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Abstract

In the past century, computational methods have been being applied more and more

to physical systems, in special to systems which are chaotic in nature or don’t have an

analytical solution, or both, such as is the case for systems that obey the N-body problem.

To solve such systems, it is necessary to select the most suitable numerical method, one

that takes into account both the necessary time and computational resources available

to the researcher, and in order to be able to do so, one must have a good set of tools

available. In this work we present a numerical method known as the Hermite Scheme, a

fourth-order predictor-corrector integrator which makes use of an Individual Time Step

structure, making it capable of processing multi-scale systems. We test its accuracy and

study its applicability to the N-body problem, extending the result to chaotic systems in

general. We then proceed to check its performance for a N-body system, and compare it to

the performance of another fourth-order integrator, the Runge-Kutta. Lastly we verify its

performance to multi-scale systems by reproducing some real-life results. Our results show

that the Hermite Scheme has a good applicability to N-body systems, with an overall

performance better than the fourth order Runge-Kutta. It also shows a good performance

when applied to multi-scale systems, with no harm to its overall time performance, which

can be applied to other multi-scale systems other than the N-body problem. With this

verification, we intend to further apply this method to collision processes and apply the

final result on the study of planet formation. The method also shows great potential

applicability to Condensed Matter Physics, and we intend to test-apply to known systems

in the future.

Keywords: Computational Physics, Hermite Scheme, N-body, Condensed Matter Physics





Resumo

No último século, métodos computacionais vem sendo aplicados mais e mais a problemas

físicos, em especial àqueles que ou são caóticos ou não possuem solução analítica, ou

ambos, como é o caso de sistemas que obedecem ao problema de N-corpos. Para resolver

tais problemas, é necessário selecionar o método numérico mais adequado, um que leve

em consideração ambos o tempo necessário e os recursos computacionais disponíveis ao

pesquisador responsável; e para que ele seja capaz de fazê-lo, é necessário que ele tenha

uma ampla gama de ferramentas disponíveis. Neste trabalho, mostraremos um método

numérico conhecido como o Esquema de Hermite, um integrador de quarta ordem preditor-

corretor que faz uso de uma estrutura de Passo de Tempo Individual, tornando-o capaz de

processar sistemas em multiescalas. Nós testamos sua precisão e estudamos sua aplicação

ao problema de N-corpos, estendendo o resultado a sistemas caóticos em geral. Em seguida,

verificamos seu desempenho para um sistema de N-corpos e comparamos o resultado

com o desempenho de outro integrador de quarta ordem, o Runge-Kutta. Por último nós

reproduzimos resultados reais para verificamos seu desempenho em sistemas multiescala.

Nossos resultados mostram que o Esquema de Hermite possui uma boa aplicabilidade para

sistemas de N-corpos, com um desempenho ao todo melhor do que um Runge-Kutta de

quarta ordem. Ele também apresenta um bom desempenho quando aplicado a sistemas

multiescala, com nenhum prejuízo à sua performance temporal total, demonstrando que

pode ser aplicado a sistemas multiescala que não somente o problema de N-corpos. Com

estas verificações, pretendemos no futuro aplicar este método a sistemas com processos de

colisão, e aplicar o resultado final no estudo de formação planetária. O método também

apresenta grande potencial para aplicação em sistemas de Física da Matéria Condensada,

nos quais pretendemos testar a aplicação do método em sistemas conhecidos no futuro.

Palavras-Chave: Física Computacional, Esquema de Hermite, N-corpos, Matéria Con-

densada
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Introduction

The past century was a very turbulent period for the planet. The world was

devastated by many different wars, of which the two World Wars left their scars, showing

us the worst part of humanity. It was the beginning of the nuclear crisis, among two major

economical crises that shook and changed the social structure of the world. Even among

this seeming chaos, the sciences in general thrived and saw a period of extremely rapid

growth, with many important discoveries and developments that shook the bases of our

understandings of the universe. Physics saw its biggest revolution since Isaac Newton

published his work in the 17th century, with the appearance of two theories that tested our

capacity of acceptance, and changed completely the way which we observe the universe

around us: General Relativity [8] and Quantum Mechanics [9]. Those two revolutionary

theories opened the doors to a series of new areas and phenomena, many of which still

puzzle physicists nowadays. The development of new equipment for both observation and

experimentation allowed the growth of many areas, among which we can cite Astrophysics,

Condensed Matter Physics and Optics.

But another area also saw an astounding growth: Computer Science. The world

saw an increase on the number of computers, with the development new hardware and

software, and they started becoming part of the ordinary everyday life, until it became

an inseparable part of today’s society. Computers started to be developed not only for

everyday uses or industrial applications, but the academia also saw a great opportunity,

and scientists joined the challenge to apply those computational methods to develop

fundamental research. This lead to many discoveries in all areas of scientific knowledge,

and contributed to the creation of many new areas, among them Computational Physics.

Those called computational physicists concern themselves with the study and development

of numerical methods which can be applied to solve physical problems, and allow us to find

solution which otherwise would take us years, decades or even centuries to solve. These

methods started being applied to many different areas of Physics, from experimental, to

observational up to theoretical Physics. The only limitations were that imposed by the

technology limitations of the given period.

However,in order to overcome these limitations of the hardware, more efficient

numerical methods were being developed, allowing for the solution of new and more

complex systems by using computer simulations. Nowadays computer simulations are a

fundamental part of the scientific development, with many areas highly dependent on

them for the production of results. Computational methods gained a lot of space within

Physics, with simulations being applied to a series of problems in many areas, such as in

the study and synthesis of materials [10], the understanding and prediction of the weather
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[11, 12, 13], fluid mechanics and its role in the human body [14, 15] and so on. Many of the

solutions offered by numerical methods are that of system whose analytical solutions are

very hard, or even impossible, to obtain. This is the case of many systems in Condensed

Matter, and the N-body system.

The N-body problem was first proposed by Isaac Newton in the 17th century,

refers to a system of N bodies interacting with one-another through his Law of Universal

Gravitation. It was discovered by Poincaré that, for N ≥ 3, the N-body problem is a chaotic

system [16, 17], and its known analytical solutions are in the form of power series with

very slow convergence [18, 19]. Albeit classical, it provides a good enough representation of

the behavior of a great number of structures and systems in the universe; e.g, the orbital

dynamics of planets or planet formation, and the dynamics of comets and asteroids. The

dynamics of the N-body problem weren’t well understood until the end of the 20th century,

when numerical methods started to be applied in the study that obeyed its conditions

[20], and since then it has thrived, with many new information being obtained from those

simulations. In Modern days, a lot of systems are characterized as N-body systems. As an

example it can be cited an atomistic N-body system is one in which N particles interact

with each other through a mutual force that act at a distance. This force sometimes have

a similar formulation as that of the celestial N-body problem, but nonetheless remains a

chaotic system which relies on numerical methods for a solution. Numerical methods are

now the preferred when looking for solutions to those types of systems. They became also

the main tool used in the study and classification of new materials, or in the study of the

comprehension of the molecular properties of materials, as those methods represented a

faster, more economic way of reaching a result and understanding the feasibility of a given

material.

However, as much as computer simulations contribute to scientific development, it

possess its limitations. When working with a numerical simulation, one needs to take into

account not only the characteristics and necessities of the physical system to be studied,

but they also need to consider the availability of computational resources and human time

necessary for such simulations to take place. When opting to use a simulation to solve

a certain problem, it is important the researcher ponders carefully on which is the most

suitable method available for the given problem. One which can balance both the exigence

on accuracy and efficiency for the physical system being studied, but as well allows the

simulation to be performed in the computational resources they have available in a viable

amount of time. In order to guarantee that they are using the most suitable method, it is

necessary that one have a sufficient knowledge of the available methods, that is, that he

has enough tool with which to work. There are many famous such tools, that are widely

used in all areas of physics; e.g., the Runge-Kutta methods, Velocity Verlet, Euler method.

However, there are still many tools that are highly used in a given area or field, with

potential applications to other fields but it is not widely spread. In this work, our aim is
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to present and discuss one of those methods, called the Hermite Scheme, which allows one

to simulate physical systems with a good accuracy, as well as being useful when dealing

with multi-scale systems.

The Hermite Scheme was developed in 1991 by Junichiro Makino as a means for

solving N-body simulations [21]. We wish to study the method and its application to the N-

body problem. We perform tests concerning its overall accuracy to analyse its applicability

to chaotic systems, as well as a verification of its performance when compared to methods

of similar accuracy, that are commonly known. We finish our study testing the capacity

of reproduction of known results from the literature by using the method. During the

work, we analyse its potential applications to problems in Condensed Matter Physics, and

area in which N-body simulations are extensively used, and which could benefit from the

performance and features of the Hermite Scheme. This work was born from a collaboration

between the Computational Simulation Laboratory from the Universidade Federal de Juiz

de Fora, and professor Hiroshi Kobayashi, from the Theoretical Astrophysics Laboratory

from Nagoya University. Its final aim is to study the formation of planets of our solar

system through the use of computational simulations that use the Hermite Scheme as the

integrator, and to further investigate its potential applicability to systems in Condensed

Matter Physics.



