 [1600] instance.

To save resources, the őrst 168-bytes of the internal state of each step in the squeeze phase are

stored in the same BRAM, which previously stored the inputted message and now stores the

output values (cipher). When the desired output length is reached, the process is complete, and

the BRAM uses the 32-bits bus to send the stored output values back to PS.

5.5 PERFORMANCE EVALUATION

The hardware resource and timing analyses of the FrodoKEM scheme are presented

in this section. The focus is comparative analyses between Implementations #1 and #2 (i.e.,

software implementations), brieŕy described in Section 5.3, and the detailed Implementation #3

(i.e., hardware/software co-design implementation), presented in Section 5.4. In this sense, this

section is organized as follows: Subsection 5.5.1 details the hardware resources of the functions

implemented in the PL and, in the sequel, Subsection 5.5.2 focuses on the timing analysis of the

blocks AS ← A × S and S′A ← S′ × A, and the SHAKE128 hash function with and without

hardware acceleration.

5.5.1 Hardware Resource Analysis

The hardware resource usage of blocks AS← A × S, S′A← S′ × A, and SHAKE128

are listed in Table 5. It shows that the blocks AS← A × S and S′A← S′ ×A use very few Slice

LUTs and Slice Registers in comparison to the block SHAKE128. It relies on the logic circuit

complexity necessary to implement the matrix-by-matrix multiplications, which is much simpler

than the one required to implement the block SHAKE128.

The block AS ← A × S uses 10 BRAMs, while the block S′A ← S′ × A uses only

6 BRAMs. This difference occurs because the former stores the entire matrix S in the PL, while



75

Table 6 ś The average execution time of FrodoKEM for different levels of hardware implementations with
5000 simulations for each implementation, in ms.

Scheme Algorithm
Implemen-
tation #1

Implemen-
tation #2

Implemen-
tation #3

Relative Time
Improvement

(𝛼 𝑓TI1
)

Relative Time
Improvement

(𝛼 𝑓TI2
)

Key Pair
Generation

1387.73 467.25 146.35

Encapsulation 1432.16 644.74 205.11
Decapsulation 1423.46 645.35 208.26

FrodoKEM-
640

Total 4243.35 1757.33 559.72

86.80% 68.15%

the latter stores only half of it. The block SHAKE128 uses 7.5 BRAMs, enough memory space

to store the larger cipher required by FrodoKEM. Finally, the block AS← A × S uses 8 DSP

blocks, which is in accordance with Figure 16. Contrastingly, the block S′A← S′ × A uses only

4 DSP blocks, as presented in Figure 17. The block SHAKE128 does not use any DSP block.

5.5.2 Timing Analysis

To compare the performance of the FrodoKEM scheme with and without hardware acce-

leration, the following analyses are considered: in Subsection 5.5.2.1 a time comparison between

Implementations #1, #2, and #3 is presented, evaluating the time required to process the key pair

generation, encapsulation, and decapsulation. Subsection 5.5.2.2 compares Implementations

#1 and #2 with Implementation #3 of the functions listed in Table 4 in terms of performance.

Finally, Subsection 5.5.2.3 provides a detailed analysis of the aforementioned functions listed in

Table 4, comparing the time required to process data against the time that is spent transferring data

between PS and PL. Note that each run time measurement was obtained using a high-resolution

timer in order to provide good accuracy.

5.5.2.1 Comparison between the implementations

This subsection compares Implementations #1, #2, and #3 of the FrodoKEM scheme.

To do so, it shows the time required to execute the key pair generation, encapsulation, and

decapsulation. Also, it discusses the total execution time of each implementation.

We can see in Table 6 that, as expected, Implementation #3 considerably outperforms

Implementations #1 and #2. The former required 559.72 ms to perform the key pair generation,

encapsulation, and decapsulation, while Implementation #1 required 4243.32 ms and Imple-

mentation #2, 1757.33 ms. The relative time improvement (𝛼 𝑓TI1
) between the Implementation

#1 and Implementation #3 and relative time improvement (𝛼 𝑓TI2
) between the Implementation

#2 and Implementation #3 are given by

𝛼
𝑓

TI1
= 1 − ©«

𝑇
𝑓

TET3

𝑇
𝑓

TET1

ª®¬
, (5.1)



76

and

𝛼
𝑓

TI2
= 1 − ©«

𝑇
𝑓

TET3

𝑇
𝑓

TET2

ª®¬
, (5.2)

where 𝑇 𝑓

TET1
, 𝑇 𝑓

TET2
, and 𝑇 𝑓

TET3
are the total execution time of Implementations #1, #2, and

#3, respectively. The 𝛼 𝑓TI1
achieved are 86.90%, while the 𝛼 𝑓TI2

obtained are 68.15% for the

FrodoKEM-640 scheme.

5.5.2.2 Execution Time Analysis

This subsection intends to individually analyze the blocks B← AS + E, B′← S′A + E′,

and SHAKE128 (i.e., without considering its impact on the whole implementation). To carry

out this analysis, it is assumed that all routines necessary to generate matrices B and B′ are

considered, not just the matrix-by-matrix multiplication. Table 7 lists the attained results related

to these three blocks, presenting their average execution time using Implementations #1, #2,

and #3 as 𝑇 𝑓

AET1
, 𝑇 𝑓

AET2
, and 𝑇 𝑓

AET3
, respectively, which are expressed as

𝑇
𝑓

AET1
=

𝑁𝐼∑︁
1

𝑇
𝑓

TET1
, 𝑖

𝑁𝐼
, (5.3)

𝑇
𝑓

AET2
=

𝑁𝐼∑︁
1

𝑇
𝑓

TET2
, 𝑖

𝑁𝐼
, (5.4)

and

𝑇
𝑓

AET3
=

𝑁𝐼∑︁
1

𝑇
𝑓

TET3
, 𝑖

𝑁𝐼
, (5.5)

where (𝑇 𝑓

TET1
, 𝑖), (𝑇 𝑓

TET2
, 𝑖), and (𝑇 𝑓

TET3
, 𝑖) are the total execution time using Implementations

#1, #2, and #3, respectively, during the 𝑖th simulation, while 𝑁I is the number of simulations of

each function or block, which was arbitrarily set to 5000. It is important to highlight that the

communication burden between the PL and PS is included in the 𝑇 𝑓

AET3
. Finally, the relative time

improvement 𝛽 𝑓TI1
between the Implementations #1 and #3, and relative time improvement 𝛽 𝑓TI2

between the Implementations #2 and #3, presented in Table 7, are given by

𝛽
𝑓

TI1
= 1 − ©«

𝑇
𝑓

AET3

𝑇
𝑓

AET1

ª®¬
. (5.6)

and

𝛽
𝑓

TI2
= 1 − ©«

𝑇
𝑓

AET3

𝑇
𝑓

AET2

ª®¬
. (5.7)

Table 7 shows that blocks B← AS + E and B′← S′A + E′ achieved similar average

execution time (i.e., 𝑇 𝑓

AET1
, 𝑇 𝑓

AET2
, and 𝑇 𝑓

AET3
), independently from the implementation used.

Consequently, the obtained relative time improvement 𝛽 𝑓TI1
and 𝛽 𝑓TI2

are also similar. 𝛽 𝑓TI1
and



77

Table 7 ś Execution time analysis, in ms.

Algorithm

Average Execution Time Relative Time
Improvement

(𝛽 𝑓TI1
)

Relative Time
Improvement

(𝛽 𝑓TI2
)

Implemen-
tation #1
(𝑇 𝑓

AET1
)

Implemen-
tation #2
(𝑇 𝑓

AET2
)

Implemen-
tation #3
(𝑇 𝑓

AET3
)

B← AS + E 1266.289 447.356 136.424 89.22% 69.50%
B′← S′A + E′ 1362.034 616.859 189.652 86.07% 69.25%

SHAKE128 13.800 3.834 0.641 95.35% 83.26%

𝛽
𝑓

TI2
obtained by block B← AS + E are 89.22% and 69.50%, respectively, while for block

B′← S′A + E′, 86.07% and 69.25%, also respectively.

Regarding the SHAKE128 hash function, the average execution time is considerably

lower, which is expected as this function requires much less processing than blocks B← AS + E

and B′← S′A + E′. Furthermore, it can be seen that the relative time improvement 𝛽 𝑓TI1
and

𝛽
𝑓

TI2
are higher when compared with the ones obtained by the matrix-by-matrix operations. The

𝛽
𝑓

TI1
and 𝛽 𝑓TI2

obtained by the SHAKE128 hash function are 95.35% and 83.26%, respectively.

This greater improvement can be explained by the looped-based implementation in software

(i.e., Implementations #1 and #2) in contrast with an efficient hardware implementation (i.e.,

Implementation #3).

5.5.2.3 Hardware processing time analysis

Another meaningful analysis is the hardware-only time analysis. This analysis focused

on comparing each routine’s execution time and processing time, both in hardware. To carry

out this analysis, in the blocks B ← AS + E and B′ ← S′A + E′, only the matrix-by-matrix

multiplication is considered because it is the part performed in hardware. Due to that, the 𝑇 𝑓

AET3

presented in Table 7 is not equal to the 𝑇 𝑓

AET presented in Table 8 as the former takes into account

the summation of matrices E and E′. The 𝑇 𝑓

AET can be separated into two components, and it is

given by

𝑇
𝑓

AET = 𝑇
𝑓

APT + 𝑇
𝑓

DTT, (5.8)

where the average processing time in hardware (𝑇 𝑘 𝑓APT) is the time required to process the data, and

the data transfer time (𝑇 𝑓

DTT) is the time required to transfer data to/from the PS. This analysis is

numerically evaluated by using the so-called relative time (𝛾 𝑓
𝑇

) parameter, which is given by

𝛾
𝑓

T =
𝑇
𝑓

APT

𝑇
𝑓

AET

, (5.9)

where 𝑇 𝑓

𝐴𝑃𝑇
is the average processing time in hardware per iteration and 𝑇 𝑓

𝐴𝐸𝑇
is the average

execution time in hardware per iteration of the aforementioned blocks. The attained results are

presented in Table 8.



78

Table 8 ś Hardware-only execution and processing time, in ms.

Operation
Average execution
time in hardware

(𝑇 𝑓

AET)

Average processing
time in hardware

(𝑇 𝑓

APT)

Relative time

(𝛾 𝑓
𝑇

)

AS← A × S 58.61 4.094 6.98%
S′A← S′ × A 62.71 8.190 13.06%
SHAKE128 0.129 0.005 4.07%

As can be seen, the processing time in the hardware of blocks AS← A×S, S′A← S′×A,

and SHAKE128 are much shorter than the execution time, representing 6.98%, 13.06%, and

4.07%, respectively. These results mean that most of the time is spent receiving data from PS

or sending data back to PS while only a short time is dedicated to performing the operations in

hardware.

5.6 SUMMARY

This chapter has dedicated attention to implementing the FrodoKEM scheme in hardware.

In this context, the FrodoKEM, a post-quantum lattice-based scheme, was detailed and, in the

sequel, implemented using Implementations #1, #2, and #3. Evaluating the performance of all

functions for Implementations #1 and #2 of the FrodoKEM scheme, it has been veriőed that

three functions, listed in Table 4, must be hardware implemented (i.e., Implementation #3) to

achieve a lower execution time. Furthermore, as two of these functions are mainly based on

multiplications, the use of DSP presented in the hardware signiőcantly accelerates the process.

In this sense, numerical results have shown that the hardware/software co-design implementation

(i.e., Implementation #3) of the most time-consuming and complex routines of the FrodoKEM

in hardware results in a one-sixth and one-third reduction of the execution time compared to

the Implementations #1 and #2, respectively. According to the execution time analysis, three

operations consume almost all execution time. The Implementation #3 of these three operations

in blocks reached an improvement of 86.80% and 68.15% (i.e., the execution time reduces from

4.2 seconds and 1.7 seconds to less than 0.6 seconds) when compared to Implementations #1

and #2, respectively. Since the FrodoKEM scheme is a conservative quantum-resistant scheme

based on standard lattices with a not-so-good timing performance, hardware acceleration is

an alternative to meet timing constraints that might be required in AMIs. On the other hand,

due to its strong cryptographic primitives, it is a good candidate for improving security in

AMI under classic and quantum computers. Overall, this chapter has shown that the discussed

implementations of the FrodoKEM scheme are suitable for QR-DCMs.



79

6 THE CRYSTALS-KYBER SCHEME

The CRYSTALS-Kyber scheme is the winner of the NIST PQC standardization process

and relies on the M-LWE problem. As already deeply discussed in Subsection 4.3.2.2, the

M-LWE problem tries to be a trade-off between security and performance because it is less

structured than R-LWE and scales better. In this sense, cryptanalytic progress has shown that an

attack against the M-LWE problem is less likely than on the R-LWE problem [132]. Therefore,

schemes based on M-LWE (e.g., CRYSTALS-Kyber) present much better timing performance

than schemes based on LWE (e.g., FrodoKEM) and are also, at least in theory, less likely to

be broken than schemes based on R-LWE. In a QR-AMI context, where hardware-constrained

devices are deployed, such as QR-DCM, schemes that perform well and are based on lightweight

approaches are of utmost importance.

In this sense, this chapter investigates the feasibility of the CRYSTALS-Kyber scheme as

the KEM for ensuring quantum-resistant symmetric key exchange between nodes in the AMI

based on Approach #31. The choice of such PQC scheme relies on the fact that it is one of the

fastest and most lightweight PQC schemes in the NIST PQC standardization process [144] and

also the winner of the contest. In this regard, implementations of the CRYSTALS-Kyber scheme

using Implementations #1, #2, and #32 are detailed. The main contributions of this chapter are

as follows:

• A discussion on the components of the CRYSTALS-Kyber scheme that allows us to come up

with an advantageous trade-off between complexity and execution time when considering a

hardware-constrained QR-DCM based on an SoC FPGA device. Moreover, a presentation

of an optimized hardware/software co-design implementation (i.e., Implementation #3)

of the CRYSTALS-Kyber scheme on a hardware-constrained QR-DCM that uses an SoC

FPGA device.

• A performance comparison between Implementation #3 and Implementations #1 and

#2 of the CRYSTALS-Kyber scheme in terms of execution time. Also, an analysis of

the hardware resource usage demanded by the proposed hardware/software co-design

implementation (i.e., Implementation #3) of the CRYSTALS-Kyber scheme on an SoC

FPGA device.

The rest of this chapter is organized as follows: in Section 6.1 it is detailed the

CRYSTALS-Kyber scheme; in Section 6.2 it is addressed the software implementation (i.e.,

Implementations #1 and #2) and in Section 6.3 the hardware/software co-design implementation

(i.e., Implementation #3) of this scheme; in Section 6.4 it is discussed numerical results of

1 The investigation provided in this chapter focused on Approach #3, but the results are also valid for
Approaches #1 and #2.

2 Descriptions of these three type of implementations are in Section 5.2.



80

Table 9 ś Parameter values for the CRYSTALS-Kyber scheme.

CRYSTALS-
Kyber

𝑛 𝑘 𝑞 𝜂1 𝜂2 𝑑𝑢 𝑑𝑣
Public key
size (bytes)

Private key
size (bytes)

Ciphertext
size (bytes)

512 256 2 3329 3 2 10 4 800 1632 768
768 256 3 3329 2 2 10 4 1184 2400 1088
1024 256 4 3329 2 2 11 5 1568 3168 1568

hardware resource usage, execution time, and performance comparison between implementations;

and, őnally, in Section 6.5 it is asserted conclusive remarks.

6.1 BACKGROUND OF THE CRYSTALS-KYBER SCHEME

The CRYSTALS-Kyber scheme [127, 132], relying on the M-LWE problem (already

discussed in Chapter 4), was designed seeking high-performance (e.g., as presented by NewHope)

without losing ŕexibility (e.g., as FrodoKEM). In this regard, three different versions of the

CRYSTALS-Kyber scheme are available: CRYSTALS-Kyber-512, -768, and -1024. They aim

to ensure a security level equivalent to AES-128, AES-192, and AES-256. Because of its

characteristics, the CRYSTALS-Kyber scheme is the scheme standardized by the NIST PQC

standardization process in the PKE/KEM category.