Part I

Methodology



1 Fourth-Order Runge-Kutta Method

When a physicist creates a numerical method to be applied in Physics, they usually

do focusing on solving the problem at hand, save exceptions. When faced with a particular

differential equation in his studies of atomic spectra, Carl Runge sought a way to extend

Euler’s method for solving Ordinary Differential Equations (ODE) and in 1895 he published

a paper proposing three different schemes [22], which later would come to be known as

Runge-Kutta methods. The method was later improved by Martin Kutta in a paper in

1901, who completed the method’s name, who formulated the widely used fourth-order

formulation, and attempted at a fifth order scheme [23].

The Runge-Kutta methods have been since thoroughly studied and developed,

with contributions from both mathematicians and physicists in a similar way. Currently

the most used method is the fourth-order Runge-Kutta, but there are also lower orders,

from the second order, up to tenth order algorithms [24, 22]. In recent years, implicit

and adaptive time-step methods have also been developed for the Runge-Kutta methods,

which increase the applicability and performance of those methods. Overall, when one

thinks about the numerical methods used in solving dynamical equations for systems in

Physics, few methods are as famous as the Runge-Kutta. Many high-end softwares like

the Mathematica and MatLab use the Runge-Kutta methods as the main integrator for

the solution of ODEs.

However, the Runge-Kutta methods are excessively robust, and can consume a

great amount of computational power, specially when dealing with N-body simulations, a

case in which many other numerical methods fare better. However, given its applicability

in many physical systems, one cannot talk about numerical methods in Physics without

mentioning it. In this chapter, we present a brief introduction of the most used fourth-order

formulation of the Runge-Kutta methods, and show a small development of the method

for its application to second order ODEs and to N-body simulations.

1.1 Fourth-order Formulation

When Carl Runge published his paper on the Runge-Kutta methods, he desired to

solve an initial value problem of the type

dy

dt
= f(y, t)

y(t0) = y0
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As canbe seen the Runge-Kutta method’s original formulations were made for the solution

of first order ODEs. He first proposed three second order methods, based on the midpoint

rule applied to differential equations and different forms of the trapezoidal rule [22]. The

fourth-order method is based on the trapezoidal rule quadrature formula, and uses a

4-stages calculation. The Runge-Kutta fourth-order method is a fixed time-step integrator,

and throughout this chapter we shall consider the time step to be called h. Let yn be the

value of the function y(t) at the time tn. We wish to obtain the value of y(t) at a time tn+1.

In order to do so, the fourth-order Runge-Kutta method makes use of four intermediary

steps, which are given by

k1 = hf(yn, tn) (1.1)

k2 = hf(yn +
k1

2
, tn +

h

2
) (1.2)

k3 = hf(yn +
k2

2
, tn +

h

2
) (1.3)

k4 = hf(yn + k3, tn + h) (1.4)

those values are then replaced in the trapezoidal rule’s quadrature formula

yn+1 = yn +
1
6

(k1 + 2k2 + 2k3 + k4) (1.5)

in which the coefficients of the ki depend on the approximation formula for the quadrature.

A more concise form of obtaining these coefficients can be found on J.C.Butcher’s book

[23]. The latter equation gives the value of the function y(t) at the time tn+1. The entire

process needs only 5 main steps, being relatively simple to formulate for scalar systems.

For vector systems, the adaptation is straightforward.

1.2 Second Order Differential Equations and Coupled Equations

As we saw, the Runge-Kutta methods were initially proposed for first-order or-

dinary differential equations, but adaptations to higher order differential equations are

straightforward. The first such adaptation for second order differential equations was by

Nyström in 1925, in a simple method given as follows.

Considering a second order differential equation of the form

d2x

dt2
= f(x, t) (1.6)
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in which we wish to obtain x(t). To do so, we observe that equation 1.6 can be written on

the format

d

dt

(

dx

dt

)

= f(x, t) (1.7)

From which we define the function v(x, t) by

dx

dt
= v(x, t) (1.8)

By replacing equation 1.8 in equation 1.7, we arrive at the relation

d2x

dt2
=

dv

dt
(1.9)

From which we find that

dv

dt
= f(x, t) (1.10)

I other words, to apply the Runge-Kutta methods to second order differential equations of

the form 1.6, one needs to instead solve the system of coupled two first order differential

equations











dx
dt

= v(x, t)
dv
dt

= f(x, t)
(1.11)

for which one needs the initial conditions x0 = X(t0) and v0 = v(t0). Solving this kind

of system follows the same procedure as solving a general system of coupled first-order

differential equations using the method. Given one such system











dx
dt

= g(x, y, t)
dy
dt

= f(x, y, t)
(1.12)

with the initial conditions y0 and x0, one needs to apply the procedure from last section

to both equations at the same step of the algorithm, as it must update all variables at the

same time. That is, the procedure must be carried in the order

kx1 = hg(xn, yn, tn)

ky1 = hf(xn, yn, tn)
(1.13)
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kx2 = hg(xn +
kx1

2
, yn +

ky1

2
, tn +

h

2
)

ky2 = hf(xn +
kx1

2
, yn +

ky1

2
, tn +

h

2
)

(1.14)

kx3 = hg(xn +
kx2

2
, yn +

ky2

2
, tn +

h

2
)

ky3 = hf(xn +
kx2

2
, yn +

ky2

2
, tn +

h

2
)

(1.15)

kx4 = hg(xn + kx3, yn + ky3, tn + h)

ky4 = hf(xn + kx3, yn + ky3, tn + h)
(1.16)

xn+1 = xn +
1
6

(kx1 + 2kx2 + 2kx3 + kx4)

yn+1 = yn +
1
6

(ky1 + 2ky2 + 2ky3 + ky4)
(1.17)

in which the lower indexes x and y represent that quantity calculated for the functions x

and y respectively. For a second order differential equation, one just replaces in the above

procedure g(x, y, t) −→ y(x, t) and y(x, t) −→ v(x, t). By formulating the method for second

order differential equations, one is now capable of applying the Runge-Kutta method to

solve the dynamical equations for physical systems, in which x is the position and v is the

velocity of the particle being studied. Again, the generalization to the vectorial case is

straightforward.

1.3 N-body Case

A N-body system of particle is composed of a system of N vectorial dynamic

equations, which resume into 3N coupled second order differential equations to be solved.

We use the method from the previous section to split these into 6N coupled first order

differential equations

dr1

dt
= v1(r1, r2, ..., rN , t)

dr2

dt
= v2(r1, r2, ..., rN , t)

...

drN

dt
= vN(r1, r2, ..., rN , t)

(1.18)
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dv1

dt
= a1(r1, r2, ..., rN , t)

dv2

dt
= a2(r1, r2, ..., rN , t)

...

dvN

dt
= aN(r1, r2, ..., rN , t)

(1.19)

in which the ri, vi and ai are the position, velocity and acceleration of particle i, respectively.

We need 6N initial conditions, and solve using the same procedure applied for the solution

of coupled differential equations in the previous section.

This means that, for a N-body system, the fourth-order Runge-Kutta algorithm

must perform 5×6N calculations per step, which is an unreasonable number of calculations.

This shows that while the Runge-Kutta is a good integrator for single-particle systems, it

is not well adapted to N-body systems.
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2 Hermite Scheme

For many areas in Science, experimentation is the main resource one turns to when

one wishes to test models and theories about observations. However, some areas, specially in

Physics, work with phenomena on such scales that it is impossible to perform experiments

to verify certain models or theories, and therefore strongly rely on observations. This is the

case of Astronomy and Astrophysics. This scenario changed with the advent of numerical

and computational methods, which became the "laboratory" for the astrophysicist to

experiment with his models and compare the results to all the observations available.

Not only in computer simulation, but advances in image processing softwares contributed

to a better quality and efficiency on processing the data obtained through all kinds of

telescopes.

There is a large variety of systems that can be observed in the universe that have

been studied by astrophysicists, but a great number of them behave like N-body systems,

whose studies faced great difficulties given the mathematical limitations associated to the

N-body problem. The first computer simulations of the N-body problem have begun in

1960 with von Hoerner [20], albeit the existence of numerical methods carried by hand

for N-body problems with a small value of N weren’t unheard of. The computational

limitations of the period forced physicists to limit themselves to low N values, and many

different numerical methods started being developed as an effort to reduce computational

costs, and computational time, in order to allow more complete and efficient simulations.

Nowadays, many areas in the sciences rely on computational resources on their

studies, with the goal to reduce cost, to increase the productivity or simply because they

have no choice. It is imperative then that the researcher have access to a broad range of

computational methods and resources that would allow them to simulate and work with

evermore complicated systems. In this chapter we present a numerical method developed

at the end of the 20th century for the use on N-body simulations, which incorporate a

characteristic that makes the method useful even for systems beyond those it was first

intended for.