6.1.1 The CRYSTALS-Kyber scheme as a Key Encapsulation Mechanism

The CRYSTALS-Kyber scheme [127] can be used as PKE and KEM. PKE is based on the

PKE key pair generation, encryption, and decryption algorithms, described in Algorithms #6, #7,

and #8, respectively. On the other hand, KEM, which is constituted by KEM key pair generation,

encapsulation, and decapsulation, as described in Algorithms #9, #10, and #11 respectively, is

constructed via a slightly modiőed Fujisaki-Okamoto transform [145], which is based on the

PKE. The values of the parameters used by Algorithms #6 to #11 are speciőed in Table 9.

Note that the parameter 𝑛 = 256 means the objective is to encapsulate keys with 256

bits of entropy. In order to enable the fast NTT-based multiplication, a small prime 𝑞 value is

chosen. The parameter 𝑘 is set to the lattice dimension as a multiple of 𝑛. As 𝑘 increases, the

security level also increases. Finally, the parameters 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣 are chosen to attain a

balance between security, ciphertext size, and failure probability. Compared with the parameters

of FrodoKEM presented in Table 2, the size of the public key, private key, and ciphertext are

considerably smaller. More details about the choice of these parameters are shown in [127].

These key pair generation, encryption, and decryption algorithms call a few functions,

detailed in [127]. Shortly, PRF(·) is a pseudorandom function, XOF(·) is an extendable output

function, and KDF(·) is a key derivative function. The CRYSTALS-Kyber scheme also makes

use of two hash functions: H(·) and G(·). The Parse(·) function uses deterministic approaches

to sample elements in 𝑅𝑞 while the CBD𝜂(·) function samples noise from a centered binomial



81

Algorithm #6: PKEKeyPairGeneration()
Input: None
Output:
Public key: 𝑝𝑘 ∈ B12𝑘𝑛/8+32

Private key: 𝑠𝑘 ∈ B12𝑘𝑛/8

Procedure:
⊲ Initialization:
𝑑 ← B32

(𝜌, 𝜎) := 𝐺 (𝑑)
𝑁 := 0
⊲ Generate Â ∈ 𝑅𝑘×𝑘𝑞 in the NTT domain:
for 𝑖 from 0 : 𝑘 − 1 do

for 𝑗 from 0 : 𝑘 − 1 do
Â[𝑖] [ 𝑗] := Parse(XOF(𝜌, 𝑗 , 𝑖))

end
end
⊲ Sample s ∈ 𝑅𝑘𝑞 from B𝜂1:
for 𝑖 from 0 : 𝑘 − 1 do

s[𝑖] := CBD𝜂1(PRF(𝜌, 𝑁))
𝑁 := 𝑁 + 1

end
⊲ Sample e ∈ 𝑅𝑘𝑞 from B𝜂1:
for 𝑖 from 0 : 𝑘 − 1 do

e[𝑖] := CBD𝜂1(PRF(𝜌, 𝑁))
𝑁 := 𝑁 + 1

end
ŝ := NTT(s)
ê := NTT(e)
t̂ := Â ◦ ŝ + ê
Return:
Public key 𝑝𝑘 := ( Encode12(t̂ mod+𝑞)) ∥ 𝜌
Private key 𝑠𝑘 := Encode12(ŝ mod+𝑞)

distribution. The NTT(·) function performs multiplications in 𝑅𝑞 in a very efficient way, and

the function NTT−1(·) performs the inverse of the NTT(·). The Encode(·) function serializes

a polynomial into a byte array, while the Decode(·) function does the opposite. Moreover, the

Compress𝑞(·) function takes an element from Z𝑞 and outputs an integer in the set {0, ..., 2𝑞 − 1},
where 𝑑 < ⌈log2(𝑞)⌉, and the Decompress𝑞(·) function does the opposite.

The main part of the key pair generation of the KEM (Algorithm #9) is the generation of

the public key pk and the private key sk, derived from the key pair generation (Algorithm #6)

which performs the pk = As + e operation, using the public matrix A and the private vector s.

The encapsulation (Algorithm #10) uses the public key pk together with the encryption

algorithm (Algorithm #7) to generate a shared secret key 𝐾 (i.e., a symmetric key) and a ciphertext

𝑐. More speciőcally, the encryption algorithm regenerates the matrix A using the public key pk,

samples r, e1, and 𝑒2, and performs u = A𝑇r + e1 and 𝑣 = t𝑇r+𝑒2 + Decompress𝑞(𝑚, 1), where



82

Algorithm #7: Encryption()

Public key: 𝑝𝑘 ∈ B12𝑘𝑛/8+32

Message: 𝑚 ∈ B32

Random coins: 𝑟 ∈ B32

Output:
Ciphertext: 𝑐 ∈ B𝑑𝑢𝑘𝑛/8+𝑑𝑣𝑛/8
Procedure:
⊲ Initialization:
𝑁 := 0
t̂ := Decode12(𝑝𝑘)
𝜌 := 𝑝𝑘 + 12𝑘𝑛/8
⊲ Generate Â ∈ 𝑅𝑘×𝑘𝑞 in the NTT domain:
for 𝑖 from 0 : 𝑘 − 1 do

for 𝑗 from 0 : 𝑘 − 1 do
Â𝑇 [𝑖] [ 𝑗] := Parse(XOF(𝜌, 𝑖, 𝑗))

end
end
⊲ Sample r ∈ 𝑅𝑘𝑞 from B𝜂1:
for 𝑖 from 0 : 𝑘 − 1 do

r[𝑖] := CBD𝜂1(PRF(𝑟, 𝑁))
𝑁 := 𝑁 + 1

end
⊲ Sample e1 ∈ 𝑅𝑘𝑞 from B𝜂2:
for 𝑖 from 0 : 𝑘 − 1 do

e1 [𝑖] := CBD𝜂2(PRF(𝑟, 𝑁))
𝑁 := 𝑁 + 1

end
⊲ Sample 𝑒2 ∈ 𝑅𝑞 from B𝜂2:
𝑒2 := CBD𝜂2(PRF(𝑟, 𝑁))
r̂ := NTT(r)

u := NTT−1(Â𝑇◦ r̂) + e1

𝑣 := NTT−1(t̂ ◦ r̂) + 𝑒2 +
Decompress𝑞(Decode1(𝑚), 1)

𝑐1 := Encode𝑑𝑢(Compress𝑞(u, 𝑑𝑢))
𝑐2 := Encode𝑑𝑣 (Compress𝑞(𝑣, 𝑑𝑣))
Return:
Ciphertext 𝑐 := (𝑐1 ∥ 𝑐2)

𝑚 is a random message generated in the encapsulation algorithm (i.e. Algorithm #10).

Finally, the decapsulation (Algorithm #11) uses the private key sk, ciphertext 𝑐, encryption

(Algorithm #7), and decryption (Algorithm #8) to obtain the same shared secret key 𝐾 previously

generated in the encapsulation algorithm. In the decapsulation algorithm, given the private key

sk and the ciphertext 𝑐, 𝑚′ is computed by 𝑚′ = Decryption(sk,𝑐), and 𝑐′ is the encryption of 𝑚′.

In possession of 𝑐 and 𝑐′, the shared secret key 𝐾 is computed.

The private key sk and the ciphertext 𝑐 are decrypted, which mainly performs 𝑚′ =

Compress𝑞(𝑣− s𝑇u, 1) operation. Then 𝑚′ is encrypted, making it possible to recover 𝑐′. In



83

Algorithm #8: Decryption()
Input:
Private key: 𝑠𝑘 ∈ B12𝑘𝑛/8

Ciphertext: 𝑐 ∈ B𝑑𝑢𝑘𝑛/8+𝑑𝑣𝑛/8
Output:
u := Decompress𝑞(Decode𝑑𝑢(𝑐), 𝑑𝑢)
𝑣 := Decompress𝑞(Decode𝑑𝑣 (𝑐 + 𝑑𝑢𝑘𝑛/8), 𝑑𝑣)
ŝ := Decode12(𝑠𝑘)
Return:
Message 𝑚 := Encode1(Compress𝑞(𝑣− NTT−1(ŝ𝑇◦ NTT(u), 1))

Algorithm #9: KEMKeyPairGeneration()
Input: None
Output:
Public key: 𝑝𝑘 ∈ B12𝑘𝑛/8+32

Private key: 𝑠𝑘 ∈ B24𝑘𝑛/8+96

Procedure:
Initialization:
𝑧 ← B32

(𝑝𝑘, 𝑠𝑘′) := PKEKeyPairGeneration()
𝑠𝑘′ := Encode12(ŝ mod+𝑞)
Return:
Public key 𝑝𝑘
Private key 𝑠𝑘 := (𝑠𝑘′ ∥ 𝑝𝑘 ∥ H(𝑝𝑘) ∥ 𝑧)

possession of 𝑐 and 𝑐′, generating the shared secret key 𝐾 is possible. The security proofs of the

CRYSTALS-Kyber scheme can be found in [127].

6.2 SOFTWARE IMPLEMENTATION

This section presents the software implementation of the CRYSTALS-Kyber scheme on

the ARM Cortex-M4F microcontroller (i.e., Implementation #1) and ARM Cortex-A9 processor

(Implementation #2). To detail these implementations, this section is organized as follows:

Subsection 6.2.1 discusses a preliminary analysis of the CRYSTALS-Kyber scheme implemented

on the ARM Cortex-M4F microcontroller and ARM Cortex-A9 processor, highlighting the

most time-consuming functions that ought to be hardware implemented; and Subsection 6.2.2

provides additional details about the software implementation of high-level functions that must

be considered to come up with a hardware/software co-design implementation.

6.2.1 Preliminary analysis

A preliminary analysis of the software implementation of the CRYSTALS-Kyber scheme

allows us to identify the most time-consuming functions. The source code available in [124]

was executed using the ARM Cortex-M4F microcontroller and ARM Cortex-A9 processor



84

Algorithm #10: Encapsulation()
Input:
Public key: 𝑝𝑘 ∈ B12𝑘𝑛/8+32

Output:
Ciphertext: 𝑐 ∈ B𝑑𝑢𝑘𝑛/8+𝑑𝑣𝑛/8
Shared secret key: 𝐾 ∈ B∗
Procedure:
Initialization:
𝑚 ← B32

𝑚 ← H(𝑚)
(�̄�, 𝑟) := G(𝑚 ∥ H(𝑝𝑘))
𝑐 := Encryption(𝑝𝑘, 𝑚, 𝑟)
Return:
Ciphertext 𝑐 := (𝑐1 ∥ 𝑐2)
Shared secret key 𝐾 := KDF(�̄� ∥ H(𝑐))

(i.e., Implementations #1 and #2, respectively). Table 10 summarizes the relative time-

consuming of the functions used by the CRYSTALS-Kyber-512 scheme in the ARM Cortex-M4F

microcontroller. Similar results were achieved for the CRYSTALS-Kyber-768 and CRYSTALS-

Kyber-1024 schemes and also using the ARM Cortex-A9 processor; however, for simplicity, they

are omitted.

Table 10 shows that NTT(·), NTT−1(·), Muliply and Accumular(·), Keccak- 𝑓 (·),
Tomont(·), and Reduce(·) are the main time-consuming functions. For the sake of simplicity,

from now on, these functions will be categorized as high-level functions. Other functions are also

Algorithm #11: Decapsulation()
Input:
Private key: 𝑠𝑘 ∈ B24𝑘𝑛/8+96

Ciphertext: 𝑐 ∈ B𝑑𝑢𝑘𝑛/8+𝑑𝑣𝑛/8
Output:
Shared secret key: 𝐾 ∈ B∗
Procedure:
𝑝𝑘 := 𝑠𝑘 + 12𝑘𝑛/8
ℎ := 𝑠𝑘 + 24𝑘𝑛/8 + 32 ∈ B32

𝑧 := 𝑠𝑘 + 24𝑘𝑛/8 + 64
𝑚′ = Decryption(𝑠𝑘, 𝑐)
(�̄�′, 𝑟′) := G(𝑚′ ∥ ℎ)
𝑐′ = Encryption(𝑝𝑘, 𝑚′, 𝑟′)
Return:
if 𝑐 = 𝑐′ then

Shared secret key 𝐾 := KDF(�̄�′ ∥ H(𝑐))
else

Shared secret key 𝐾 := KDF(𝑧 ∥ H(𝑐))
end



85

Table 10 ś The relative time execution, in percentage, of the high-level functions for the CRYSTALS-
Kyber-512 based on Implementation #1.

Function
Key Pair

Generation
Decapsulation Encapsulation

NTT(·) 24.80% 11.11% 19.54%
NTT−1(·) - 25.88% 30.23%
Multiply and
Accumulate(·) 18.37% 24.47% 28.19%

Keccak- 𝑓 [1600](·) 8.90% 9.18% 6.82%
Tomont(·) 2.18% - -
Reduce(·) 1.59% 1.70% 1.35%
Others 44.16% 27.66% 13.87%

required to perform the key pair generation, encapsulation, and decapsulation; however, none

demand a signiőcant amount of time compared to the functions listed in Table 10. Apart from

the Keccak- 𝑓 [1600](·), the high-level functions are mainly used to perform matrix-by-vector

multiplication, NTT(·), and NTT−1(·), (i.e., functions found in Algorithms #6 to #11), which

result in a high computational burden since they are based in long nested loops, covering all

elements of polynomials or array of polynomials. Moreover, Keccak- 𝑓 [1600](·) is the core of

hash functions used in the CRYSTALS-Kyber scheme, then this high-level function is called

every time that pseudo-random values must be generated (i.e., when H(·), G(·), PRF(·), XOF(·),
KDF(·) functions are called).

6.2.2 Implementation

Relying on the preliminary analysis in Subsection 6.2.1 and without paying attention to

the Keccak- 𝑓 [1600](·) function, it can be seen that high-level functions are mainly processed

based on three other functions: (i) Fqmul(·), (ii) Montgomery Reduction(·), and (iii) Barrett

Reduction(·), which from now on will be categorized as low-level functions. Further analyses of

low-level and Keccak- 𝑓 [1600](·) functions allow us to understand the necessity of their hardware

implementation.

Starting with the Fqmul(·) function, it can be said that it receives two values, multiplies

them, and sends the result to be reduced by the Montgomery Reduction(·) function. Finally, the

reduced value is the output of the Fqmul(·) function. As can be seen, the Fqmul(·) function is

simple, requiring only one multiplication and another function call. However, the multiplication

process in software is not well optimized, requiring some instructions. Consequently, when

multiplications are called in nested loops, which is the case of the Fqmul(·) function, it may take

a signiőcant amount of time to execute all required operations.

The Montgomery Reduction(·) accelerates reductions by transforming the inputs into

a special form called the Montgomery form. It efficiently reduces 𝑎𝑟−1 mod 𝑞, where 𝑎 is

the number to be reduced. As in the CRYSTALS-Kyber scheme, the module 𝑞 is constant;



86

Algorithm #12: Montgomery Reduction(·)
Input:
a: 32-bits integer
Output:
t: 16-bits integer
Constants:
𝑞 := 3329
𝑟 := 16
𝑞−1 : −3327 ⊲ 𝑞−1 mod 2𝑟

Procedure:
𝑡 := 𝑎𝑞−1

Return:
𝑡 := (𝑎 − 𝑡𝑞) ≫ 𝑟

thus, a routine variable can be turned into a constant, sparing processing time. Another

improvement is a wise choice of the constant 𝑟 to replace division by shift operation, a less time

expensive operation. So, if 𝑟 is deőned as the constant integer 16, then the integer 𝑞−1 mod 𝑟

is the constant integer −3327. As the Montgomery Reduction(·) function is required many

times in the CRYSTALS-Kyber scheme, a wise choice of 𝑟 and the use of a precalculated

constant considerably reduce the time consumed by this function. Algorithm #12 illustrates the

Montgomery Reduction(·) function.

The Barrett Reduction(·) function aims to optimize the operation 𝑐 = 𝑎 mod 𝑞 by

pre-calculating a constant and assuming that 𝑞 does not change. This way, it can avoid the

slowness of long divisions, which multiplications can replace. Algorithm #13 shows the Barrett

Reduction(·) function.

The Keccak- 𝑓 [1600](·) function is the core of Keccak, which is a family of sponge func-

tions standardized as SHA3-224 to SHA3-512 hash functions, and SHAKE128 and SHAKE256

extendable output functions in Federal Information Processing Standards (FIPS) 202 [141]. In the

Algorithm #13: Barrett Reduction(·)
Input:
a: 16-bits integer
Output:
t: 16-bits integer
Constants:
𝑞 := 3329
𝑣 := ((1 ≪ 26) + 𝑞/2)/𝑞
Procedure:
𝑡 := (𝑣𝑎 + (1 ≪ 25)) ≫ 26
𝑡 := 𝑡𝑞
Return:
𝑡 := 𝑎 − 𝑡



87

Figure 19 ś Three-dimensional state array of the Keccak- 𝑓 [1600](·) function.

X

3 4 0 1 2

2

1

0

4

3

Y

0
1

2

...
T

Z

Source: Personal collection.

CRYSTALS-Kyber scheme, the function H(·) actually performs a SHA3-256 hash function and

G(·) performs a SHA3-512. On the other hand, XOF(·) performs SHAKE128, and PRF(·) and

KDF(·) perform SHAKE256. The functions mentioned above make use of the Keccak- 𝑓 [1600](·)
function, which is detailed in the following paragraphs.

The Keccak- 𝑓 [1600](·) function is performed in őve steps, which are called 𝜃, 𝜌, 𝜋, 𝜒, and

𝜄. The algorithm for each step takes a state array as input, calledA, and outputs an updated array,

calledA′. The stateA can be seen as a three-dimensional array where each piece is one bit of the

state. The size ofA depends on the speciőcation of the Keccak function; however, it has to follow

the dimensions of 𝑥-by-𝑦-by-𝑧, in which 𝑥 and 𝑦 are equal to 5 for the Keccak- 𝑓 [1600](·) function.

Consequently, 1600 in the Keccak- 𝑓 [1600](·) function means that there are 1600 bits in the state

array, consequently, 𝑧 must be equals to 64. Figure 19 illustrates the three-dimensional state

array. In this sense, let 0 ≤ 𝑖 < 𝑥, 0 ≤ 𝑗 < 𝑦, and 0 ≤ 𝑤 < 𝑧, variables that are associated with

𝑥, 𝑦, and 𝑧 axes, respectively. A lane is deőned by lane(𝑖, 𝑗) = A[𝑖, 𝑗 , 0] ∥ ... ∥ A[𝑖, 𝑗 , 𝑧 − 1],
while a column is deőned by column(𝑖, 𝑤) = A[𝑖, 0, 𝑤] ∥ ... ∥ A[𝑖, 𝑦 − 1, 𝑤].

It is important to emphasize that each step seeks to scramble the previous state as follows:

in the őrst step 𝜃, each bit inA is xored with the parity of the two columns in the array computed

by a predeőned function; step 𝜌 rotates the bits of each lane by a predeőned offset, which depends

on the 𝑥 and 𝑦 coordinates of the current lane; step 𝜋 aims to rearrange the position of the lanes.

In step 𝜒, each state bit is xored with a non-linear function of two other bits in its row; őnally,

step 𝜄 modiőes some of the bits of lane(0, 0). More details can be found in [141]. Due to the

absorb and squeezing characteristics of sponge functions, the Keccak- 𝑓 [1600](·) function may

be executed a few times until all data is processed.



88

Figure 20 ś The Block diagram for the proposed hardware/software implementation. The arrows represent
32-bit buses. Note that the control signals are omitted.

A

C D

B

E

Source: Personal collection.

6.3 HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

This section details the proposed hardware/software co-design implementation using the

ARM Cortex-A9 together with the FPGA (i.e., Implementation #3) of the CRYSTALS-Kyber

scheme. Figure 20 shows the block diagram of the proposed hardware/software implementation of

the CRYSTALS-Kyber scheme. As the FrodoKEM hardware/software co-design implementation

presented in Chapter 5, this implementation can also be divided into three main instances: PS,

Interconnect, and PL. The PS is responsible for hosting the ARM Cortex-A9 processor, where

the software implementation is placed. The interconnect controls the data exchange between

the PS and PL using the AXI-MM [143]. The PL, based on an FPGA device, is where the most

time-consuming functions (i.e., functions listed in Table 10) are hardware implemented.

Considering the results in Table 10, it can be seen that the execution time reduction

can be attained by implementing the most time-consuming functions (i.e., the high-level

functions) in isolated hardware blocks using the FPGA device, which accelerates the execution

of the CRYSTALS-Kyber scheme. Note that, as elucidated in Subsection 6.2.2, the high-level

functions share the low-level functions, which can be explored for saving hardware resource

usage. Consequently, the high-level functions are implemented in separate hardware blocks,

and although all of them can access the low-level functions, they can also be implemented in

independent hardware blocks. From now on, the functions implemented in hardware will be

called blocks and not functions to differentiate the software implementation from the hardware

one.

Furthermore, the hardware implementation also reduces data communication burden,

which is accomplished by using the DMA and saving memory due to using the dual BRAMs with

dual-port each. Both DMA and dual BRAMs are used by all high-level blocks. Also, they work

as interfaces between the ARM processor and FPGA device. Figure 21 shows the block diagram

for the hardware implementation, which illustrates the high-level and low-level blocks in the PL,

omitting control signals and simplifying the block connections. MR and BR are acronyms for

Montgomery Reduction and Barrett Reduction in this block diagram.



89

Figure 21 ś Block diagram of the proposed hardware implementation for the CRYSTALS-Kyber scheme.
Interface blocks are highlighted in dark gray, high-level blocks in light gray, and low-level blocks in purple.
Control signals have been omitted and connections simpliőed.

A

B

D

E

I

I

I

I

I

F

G

J

K

K

K

K

J

J

J

J

C

I J

H

L

Source: Personal collection.

Note that the DMA transfers data to/from the Interconnect to/from the FPGA device. The

dual BRAM block is constituted of two BRAMs with dual-port each, enabling double write/read

operations at once per BRAM. When data is received from the PS, it is stored in one of the

BRAMs and can be processed. To accelerate the data transmission between the PS and PL, it is

concatenated two 16-bit words to use a 32-bit bus, transmitting two words at once, which are

stored in the BRAM. Consequently, each position loads two 16-bit words at once. Moreover, as

a BRAM owns a dual-port, two addresses can be read simultaneously, meaning four words of

16-bit each can be loaded at a time.

After the data reception, one of the high-level blocks reads the data in the BRAM

(i.e., four 16-bit words) and processes it using the low-level blocks when required (i.e., Fqmul,

Montgomery Reduction, and Barrett Reduction). It is important to note that low-level blocks

are shared between high-level blocks to reduce hardware consumption, saving DSP blocks and

LUTs. The implemented blocks are brieŕy detailed as follows:

• Tomont block. It converts all polynomial coefficients from the usual domain to the

Montgomery domain. In this sense, this block multiplies each coefficient by a constant and

then applies the Montgomery Reduction. As the Tomont block processes four coefficients

in parallel, it requires four DSP blocks and uses four Montgomery Reduction blocks.



90

• Multiply and Accumulate block. It aims to multiply two arrays of polynomials using

the Fqmul block and, consequently, the Montgomery Reduction block in the NTT domain.

Each one of the polynomials of the array is multiplied, coefficient by coefficient, by its

corresponding polynomial in the other array. In the end, the results of the multiplications

are summed up and presented at the block output. Moreover, the Multiply and Accumulate

block does not use any DSP block since the multiplication takes place in the Fqmul block;

however, it uses six Fqmul blocks and two Barrett Reduce blocks.

• NTT and NTT−1 blocks. They apply the forward and inverse NTT to all coefficients of an

array of polynomials. In this sense, two Fqmul blocks and two Barrett Reduction blocks

are used.

• Reduce block. It applies a reduction to each coefficient in an array of polynomials,

requiring four Barrett Reduction blocks because four 16-bit words are loaded from the

BRAM at once.

• Keccak- 𝑓 [1600] block. It implements the őve steps aforementioned in Subsection 6.2.2.

It also gets the initial state from one of the BRAMs and stores the updated state using the

other one. See Subsection 6.2.2 for more details.

• Fqmul block. It receives two coefficients from a high-level block and multiplies them,

forwarding the result to a Montgomery Reduction block. Six Fqmul blocks are available;

six Montgomery Reduction blocks are required. As expected, each Fqmul block requires

one DSP block.

• Montgomery Reduction block. It receives the processed value from the Fqmul block

and reduces it, requiring two DSP blocks for performing it, see Algorithm #12 in

Subsection 6.2.2.

• Barrett Reduction block. It receives a coefficient to be reduced, which requires two DSP

blocks as shown in Algorithm #13, see details in Subsection 6.2.2.

It is important to mentioned that all blocks implemented in hardware are timing constant

in order to avoid any timing side-channel attack.

6.4 PERFORMANCE EVALUATION

This section discusses hardware resource and timing analyses of the implementation of

the CRYSTALS-Kyber scheme. The focus is comparative analyses between Implementations

#1 and #2 (i.e., software implementations), brieŕy described in Section 6.2, and the detailed

Implementation #3 (i.e., hardware/software implementation), presented in Section 6.3. In this

sense, this section is organized as follows: Subsection 6.4.1 presents the hardware resource usage

of the blocks implemented in the PL and, in Subsection 6.4.2, the timing analysis comparing the

implementations with and without hardware acceleration.



91

Table 11 ś Hardware resource usage.

Block
name

Number
of

blocks

Slice
LUTs

Slice
Register

BRAM DSP

Tomont 1 67 111 0 4
Multiply and
Accumulate

1 535 676 0 0

Reduce 1 99 248 0 0
NTT 1 287 475 0 0

NTT−1 1 284 463 0.5 0
Keccak-
𝑓 [1600]

1 4206 3458 0 0

Fqmul 6
0

(0)
1

(6)
0

(0)
1

(6)
Montgomery
Reduction

6
1

(6)
80

(480)
0

(0)
2

(12)
Barrett
Reduction

4
1

(4)
33

(132)
0

(0)
2

(8)
Dual BRAM 1 122 107 4 0

DMA 1 1354 1955 2 0
Others - 3312 5190 0 0
Total - 10276 13301 6.5 30

6.4.1 Hardware Resource Analysis

This subsection evaluates the hardware resource demanded by DMA, dual BRAM, and

high-level and low-level blocks, which were discussed in Section 6.3. For this analysis, it does

not matter which security level of the CRYSTALS-Kyber scheme is being used because the

structure of the blocks does not change with the security level. The only difference is that for

higher security levels, more loops these blocks are required to run but using the same resources.

The attained results are reported in Table 11.

Table 11 shows that Keccak- 𝑓 [1600] and DMA are the blocks that require, as expected,

more slice LUTs and slice registers. The former demand more hardware resources to implement

the őve steps, as explained in Subsection 6.2.2. The latter uses many control signals to coordinate

the data transfer between the PL and PS. The dual BRAM is the block demanding more BRAMs,

as expected, because it aims to store the received and processed data. Finally, the Tomont, Fqmul,

Montgomery Reduction, and Barrett Reduction are the operations requiring DSP blocks, agreeing

with the discussion in Section 6.3.

6.4.2 Timing Analysis

To compare the performance of the CRYSTALS-Kyber scheme with and without hardware

acceleration, the following analyses are considered: in Subsection 6.4.2.1 a time comparison

between Implementations #1, #2, and #3 is presented, evaluating the time required to process



92

the key pair generation, encapsulation, and decapsulation. Subsection 6.4.2.2 compares the

high-level functions (using Implementations #1 and #2) and blocks (using Implementations #3)

in terms of time performance. Finally, Subsection 6.4.2.3 thoroughly analyzes each high-level

block, comparing the time that a block is processing data with the time that this block spends

transferring data. Note that each run time measurement was obtained using a high-resolution

timer in order to provide good accuracy.

6.4.2.1 Comparison between the implementations

This subsection focuses on comparing Implementations #1 and #2 with the Implemen-

tation #3 for each security level of the CRYSTALS-Kyber scheme. To do so, it shows the time

required to execute the key pair generation, encapsulation, and decapsulation. Also, it discusses

the total execution time of each implementation.

Table 12 shows that when higher security levels are used, the total execution time

increases independent of the implementation used. This fact occurs due to the use of more

polynomials in order to increase security, which requires more execution time. It is also clear that

using the Implementation #1, the total execution time to perform the CRYSTALS-Kyber-512,

-768, and -1024 schemes are 37.435, 62.558, and 101.858 ms, respectively, while using the

Implementation #2, the total execution time to perform the CRYSTALS-Kyber-512, -768,

and -1024 schemes are 12.815, 20.398, and 30.595 ms, respectively. The total execution time

for the same security levels but using the Implementation #3 are 4.054, 5.857, and 8.337

ms, respectively. The relative time improvement (𝛼TI1) between the Implementation #1 and

Implementation #3 and relative time improvement (𝛼TI1) between the Implementation #2 and

Implementation #3 are given by

𝛼𝑘TI1
= 1 −

(
𝑇 𝑘TET3

𝑇 𝑘TET1

)
, (6.1)

and

𝛼𝑘TI2
= 1 −

(
𝑇 𝑘TET3

𝑇 𝑘TET2

)
, (6.2)

where 𝑇 𝑘TET1
, 𝑇 𝑘TET2

, and 𝑇 𝑘TET3
are the total execution time of Implementations #1, #2, and

#3, respectively. The 𝛼𝑘TI1
achieved are 89.17%, 90.63%, and 91.81%, while the 𝛼𝑘TI2

achieved

are 68.36%, 71.28%, and 72.75% for the CRYSTALS-Kyber-512, -768, and -1024 schemes,

respectively.

It is important to note that 𝛼𝑘TI1
and 𝛼𝑘TI2

increase as the security level rises. In fact, at

higher security levels, more data must be processed and transferred to/from the PS and PL. Also,

𝛼𝑘TI1
and 𝛼𝑘TI2

increase because the processing in the hardware is faster than in software, and this

fact compensates for the increase of the communication burden. In the end, higher relative time

improvement for higher security levels can be seen.



93

Table 12 ś The average execution time of CRYSTALS-Kyber for different levels of hardware implementa-
tions with 5000 simulations for each implementation, in ms.

Scheme Algorithm
Implemen-
tation #1

Implemen-
tation #2

Implemen-
tation #3

Relative Time
Improvement

(𝛼𝑘TI1
)

Relative Time
Improvement

(𝛼𝑘TI2
)

Key Pair
Generation

9.776 3.286 0.869

Encapsulation 13.446 4.465 1.393
Decapsulation 14.213 5.062 1.792

CRYSTALS-
Kyber-512

Total 37.435 12.815 4.054

89.17% 68.36%

Key Pair
Generation

16.824 5.436 1.407

Encapsulation 22.328 7.103 2.014
Decapsulation 23.406 7.858 2.436

CRYSTALS-
Kyber-768

Total 62.558 20.398 5.857

90.63% 71.28%

Key Pair
Generation

28.630 8.539 2.183

Encapsulation 35.653 10.575 2.845
Decapsulation 37.575 11.480 3.308

CRYSTALS-
Kyber-1024

Total 101.858 30.595 8.337

91.81% 72.75%

6.4.2.2 Execution Time Analysis

This subsection seeks to analyze only the high-level functions (implemented using the

ARM Cortex-M4F and ARM Cortex-A9) and blocks (using the FPGA) individually, ignoring

their impact on the whole implementation. Table 13 presents the comparison for the CRYSTALS-

Kyber-512. The other security levels of this scheme were omitted since similar results were

obtained. The average execution time 𝑇 𝑘AET1
, 𝑇 𝑘AET2

, and 𝑇 𝑘AET3
of Implementations #1, #2, and

#3, respectively, are expressed as

𝑇 𝑘AET1
=

𝑁𝐼∑︁
1

𝑇 𝑘TET1
, 𝑖

𝑁𝐼
, (6.3)

𝑇 𝑘AET2
=

𝑁𝐼∑︁
1

𝑇 𝑘TET2
, 𝑖

𝑁𝐼
, (6.4)

and

𝑇 𝑘AET3
=

𝑁𝐼∑︁
1

𝑇 𝑘TET3
, 𝑖

𝑁𝐼
, (6.5)

where (𝑇 𝑘TET1
, 𝑖), (𝑇 𝑘TET2

, 𝑖), and (𝑇 𝑘TET3
, 𝑖) are the total execution time using Implementations

#1, #2, and #3, respectively, during the 𝑖th simulation while 𝑁I is the number of simulations of

each function or block, which was arbitrarily set to 5000. It is important to highlight that the

communication burden between the PL and PS is included in the 𝑇 𝑘AET3
. Finally, the relative time

improvement 𝛽𝑘TI1
between the Implementations #1 and #3, and relative time improvement 𝛽𝑘TI2

between the Implementations #2 and #3, see their values in Table 13, are given by

𝛽𝑘TI1
= 1 −

(
𝑇 𝑘AET3

𝑇 𝑘AET1

)
. (6.6)



94

Table 13 ś Average execution time analysis in 𝜇s.