2.1 Overview

In the end of the 20th century, efforts in developing new computational methods

and resources for the applications in the sciences in general were at full speed. Computers

started appearing everywhere, and more and more they were being used to process data

and perform experiments about nature. Not only computer scientists, but physicists also

started seeking computational methods to apply in solving the problems they couldn’t
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solve by hand, or to increase the efficiency of already-existing methods to improve the

productivity of the scientific community. In 1991, Junichiro Makino in an attempt to

increase the performance and accuracy of the algorithms created by Sverre J. Aarseth

for application in N-body simulations, proposed a method that made use of an Hermite

polynomial interpolation for the obtaining of the solution, and relied on an independent

time-step for each particle in the system, a feature that was proving itself indispensable

for this kind of integration [21, 20]. The method would later come to be called the Hermite

Scheme, it is a predictor-corrector type integrator. A predictor-corrector integrator is one

that performs the integration of a given differential equation in two major steps

1. A "prediction" step, called the ’predictor’. Given the value of the function or functions

at a given set of points, the algorithm predicts their values at a subsequent set of

points.

2. A "correction" step, called the ’corrector’. The previous prediction is then corrected

using another method, to a desired precision for the value of the functions at the

same set of points.

On top of that, the method showed great accuracy, with the minimum accuracy it could

achieve being fourth-order. Capable of solving any order differential equations of the format

dny

dtn
= f(y, t) (2.1)

it requires a set initial conditions which depend directly on the order of the differential

equation one wants to solve. It was developed for applications to problems in Physics,

in special to N-body algorithms, and therefore its intended use was primarily in solving

second order ordinary differential equations. For equations with this order, one needs as

initial conditions the initial time t0, and the values of the function y0 = y(t0) and its first

derivative (here considered a time-derivative for simplicity purposes) ẏ0 = ẏ(t0) for all the

particles one wish to integrate. Bear in mind that, when we say the initial time t0 for each

particle must be given as an initial condition, it isn’t necessary that they be the same, and

the initial conditions for the particles must be with respect to their initial time. This is a

feature of individual time-step integrators, and differ from that observed on integrators

such as the Runge-Kutta, on which the initial conditions for all the particles must be

given at the same instant of time. Differently from the Runge-Kutta, the Hermite Scheme

processes and integrates each particle individually, and has a different value of time-step

for each one of them.

Another feature of the method is that, aside from inputting the function f(y, t), it

is necessary to calculate its time derivative ḟ(y, t) by hand and input in the algorithm

, for all the particles. The values of these quantities at time t0 are calculated by the



2.2. Individual Time-Step 31

algorithm itself. Considering the integration of a N-body system using the Hermite Scheme

considering dtj to be the time-step associated to the j-th particle, the integration process

can be summarized in the following set of steps:

a) Choose particle j with the smallest tj + dtj

b) Define the global time as t = tj + dtj

c) Calculation of the ’predictor’ for all the particles

d) Calculation of f(y, t) and ḟ(y, t) for particle j at instant t, using the predictors

e) Calculation of f (2)(y, t) and f (3)(y, t) for particle j, using an Hermite Interpola-

tion based on f(y, t) and ḟ(y, t)

f) Calculation of the ’corrector’ for particle j alone, using its predictor and both

f (2)(y, t) and f (3)(y, t)

g) Repeat processes ’d’, ’e’ and ’f’ a sufficient amount of times

h) Update tj = t

i) Calculation of the new time-step dtj for particle j

j) Return to step ’a’

2.2 Individual Time-Step

When one stops to investigate physical phenomena, one striking difference that

they find is the time scale which is needed for each to occur. This difference becomes the

more prevalent when we look at extremes: some quantum phenomena take time intervals

of the order picoseconds to occur, whereas astronomical events may take over millennia

to happen entirely. This feature is very important for the computational physicist, and

the differential equation one needs to solve depend on time, and the numerical solution

depends on a finite number of points, the number of which depend on the physicist’s choice

of a time-step, which in turn depends on the time scale of the phenomenon being studied.

It is easy to understand this difference in scale when comparing different systems,

but this feat is not always so easy when we are comparing phenomena within the same

system. Many systems in the universe present processes and phenomena that are dependent

on each other, but which occur at completely different time scales. Those systems are

called multi-scale, and some examples are planetary systems with collisions, the movement

of the subatomic particles in an atom, the weather, among others. If one stops to analyse,

it would come to the conclusion that multi-scale systems might in fact be the rule in the

universe.

Physicists are mostly interested in a given phenomenon within a system, and often-

times neglect the interaction among multi-scale phenomena. However, these interactions
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can prove important in one’s study, and the development of a proper way to process them

is necessary for those cases. When one thinks in terms of computer simulations, most of the

commonly known numerical methods make use of a single, fixed value time-step for all the

system, which means fixing the scale at which perform the study. This forces the researcher

to choose which phenomenon he wants to study, and precludes them from studying the

effect that the interaction of these multi-scale phenomena have in the final dynamics of

the system, or when they allow for this study, they do so at a great computational time

and resource cost.

Nonetheless, there are algorithms that are capable of using different time-steps

for different portions of the system it is studying, at different moments of the simulation.

This allows the algorithm to process these multi-scale phenomena successfully when

necessary, and allows the study of their mutual interactions on the final dynamics. It is

even possible to allow for the time-step to regulate itself based on the intensity of the

interactions between the elements of the system. Such auto-regulatory time-step procedures

are called Individual Time-Step [25, 26] procedures, and they have become indispensable

for N-body algorithms, as they collaborate greatly to the reduction in computational time

for a simulation. Numerical methods which use individual time-step procedures usually

integrates every particle or portion of the system individually, allowing for an increase in

performance over algorithms that perform the integration of all the particles at the same

time, in part due to the number of calculations per step becoming significantly smaller in

the former when compared to the later, according to the number of particles or partitions

in the system.

The Hermite Scheme integrator makes use of an individual time-step procedure,

having a different time-step for each particle, and recalculating it after processing every

particle individually. Since it integrates the particles one-by-one, it allows the user to offer

as inputs the particles and their initial conditions at different moments of time, without

harming the final result. The time-step for each particle is self-adaptive, and regulates

according to the intensity of the interactions on the particle. It is not necessary for the user

to select a time-step for the algorithm, but instead they choose an accuracy parameter η

and the algorithm calculates the time-step of each particle. This accuracy parameter is

important to guarantee that the values of the time-steps are compatible with the range of

values for time-steps within which the integrator can function.

In order to guarantee that the time-step is coherent with the intensity of the

interactions for each particle, we must calculate it such that it depends on the acceleration

and its derivatives for said particle. At the beginning of the simulation, the only information

we have available is the acceleration and its first time-derivatives. Then, to calculate the
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initial time-step we use the equation [25]

dtj = η
|aj|
|ȧj|

(2.2)

some prefer to use another similar equation, based on general considerations on the

convergence of the associated Taylor series [20]

dtj = sqrt

(

η
|aj|
|ȧj|

)

(2.3)

both of which which give a suitable accuracy for small enough η, given that the velocities

of the particles aren’t too small [25]. This initial choice is fine, since the algorithm evolves

fast enough allowing for the calculation of a more suitable time-step. Observe that the

dependence on the acceleration sets a connection of the time-step to the intensity of the

physical interactions on the particle.

This is a simple formula, used due to our lack of data. As each particle is selected

and integrated the first time, we acquire more information on the interactions of the

particle, namely the higher order derivatives of the acceleration. We are then capable of

employing a more robust formula for the time-step, based on experimentation with the

method [20]

dtj = η

√

√

√

√

√

|a1,j||a(2)
1,j | + |ȧ1,j|2

|ȧ1,j||a(3)
1,j | + |a(2)

1,j |2
(2.4)

this formula is more sensitive than the previous one, and ensures that all the derivatives

of the acceleration play a role in the definition of the time-step. It is also well define for

some special cases; e.g., |a| = 0 [20, 26]. It also scales with the scale of the interactions

faced by each particle, such that the particles that interact the most strongly will have

shorter time-steps than those who interact weakly with its peers.

This adaptive time-step allows for a ’smarter’ integration. When we use a fixed

time-step integrator, all particles must be integrated, even if the scale of the time-step

being used is much smaller than that of the phenomenon being faced by the particle. As

for the adaptive time-step, each particle is processed just a sufficient amount of times,

compatible with the phenomenon it is facing, thus saving on computational time and

avoiding unwanted computational errors.
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2.2.1 Cancellation Error

When performing numerical simulations, one must be careful with a handful of

numerical errors that may arise, many of which present in every algorithm to some degree,

and which escape the control of the person who programmed the code, namely the round-off

and truncation errors. There is a more subtle error, which is mostly associated with a lack

of caution on the programmer part as to the choice of a suitable time-step and the scale

of the system being studied, which can be common in multi-scale systems. This error is

called Cancellation Error or Loss of Significance.

A cancellation error is an error that occurs when the accuracy of the numerical

calculation performed is smaller than the accuracy of the computational variable being

used for a given quantity, rendering the computer unable to "see" the new result, and thus

it keeps the old one. For example, a floating point variable has an accuracy of 10−8, if a

calculation would cause a floating point variable associated to the position of a particle

to change by an amount, say 10−9, then the computer would plainly ignore this change,

"cancelling" the evolution of the given particle. For a physical system, it might mean that

the increase in the position of a particle is not computed, and it will remain static, and

therefore the ensuing result would have no physical meaning.