Algorithm

Average Execution Time
Relative Time
Improvement

(𝛽𝑘TI1
)

Relative Time
Improvement

(𝛽𝑘TI2
)

Implemen-
tation #1
(𝑇 𝑘AET1

)

Implemen-
tation #2
(𝑇 𝑘AET2

)

Implemen-
tation #3
(𝑇 𝑘AET3

)

Tomont 38.983 26.989 11.825 69.66% 56.18%
Reduce 77.958 48.896 17.723 77.26% 63.75%

Multiply and
Accumulate

672.425 212.740 22.249 96.69% 89.54%

NTT 1038.058 378.480 37.179 96.41% 90.18%
NTT−1 1609.625 550.380 37.214 97.68% 93.24%

Keccak- 𝑓 [1600] 176.808 56.846 9.434 94.66% 83.40%

and

𝛽𝑘TI2
= 1 −

(
𝑇 𝑘AET3

𝑇 𝑘AET2

)
. (6.7)

Since the average execution times and relative time improvements of both security levels of

768 and 1024 of the CRYSTALS-Kyber are almost the same as in the CRYSTALS-Kyber-512

scheme, they were omitted.

Table 13 shows that the algorithm for the Multiply and Accumulate, NTT, and NTT−1

spend a signiőcant amount of time on software (i.e., Implementations #1 and #2). It occurs

since both of them require a lot of multiplications, which are expensive software operations. On

the other hand, these operations are performed in parallel, and dedicated DSP blocks are used

to perform this operation in hardware (i.e., Implementation #3). Consequently, these blocks

show the highest 𝛽𝑘TI1
and 𝛽𝑘TI2

. The Keccak- 𝑓 [1600] is another block with a high 𝛽𝑘TI1
and 𝛽𝑘TI2

because it is looped-based. Consequently, it requires signiőcant time to be executed in software;

however, in hardware, its execution time is reduced.

Last but not least, the Tomont and Reduce blocks attain the lowest 𝛽𝑘TI1
and 𝛽𝑘TI2

. The

reason is that their implementations require a low number of multiplications, making the

hardware performance improvement of these blocks less signiőcant compared to software

implementations. Nevertheless, they attain improvement greater than 69% and 77% when

compared with Implementation #1, and 56% and 63% when compared with Implementation

#2, respectively.

6.4.2.3 Hardware processing time analysis

The hardware processing time analysis is another evaluation parameter that deserves

attention. We focus only on Implementation #3 to conduct this analysis. We compare the

average execution time in hardware (𝑇 𝑘AET3
), already presented in the fourth column of Table 13,

versus its processing time only. The 𝑇 𝑘AET3
can be separated into two components, and it is given



95

Table 14 ś Hardware processing time analysis in 𝜇s.

Algorithm
Average Execution
Time in Hardware

(𝑇 𝑘AET)

Average Processing
Time in Hardware

(𝑇 𝑘APT)

Relative Time
(𝛾𝑘T)

Tomont 11.825 0.750 6.34%
Reduce 17.723 1.380 7.79%
Multiply and
Accumulate

22.249 2.940 13.21%

NTT 37.179 20.720 55.73%
NTT−1 37.214 20.750 55.76%
Keccak- 𝑓 [1600] 9.434 1.300 13.78%

by

𝑇 𝑘AET3
= 𝑇 𝑘APT + 𝑇

𝑘
DTT, (6.8)

where the average processing time in hardware (𝑇 𝑘APT) is the time required to process the data, and

the data transfer time (𝑇 𝑘DTT) is the time required to transfer data to/from the PS. Table 14 shows

the attained results in the hardware implementation. Note that, for simplicity, this subsection only

contemplates the analysis for the CRYSTALS-Kyber-512 since very similar results are obtained

using the CRYSTALS-Kyber-768 and -1024 schemes.

Observing the relative time (𝛾𝑘TD), which is given by

𝛾𝑘T =
𝑇 𝑘APT

𝑇 𝑘AET3

, (6.9)

it can be seen that the Tomont, Reduce, Multiply and Accumulate, and Keccak- 𝑓 [1600] blocks

attain a very low 𝛾𝑘TD, which means that these blocks spend much more time transmitting data

between the PL and PS than actually processing them. It occurs for two main reasons: (i) the

processing is simple, and (ii) a signiőcant amount of data needs to be transmitted.

On the other hand, the NTT and NTT−1 blocks have a 𝛾𝑘TD higher than 50%, which means

that these two blocks spend more time processing data than transferring them. The reason for

a higher 𝛾𝑘TD is that the NTT and NTT−1 blocks (i) have a few data to transfer to/from the PL

and (ii) require a considerable amount of computation. Note that the worst results would be

obtained without the use of DMA because it accelerates the data transfer between the PS and PL

signiőcantly.

6.5 SUMMARY

This chapter has discussed the feasibility of using the CRYSTALS-Kyber scheme, a

winner in the NIST PQC standardization process, in hardware-constrained equipment, such as

QR-DCMs, for securing sensitive data traveling through AMIs. In this sense, it has presented

a description of software (Implementations #1 and #2) and hardware/software co-design



96

implementation (Implementations #3) of the CRYSTALS-Kyber scheme and a comparison

between them. Evaluating the performance of all designed functions for Implementations #1 and

#2 of the CRYSTALS-Kyber scheme, it can be recognized that the functions listed in Table 10

must be hardware-implemented (i.e., Implementation #3) to come up with a low execution time.

Furthermore, some of these functions share a few routines, which can be hardware implemented

only once to provide additional hardware resource savings. Experimental results have shown that

Implementation #3, accelerating the most time-consuming functions of the CRYSTALS-Kyber

scheme, can reduce the execution time by around 90% and 70% compared to Implementations

#1 and #2. Implementation #3 reduces the execution time from 37.435 ms (Implementation #1)

and 12.815 ms (Implementation #2) to 4.054 ms at the lowest security level and from 101.858 ms

(Implementation #1) and 30.595 ms (Implementation #2) to 8.337 ms at the highest security

level. Moreover, the hardware resource analysis has shown that the CRYSTALS-Kyber scheme

could be embedded in hardware-constrained equipment that makes use of SoC FPGA device.

For instance, QR-DCMs, in which an FPGA runs the most-time consuming component of the

PQC scheme. Since the CRYSTALS-Kyber scheme is a fast and lightweight PQC scheme based

on module lattices, it can be efficiently embedded in QR-DCM through a hardware-constrained

implementation. Consequently, it is a good candidate for improving security in AMI under

classic and quantum computers. Overall, the detailed analyses of this chapter have shown that

the implementations of the CRYSTALS-Kyber scheme are suitable for QR-DCMs.



97

7 AN IMPLEMENTATION OF A QUANTUM-RESISTANT AMI

As discussed in Section 2.2, there are different approaches to achieve a QR-AMI.

Approaches #1 and #2 modify SMs to enable then to embed PQC schemes, although it would

require new compliance tests and might also require new hardware designs, enabling the current

SMs already deployed on the őeld to embed such PQC schemes. On the other hand, Approach #3

only requires a speciőc module (i.e., a QR-DCM) to be installed connected to SMs and MDMSs

to quickly arms AMIs against quantum threats.

Based on this discussion, large-scale implementations of AMIs can only be accomplished

with low-cost solutions, which means that QR-DCMs must be based on hardware-constrained

devices; however, no study compared different hardware ś e.g., low-power microcontroller

and SoC FPGA devices ś to enable a QR-AMI. In this regard, based on the results achieved

in Chapters 5 and 6, this chapter proposes an AMI based on quantum-resistant schemes (i.e.,

QR-AMI) to protect key agreements and sensitive data exchange between consumers/prosumers

and electric utilities against attacks from quantum and classical computers when implementation

issues are considered. The main contributions of this chapter are as follows:

• The proposal of a QR-AMI that relies on FrodoKEM or CRYSTALS-Kyber (already

discussed in Chapter 5 and 6, respectively) as asymmetric cryptographic schemes, and

the AES-256-GCM performing symmetric cryptography. Also, the introduction of the

QR-DCM for including and enabling quantum-resistant key agreements between parties

and quantum-resistant encryption and authentication of sensitive data traveling through the

AMI.

• The implementation of the QR-AMI based on different hardwares (i.e., low-power microcon-

troller and SoC FPGA device) using different implementations (i.e., Implementations #1,

#2, and #3) that highlights how the QR-DCM interacts and communicates with the

well-known components of an AMI.

• A compilation of the performance comparison between the implementations based on

low-power microcontrollers, low-cost processor, and SoC FPGA device in terms of resource

usage and timing performance presented in Chapters 5 and Chapter 6, and a discussion of

scenarios in which the implementations are more suitable.

The rest of this chapter is organized as follows: Section 7.1 proposes and implements

a QR-AMI based on QR-DCMs and Section 7.2 evaluates the proposed QR-AMI. Finally,

Section 7.3 states some concluding remarks.

7.1 THE QUANTUM-RESISTANT AMI

This section presents the proposed QR-AMI and its key elements. In this sense,

Subsection 7.1.1 discusses suitable cryptographic schemes for a quantum-resistant AMI, while



98

Subsection 7.1.2 discusses the QR-AMI and the main requirements for it to be considered

quantum-resistant. Later, Section 7.1.3, presents a practical implementation, highlighting its

main components.

7.1.1 Suitable Cryptographic Schemes For a Quantum-Resistant AMI

This subsection discusses the most appropriate cryptographic schemes to be evaluated in

a QR-AMI. As extensively discussed in Chapters 5 and 6, FrodoKEM and CRYSTALS-Kyber are

promising choices as asymmetric cryptographic schemes for providing a quantum-resistant KEM.

The FrodoKEM scheme is considered cryptographically stronger, at least in theory, compared to

the CRYSTALS-Kyber. Although, it comes at the cost of worse timing performance. On the

other hand, the CRYSTALS-Kyber scheme relies on a lightweight approach, presenting a better

timing performance. Due to that contrast between these schemes, it is interesting their evaluation

performing KEM in a QR-AMI in order to identify which scenario each one őts better.

Regarding the symmetric cryptographic scheme, a suitable one for AMIs must be reliable,

fast, and lightweight. It is also desirable that this scheme can be combined to provide AEAD. In

this sense, two options stand out from the others: (i) AES-256-GCM and (ii) Chacha20-Poly1305.

As presented in Section 4.2.2, both options are secure and perform well, although the former

presents a signiőcant performance improvement when the intrinsic implementation of the AES

is available (i.e., AES instruction set). As QR-AMIs can be based on different platforms and

deployed in various scenarios, it is interesting to choose a symmetric cryptographic scheme that

can be accelerated to handle big data loads. Therefore, the AES-256-GCM is considered and

evaluated as the symmetric cryptographic scheme for the proposed QR-AMIs. For the sake of

simplicity, it will be called AES-GCM henceforth.

7.1.2 A Description of a Quantum-Resistant AMI

A QR-AMI is an infrastructure resistant to attacks in scenarios where adversaries are in

possession of quantum (and classical) computers. Consequently, it must rely on quantum-resistant

asymmetric and symmetric cryptographic schemes, as described in Section 4.2. In this sense,

this chapter proposes the QR-AMI whose block diagram is depicted in Figure 22. It consists of

the three parts already known: i) the consumer/prosumer side; ii) communication infrastructure;

and iii) the electric utility side. Nonetheless, a key element is also introduced between the

consumer/prosumer side and communication infrastructure and between the electric utility side

and communication infrastructure, providing quantum resistance: the QR-DCM.

Currently, no off-the-shelf SM embeds quantum-resistant asymmetric cryptographic

schemes. In this sense, a QR-DCM is required to interface with the SM to collect data and encrypt

it using a quantum-resistant symmetric cryptographic scheme with AEAD (i.e., AES-256-GCM),

and send it through the AMI using the communication infrastructure. The proposed QR-DCM

performs a key agreement through a KEM using either FrodoKEM or CRYSTALS-Kyber before

encrypting and authenticating data, see Subsection 4.2.3 for more details. The introduced



99

Figure 22 ś Block diagram of the proposed QR-AMI divided into i) consumer/prosumer side, ii)
communication infrastructure, and iii) electric utility side.

B

A

D

EC

G

F

I

H

J

K

L

Source: Personal collection.

QR-DCM also receives encrypted data from the communication infrastructure (e.g., control

messages), which needs to be authenticated using AEAD, decrypted using the shared secret, and,

őnally, forwarded to the SM. In our proposed model shown in Figure 22, there is one QR-DCM

for each SM, although multiple SMs can be connected to one QR-DCM. The maximum number

of SMs for each QR-DCM will depend on the project constraints, such as hardware capabilities

and distance between SMs, among others.

On the other hand, the QR-DCM on the electric utility side interfaces with the commu-

nication infrastructure receiving/sending encrypted and authenticated data. As the QR-DCM

presented on the consumer/prosumer side, it checks the authenticity of received data through

the AEAD and decrypts it using a quantum-resistant symmetric cryptographic scheme (i.e.,

AES-256-GCM). Next, data correctly authenticated is forwarded to the MDMS. Naturally, a key

agreement is previously executed using a quantum-resistant asymmetric cryptographic scheme

(i.e., FrodoKEM or CRYSTALS-Kyber). It is important to note that the QR-DCM on the electric

utility side receives/sends a considerable amount of data depending on the size of the AMI (i.e.,

depending on how many SMs are presented on it). Therefore, the hardware resource of this

QR-DCM must be carefully dimensioned.

7.1.3 Implementation of the Quantum-Resistant AMI

This subsection details an implementation of the QR-AMI when Approach #3 is

considered. In this sense, Figure 23 shows the implementation carried out to emulate a

simpliőed AMI in which QR-DCMs are implemented in speciőc microcontroller- and SoC-based

development boards. Details of this implementation are presented as follows.

7.1.3.1 Smart Meter

The SMs, tagged as #1𝐴 and #1B in Figure 23, are the SMW3000 manufactured by

WEG [146]. It is an ANSI bottom-connected type three-phase meter for direct measurement



100

Figure 23 ś An implementation of the proposed QR-AMI.

A

B

C

D

E

F

G

H I J

Source: Personal collection.

up to 120 A. The SMW3000 supports the communication protocol Device Language Message

Speciőcation (DLMS)/Companion Speciőcation for Energy Metering (COSEM) through different

interfaces (e.g., local port, Ethernet, optical port, serial communication), enabling integration

with different market technologies. The DLMS/COSEM protocol is the global standard protocol

for energy smart management, advanced control, and innovative metering [147]. In this particular

implementation, the SM communicates with the QR-DCM using DLMS/COSEM protocol

through serial communication. Notice that in a future off-the-shelf product, the QR-DCM,

discussed in Subsection 7.1.2, may be the processing unit of the SM or part of it in order to

reduce costs, see the description of Approaches #1 and #2.

7.1.3.2 Quantum-Resistant Dedicated Cryptographic Module

The QR-DCMs, tagged as #2𝐴, #2𝐵, and #2𝐶 in Figure 23, are central pieces because

they allow the proposed AMI to be quantum-resistant. Besides embedding quantum-resistant

asymmetric and symmetric cryptography, the QR-DCM also embeds the DLMS/COSEM protocol

to communicate with the SM properly. Depending on the scale of the AMI, the QR-DCM may

demand speciőc processing power, mainly for the QR-DCM used by the electric utility, because

it will need to communicate with all other QR-DCMs of the QR-AMI. Relying on Approach

#3, the QR-DCM implementation can be accomplished using a microcontroller- and SoC-based

technologies because both of them offer distinct tradeoffs for implementing QR-DCMs.