When dealing with multiple scale systems, when one wishes to observe the fastest-

paced phenomenon and they are using a fixed time-step algorithm, then he must use a

time-step compatible with the scale of the desired phenomenon, but since all particles

are integrated together, this could imply an impediment to the integration of the slowest-

paced particle. Therefore, when using fixed time-step algorithms, one must consider

carefully which time-step to choose, in order not to harm the physical nature of the system.

Nonetheless, by processing the particles individually, and using an individual time-step,

one eliminates the possibility of a cancellation error to occur, as the time-step of the given

particle will be balanced with its physical interactions.

We call to the attention of the reader that this isn’t the only adaptive time-step

method in existence. Many methods allow for fixed block time-steps, which processes parts

of the system at pre-determined values of time-steps, such as the Ahmad-Cohen procedure

[25], which would prove useful for closely packed systems in Condensed Matter Physics, for

example. Other methods integrates all the particles at once, but the time-step is calculated

by the algorithm, and the smallest is chosen. We recommend a reading of the literature

when choosing a suitable method for your application.

2.3 The Algorithm

Now that we have set the foundation, we proceed to a more in-depth explanation

of the Hermite Scheme integration method. Given a N-body simulation, the position (xj),
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velocity (vj) and initial time (tj) of each individual particle must be supplied as an input.

With these data, the acceleration (a0,j) and its first time-derivative (ȧ0,j) at time tj is

calculated for all of the particles in the system.We then proceed to the calculation of the

initial time-step of the particles, using either formula 2.2 or formula 2.3. We then perform

the following steps before beginning the integration procedure

1. Calculate the time ti + dti for all of the particles, and sort the values from smallest

to biggest

2. Select particle j with the smallest tj + dtj; i.e., the most delayed particle, to be the

one to be integrated

3. Define the global time as t = tj + dtj

this procedure ensures that the algorithm will always choose the most delayed in time,

and most strongly interacting particle to integrate. This grants the proper time evolution

of the physical system, avoiding a particle being left behind, or that the same particle is

the only one to be integrated.

However, remember that when we inserted the inputs on the algorithm, we didn’t

need to guarantee that all the particles were situated at the same instant in time. In

physical terms, since we are considering a classical N-body simulation, we have a huge

problem. In Classical Mechanics, the long-distance interactions between particles are

instantaneous, and thus in order to study the dynamics of the system we must ensure that

all the particles are at the same moment in time.

2.3.1 Predictor

We can’t proceed the integration before all the particles are at the same moment

in time. In order to do so, the first step of the integration is the calculation of that which

we call the predictor for all the particles. The predictor is a prediction of the position

and velocities of all the particles in the system at the global time t. This prediction is

performed by considering a Taylor Series expansion of both the position and velocity for

all the particles, each around their initial time ti up to third order for the position, and

second order for the velocity

xp,i = x0,i + ∆tiv0,i +
∆t2

i

2!
a0,i +

∆t3
i

3!
ȧ0,i (2.5)

vp,i = v0,i + ∆tia0,i +
∆t2

i

2!
ȧ0,i (2.6)
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In this expansion, the time-steps ∆ti are not the ones calculated before, but are given by

the expression

∆ti = t − ti (2.7)

by using this expression to calculate the time-step of the series, the only ensuing positive

time-step will be that of the selected particle j, while all the other ∆ti will have a negative

value. In terms of the prediction, while the selected particle advances in time, all the

remaining particles are "moved" back in time, being placed at the positions they were at

the global time t, allowing for a study of the dynamics of the system, since now all the

particles are at the same instant of time, and thus instantaneous interactions are possible.

Notice that at this point, the overall accuracy order of the predictor is already

second order in dti. In the above expansion, the predictor of the velocity is second order in

dti, but that of position is third order. We do this because, in order to make the predictor

of the velocities be second order, we need ȧ0,i, and since we already have it calculated, we

can insert it into the predictor of the position without harming the algorithm. It is also

important to point that in the above calculation, none of the initial x0,i and v0,i values are

replaced by their respective predictors, since we are effectively integrating only a single

particle’s trajectory.

Using the predictors, we calculate the acceleration a1,j and its first time-derivative

ȧ1,j at the global time t for particle j alone.

2.3.2 Obtaining a
(2)
0,j and a

(3)
0,j

To perform the correction of the predictor, we need higher order derivatives of

the acceleration, more specifically, we need its second and third order time-derivatives.

This time, we do not need to provide the formulas derived by hand, but instead we will

make use of a Hermite polynomial interpolation based on a and ȧ, at both times tj and

t = tj + dtj, for particle j alone.

In this case, the Hermite interpolation polynomial for a and ȧ is equivalent to the

Taylor Series expansion of both quantities up to a(3), which are given by

a1,j = a0,j + dtjȧ0,j +
dt2

j

2!
a

(2)
0,j +

dt3
j

3!
a

(3)
0,j (2.8)

ȧ1,j = ȧ0,j + dtja
(2)
0,j +

dt2
j

2!
a

(3)
0,j (2.9)
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Solving these equations for a
(2)
0,j and a

(3)
0,j , we obtain the results

a
(2)
0,j =

−6(a0,j − a1,j) − dtj(ȧ0,j + 2ȧ1,j)
dt2

j

(2.10)

a
(3)
0,j =

12(a0,j − a1,j) + 6dtj(ȧ0,j + ȧ1,j)
dt3

j

(2.11)

2.3.3 Corrector

We have shown that if we choose to stop the integration process here, we would

already have a second-order accuracy. But in order to increase the accuracy, we need to

perform a correction of the predictor we calculated previously for particle j. We call this

correction the corrector. It is basically a continuation of the Taylor Series we made for the

predictor, in which we add the next two terms in each expansion, making use of boith a
(2)
0,j

and a
(3)
0,j

xc,j(tj + dtj) = xp,j +
dt4

j

4!
a

(2)
0,j +

dt5
j

5!
a

(3)
0,j (2.12)

vc,j(tj + dtj) = vp,j +
dt3

j

3!
a

(2)
0,j +

dt4
j

4!
a

(3)
0,j (2.13)

since the a
(2)
0,j and a

(3)
0,j are order 0, the corrector for the position becomes order 5, and for

the velocity order 4, achieving the desired overall order of 4 for the integrator. Again, we

perform the one order higher correction for the position for convenience, since no extra

work is necessary and we already have all the tools.

Here the solution has a fourth-order accuracy, which is that desired when applying

numerical methods to the N-body problem, and if one wishes they can stop here. However,

for some systems, specially those chaotic in nature, it is desired that the results be as

accurate as possible. One can increase the accuracy of the result obtained this far by

taking the following extra steps

1. Use the corrector to calculate again a1,j and ȧ1,j

2. Use the new values to calculate a
(2)
0,j and a

(3)
0,j

3. Replace these new values in the equation for corrector

and repeating them a sufficient amount of times. It is important that the value of the

predictor remains unchanged during the whole process. At the last step, we recalculate

the acceleration of the particle using the last obtained corrector. Bear in mind that, by
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choosing to do this, the total number of calculations are being increased with each iteration,

and thus increasing the computational time of the simulation, so caution is advised when

choosing a number of iterations in the correction process as to repeat just the strictly

necessary amount of times.

We need to prepare for the next integration step. First we set the new initial

conditions of particle j as the last calculated corrector

tj = t

x0,j = xc,j

v0,j = vc,j

then we need to calculate the particle’s new time-step. For this, we need the values of a(2)

and a(3) at time t. Since we are using a third-order interpolation, given that a
(3)
0,j is already

third order, and a
(2)
1,j is second order, at time t they will be

a
(3)
1,j = a

(3)
0,j (2.14)

a
(2)
1,j = a

(2)
0,j + dtja

(3)
0,j (2.15)

we replace these values, together with a1,j and ȧ1,j in equation 2.4, and calculate its new

time-step. At last, we calculate the new tj + dtj, reorder all the values, and repeat the

entire process until necessary.
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3 N-Body Systems

3.1 The Original N-Body Problem

The Renaissance was a thriving period for Astronomy, with many advances made

in both observational and theoretical aspects being made by various scientists. Tycho

Brahe would perform a series of intricate observations of the movements of the bodies

in the night sky, specially that of the planets in the Solar System, and would leave his

annotations to his assistant, Johannes Kepler, who would then derive from them his

three laws governing the movements of the planets. The period would also see Galileo

Galilei propose its heliocentric model, and his discoveries of four moons of Jupiter, Io,

Callisto, Europa and Ganymede. But it was in 1687 that the epoch would see its greatest

revolution in the sciences, as Issac Newton published his Philosophiæ Naturalis Principia

Mathematica, in which he presented the world with his three Laws of Motion, that gave

birth to what is known today as Classical Physics.