The hardware tagged as #2𝐴 in Figure 23 is a low-energy consumption microcontroller

and, consequently, a limited processing unit for performing its tasks, which őts well for processing



101

a small amount of data. For instance, on the consumer/prosumer side, connected to only

one or a few SMs, or even on the electric utility side when an AMI is dedicated to a small

number of SMs. This hardware is based on Implementation #1, consequently, symmetric

(i.e., AES-256-GCM) and asymmetric (i.e., FrodoKEM and CRYSTALS-Kyber) cryptography

schemes are implemented in software. As the processing power of a microcontroller is low, the

execution times demanded to run these cryptography schemes are long.

On the other hand, the hardware tagged as #2𝐵 and #2𝐶 are based on SoC FPGA

device which őts better in scenarios demanding high processing power. For example, when one

QR-DCM is connected to many SMs on the consumer/prosumer side, or on the electric utility

side when a large number of SMs constitute the AMI. Due to the board ŕexibility, it is allowed

different implementation techniques, such as Implementation #2 (i.e, a software implementation

using only the ARM Cortex-A9) or Implementation #3 (i.e., hardware/software co-design

implementation using ARM Cortex-A9 and FPGA together). In the Implementation #3, the

FPGA accelerates the most time-consuming routines of the FrodoKEM and CRYSTALS-Kyber

schemes, signiőcantly reducing their processing time, see Chapter 5 and 6 for more details. The

acceleration brings signiőcant impacts when a QR-DCM at the electric utility side needs to

communicate simultaneously with several others QR-DCMs located on the consumer/prosumer

side. Note that symmetric cryptography (i.e., AES-256-GCM) is not processing intensive when

short data lengths are required to be encrypted, as occurs in AMIs compared to asymmetric

cryptography (i.e., FrodoKEM and CRYSTALS-Kyber). Consequently, the former cryptography

does not demand hardware acceleration. Section 2.2 shows more details about the hardware used.

Regardless of the hardware adoption, the QR-DCM communicates with the SM using the

DLMS/COSEM protocol through serial communication. Also, it communicates with the MDMS

through serial communication but using JavaScript Object Notation (JSON), a lightweight data

formatting standard, which is much more efficient. An Ethernet connection also connects to

the DCU. The communication between the QR-DCM and the MDMS is carried out using

serial communication using JSON. Nonetheless, the communication between the QR-DCM and

MDMS can rely on any communication protocol, which will depend on physical constraints, the

distance between them, expected performance, and the required security level, among others.

7.1.3.3 Communication Infrastructure

The communication infrastructure only comprises a commercial D-Link DSL-2740E

router, tagged as #3 in Figure 23, which forwards packets from one node to another (i.e., allows

two-way communication) using the Ethernet network. Note that all the QR-DCMs are connected

in the same data network, so they can easily communicate with each other. As it is aimed to focus

on the implementation aspects of the quantum-resistant functionality in a QR-AMI, the type of

communication infrastructure is not a relevant issue; therefore, no further efforts are necessary to

embrace this matter.

In a real QR-AMI implementation, the Ethernet network can be replaced by a short-range



102

data network for providing data communication between SMs/QR-DCMs and the DCU. On the

other hand, a long-range data network can be implemented for performing the data communication

between DCU and QR-DCMs at the electric utility side.

7.1.3.4 MDMS

Regarding the MDMS, tagged as #4 in Figure 23, it is emulated on a Python applica-

tion with Flask, a micro-framework suitable for small applications with simple requirements,

communicating with the QR-DCM. Mainly, it receives decrypted and authenticated data from

the QR-DCMs, which contains information collected by SMs, and presents it on a screen using

Flask. As for the simulated communication infrastructure, no further efforts were spent trying to

emulate an MDMS better because it would not bring any relevant contribution to the scope of

this work.

7.2 PERFORMANCE EVALUATION

This section seeks to evaluate the proposed QR-AMI. The analysis focuses on the

QR-DCM since it is the central piece that allows the quantum-resistant communication within AMI.

As already discussed in Section 5.2, Implementations #1 and #2 aim to show the performance

difference between low- and high-power processing units based on a microcontroller (ARM

Cortex-M4F) and a low-power processor (ARM Cortex-A9) only, while Implementation #3

seeks to evaluate the improvement when hardware acceleration is available. Also, hardware

acceleration of symmetric cryptography is not considered as it does not bring signiőcant beneőts,

as will be, henceforth, explained and justiőed.

For a fair comparison, the source codes used for all implementations are based on those

submitted to the NIST PQC standardization process [124]. Furthermore, regarding the FrodoKEM,

only the FrodoKEM-640 hardware acceleration is contemplated because its more secure versions

(i.e., FrodoKEM-976 and FrodoKEM-1344) would consume a considerable amount of resources,

especially BRAMs, as extensively discussed in Chapter 5. Regarding the CRYSTALS-Kyber, all

security levels present similar resource usage, as shown in Chapter 6. This section, however, is

focused on the CRYSTALS-Kyber-512 to fairly compare both asymmetric cryptographic schemes

in terms of security. The implementation of the asymmetric and symmetric cryptographic

schemes is evaluated in terms of resource usage and timing performance in Subsections 7.2.1

and 7.2.2, respectively. Furthermore, Subsection 7.2.3 discusses the most advisable choices for

the QR-AMI based on the results presented in the aforementioned subsections.

7.2.1 Resource Usage

This subsection evaluates the resource usage of Implementations #1, #2, and #3. In

this sense, Subsection 7.2.1.1 analyses the resource usage of the software part, whereas Subsec-



103

tion 7.2.1.2 addresses the hardware resources of the hardware/software co-design implementation

only.

7.2.1.1 Memory Resources

In this analysis, the memory resource usage of Implementations #1 and #2 based on

software, and the software part of Implementation #3 is evaluated. Three main segments

are evaluated for each implementation: (i) the text segment, which contains the executable

instructions; (ii) the read-only data segment, which contains static constants (e.g., global constants)

and cannot be altered at run time; and (iii) the data segment, which contains initialized static

variables (e.g., global variables and static local variables) and can be modiőed at run time. The

őrst two segments are usually stored in ŕash memory as they are constant during the entire run

time. On the other hand, variables presented in the data segment might be altered at run time,

therefore it is stored in RAM.

Figure 24 depicts the memory usage of the three aforementioned segments. Note that

implementations based on the ARM Cortex-M4F (i.e., Implementation #1) use fewer memory

resources than ARM Cortex-A9-based implementations (i.e., Implementation #2). Although

the source codes are similar in both implementations, their compilations differ. More powerful

processors such as ARM Cortex-A9 tend to be more complex, especially the management part,

running in the background, resulting in more resource usage. Naturally, such processors also

have more resources available to handle this higher complexity, as pointed out in the description

of the evaluation kit in Section 7.1.3.2.

Comparing Implementation #2 and Implementation #3 using the same scheme, it can

be seen that the hardware/software co-design implementation (i.e., Implementation #3) uses

fewer memory resources than the software implementation (i.e., Implementation #2). It occurs

because the functions that are hardware implemented in the Implementation #3 are not compiled,

saving memory resources. However, the difference in size between each segment is insigniőcant

when it exists because only some functions are hardware accelerated, see Chapters 5 and 6.

Under the same implementation, the FrodoKEM uses fewer memory resources than the

CRYSTALS-Kyber scheme in Implementations #2 and #3. On the other hand, this scenario

is reversed in Implementation #1 so that the CRYSTALS-Kyber is more economical (except

for the read-only data segments, which are very similar in size). Besides using similar source

codes, this scenario inversion occurs because they use different compilers. Therefore, a scenario

presented by one compilation does not necessarily reŕect on the others.

7.2.1.2 Hardware resources

This analysis compares the hardware resource usage of the FrodoKEM and CRYSTALS-

Kyber schemes and therefore it considers only the Implementation #3. Four main resources

are evaluated: (i) slice LUTs, which are small asynchronous RAMs manipulated to implement

combinational logic; (ii) slice registers, based on Flip Flop (FF) and used to hold states,



104

Figure 24 ś Memory usage for text, read-only data, and data segments in bytes of the FrodoKEM and
CRYSTALS-Kyber schemes considering Implementations #1, #2, and #3.

G H I J L M N

E

CCCCCCCCCCC

BBBBBBBBBBBB

AAAAAAAAAAAA

3768

3696

192

3760

3760

704

6348

6244

2150

6484

6580

1893

396984

404864

62194

230528

243520

64874

AAAAAAAAAAAAAA

BBBBBBBBBBBBBB

CCCCCCCCCCCCCC

DDDDDDDDDDDDDD

EEEEEEEEEEEEEE

FFFFFFFFFFFFFF

Source: Personal collection.

Figure 25 ś Hardware resource usage of the FrodoKEM and CRYSTALS-Kyber implementations in terms
of Slice LUTs, Slice Register, BRAM, and DSP blocks.

G H I J L

E

B

A

30

6.5

13301

10276

12

23.5

8621

8557

AAAAAA

BBBBBB

CCCCCC

DDDDDD

Source: Personal collection.

(iii) BRAM, based on synchronous RAM and used to store large volumes of data; and (iv) DSP

blocks, which are dedicated blocks for performing multiplications, increasing performance, and

reducing logic use (e.g., slice LUTs and registers).

Figure 25 shows the resource usage of the FrodoKEM and CRYSTALS-Kyber schemes.

Observe that the CRYSTALS-Kyber scheme consumes slightly more slice LUTs, slice registers,

and DSP blocks than the FrodoKEM scheme. It can be explained by the fact that FrodoKEM

implements fewer functions in hardware than the CRYSTALS-Kyber scheme, see Chapters 5 and

6. On the other hand, FrodoKEM consumes more BRAMs, because it has longer keys when

compared with CRYSTALS-Kyber, see Table 1. Consequently, it uses more memory to store and

operate on them temporarily.



105

7.2.2 Timing Analysis

This subsection presents a timing analysis of the QR-DCM. In this regard, Subsec-

tion 7.2.2.1 compares the execution time of the asymmetric cryptographic schemes, while

Subsection 7.2.2.2 presents the timing analysis of the symmetric cryptography.

7.2.2.1 Asymmetric cryptography

Now, it is shown the execution times of key pair generation, encapsulation, and decap-

sulation (i.e., the three steps to perform a key agreement between parties). FrodoKEM and

CRYSTALS-Kyber, which are software and hardware/software implemented (i.e., Implementati-

ons #1, #2, and #3), are then compared based on the total execution time.

Figure 26 shows the execution time results for the aforementioned cases. Notice the

signiőcant difference in the total execution time of the FrodoKEM and CRYSTALS-Kyber

schemes. Comparing the execution time of each implementation technique for the FrodoKEM

with its counterpart for the CRYSTALS-Kyber, the latter is at least a hundred times faster than

the former, regardless of the implementation used in the comparison. This outcome validates the

comparative discussion in Subsection 4.3.2.4.

Regarding the FrodoKEM scheme, its Implementation #3 is around 7.5 and 3.1 times

faster than its Implementations #1 and #2, respectively, reducing the total execution time from

4243.35 ms and 1757.33 ms to 559.72 ms if hardware acceleration is taken into account. The

CRYSTALS-Kyber achieves similar results such that its Implementation #3 is around 9.9 and

3.2 times faster than its Implementations #1 and #2, respectively. As a result, it reduces the total

execution time of Implementations #1 and #2 from 40.02 ms and 12.81 ms, also respectively,

to 4.05 ms when hardware acceleration applies (i.e., Implementations #3).

7.2.2.2 Symmetric cryptography

Regarding symmetric cryptography, the time required to encrypt/decrypt and authenticate

data is directly correlated with the data length of the AES-256-GCM scheme. To encrypt/decrypt

and authenticate 50 bytes, the AES-256-GCM scheme takes 0.262 ms and 0.062 ms using

Implementations #1 and #2, respectively. Based on the obtained results, it can be seen that the

execution time of symmetric cryptography is very small and irrelevant when compared with the

execution time of asymmetric cryptography. This fact conőrms that a hardware implementation

of the AES-256-GCM scheme would not bring relevant advantages in terms of execution time

when small packets of data are required, which is the case of an AMI or a QR-AMI, besides still

consuming hardware resources. For this reason, symmetric cryptography is only implemented in

the software version.



106

Figure 26 ś Timing performance in ms of the FrodoKEM and CRYSTALS-Kyber schemes using
Implementations #1, #2, and #3.

F G H I J L

E

DDDDDD

CCCCCCCCCCCC

BBBBBBBBBBBB

AAAAAAAAAAA

4.05

12.81

37.43

559.72

1757.33

4243.35

1.79

5.06

14.21

208.26

645.35

1423.46

1.39

4.46

13.44

AAAAA

644.74

1432.16

0.87

3.29

9.78

146.35

467.25

1387.73

AAAAAAAAAAAAAA

BBBBBBBBBBBBBB

CCCCCCCCCCCCCC

DDDDDDDDDDDDDD

EEEEEEEEEEEEEE

FFFFFFFFFFFFFF

Source: Personal collection.

7.2.3 Quantum-Resistant AMI Analysis

The FrodoKEM scheme demands a resource usage similar to the CRYSTALS-Kyber and

is considerably slower. Also, the only situation that would be advisable to use the FrodoKEM

would be when robust cryptographic principles, at least in theory, are of utmost importance, as

it relies on mathematical primitives well-established and studied by the academic community,

see Subsection 4.3.2.2. However, FrodoKEM might not be feasible on large QR-AMIs because

it might not meet timing constraints. In all other situations, the CRYSTALS-Kyber scheme

would be a better option. When it comes to symmetric cryptographic schemes, as discussed in

Subsection 4.2.2, AES-256-GCM is suitable in any scenario. It is a lightweight block cipher

with AEAD applicable to be embedded in any hardware.

Regarding QR-DCM, the conditions suitable for using microcontrollers (i.e., Imple-

mentation #1), low-power processor (i.e., Implementation #2), and SoC FPGA devices (i.e.,

Implementation #3) are very distinct. For consumers/prosumers requiring low processing power

(e.g., QR-DCM is only connected to one SM), the hardware based on a microcontroller with an

ARM Cortex-M4F (i.e., Implementation #1) would be more advised aiming to reduce costs.

Nonetheless, if the QR-DCM is connected with multiple SMs, timing constraints will apply

and a processing unit with an ARM Cortex-A9 may suit well (i.e., Implementation #2). In

extreme situations where high processing power is needed, the QR-DCM should be based on

Implementation #3.

On the electric utility side, the size of the AMI must be considered because the QR-DCM

of a MDMS will receive data from all SMs. In this sense, using Implementation #1 would only



107

be possible in a very small AMIs because it is possible to comply with timing constraints. As the

size of the AMI grows, Implementation #2 would be a better choice. In large-size AMIs, where

high loads of data are exchanged, Implementation #3 will be required.

7.3 SUMMARY

This chapter discussed the QR-AMI for securing sensitive data traveling through the

data communication networks against attacks from quantum (and classical) computers. The

QR-AMI mainly relies on implementing cryptography schemes on QR-DCMs, which is based

on two asymmetric cryptographic schemes, one with more robust cryptographic principles (i.e.,

FrodoKEM) and another which performs well (i.e., CRYSTALS-Kyber). As no off-the-shelf

SM supports quantum-resistant asymmetric cryptographic schemes, QR-DCM is a simple so-

lution for including and enabling quantum resistance in AMI. In addition, QR-DCMs rely on

symmetric cryptographic schemes which efficiently encrypt/decrypt and authenticate data (i.e.,

AES-256-GCM). The numerical results show that FrodoKEM and CRYSTALS-Kyber asym-

metric cryptographic schemes present similar resource usage in software (Implementations #1

and #2) and hardware/software co-design implementation (Implementation #3). Regarding

timing performance, the CRYSTALS-Kyber performs considerably better in all implementations.

Although, these schemes present a trade-off between timing performance and security. Theore-

tically, FrodoKEM is cryptographically stronger but at the cost of worst timing performance,

while CRYSTALS-Kyber is the exact opposite. Regarding the execution time of symmetric

cryptography, it is negligible compared to the execution time of asymmetric cryptography. The

implementation of the QR-AMI shows that QR-DCM implemented on a microcontroller or SoC

FPGA device and the use of the FrodoKEM or CRYSTALS-Kyber schemes depends on the

applied constraints. The implementation using a microcontroller suits well in AMI demanding

small data volume. On the other hand, SoC-based implementation is necessary for AMIs that

exchange a large volume of data. Furthermore, the use of the FrodoKEM scheme only makes

sense when stronger cryptographic principles are required. Otherwise, the CRYSTALS-Kyber

scheme is a better choice. Overall, the attained results show that the proposed QR-AMI can

be carried out using QR-DCMs based on low-cost hardware to secure sensitive data exchange

against attacks from quantum (and classical) computers.



108

8 CONCLUSIONS

This dissertation has investigated a few aspects related to the implementation of QR-AMI,

which is an AMI relying on quantum-resistant schemes for providing security and privacy. The

feasibility of implementing asymmetric cryptographic schemes performing key agreements

between parties to secure AMIs facing the threat of quantum computers has been analyzed based

on QR-DCM. Also, the feasibility of implementing a symmetric cryptographic scheme has been

also investigated to perform ciphering/deciphering and authentication of sensitive data traveling

through the AMI from a practical perspective. Overall, it has investigated different directions

for implementing QR-AMI based on a feasible and cost-effective QR-DCMs. The investigated

QR-DCMs can be used AMIs already deployed or be integrated into the new ones.

In this sense, Chapter 2 has presented the state-of-art of AMI security and pointed out

the necessity of advancing the investigation of quantum-resistant schemes for AMIs. Based on

this, a problem formulation regarding the security of AMI in a quantum era has been covered,

where QR-AMI and QR-DCM were detailed. The formulation statement introduced the research

questions investigated in this dissertation.

Chapter 3 has provided a concise description of AMIs, emphasizing its key elements

(consumers/prosumers, communication infrastructure, and electric utility). The communication

infrastructure of AMIs comprises different communication media and relies on various equipment;

this chapter discussed the vulnerabilities, threats, security, and privacy issues.

Chapter 4 has highlighted quantum computers and has discussed which principles they

rely on, why they potentially will break classical cryptography schemes, and their recent advances

and achievements. Cryptographic fundamentals were also discussed, where asymmetric and

symmetric cryptography were reviewed, and how they interact with each other was explained. In

the sequel, the PQC schemes were discussed, which are quantum-resistant schemes (i.e., resistant

against attacks from quantum computers as far as is known). This chapter has also reported

the NIST contest to standardize quantum-resistant schemes. In this contest, the lattice-based

schemes, FrodoKEM and CRYSTALS-Kyber were recognized due to their characteristics. While

the former is based on strong cryptographic principles, at least in theory, the latter is based on a

lightweight ones. In the end, this chapter presented the justiőcation for pursuing FrodoKEM and

CRYSTALS-Kyber schemes for implementing QR-DCM for QR-AMIs.

Chapter 5 has investigated the FrodoKEM as a KEM embedded in QR-DCMs for

QR-AMIs. In this sense, the backgrounds of this scheme were presented, highlighting its main

characteristics. The FrodoKEM relies on the LWE problem, which has a conservative approach

based on strong principles, at least in theory. Although, it comes at the cost of timing performance.

To overcome this issue, this chapter has presented and analyzed a software implementation of

this scheme using two different hardware (i.e., a microcontroller and a low-cost processor). The

analysis aimed to identify the most time-consuming routines, which are good candidates to be

hardware accelerated and, consequently, to improve timing performance. The analysis showed

that two matrix-by-matrix multiplications and a hash function are the most time-consuming



109

routines in the FrodoKEM scheme. Therefore, these routines were implemented in hardware

while the remaining scheme was implemented in software, originating a hardware/software

co-design implementation of the FrodoKEM scheme. Regarding timing performance, the

hardware/software co-design implementation improves by 86.80% and 68.15% compared with

the software implementation in the microcontroller and low-cost processor, respectively. As

the FrodoKEM is a conservative scheme with a not-so-good timing performance, hardware

acceleration is recommended for meeting the timing constraints of AMIs, which impose the

necessity of using hardware with more computational power; however, the strong cryptographic

primitives of the FrodoKEM schemes makes them very interesting choices under the requirement

of more sense of security.

Chapter 6, in contrast with Chapter 5, has investigated the CRYSTALS-Kyber as a

KEM embedded in QR-DCMs for QR-AMIs. The backgrounds of this scheme were discussed,

showing its main characteristics. The CRYSTALS-Kyber relies on the M-LWE problem, which

has a lightweight approach based on polynomial rings (in contrast with matrix-by-matrix

multiplications of FrodoKEM). Although this additional structure (e.g., polynomial rings) might

present weaknesses in a yet-to-be-discovered attack, it is less likely to be applied in M-LWE

problem than in R-LWE problem. On the other hand, its structure signiőcantly enhances timing

performance compared with the LWE problem. Software implementations were evaluated using

two different hardware (i.e., a microcontroller and a low-cost processor), seeking to identify the

most time-consuming routines, which are candidates to be hardware accelerated for improving,

even more, the timing performance. Based on this analysis, the most time-consuming routines

were hardware implemented, aiming to achieve an architecture where commonly required

resources between blocks were shared. The remaining routines were implemented in software,

originating a hardware/software co-design implementation of the CRYSTALS-Kyber scheme.

The attained results showed that the hardware/software co-design implementation improved

≈ 90% and ≈ 70% compared to the software implementation of the microcontroller and low-

cost processor, respectively. Overall, the CRYSTALS-Kyber, the winner of the NIST PQC

standardization process, shows an excellent timing performance; however, hardware acceleration

stands as an interesting alternative when extremely high performance (very short timing constraint)

is required.

Chapter 7 has paid attention to the AMI relying on asymmetric and symmetric quantum-

resistant schemes (i.e., a QR-AMI). In this sense, suitable quantum-resistant cryptographic

schemes for embedding in the QR-AMI were discussed. Besides the asymmetric crypto-

graphic schemes FrodoKEM and CRYSTALS-Kyber scheme already discussed, the symmetric

cryptographic scheme AES-256-GCM is an interesting option for ciphering/deciphering and

authenticating sensitive data. With these schemes embedded in a QR-DCM, an implementation

of a QR-AMI was introduced, highlighting where the QR-DCM should be placed to guarantee a

quantum-resistant AMI. Also, a practical implementation of a QR-AMI was described, paying

attention to the details of its elements. The attained results showed that the resource usage



110

of FrodoKEM and CRYSTALS-Kyber schemes are very similar, but the timing performance

between them is not. The CRYSTALS-Kyber scheme is, at least, a hundred times faster than the

FrodoKEM. For instance, the FrodoKEM requires 559.72 ms to perform key pair generation,

encapsulation, and decapsulation based on the hardware/software co-design implementation

while the CRYSTALS-Kyber requires only 4.05 ms using the same implementation technique.

Based on this, the only situation that would be advisable to adopt the FrodoKEM instead of the

CRYSTALS-Kyber scheme in a QR-AMI would be when robust cryptographic principles, at

least in theory, are of utmost importance. Furthermore, regarding the QR-DCM, the conditions

suitable for using microcontrollers, low-cost processors, and SoC FPGA devices are very distinct.

The use of microcontrollers would be more advised when the QR-DCM is connected to only

one or a few SMs on the consumer/prosumer side. Also, when very small QR-AMI applies, a

microcontroller would be a good choice to be deployed on the electric utility side to reduce costs.

Although, when it is demanded that the QR-DCM connects with multiple SMs simultaneously,

a low-cost processor would be more advisable as more processing power would be required.

Furthermore, when the QR-DCM is connected with the MDMS (i.e., connected with the electric

utility) and it communicates with large-size QR-AMIs, a QR-DCM based on a low-cost processor

would also be advisable. Finally, in extreme scenarios in which a large QR-AMIs must be

deployed, the SoC FPGA device better suits for the MDMS.

As QR-AMI is a new and complex topic to be addressed, the following topics deserve

attention in future works:

• To study optimization techniques that would accelerate the matrix-by-matrix multiplication

of FrodoKEM scheme. Furthermore, optimize data transfer between PS and PL aiming to

reduce the average execution time of the schemes.

• Analysis of optimized software implementations of the FrodoKEM and CRYSTALS-

Kyber scheme focused on characteristics of speciőc targets, instead of the reference

implementation which does not present any optimization. This investigation would seek

to improve timing performance by taking advantage of the architecture and optimizing

resources of processors.

• Evaluation of other symmetric cryptographic schemes, especially the ASCON-80pq

scheme [148], which is the quantum-resistant version of the winner of the NIST lightweight

standardization process, a competition aiming to select a symmetric scheme for Internet of

Things (IoT) devices.



111

REFERENCES

[1] A. Ghasempour and J. Lou, łAdvanced metering infrastructure in smart grid: Requirements,
challenges, architectures, technologies, and optimizations,ž in Smart Grids: Emerging

Technologies, Challenges and Future Directions. Nova Science Publishers, Oct. 2017.

[2] A. Caillé, M. Al-Moneef, F. B. de Castro, A. Bundgaard-Jensen, A. Fall, N. F. de Medeiros,
C. Jain, Y. D. Kim, M.-J. Nadeau, C. Testa et al., łDeciding the future: Energy policy
scenarios to 2050,ž World Energy Council, London, UK, Tech. Rep., Apr. 2007.

[3] L. d. M. B. A. Dib, V. Fernandes, M. de L. Filomeno, and M. V. Ribeiro, łHybrid
PLC/wireless communication for smart grids and internet of things applications,ž IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 655ś667, Oct. 2017.

[4] R. M. de Oliveira, A. B. Vieira, H. A. Latchman, and M. V. Ribeiro, łMedium access
control protocols for power line communication: A survey,ž IEEE Communications

Surveys Tutorials, vol. 21, no. 1, pp. 920ś939, Aug. 2018.

[5] J. Anatory, M. V. Ribeiro, A. M. Tonello, and A. Zeddam, łPower-line communicati-
ons: smart grid, transmission, and propagation,ž Journal of Electrical and Computer

Engineering, vol. 2013, pp. 4ś4, Apr. 2013.

[6] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, łSmart meter data privacy: A
survey,ž IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2820ś2835, June
2017.

[7] łAdvanced metering infrastructure market-growth,ž https://www.mordorintelligence.com
/industry-reports/advanced-metering-infrastructure-market, accessed: 2023-04-13.

[8] łEnel begins installation of smart meters in são paulo,ž https://www.enel.com/media/exp
lore/search-press-releases/press/2021/01/enel-begins-installation-of-smart-meters-in-s
o-saulo, accessed: 2023-04-13.

[9] łCemig investe mais de r$ 200 milhões para modernizar parque de medidores de energia,ž
https://www.cemig.com.br/noticia/cemig-investe-mais-de-200-milhoes-de-reais-par
a-modernizar-parque-de-medidores-de-energia/, accessed: 2023-04-13.

[10] M. Shokry, A. I. Awad, M. K. Abd-Ellah, and A. A. Khalaf, łSystematic survey of
advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and
future vision,ž Future Generation Computer Systems, vol. 136, pp. 358ś377, Nov. 2022.

[11] S. Ali, T. Al Balushi, Z. Nadir, and O. K. Hussain, Embedded Systems Security for

Cyber-Physical Systems. Cham: Springer International Publishing, Mar. 2018, pp.
115ś140.

[12] D. Chen, Z. Li, T. Li, M. Teng, and F. Xie, łBig data based intrusion detection of smart
meters,ž in Proc. 2nd International Conference on Computer, Network Security and

Communication Engineering, May 2017, pp. 108ś112.

[13] P. Yi, T. Zhu, Q. Zhang, Y. Wu, and L. Pan, łPuppet attack: A denial of service
attack in advanced metering infrastructure network,ž Journal of Network and Computer

Applications, vol. 59, pp. 325 ś 332, Jan. 2016.



112

[14] J. Tsai and N. Lo, łSecure anonymous key distribution scheme for smart grid,ž IEEE

Transactions on Smart Grid, vol. 7, no. 2, pp. 906ś914, June 2015.

[15] V. Odelu, A. K. Das, M. Wazid, and M. Conti, łProvably secure authenticated key
agreement scheme for smart grid,ž IEEE Transactions on Smart Grid, vol. 9, no. 3, pp.
1900ś1910, Aug. 2016.

[16] N. Komninos, E. Philippou, and A. Pitsillides, łSurvey in smart grid and smart home
security: Issues, challenges and countermeasures,ž IEEE Communications Surveys

Tutorials, vol. 16, no. 4, pp. 1933ś1954, Apr. 2014.

[17] N. Saxena and S. Grĳalva, łDynamic secrets and secret keys based scheme for securing last
mile smart grid wireless communication,ž IEEE Transactions on Industrial Informatics,
vol. 13, no. 3, pp. 1482ś1491, Sept. 2016.

[18] T. Liu, Y. Liu, Y. Mao, Y. Sun, X. Guan, W. Gong, and S. Xiao, łA dynamic secret-based
encryption scheme for smart grid wireless communication,ž IEEE Transactions on Smart

Grid, vol. 5, no. 3, pp. 1175ś1182, Aug. 2014.

[19] W. Wang and Z. Lu, łCyber security in the smart grid: Survey and challenges,ž Computer

Networks, vol. 57, no. 5, pp. 1344 ś 1371, Apr. 2013.

[20] C. Fan, S. Huang, and Y. Lai, łPrivacy-enhanced data aggregation scheme against internal
attackers in smart grid,ž IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp.
666ś675, Aug. 2014.

[21] P. W. Shor, łAlgorithms for quantum computation: Discrete logarithms and factoring,ž
in Proc. 35th Annual Symposium on Foundations of Computer Science, Nov. 1994, pp.
124ś134.

[22] L. K. Grover, łA fast quantum mechanical algorithm for database search,ž in Proc. 28th

annual ACM symposium on Theory of computing, July 1996, pp. 212ś219.

[23] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, łApplying Grover’s algorithm
to AES: Quantum resource estimates,ž in Post-Quantum Cryptography, T. Takagi, Ed.
Cham: Springer International Publishing, Feb. 2016, pp. 29ś43.

[24] D. Joseph, R. Misoczki, M. Manzano, J. Tricot, F. D. Pinuaga, O. Lacombe, S. Leichenauer,
J. Hidary, P. Venables, and R. Hansen, łTransitioning organizations to post-quantum
cryptography,ž Nature, vol. 605, no. 7909, pp. 237ś243, May 2022.

[25] C. Cheng, Y. Qin, R. Lu, T. Jiang, and T. Takagi, łBatten down the hatches: Securing
neighborhood area networks of smart grid in the quantum era,ž IEEE Transactions on

Smart Grid, vol. 10, no. 6, pp. 6386ś6395, Mar. 2019.

[26] F. Borges, P. R. Reis, and D. Pereira, łA comparison of security and its performance for
key agreements in post-quantum cryptography,ž IEEE Access, vol. 8, pp. 142 413ś142 422,
July 2020.

[27] J. Ahn, H.-Y. Kwon, B. Ahn, K. Park, T. Kim, M.-K. Lee, J. Kim, and J. Chung, łToward
quantum secured distributed energy resources: Adoption of post-quantum cryptography
(PQC) and quantum key distribution (QKD),ž Energies, vol. 15, no. 3, Jan. 2022.



113

[28] M. Hadley, K. Huston, and T. Edgar, łAga-12, part 2 performance test results,ž Pacific

Northwest National Laboratories, Aug. 2007.

[29] P. CODE, łTechnical IEC speciőcation ts 62351-1,ž IEC, May 2018.

[30] S. M. S. Hussain, T. S. Ustun, and A. Kalam, łA review of IEC 62351 security mechanisms
for IEC 61850 message exchanges,ž IEEE Transactions on Industrial Informatics, vol. 16,
no. 9, pp. 5643ś5654, Nov. 2019.