Newton also proposed a revolutionary force to explain the interaction and movement

of the celestial bodies. That force would not require the bodies to be in direct contact

with each other, but that would act among them from a distance, that would come to be

known as the Law of Universal Gravitation. Given two isolated bodies of masses M1 and

M2, respectively, separated by a distance r, they will interact through an attractive force

whose modulus is given by the inverse square law

F =
GM1M2

r2
(3.1)

in which G is an universal constant, whose value is G = 6.67 × 10−11 Nm2

kg2 . He was able

to derive the elliptical motion of a system of two bodies interacting through this force,

and derived Kepler’s Third Law of planetary motion with success. He would then take

the next step in his study of gravitation, using his Law of Universal Gravitation Newton

would try to derive the motion of the Moon under the gravitational influence of both the

Earth and the Sun, the first attempt at a 3-body problem, but this would be his nemesis,

as we wasn’t able to find a complete solution.

The general extension to the 3-body problem problem was then natural. Given N

bodies with masses mi and given initial positions ri and velocities vi, for i = 1, 2, ..., N

with respect to a given inertial frame, such that ri 6= rj, for i 6= j, interacting with each

other via Newton’s Law of Universal Gravitation, the total force on the i-th particle is
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given by the relation

Fi = −
N
∑

j 6=i

GMiMj
ri − rj

|ri − rj|3
(3.2)

Given this setting, what would be the resulting motion of all the bodies?

This system went on to be known as the N-body problem, and would elude physicists

and mathematicians alike for centuries. The result of the 2-body problem was completely

characterized by Johann Bernoulli in 1701 [16], but the solution for N ≥ 3 would take

scientists many years of work still to come.

3.1.1 Chaos

Solving the N-body problem would revolutionize the understanding of celestial

mechanics, and the search for a solution intrigued scientists and sympathizers alike, so

much that in 1889 it was proposed a prize, to be awarded at King’s Oscar II of Sweden

and Norway’s 60th birthday, to that who could present a power series solution to the

N-body problem, known as King Oscar’s Prize [16]. Unfortunately for King Oscar, none of

the participants were capable of finding the desired solution, but still there was a winner.

The prize would go to Henri Poincaré, for his work on the restricted 3-body problem, and

for showing that a N-body system with N ≥ 3 is a chaotic system, a result he came to

publish later [17].

A chaotic system is one which is highly sensitive on its initial conditions, that is, if

you change the initial conditions ever so slightly, this represents a completely change in

the final result. In the words of Edward Lorenz, ’chaos is when the present determines

the future, but the approximate present does not approximately determines the future’.

This is the reason why the N-body problem sometimes is regarded by some people as not

possessing a solution, which we’ll shortly see otherwise.

3.1.2 Series Solutions

The search for a power series solution for the N-body problem raged on, and it was

not long after the handing of King Oscar’s prize to Poincaré that a power series solution

to the 3-body problem has been found. In 1913, Karl Sundmann published in the Acta

Mathematica a paper containing a review of his works on the 3-body problem, in which

he presented a converging series solution in terms of t1/3, given that a collision does not

take place within the system [19]. His method, however, was not applicable for values of

N greater than 3 [16]. The global solution would appear only almost 80 years later, in

the end of the 20th century. A chinese student by the name Quidong Wang published
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a convergent power series solution to the global N-body problem [18], regarded that no

collisions take place.

Notice, however, that althought both Sundmann and Quidong Wang have provided

a solution, that is all they are. They solve the mathematical initial value problem, but their

convergence are so slow ( Wang’s solutions starts to converge at the 10126-th term) that

they are completely non-practical in terms of studying the behavior of celestial N-body

systems. That is where numerical methods come into action, as they show very acceptable

results, with a much faster convergence and accuracy. Modern astrophysical studies rely

greatly in the use of computer simulation in the attaining of solutions to numerical models,

which show a great compatibility to the vast number of observations available.

3.2 Other Formulations

Newton’s N-body problem can be regarded as the first time the term has been

mentioned in the field. However, as Physics developed, many other types of forces were

discovered, with characteristics similar to that of classical gravitation, which also depend

on a mutual interaction between two or more particles; e.g., Coulomb’s force. The definition

of a N-body system was then broadened to any system composed of N-bodies mutually

interacting with each other, and the number of such systems that can be found in nature

is astounding. However, not all of these systems present the same difficulty as that placed

by Newton’s N-body problem, however most of them remain being chaotic. We can cite as

examples of N-body systems a group of charged point particles, particles in a gas or in a

molecule or even spins in a bi-dimensional arrangement.

Given the different characteristics of N-body systems and the forces that act on

each one, different approaches to solutions than that of the N-body problem have been used,

some even with an appreciable success. In general, physicist try to apply approximation

methods in solving N-body systems analytically, which for a group of systems show a

satisfactory result. An example of such methods is the Mean Field Theory [27], or Group

Renormalization Theory [27], which is adaptable to spin systems. However, a general

analytical solution is not available for a majority of these systems, and just as in the

gravitational case, researchers rely mainly on the use of computational simulations in

attaining their results, as they prove a faster and more efficient method.

Not only in the discrete aspects of Nature one can find N-body systems. When using

a computer to describe a physical system, in many situations it is necessary to discretize a

continuum system in order for the computer to be able to process the calculations, and

many times as a means to save on computer time. These are called N-body simulations,

as the bodies in the simulation can be representations of real elements, or just be used as

a computational tool in the calculation. Whatever is the case, they are one of the main
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methods used in simulations of physical systems, and is the method to which we are most

interested in applying in this work.

3.3 Central Body Systems

When we look at the variety of N-body systems in Nature, we see that many

of them share a common pattern, one that usually is of great curiosity and interest for

scientists in the respective area of study. As mentioned, N-body forces are those that

depend on mutual interactions among two or more particles, and generally are proportional

to a given intrinsic characteristic of those particles; e.g., mass. Using the mass in our

example, we observe a large quantity of systems in the universe in which a single body

possess most of the mass in the entire system, and the other particles seem to move about

this central particle. These are called Central Body Systems, and examples of such systems

are the Solar System and atoms in general, in which the central bodies are the Sun and

the nucleus of the atom, respectively. Such systems are of great interest to researchers

because they allow for a great simplification in its formulation. In a Central Body System,

one usually is more interested in the orbits of the smaller bodies around the central one,

rather than the movement of the entire system (sometimes the researcher is also interested

on the later).

Therefore, when studying such systems, one can consider the central body to be

static, and look exclusively at the movement of the remaining bodies. This approximation

reduces the total number of equations by 1, and the remaining N-1 equations can be

simplified by considering the movement in the reference frame of the central body. We

are interested in the N-body Problem, so for a Central Body System, the general N-body

equation 3.2 will become

ai = −GM0
ri

|ri|3
−
∑

i6=j

GMj
ri − rj

|ri − rj|3
−
∑

j

GMj
rj

|rj|3
(3.3)

in which M0 represents the mass of the central body, ri the position of the i-th body in

the reference frame of the central body and Mi the mass of the remaining N − 1 bodies.

In this equation, the first term represents the acceleration of the i-th body with respect

to the attraction of the central body, the second term is the gravitational pull of all the

other N − 2 smaller bodies on the selected i-th body. The third term accounts for the fact

that the reference frame of the central body is a non-inertial frame, which accelerates due

to the gravitational pull of the other N − 1 bodies; i.e., the third term is the acceleration

of the reference frame.

If we were to solve the equation analytically, the above equation would be enough.

However, as we have mentioned before, in solving N-body system’s equation, it is way
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more efficient to use numerical simulations. When solving numerically a given differential

equation, one generally wishes to solve it in the most general possible fashion, such as that

the result can be applied to a series of systems, not just a particular one. Equation 3.3 is

still highly dependent on the scale of the system being studied, that is, on the units of

mass, position and on the units of G being used. Notice that, for the N-body problem, it

isn’t the actual value of the positions and velocities that are important, but instead theirs

relative values to each other. Then, in order to transform the above equation into its more

general formula, it suffices that we work with its dimensionless form. Representing the

dimensionless quantities by a tilde, we define them as

ãi =
ai

a0

(3.4)

r̃i =
ri

r0

(3.5)

M̃i =
Mi

M0

(3.6)

in this definition, we choose a given reference value for the position r0, and M0 is the mass

of the central body. The reference value for the position depends on the system being

studied. We also define

a0 =
GM0

r2
0

(3.7)

which is the reference acceleration associated to the reference position. If we replace these

quantities in equation 3.3, we arrive at its dimensionless form

ãi = − r̃i

|̃ri|3
−
∑

i6=j

M̃j
r̃i − r̃j

|̃ri − r̃j|3
−
∑

j

M̃j
r̃j

|̃rj|3
(3.8)

which is the equation we wish to work with, as it gives the most general solutions for

the central body N-body problem with the proportions as stipulated. A solution to this

equation could represent, for example, either the movement of planets around a star or

of satellites around the Earth, and to go from the solution from this equation back to a

result for an specific scale, one needs only to invert equations 3.4, 3.5 and 3.6, with values

for M0 and r0 suitable for the system being studied.



Part II

Results
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Algorithm Setting

In order to demonstrate the potential for application of the Hermite Scheme in

physical systems such as the N-body problem or atomistic systems, in this chapter we

present a study of the accuracy and time performance of the method. In order to do so,

we developed two serial Hermite Scheme algorithms and a serial N-body fourth-order

Runge-Kutta algorithm, both using the Fortran 90 language. For both algorithms we allow

the number of bodies to be defined by the user, and in the Hermite algorithms, as means

of comparison, we consider two possible numbers of iterations for the corrector: 1 and 3.

The Runge-Kutta method was chosen because it is one of the most widely used numerical

methods in physics. As our test system, we will consider a classical planetary N-body

problem, in special we consider a Central Star System, formed by point-like particles

allowed only translational degrees of freedom (no rotation), in which the dynamical

equations that we desire to solve are those given by equation 3.8. We chose this system

because it is a chaotic physical N-body system, formed by coupled differential equations,

proving a challenge to be solved.

The computer used in performing the simulations had an Intel R© Core i7-7700

processor, with 8 cores of 3.60GHz each, 32GB RAM and a GeForce GTX 1050Ti graphics

board. The operational system was the ubuntu 16.04 LTS.

In this chapter we will present an analysis of the results we obtained from our

tests, each section representing a characteristic of the method. We begin with a study of

the accuracy of the Hermite Scheme and its applicability to chaotic systems. We then

compare its time performance to that of the Runge-Kutta algorithm, taking into account

the dependence of the computational time on both the simulation time and on the number

of bodies being simulated. We finish presenting the reproduction of two known results, the

orbits of the Solar System and an excerpt from Chambers et al(1996) [28] on the stability

of 3-planets systems, as a validation to the method.
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The first step when choosing a numerical method which to apply in obtaining the

solution of the dynamical equations for a given physical problem is to understand the

accuracy needed for said problem, and to find a method with the appropriate accuracy.

For many physical systems, a simple second-order integrator (such as the Leapfrog or the

Velocity Verlet) suffices. For chaotic systems, it’s high sensitivity on the initial conditions

makes it such that all the accuracy one can get is welcome. Commonly, however, an increase

in accuracy means an increase in computational resources and computational time, which

are things that laboratories can’t spare. It is then necessary a very good understanding

of the physical problem being studied, as well as a study of the computational setting

available in order to define the precision of the variables and the time-step size to be used

on the simulation, and therefore more robust methods are necessary.

Given the sensibility of chaotic systems on the initial conditions, the use of the

highest precision variables is desirable. However, considering the computational resources

and human time restrictions (a simulation which needs 5 years to be performed is unrea-

sonable), double precision variables usually offer a good enough option, and are commonly

used. With a suitable choice of the time-step size, a fourth-order integrator can cause the

accuracy to go beyond that of the double precision variables, making them the most sought

for choices in performing the simulations. A fourth-order integrator, as the name suggests,

is one which has an accuracy equal to the fourth power of the time-step used. Given the

accuracy at which the integrator works, it has a restriction to the size of the time-step

that can be used, in other words, if the time-step used is greater than a critical value, the

results of the integration diverge. The Hermite Scheme is one such fourth-order integrator,

making it a very suitable choice for the application to chaotic systems, in special we are

concerned with the classic N-body problem. In order to show this fourth-order accuracy,

and to study the time-step range within which the Hermite Scheme is able to properly

work, we performed an analysis using a set of simulations for a sample 3-body central

body problem as our test system.

In order to perform the accuracy analysis, we would need to compare the values

obtained from the simulation to that from the actual solution, that is, compare with

the analytical solution. However, in the absence of the analytical solution, we need some

reference quantity, dependent on the variables being integrated, who provides a reference

value with which to compare the error of the integrator. Since the system we are studying

is chaotic, and do not possess an analytic solution, we need another quantity to use in

our tests. This is not a problem. It is known that a physical system such as the one being

studied must obey a series of physical laws, and for the numerical solution obtained through
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a computer simulation to be considered physical, it must obey the laws of Physics. Two

laws in special are more interesting for us at this moment, the conservation of momentum

and conservation of energy, as both momentum and energy depend on the position and

velocity (the variables we are integrating), and we can easily calculate them from the

initial conditions, making the initial energy and momentum suitable reference values for

our study. Given that we are dealing with a central body problem, we opt in special for

the angular momentum of the system. In order to verify the accuracy of a given integrator,

one studies the dependence of those variables on the time-step used, and this dependence

shall give the order of the integrator.

However, two things should be observed in this development. First, we aren’t

dealing with the position and velocity directly, but with quantities that depend on them,

and as thus we need to keep in mind that the dependence of the relative error of those

quantities shall be one order higher than that of the variables being integrated, that is, one

order higher than the integrator itself. Secondly, the dependence on the time-step is a very

useful for integrator which make use of a fixed time-step for all the particles throughout the

simulation, which is not our case. The Hermite Scheme makes use of a different time-step

for each particle, which vary during the simulation, making it impossible to choose a given

one in order to obtain a proper analysis. To deal with this issue, remember that in order

to guarantee that the size of the time-steps for each particle remains within the working

range of the integrator, we made use of the accuracy parameter η, which is a fixed quantity

associated to the time-steps. So instead of analysing the dependence of the relative errors

on the time-steps, we look at their dependence on the accuracy parameter η, which gives

an analogous result to that which we desire.

We begin our study with one of the simplest known solutions. We simulated a system

in which the two orbiting bodies perform circular orbits around the central body, over

a total period of 2π, or 10 years, using a 1 iteration corrector Hermite Scheme. We vary

the accuracy parameter from 10−5 until 1. In order to better illustrate the bottom limit

dependence, we used a quadruple precision variable in the simulations. The resulting

dependencies of the relative errors of both the energy and the angular momentum are

shown in Figure 1. Close analysis of those graphs show a fifth-order dependence on the

accuracy parameter, for both quantities. Since this dependence is one order higher than

that of the integrator, we confirm that it is indeed fourth-order.

This test concerned a very specific group of solutions, one of the simplest ones. In order to

fully analyse the accuracy, we need to study the behavior of the relative errors of more

general solutions. We then repeat a simulation with the same configuration for the system,

but this time we consider a system in which the two external bodies move in more general,

non-circular, eccentric orbits around the central body, the results shown in Figure 2. The

new curves show a slightly different inclination for the smaller values of η, but as the
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Figure 1 – Dependence of the relative errors for the energy (left) and the angular momen-
tum (right) on the accuracy parameter η, for a system with a fixed central
body and two smaller bodies moving in circular orbits, showing a fifth-order
dependence.

Figure 2 – Dependence of the relative errors for the energy (left) and the angular momen-
tum (right) on the accuracy parameter η, for a system with a fixed central
body and two smaller bodies moving in a general non-circular orbits, showing
the same fifth-order dependence.

value increases the behavior of the curve approaches that of the previous ones, until it

finally becomes the same. The transition occurs for a value of 10−4 < η < 10−3. This slight

difference does not change the overall dependence of the relative errors, which remain

fifth-order, assuring the fourth-order dependence of the integrator.

These results not only provide us with the accuracy of the method, but it also
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gives us information on the range of values for η within which the integrator can operate.

The upper value for η in the graphs is around 0.4, and we found this to be the upper

operational value for the integrator. Above this value, the integrator can still operate,

but the final results become completely unreliable and non-physical. These graphs also

work as a great tool to be used in deciding which accuracy-parameter is more adequate to

the accuracy necessary for the given physical system. For a double precision variable, its

precision is of the order 10−16, and thus a value of η = 0.01 is enough for systems in which

they are needed.



5 Analysis of Performance

The accuracy of a numerical method is very important, as many times it is what

will guarantee if the ensuing solutions will be physical or not. However, it must not be the

only element considered in the decision of which method to use. The researcher also needs

to weight the computational resources and the time they have available to perform the

simulation. The researcher should seek a balance between all those factors, and choose the

method that suits most this balance. Sometimes it is worth a sacrifice of the accuracy for

a gain in computational time, so long it does not harm the physical result.

Among the factors mentioned above, computational time is perhaps one of the

most important, since it translates directly into the human time needed to perform the

simulation. The scientist must be constantly show their results to the financing parties,

scientific meetings and other circles in order to be able to continue its work, and a method

which takes months, or even years to produce a single result isn’t appealing, much less

practical in scientific works, provided there are other options. With this in mind, we

dedicate this chapter to a study of the time performance of the Hermite Scheme for a

N-body problem in two situations: considering the total simulation time, and considering

a change in the number of bodies. In order to have a sense of the value of its performance,

we compare the results to that obtained through a N-body fourth-order Runge-Kutta

integrator for the same configurations.