[31] Y. Li, P. Zhang, and R. Huang, łLightweight quantum encryption for secure transmission
of power data in smart grid,ž IEEE Access, vol. 7, pp. 36 285ś36 293, Jan. 2019.

[32] A. Philips, J. Jayaraj, F. Josh, and P. Venkateshkumar, łEnhanced RSA key encryption
application for metering data in smart grid,ž International Journal of Pervasive Computing

and Communications, Nov. 2021.

[33] D. He, H. Wang, M. K. Khan, and L. Wang, łLightweight anonymous key distribution
scheme for smart grid using elliptic curve cryptography,ž IET Communications, vol. 10,
no. 14, pp. 1795ś1802, Sept. 2016.

[34] A. Molina-Markham, G. Danezis, K. Fu, P. Shenoy, and D. Irwin, łDesigning privacy-
preserving smart meters with low-cost microcontrollers,ž in Proc. International Conference

on Financial Cryptography and Data Security. Springer, Jan. 2012, pp. 239ś253.

[35] J. Seo, J. Jin, J. Y. Kim, and J.-J. Lee, łAutomated residential demand response based on
advanced metering infrastructure network,ž International Journal of Distributed Sensor

Networks, vol. 12, no. 2, pp. 1ś4, Feb. 2016.

[36] J. Ni, K. Zhang, K. Alharbi, X. Lin, N. Zhang, and X. S. Shen, łDifferentially private
smart metering with fault tolerance and range-based őltering,ž IEEE Transactions on

Smart Grid, vol. 8, no. 5, pp. 2483ś2493, Feb. 2017.

[37] J. Won, C. Y. T. Ma, D. K. Y. Yau, and N. S. V. Rao, łPrivacy-assured aggregation protocol
for smart metering: A proactive fault-tolerant approach,ž IEEE/ACM Transactions on

Networking, vol. 24, no. 3, pp. 1661ś1674, May 2015.

[38] M. Cazorla, K. Marquet, and M. Minier, łSurvey and benchmark of lightweight block
ciphers for wireless sensor networks,ž in 2013 International Conference on Security and

Cryptography (SECRYPT), July 2013, pp. 1ś6.

[39] J. Lee, K. Kapitanova, and S. H. Son, łThe price of security in wireless sensor networks,ž
Computer Networks, vol. 54, no. 17, pp. 2967 ś 2978, Dec. 2010.

[40] A. Trad, A. A. Bahattab, and S. Ben Othman, łPerformance trade-offs of encryption algo-
rithms for wireless sensor networks,ž in 2014 World Congress on Computer Applications

and Information Systems (WCCAIS), Jan. 2014, pp. 1ś6.

[41] J. H. Kong, L.-M. Ang, and K. P. Seng, łA comprehensive survey of modern symmetric
cryptographic solutions for resource constrained environments,ž Journal of Network and

Computer Applications, vol. 49, pp. 15 ś 50, Mar. 2015.

[42] V. Mai and I. Khalil, łDesign and implementation of a secure cloud-based billing model
for smart meters as an internet of things using homomorphic cryptography,ž Future

Generation Computer Systems, vol. 72, pp. 327ś338, July 2017.



114

[43] S. Finster and I. Baumgart, łPrivacy-aware smart metering: A survey,ž IEEE Communica-

tions Surveys & Tutorials, vol. 17, no. 2, pp. 1088ś1101, Apr. 2015.

[44] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and A. Martin, łSmart grid metering
networks: A survey on security, privacy and open research issues,ž IEEE Communications

Surveys Tutorials, vol. 21, no. 3, pp. 2886ś2927, Feb. 2019.

[45] P.-Y. Kong, łA review of quantum key distribution protocols in the perspective of smart
grid communication security,ž IEEE Systems Journal, vol. 16, no. 1, pp. 41ś54, Oct. 2022.

[46] F. Borges, R. A. Santos, and F. L. Marquezino, łPreserving privacy in a smart grid scenario
using quantum mechanics,ž Security and communication networks, vol. 8, no. 12, pp.
2061ś2069, Aug. 2015.

[47] R. Diovu and J. Agee, łEnhancing the security of a cloud-based smart grid ami network
by leveraging on the features of quantum key distribution,ž Transactions on Emerging

Telecommunications Technologies, vol. 30, no. 6, p. e3587, Mar. 2019.

[48] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, łPractical challenges in quantum key
distribution,ž npj Quantum Information, vol. 2, no. 1, pp. 1ś12, Nov. 2016.

[49] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota, łPost-
quantum lattice-based cryptography implementations: A survey,ž ACM Computing Surveys,
vol. 51, no. 6, Jan. 2019, art. no. 129.

[50] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, łPQC acceleration using GPUs:
Frodokem, newhope, and kyber,ž IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 575ś586, Sept. 2020.

[51] Y. Huang, M. Huang, Z. Lei, and J. Wu, łA pure hardware implementation of CRYSTALS-
kyber PQC algorithm through resource reuse,ž IEICE Electronics Express, vol. 17, no. 17,
Aug. 2020.

[52] J. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppelmann, łHigh-performance and
lightweight lattice-based public-key encryption,ž in Proc. of the 2nd ACM international

workshop on IoT privacy, trust, and security, May 2016, pp. 2ś9.

[53] D. Liu, N. Li, J. Kim, and S. Nepal, łCompact-LWE: Enabling practically lightweight
public key encryption for leveled iot device authentication,ž Cryptology ePrint Archive,
Jan. 2017.

[54] A. Marotzke, łA constant time full hardware implementation of streamlined NTRU prime,ž
in Proc. International Conference on Smart Card Research and Advanced Applications.
Springer, Nov. 2020, pp. 3ś17.

[55] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlichtmann, and
J. Sepulveda, łTowards reliable and secure post-quantum co-processors based on RISC-V,ž
in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2019, pp. 1148ś1153.

[56] T. Fritzmann, G. Sigl, and J. Sepúlveda, łRISQ-V: Tightly coupled RISC-V accelerators
for post-quantum cryptography,ž IACR Transactions on Cryptographic Hardware and

Embedded Systems, pp. 239ś280, Aug. 2020.



115

[57] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, łSapphire: A conőgurable crypto-
processor for post-quantum lattice-based protocols,ž CoRR, vol. abs/1910.07557, Aug.
2019.

[58] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng, łVPQC: A domain-speciőc
vector processor for post-quantum cryptography based on RISC-V architecture,ž IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2672ś2684,
Apr. 2020.

[59] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, łA software/hardware co-design
of CRYSTALS-dilithium signature scheme,ž ACM Trans. Reconfigurable Technol. Syst.,
vol. 14, no. 2, June 2021.

[60] V. Mavroeidis, K. Vishi, M. D., and A. Jùsang, łThe impact of quantum computing
on present cryptography,ž International Journal of Advanced Computer Science and

Applications, vol. 9, no. 3, Mar. 2018.

[61] D. J. Bernstein and T. Lange, łPost-quantum cryptography,ž Nature, vol. 549, no. 7671,
pp. 188ś194, Sept. 2017.

[62] X. Bogomolec, J. G. Underhill, and S. A. Kovac, łTowards post-quantum secure symmetric
cryptography: A mathematical perspective,ž Oct. 2019.

[63] Z. Wan, G. Wang, Y. Yang, and S. Shi, łSKM: Scalable key management for advanced
metering infrastructure in smart grids,ž IEEE Transactions on Industrial Electronics,
vol. 61, no. 12, pp. 7055ś7066, June 2014.

[64] Z. Sadowski, łComparison of PLC-PRIME and PLC-G3 protocols,ž in 2015 International

School on Nonsinusoidal Currents and Compensation (ISNCC), June 2015, pp. 1ś6.

[65] V. L. R. da Costa, V. Fernandes, and M. V. Ribeiro, łNarrowband hybrid PLC/wireless:
Transceiver prototype, hardware resource usage and energy consumption,ž Ad Hoc

Networks, vol. 94, Nov. 2019, art. no. 101945.

[66] H. K. Sahu, A. K. Padhan, S. G. Dontamsetti, and P. R. Sahu, łPerformance analysis of
smart grid network with energy harvesting over mixed rf/plc channel,ž in 2023 National

Conference on Communications (NCC), Feb. 2023, pp. 1ś6.

[67] Â. Camponogara, H. V. Poor, and M. V. Ribeiro, łPLC systems under the presence of
a malicious wireless communication device: Physical layer security analyses,ž IEEE

Systems Journal, vol. 14, no. 4, pp. 4901ś4910, Jan. 2020.

[68] T. R. Oliveira, A. A. Picorone, C. B. Zeller, S. L. Netto, and M. V. Ribeiro, łOn the
statistical characterization of hybrid plc-wireless channels,ž Electric Power Systems

Research, vol. 163, pp. 329ś337, Oct. 2018.

[69] V. Fernandes, H. V. Poor, and M. V. Ribeiro, łA hybrid power line/wireless dual-hop
system with energy harvesting relay,ž IEEE Internet of Things Journal, vol. 5, no. 5, pp.
4201ś4211, July 2018.

[70] T. Oliveira, F. Andrade, A. Picorone, H. Latchman, S. Netto, and M. Ribeiro, łCharacteri-
zation of hybrid communication channel in indoor scenario,ž Journal of Communication

and Information Systems, vol. 31, no. 1, Sep. 2016.



116

[71] H. Harada, K. Mizutani, J. Fujiwara, K. Mochizuki, K. Obata, and R. Okumura, łIEEE
802.15. 4g based Wi-SUN communication systems,ž IEICE Transactions on Communica-

tions, vol. 100, no. 7, pp. 1032ś1043, July 2017.

[72] S. Banerji, łOn IEEE 802.11: Wireless LAN technology,ž CoRR, vol. abs/1307.2661,
Mar. 2014.

[73] V. Fernandes, T. F. A. Nogueira, H. V. Poor, and M. V. Ribeiro, łStatistical modeling of
energy harvesting in hybrid PLC-WLC channels,ž Sustainability, vol. 14, no. 1, Dec. 2021.

[74] M. de L. Filomeno, M. L. R. de Campos, H. Vincent Poor, and M. V. Ribeiro, łHybrid
power line/wireless systems: Power allocation for minimizing the average bit error
probability,ž IEEE Transactions on Communications, vol. 70, no. 2, pp. 810ś821, Dec.
2021.

[75] V. Fernandes, T. Oliveira, and M. Ribeiro, łThe usefulness of the energy harvested
from additive noises in power line and wireless media,ž Journal of Communication and

Information Systems, vol. 35, no. 1, pp. 61ś65, Mar. 2020.

[76] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowő, and J. A. Maestro,
łIEEE 802.3az: the road to energy efficient ethernet,ž IEEE Communications Magazine,
vol. 48, no. 11, pp. 50ś56, Nov. 2010.

[77] M. G. Jaatun, I. A. Tùndel, and G. M. Kùien, łGPRS security for smart meters,ž in 1st

Cross-Domain Conference and Workshop on Availability, Reliability, and Security in

Information Systems (CD-ARES). Springer, Sept. 2013, pp. 195ś207.

[78] E. Ezhilarasan and M. Dinakaran, łA review on mobile technologies: 3G, 4G and 5G,ž in
2017 Second International Conference on Recent Trends and Challenges in Computational

Models (ICRTCCM). IEEE, Oct. 2017, pp. 369ś373.

[79] D. Bian, M. Kuzlu, M. Pipattanasomporn, and S. Rahman, łAnalysis of communication
schemes for advanced metering infrastructure (AMI),ž in 2014 IEEE PES General Meeting

| Conference & Exposition, July 2014, pp. 1ś5.

[80] S. Galli, A. Scaglione, and Z. Wang, łPower line communications and the smart grid,ž in
2010 First IEEE International Conference on Smart Grid Communications, Oct. 2010, pp.
303ś308.

[81] F. P. V. de Campos, L. M. Sirimarco, M. L. R. de Campos, and M. V. Ribeiro, łThe imple-
mentation of the clustered-OFDM-based transceiver on an FPGA device: A comprehensive
comparison,ž IET Communications, vol. 15, no. 6, pp. 824ś839, Feb. 2021.

[82] H. V. Poor, łClustered-orthogonal frequency division multiplexing for power line
communication: when is it beneőcial?ž IET Communications, vol. 8, pp. 2336ś2347(11),
September 2014. [Online]. Available: https://digital-library.theiet.org/content/journals/10.
1049/iet-com.2014.0056

[83] V. L. R. da Costa, H. V. Schettino, A. Camponogara, F. P. de Campos, and M. V. Ribeiro,
łDigital őlters for clustered-ofdm-based plc systems: Design and implementation,ž Digital

Signal Processing, vol. 70, pp. 166ś177, Nov. 2017.



117

[84] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, łCommunication network requirements
for major smart grid applications in han, nan and wan,ž Computer Networks, vol. 67, pp.
74ś88, July 2014.

[85] X. Liu and Z. Li, łFalse data attacks against AC state estimation with incomplete network
information,ž IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2239ś2248, Feb. 2016.

[86] S. Tweneboah-Koduah, A. K. Tsetse, J. Azasoo, and B. Endicott-Popovsky, łEvaluation
of cybersecurity threats on smart metering system,ž in Information Technology-New

Generations. Springer, July 2017, pp. 199ś207.

[87] K. Fu, A. Drobnis, G. Morrisett, E. Mynatt, S. Patel, R. Poovendran, and B. Zorn, łSafety
and security for intelligent infrastructure,ž arXiv preprint arXiv:1705.02002, May 2017.

[88] R. de T. Caropreso, R. A. S. Fernandes, D. P. M. Osorio, and I. N. Silva, łAn open-source
framework for smart meters: Data communication and security traffic analysis,ž IEEE

Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1638ś1647, Feb. 2018.

[89] B. Vaidya, D. Makrakis, and H. Mouftah, łSecure communication mechanism for
ubiquitous smart grid infrastructure,ž The Journal of Supercomputing, vol. 64, no. 2, pp.
435ś455, May 2013.

[90] T. Nghia Le, W. Chin, and H. Chen, łStandardization and security for smart grid
communications based on cognitive radio technologies - a comprehensive survey,ž IEEE

Communications Surveys Tutorials, vol. 19, no. 1, pp. 423ś445, Sept. 2016.

[91] A. A. Khan, M. H. Rehmani, and M. Reisslein, łCognitive radio for smart grids:
Survey of architectures, spectrum sensing mechanisms, and networking protocols,ž IEEE

Communications Surveys Tutorials, vol. 18, no. 1, pp. 860ś898, Sept. 2015.

[92] U. S. Premarathne, I. Khalil, and M. Atiquzzaman, łSecure and reliable surveillance over
cognitive radio sensor networks in smart grid,ž Pervasive and Mobile Computing, vol. 22,
pp. 3 ś 15, Sept. 2015, special Issue on Recent Developments in Cognitive Radio Sensor
Networks.

[93] G. Lee, Y.-S. Kim, and J. Kang, łAn adaptive dos attack mitigation measure for őeld
networks in smart grids,ž in Advances on Broad-Band Wireless Computing, Communication

and Applications, L. Barolli, F. Xhafa, and K. Yim, Eds. Cham: Springer International
Publishing, Oct. 2016, pp. 419ś428.

[94] B. Hu and H. Gharavi, łSmart grid mesh network security using dynamic key distribution
with merkle tree 4-way handshaking,ž IEEE Transactions on Smart Grid, vol. 5, no. 2, pp.
550ś558, Sept. 2013.

[95] S. McLaughlin, D. Podkuiko, and P. McDaniel, łEnergy theft in the advanced metering
infrastructure,ž in Critical Information Infrastructures Security, E. Rome and R. Bloomőeld,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, Jan. 2009, pp. 176ś187.

[96] Z. Zhou, łDesign and implementation about secure smart electricity meter sealing based
on rf tag,ž International Journal of Security and Its Applications, vol. 9, no. 6, pp. 79ś88,
June 2015.



118

[97] H. J. Jo, I. S. Kim, and D. H. Lee, łEfficient and privacy-preserving metering protocols
for smart grid systems,ž IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1732ś1742,
July 2015.

[98] W. Han and Y. Xiao, łNFD: Non-technical loss fraud detection in smart grid,ž Computers

& Security, vol. 65, pp. 187 ś 201, Mar. 2017.