5.1 Computational Time versus Simulation Time

Physics concerns itself with the study of a broad number of natural systems, each

containing its own characteristics and particularities. A very important characteristics of

all physical systems which can be used to characterize them into groups is the time scale

at which the interactions in that system takes place. This can vary greatly from system to

system, and for one studying the given system, it reflects on the amount of time needed for

the significant phenomenon we wish to study to be observes; e.g., for a quantum system,

intervals of the order of pico-seconds and micro-seconds are very significant, whereas

for planetary systems a time interval of this size is insignificant. The time scale of the

interactions is useful not only to classify different physical systems, but they are also

very useful in classifying phenomena within the same system. Oftentimes a system may

present itself with a broad number of phenomena taking place within different time scales,

the multi-scale systems, and one needs to pay careful attention to the time scales of the

phenomena in the system they wish to study. An example of such system is that of a

planetary system in which collisions are observed: the collision process takes place within
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days or months, whereas a study of the orbits of the planets around their star takes years,

or even centuries.

For many system which possess an analytical solution, oftentimes this solution

provides information about the behavior of the system at any instant of time, but the

same can’t be said when one uses computer simulations. A numerical solution is a set

of calculated points, spaced by a distance determined by the time-step, which gives the

behavior of the system being studied within a given time interval determined by the

computer physicist. Generally, nothing can be said of the behavior of the system outside of

this time interval (this is always true for chaotic systems). This time interval at which the

simulation takes place, which represent the real time within which the phenomena being

studied happens, is called the Simulation Time. The choice of which size of the simulation

time to use is directly associated to the time scale of the phenomenon, or phenomena,

being studied. For multi-scale systems it is dictated by the scale of the slowest paced

phenomenon.

In computational terms, the simulation time is directly associated, and can even

dictate, the computational time needed for the simulation to be performed. An influence

in this relation is the number and complexity of calculations performed at each step of the

integrator: if the algorithm is simple, like that of lower order integrator, the calculations

take place faster than that of more robust, higher-order integrator. Since the points in

a numerical solution are separated by a time-step, this also means that the simulation

time is directly associated to the number of steps that the integrator need to perform in

order to provide the desired solution. This is true for methods which make use of a fixed

time-step; i.e., the number of steps and the simulation time can be regarded as having the

same weight, but both quantities have completely different interpretations when one look

ad adaptive time-step algorithms.

This line of thought brings an interesting insight to this work. For methods which

make use of a fixed time-step, the number of steps performed will be the same when it

processes two different systems with the same time-step and the same simulation time.

However, for methods like the Hermite Scheme, different systems making use of the same

accuracy parameter and simulation times, most certainly will perform a different number

of steps. No direct conclusion can be said of the computational time, however, as the

complexity and number of calculations within a step depend on the system being studied.

Nonetheless, this opens the question as to the performance of both kinds of methods when

applied to the same system, for a fixed simulation time.

In order to compare these performances, it is important to consider the same system,

as to guarantee that the complexity and number of calculations will be a characteristic of

the method, and not originating from the system being simulated. For this, we choose a

planetary central body, 10-body system. We wish to compare a serial 3 iterations corrector
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Hermite Scheme and a serial N-body fourth-order Runge-Kutta methods. We used a

time-step of 0.001 for the Runge-Kutta algorithm, and an accuracy parameter of 0.01 for

the Hermite Scheme. We verified that this choice of accuracy parameter ensures that the

smallest time-step of a body in the Hermite Scheme is of about 0.001, thus maintaining

the same accuracy as that of the Runge-Kutta. We perform 10 simulations, each with a

fixed simulation time, but vary the value between different simulations.

Figure 3 – Comparison of the computational time needed to perform a simulation with a
given simulation time, for both Hermite integrator with a 3 iterations corrector
and a N-body fourth-order Runge-Kutta.

The results of the study appear in Figure 3. The increase in computational time with

the increase in the simulation time is linear, for both methods. The angular coefficient

of both lines however is different. We observe that, for a given fixed simulation time, the

computational time needed for the Hermite Scheme to perform the simulation is around 2.6

times faster than the Runge-Kutta of same order. These results can be explained through

some observed factors. The N-body Runge-Kutta needs to update the coordinates of all

the particles at each step, thus increasing the number of calculations per steps performed

when compared to the Hermite Scheme, which updates the coordinates of a single particle

per step. This means that, while we have observed that the total number of steps taken

by the Hermite Scheme were higher than that taken by the Runge-Kutta, the number of

outputs of the later were significantly higher than that of the former, which contributes to

the increase in computational time.

Also, by doing so, the Runge-Kutta processes all the phenomena based on the time

scale of the fastest-paced phenomenon, which many times it means integrating a given

particle more times than it is strictly needed. The individual time-step routine in the
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Hermite Scheme, coupled with its processing of individual particles, allow for the time-step

of each particle to scale with the scale of its interactions, and in this way performing a

smarter integration, that is, it integrates each particle just the sufficient amount of times

needed for the phenomenon associated to that particular particle to appear in the solution.

This allows for a huge economy in computational time, earning the Hermite Scheme the

best performance in this situation.

5.2 Computational Time versus Number of Bodies

The result from the previous section shows that the complexity and the number

of calculations performed per step is one of the biggest contributors to the difference in

computational needed for a given simulation to be performed. This difference in complexity

and number of calculations is highly dependent on the model used for the chosen integrator,

but also depends on the type of system being considered. For dynamical systems in Physics,

this characteristic is directly associated to the number of particles being considered, as

for each new particle added to the system, a new interaction arises for every of the

remaining N − 1 particles. For this reason, when applying N-body simulations to solve

physical problems, one of the key factors the researcher needs to pay attention to is a

choice of N which permits a good characterization of the system, and allows for a reduced

computational cost.

This consideration must take into account the system being studied. For the use

of a N-body simulation to describe a continuous system, the N particles corresponds

to the discretization choice for the system being studied. For such systems, one needs

to pay careful attention to choose a number of discretizations which will not harm the

behavior of the physical system, but which also doesn’t require an absurd computational

cost. One would think that an absurd value for N would be necessary, but there are

many methods used by computational physicists; e.g., the application of semi-analytical

processes, simplifications in the method or mean field methods, which permit for a good

description of the system and allows the use of small values of N. For systems in which its

components already are discrete elements, such as the case of N-body systems, one does not

have a choice as to the value of N to be used, and needs to rely on possible simplifications

of the model, or seek the most efficient method to apply in the given situation.

Then, for a given numerical method we wish to apply in a N-body simulation, it is

important to understand its performance not only based on the total simulation time, but

also the performance based on the number of bodies being simulated. This is true for the

Hermite Scheme we are presenting in this work. We perform the study of the performance

of the Hermite Scheme abased on a change of the number of bodies as a set of N-body

simulations using a 1 and 3 iterations corrector Hermite Schemes and using a N-body
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fourth-order Runge-Kutta integrator for comparison. The time-step for the Runge-Kutta

is set at 0.001, and the accuracy parameter for both Hermite Schemes is set as 0.01. We

vary the number of bodies from 1 up until 8, for time limitation purposes. We considered

first the algorithms with a fixed total amount of 1-body outputs, and the results can be

seen in Figure 4.

Figure 4 – Dependence of computational time with the increase in the number of bodies
in the N-body algorithm for a Hermite Scheme with 1 and 3 iterations, and a
fourth order N-body Runge-Kutta algorithms, for a fixed number of outputs.

We observe that when we fix the number of outputs, the 3 iterations Hermite Scheme

becomes slower than the Runge-Kutta, contrary to that observed in the previous section.

As we noticed in the previous section, the Hermite Scheme integrates the equations in

a smarter fashion, producing the same result with a smaller number of 1-body outputs,

whereas the Runge-Kutta produces 9 1-body outputs each step. This means that to produce

the same amount of outputs, the Runge-Kutta takes 9 times less integration steps than

the 3 iteration Hermite Scheme, and therefore making lesser calculations than the Hermite

Scheme. This extra calculation, however, isn’t due to the structure of the integrator,

as surprisingly the 1 iteration Hermite Scheme still fares better than the Runge-Kutta

for all values of N but N = 1, showing the same accuracy. The discrepancy between

the computational time of the two Hermite Scheme is due to the extra corrections of

the corrector, which adds a significant amount of extra calculations to the integrator,

but adding an extra accuracy as well. We saw that the 1 iteration Hermite Scheme is

fourth-order, but the extra corrections add extra accuracy to the method, resulting in a

more precise solution, which are preferable in chaotic systems. This simulations aren’t

entirely fair, however, since the solutions of the Hermite Scheme algorithms aren’t the
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same as that of the Runge-Kutta. Since the Runge-Kutta performs 9 times less integrator

steps than the Hermite Scheme, and we choose the accuracy parameter such as the smallest

time-step in the Hermite Scheme would be of the same order of that in the Runge-Kutta,

this means that the solution given by the Hermite Scheme algorithms covers a greater

time range than that of the Runge-Kutta, which mean they did "extra work" and give a

more "complete" solution. This makes the fact that the 1 iteration Hermite Scheme was

faster even more impressive.

In order to even the odds for all the integrators, we performed a second set of

simulations, but now keeping the total simulation time fixed. We already know that, for N

= 9, the 3 iteration Hermite Scheme is faster than the Runge-Kutta, but we need to check

if that is true for all N. The results for this second set of simulations can be seen in Figure

5.