[99] S.-C. Yip, K. Wong, W.-P. Hew, M.-T. Gan, R. C.-W. Phan, and S.-W. Tan, łDetection of
energy theft and defective smart meters in smart grids using linear regression,ž International

Journal of Electrical Power & Energy Systems, vol. 91, pp. 230 ś 240, Oct. 2017.

[100] łSmart grid security myths vs. reality,ž SilverSpring Networks, Tech. Rep., Nov. 2016.

[101] I. Parvez, F. Abdul, and A. I. Sarwat, łA location based key management system for
advanced metering infrastructure of smart grid,ž in 2016 IEEE Green Technologies

Conference (GreenTech), Apr. 2016, pp. 62ś67.

[102] Y. Gong, Y. Cai, Y. Guo, and Y. Fang, łA privacy-preserving scheme for incentive-based
demand response in the smart grid,ž IEEE Transactions on Smart Grid, vol. 7, no. 3, pp.
1304ś1313, Mar. 2015.

[103] D. He, S. Chan, and M. Guizani, łCyber security analysis and protection of wireless sensor
networks for smart grid monitoring,ž IEEE Wireless Communications, vol. 24, no. 6, pp.
98ś103, Apr. 2017.

[104] A. Bari, J. Jiang, W. Saad, and A. Jaekel, łChallenges in the smart grid applications: An
overview,ž International Journal of Distributed Sensor Networks, vol. 10, no. 2, p. 974682,
Feb. 2014.

[105] łGuidelines for smart grid cybersecurity volume 1 - smart grid cybersecurity strategy,
architecture, and high-level requirements,ž NIST, Gaithersburg, MD, Tech. Rep. 7628,
Sept. 2014.

[106] J. Hajny, P. Dzurenda, and L. Malina, łPrivacy-enhanced data collection scheme for
smart-metering,ž in Information Security and Cryptology, D. Lin, X. Wang, and M. Yung,
Eds. Cham: Springer International Publishing, May 2016, pp. 413ś429.

[107] H. Nicanfar, P. Talebifard, A. Alasaad, and V. C. M. Leung, łEnhanced network coding to
maintain privacy in smart grid communication,ž IEEE Transactions on Emerging Topics

in Computing, vol. 1, no. 2, pp. 286ś296, Nov. 2013.

[108] V. Tudor, M. Almgren, and M. Papatriantaőlou, łAnalysis of the impact of data granularity
on privacy for the smart grid,ž in Proceedings of the 12th ACM workshop on Workshop on

privacy in the electronic society, Nov. 2013, pp. 61ś70.

[109] S. Goel, łAnonymity vs. security: The right balance for the smart grid,ž Communications

of the Association for Information Systems, vol. 36, no. 1, p. 2, Jan. 2015.

[110] J. P. Gordon, łQuantum effects in communications systems,ž Proceedings of the IRE,
vol. 50, pp. 1898ś1908, 1962.

[111] I. L. Chuang, N. A. Gershenfeld, and M. Kubinec, łExperimental implementation of fast
quantum searching,ž Physical Review Letters, vol. 80, pp. 3408ś3411, Apr. 1998.



119

[112] C. S. Calude and E. Calude, łThe road to quantum computational supremacy,ž in From

Analysis to Visualization, D. H. Bailey, N. S. Borwein, R. P. Brent, R. S. Burachik, J.-a. H.
Osborn, B. Sims, and Q. J. Zhu, Eds. Cham: Springer International Publishing, Mar.
2020, pp. 349ś367.

[113] łQuantum-computing őrm opens the box,ž https://web.archive.org/web/20110515083848
/http://physicsworld.com/cws/article/news/45960, accessed: 2023-04-13.

[114] łD-wave systems breaks the 1000 qubit quantum computing barrier,ž https://futurism
.com/d-wave-systems-breaks-the-1000-qubit-quantum-computing-barrier, accessed:
2023-04-13.

[115] łD-wave announces d-wave 2000q quantum computer and őrst system order,ž https://web.
archive.org/web/20170127044404/http://www.dwavesys.com/press-releases/d-wave%
C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order,
accessed: 2023-04-13.

[116] łIbm just made a 17 qubit quantum processor, its most powerful one yet,ž https://www.vi
ce.com/en/article/wnwk5w/ibm-17-qubit-quantum-processor-computer-google, accessed:
2023-04-13.

[117] łGoogle moves toward quantum supremacy with 72-qubit computer,ž https://www.scie
ncenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer,
accessed: 2023-04-13.

[118] łCes 2018: Intel’s 49-qubit chip shoots for quantum supremacy,ž https://spectrum.ieee.or
g/intels-49qubit-chip-aims-for-quantum-supremacy, accessed: 2023-04-13.

[119] łIbm unveils breakthrough 127-qubit quantum processor,ž https://spectrum.ieee.org/intels
-49qubit-chip-aims-for-quantum-supremacy, accessed: 2023-04-13.

[120] łIbm unveils 400 qubit-plus quantum processor and next-generation ibm quantum system
two,ž https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy,
accessed: 2023-04-13.

[121] łEurope’s őrst quantum computer with more than 5k qubits launched at jölich,ž https:
//www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5
k-qubits-launched-at-julich/, accessed: 2023-04-13.

[122] M. J. Dworkin, Sp 800-38d. recommendation for block cipher modes of operation:

Galois/counter mode (GCM) and GMAC. National Institute of Standards & Technology,
Nov. 2007.

[123] Y. Nir and A. Langley, łRFC 8439: ChaCha20 and Poly1305 for IETF Protocols,ž June
2018.

[124] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone, łReport on post-quantum cryptography,ž NIST, Gaithersburg, MD, Tech. Rep. 8105,
Apr. 2016.

[125] W. Castryck and T. Decru, łAn efficient key recovery attack on SIDH,ž July 2022,
https://eprint.iacr.org/2022/975.



120

[126] E. Alkim, J. W. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa, I. Mironov,
M. Naehrig, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila, łFrodoKEM:
Learning with errors key encapsulation,ž NIST, Gaithersburg, MD, Tech. Rep., Sept. 2020.

[127] R. Avanzi, J. W. Bos, L. Ducas, T. L. Eike Kiltz, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, łCRYSTALS-Kyber algorithm speciőcations and
supporting documentation (version 3.0),ž NIST, Gaithersburg, MD, Tech. Rep., Jan. 2021.

[128] O. Regev, łThe learning with errors problem (invited survey),ž in Proc. IEEE 25th Annual

Conference on Computational Complexity, July 2010, pp. 191ś204.

[129] V. Lyubashevsky, C. Peikert, and O. Regev, łOn ideal lattices and learning with errors
over rings,ž Journal of the ACM, vol. 60, no. 6, Nov. 2013, art. no. 43.

[130] M. R. Albrecht and A. Deo, łLarge modulus ring-LWE ≥ module-LWE,ž in International

Conference on the Theory and Application of Cryptology and Information Security.
Springer, Nov. 2017, pp. 267ś296.

[131] A. Langlois and D. Stehlé, łWorst-case to average-case reductions for module lattices,ž
Designs, Codes and Cryptography, vol. 75, no. 3, pp. 565ś599, June 2015.

[132] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé, łCRYSTALS-Kyber: a CCA-secure module-lattice-based KEM,ž
in 2018 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Apr.
2018, pp. 353ś367.

[133] łCryptographic mechanisms: Recommendations and key lengths,ž Bundesamt für Si-
cherheit in der Informationstechnik (BSI), Bonn, Germany, Tech. Rep. BSI TR-02102-1,
Jan. 2023.

[134] łIntroducing quantum-safe crypto TLS for IBM key protect,ž https://www.ibm.com/clou
d/blog/introducing-quantum-safe-crypto-tls-for-ibm-key-protect, accessed: 2021-02-22.

[135] J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, łExploring parallelism to improve
the performance of FrodoKEM in hardware,ž Journal of Cryptographic Engineering,
vol. 11, no. 4, pp. 317ś327, Feb. 2021.

[136] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan,
and D. Stebila, łFrodo: Take off the ring! Practical, quantum-secure key exchange from
LWE,ž in Proc. ACM SIGSAC Conference on Computer and Communications Security,
Oct. 2016, pp. 1006ś1018.

[137] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, łPost-quantum key exchange: A
new hope,ž in Proc. 25th USENIX Security Symposium, Aug. 2016, pp. 327ś343.

[138] łFrodoKEM practical quantum-secure key encapsulation from generic lattices,ž https:
//frodokem.org/, accessed: 2022-08-22.

[139] T. Instruments, łTiva TM4C129ENCPDT Microcontroller,ž June 2014. [Online].
Available: https://www.ti.com/lit/pdf/spms441

[140] Xilinx, łZynq-7000 SoC Data Sheet: Overview,ž Jul. 2018. [Online]. Available: https:
//www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf



121

[141] M. J. Dworkin, łSHA-3 standard: Permutation-based hash and extendable-output functi-
ons,ž NIST, Gaithersburg, MD, Tech. Rep. 202, Aug. 2015.

[142] G. Bertoni, J. Daemen, M. Peeters, and G. Assche, łSponge functions,ž in Proc. ECRYPT

Workshop on Cryptographic Hash Functions, May 2007, pp. 1ś22.

[143] Xilinx, łAXI-MM memory-mapped interface,ž Aug. 2022. [Online]. Available:
https://docs.xilinx.com/r/en-US/pg231-v-proc-ss/AXI-MM-Memory-Mapped-Interface

[144] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, łLattice-based cryptography for IoT in a
quantum world: Are we ready?ž in Proc. IEEE 8th International Workshop on Advances

in Sensors and Interfaces, June 2019, pp. 194ś199.

[145] E. Fujisaki and T. Okamoto, łSecure integration of asymmetric and symmetric encryption
schemes,ž in Annual international cryptology conference. Springer, June 1999, pp.
537ś554.

[146] WEG. (2022) Intelligent power meters ś SMW series. [Online]. Available:
https://www.weg.net/catalog/weg/BR/en/Generation%2CTransmission-and-Distributio
n/Intelligent-Power-Meters/SWM-Series/Intelligent-Power-Meters---SMW-Series/p/
MKT_WTD_SMART_METERS_SMW

[147] P. Matoušek, łAnalysis of DLMS protocol,ž Brno University of Technology, Dec. 2017.

[148] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, łAscon,ž Submission to the

CAESAR competition: https://ascon.iaik.tugraz.at/, Jan. 2014.



122

APPENDIX A – List of Publications

The list of papers related to the dissertation published or submitted during the doctoral

period is as follows:

• V. L. R. da Costa, J. López, and M. V. Ribeiro, łA SoC Implementation of a PQC Scheme

for Smart Meter,ž in XXXIX Brazilian Symposium on Telecommunications and Signal

Processing, Sept. 2021, pp. 1-5.

• V. L. R. da Costa, J. López, and M. V. Ribeiro, łA System-on-a-Chip Implementation of a

Post-Quantum Cryptography Scheme for Smart Meter Data Communications,ž Sensors,

vol. 22, pp. 7214-7235, Jun. 2022.

• V. L. R. da Costa, Â. Camponogara, J. López, and M. V. Ribeiro, łThe Feasibility of

the CRYSTALS-Kyber Scheme for Smart Metering Systems,ž IEEE Access, vol. 10,

pp. 131303-131317, Dec. 2022.

• V. L. R. da Costa, Leonardo de M. B. A. Dib, Mateus de L. Filomeno, J. López, and M. V.

Ribeiro, łA Quantum-Secure Advanced Metering Infrastructure,ž (to be submitted).

The list of papers non-related to the dissertation published or submitted during the

doctoral period is as follows:

• L. G. da. S. Costa, G. R. Colen, A. C. M de Queiroz, V. L. R. da Costa, U. R. C. Vítor, F.

V. dos Santos, and M. V. Ribeiro, łAccess impedance in brazilian in-home, broadband

and low-voltage electric power grids,ž Electric power systems research, vol. 171, no. 19,

pp. 141-149, Sept. 2019.

• V. L. R. da Costa, V. Fernandes, and M. V. Ribeiro, łNarrowband hybrid PLC/wireless:

Transceiver prototype, hardware resource usage and energy consumption,ž Ad Hoc

Networks, vol. 94, pp. 101945, Nov. 2019.

• L. G. da. S. Costa, A. C. M de Queiroz, V. L. R. da Costa, and M. V. Ribeiro, łAn Analog

Filter Bank-based Circuit for Performing the Adaptive Impedance Matching in PLC

Systems,ž Journal of Communication and Information Systems, vol. 36, no. 1, pp. 133-150,



123

Aug. 2021.

• L. G. da. S. Costa, V. L. R. da Costa,Â. Camponogara, and M. V. Ribeiro, łAn Initial

Discussion of an Adaptive Impedance Matching Circuit for PLC Systems,ž in XXXIX

Brazilian Symposium on Telecommunications and Signal Processing, Sept. 2021, pp. 1-4.

• R. Pacheco, D. Braga, I. Passos, T. Araújo, V. L. R. da Costa, and M. Coutinho,

łLibharpia: a New Cryptographic Library for Brazilian Elections,ž in XXII Brazilian

Symposium on Information and Computational Systems Security, Sept. 2022, pp. 250-263.


	Folha de rosto
	Dedicatória
	AGRADECIMENTOS
	Epígrafe
	RESUMO
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS AND ACRONYMS
	CONTENTS
	INTRODUCTION
	OBJECTIVES
	DISSERTATION OUTLINE

	PROBLEM STATEMENT
	LITERATURE REVIEW
	PROBLEM FORMULATION
	SUMMARY

	ADVANCED METERING INFRASTRUCTURE
	KEY ELEMENTS
	Consumer/prosumer
	Communication Infrastructure
	Electric Utility

	SECURITY ISSUES IN AMI
	Vulnerabilities
	Threats
	Security
	Privacy

	SUMMARY

	POST-QUANTUM CRYPTOGRAPHY
	QUANTUM COMPUTER
	Quantum physics principles
	Classical vs quantum computers
	The challenges of quantum computer

	CRYPTOGRAPHIC FUNDAMENTALS
	Asymmetric cryptography
	Symmetric cryptography
	Asymmetric and symmetric schemes working together

	POST-QUANTUM CRYPTOGRAPHIC SCHEMES
	NIST algorithms classes
	Lattice-based cryptography
	Notation
	The LWE problem and its variants
	Promising PQC schemes
	Schemes Overview


	SUMMARY

	THE FRODOKEM SCHEME
	BACKGROUND OF THE FRODOKEM SCHEME
	The Frodo Key Encapsulation Mechanism Scheme

	HARDWARE DESCRIPTION
	SOFTWARE IMPLEMENTATION
	Preliminary Analysis
	Implementation

	HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION
	The Block AS A S
	The Block S'A S' A
	Block SHAKE128

	PERFORMANCE EVALUATION
	Hardware Resource Analysis
	Timing Analysis
	Comparison between the implementations
	Execution Time Analysis
	Hardware processing time analysis


	SUMMARY

	THE CRYSTALS-KYBER SCHEME
	BACKGROUND OF THE CRYSTALS-KYBER SCHEME
	The CRYSTALS-Kyber scheme as a Key Encapsulation Mechanism

	SOFTWARE IMPLEMENTATION
	Preliminary analysis
	Implementation

	HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION
	PERFORMANCE EVALUATION
	Hardware Resource Analysis
	Timing Analysis
	Comparison between the implementations
	Execution Time Analysis
	Hardware processing time analysis


	SUMMARY

	AN IMPLEMENTATION OF A QUANTUM-RESISTANT AMI
	THE QUANTUM-RESISTANT AMI
	Suitable Cryptographic Schemes For a Quantum-Resistant AMI
	A Description of a Quantum-Resistant AMI
	Implementation of the Quantum-Resistant AMI
	Smart Meter
	Quantum-Resistant Dedicated Cryptographic Module
	Communication Infrastructure
	MDMS


	PERFORMANCE EVALUATION
	Resource Usage
	Memory Resources
	Hardware resources

	Timing Analysis
	Asymmetric cryptography
	Symmetric cryptography

	Quantum-Resistant AMI Analysis

	SUMMARY

	CONCLUSIONS
	REFERENCES
	List of Publications