Figure 5 – Computational time dependence with the increase in the number of bodies in
the N-body algorithm for a Hermite Scheme with 1 and 3 iterations, and a
fourth order N-body Runge-Kutta algorithms, for a fixed simulation time.

Again, for N = 1 both Runge-Kutta and the 1 iteration Hermite Scheme perform the same,

but for any other value of N the later perform better than any of its peers, a difference in

performance that increases as N increases. For the 3 iterations Hermite Scheme and the

Runge-Kutta, we see that for N < 3, the later performs better than the former, and at

N = 3, both have the same performance, and for N > 3, the performance of the Hermite

Scheme becomes increasingly better than that of the Ruunge-Kutta. To understand this

result, we need to keep two factors in mind. First the fact we mentioned that oftentimes

the Hermite Scheme takes more integration steps than the Runge-Kutta, which for N < 3

this means taking more steps overall, therefore performing more calculations than the
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later, with N = 3 being the threshold. Second, we remember that a planetary N-body

system is a multi-scale system, and the number of different scale phenomena increase

with the number of bodies in the system. In the system we used as test system, up until

N = 3, the scale of the phenomena wouldn’t change much, thus the difference appearing

only for N = 4. The individual time-step Hermite Scheme is significantly better than the

Runge-Kutta when dealing with multi-scale systems, and it can also be that the threshold

in the above result may be a consequence of the particular system we used as our test

system. Further studies are necessary to confirm this supposition, but overall we see that

the Hermite Scheme has a better performance than the Runge-Kutta when dealing with

the N-body problem, and we can expect the result to any other N-body systems with

similar formulations.
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6 Reproduction of Real-life Results

Since the foundation of Computational Physics, its main objectives are the search of

new numerical methods to solve physical problems which didn’t, or don’t, have analytical

solutions, or as a means to solve physical problems in general in a faster, more effective

fashion. Nowadays, numerical methods are broadly used in a great range of areas in

Physics, contributing to experimental and theoretical physicists alike in the development

and verification of theories, with many of those areas highly dependent on computational

methods for a proper development, such as its the case of both Condensed Matter Physics

and Astrophysics.

Throughout history, many new numerical methods have been discovered or created

by physicist who needed some way to find a solution to the problem they had at hand.

These methods have been thoroughly tested in a great range of problems, and those that

fared good started to be applied in areas beyond that to which they were intended for. This

reflects the main characteristic of the numerical methods developed for Physics, they need

to be able to solve physical dynamical equations, offering a physical solution to the desired

problems, with a good efficiency. Methods like the Runge-Kutta’s were so successful that

until today they are thoroughly studied and developed, with new formulations arising for

an enhancement in performance and applicability.

In order to understand if a numerical method is suitable to be applied in Physics,

one must first check if it is capable of reproducing already known results in the field, and

compare the precision of the numerical solution to the result itself. In this chapter, we aim

to verify the applicability of Hermite Scheme to physical systems, in special to N-body

systems, by reproducing some known results in Astrophysics, and area in which given

its limitations, Computational Physics is broadly used as a means to verify models and

theories and provide means of comparison of these with observation.

6.1 Orbits in the Solar System

The night sky has always fascinated human kind with its beauty and complexity.

Almost every civilisation that has existed on Earth has proposed a different explanation as

to what those little shiny spots were, or what were their function. Some believed them to

be the souls of their ancestors that watched them from above, others like the Polynesians

used them as guiding compasses in their travels [29], but there were those like the Mayan

[30] and the Greek [31], who set to investigate and study these beings, and this allowed

them great findings. They would come to discover that some of these shiny dots would

maintain their relative position fixed in the night sky, but a few of them would move
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about during the year. Thus were discovered the planets, of which 5 are visible to the

naked eye, namely Mercury, Venus, Mars, Jupiter and Saturn. The extraneous movement

of these bodies fascinated scientists from the past, and a search for an explanation to

their movements fueled research into astronomy and astrophysics, and was one of the

motivations for the studies of Johannes Kepler, and for the formulation of Newton’s law

of gravitation.

Newton came very close to finding a solution that he so much sought to explain

their movement, but couldn’t offer an analytical solution to his theory. A full analysis

came only centuries later, when numerical methods began being used in Physics, and

computer simulations would offer us a glimpse on the movement of these celestial bodies,

showing that Newton’s theory provided a good solution for the movement of the planets in

the Solar System (now known to be 8), but fell short of the perfect match by a difference

in the precession in Mercury’s perihelion [32]. This later detail would then be explained in

the beginning of 20th century by Einstein’s theory of General Relativity, one of its first

successes. Nowadays, the movement of the 8 planets of our Solar System is well understood,

with space agencies like NASA and the ESA keeping track of their movement, as well as

that many other celestial bodies that exist in out Solar System.

Although Newton’s N-body problem does not offer the fully correct solution for

the movement of the planets in our Solar System, it represents a good approximation not

only to their orbits, but to the movements of many other celestial bodies throughout our

universe which are not subject to an extremely strong gravitational field, and for this

reason is highly used as a model for simulations in Astrophysics. In truth, the main reason

for it to be used is that classical gravity is much easier to implement in an algorithm, and

the computational cost associated is much smaller than when we apply General Relativity,

and the overall results are as satisfactory as the later.

The Hermite Scheme was initially developed for an application in astrophysics

[25] for an application in N-body systems. To show this applicability we choose one of

the most known N-body systems, which has fascinated humanity for milenia: the Solar

System. The Sun contains approximately 99.8% of the mass in our Solar System, making

the later a central body N-body system. The number of bodies in the Solar System is

overwhelming, and for simplicity we will concern our attention to the main bodies, the

planets (and Pluto, for hommage and nostalgia). Notice that the choice to simulate the

Solar System goes beyond a simple tribute to humanity’s history, but the later is a good

example of a multi-scale system, for the orbits of the planets occur in very different scales

(for instance Mercury’s orbital period is of 88 days, whereas Pluto takes approx 248 years

to perform a complete revolution), allowing us to see the application of the method to

multi-scale systems as well.

For the simulation, we used a 3 iterations Hermite Scheme, with the equations of
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the planets given by equation 3.8. We used as the initial conditions real data on the planets

of the Solar System made available by NASA [33], with a simulation time of around 2500

years, or approximately 10 Pluto orbital periods. The simulation is performed in three

dimensions, taking into account the inclination of the orbits of each planet with respect to

the plane of the ecliptic (the plane at which the Earth’s orbit takes place).

Figure 6 – Projection on the plane of the ecliptic of the orbits of all the planets of the Solar
System, plus Pluto, as obtained from a 3 iteration Hermite Scheme algorithm.

Figure 6 shows the orbits obtained from the simulation projected into the plane of the

ecliptic. The spatial scales of the orbits differ greatly, so in order to allow for a better

visualization of them all, they were separated into two different graphics. Some important

characteristics of the planets’ orbits can be observed in the solutions. First, the orbital

period of the planets were observed to match that found in literature. We can point out

some other aspects which we can observe directly from the images.

Earth’s orbital eccentricity’s value is approximately 0.017, meaning that it’s orbit

is approximately circular, which is what we observed in our simulation, as well as the

highly eccentric orbit of Mercury. One striking point can be observed on the orbits of

Neptune and Pluto. In 2006, the International Atronomical Union defined that a planet is

"a celestial body that (a) is in orbit round the Sun, (b) has sufficient mass for its self-gravity

to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round)

shape, and (c) has cleared the neighbourhood around its orbit." [34]. Pluto fails to fulfill

the last exigence, as it crosses Neptune’s orbit in two points, which we can clearly observe

in the results above, helping to validate the obtained result.
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6.2 Stability of Circular Orbits

The secrets of the universe are not limited to the movement of the celestial bodies

of which it is composed. Even before the planets were discovered, questions as to the nature

of these beings, as well as to the formation of the universe itself were asked, and answered

by scholars. The first cosmological models can be tracked as back as the Babylonians [35],

and further developed until modern day Cosmology. New observational tools and methods

were being developed, which allowed us to discover the existence of other types of celestial

bodies throughout the universe, showing us that stars and planets aren’t exclusive to

our solar system, and this served to further fuel our interest in the Cosmos. The further

development of the available knowledge led us to understand what is a star, a galaxy

and to characterize planetary systems outside our Solar System. This opened space to

questions that we still seek to understand, and one of them is of special interest for the

project, as it is a theme that gave rise to it: How are planets formed?

It is known that planets form within the so called protoplanetary disks, which

are disks of gas and debris leftover from the star formation process, which orbit around

a young star. Many observations of such disks can be found on literature [36, 37]. It is

believed that dust and debris within the disk start to clump together forming objects of

increasing mass, called the planetary embryos, until they reach a critical size at which

they start to accrete the material around them until they become a fully formed planet.

However, there are still many unanswered questions as to how this growth takes place and

what are the conditions that guarantee the formation of a stable planetary system.

Much research has been made in the study of planet formation. Given the mass that

is necessary for the formation of a planet, the estimated life-time of a protoplanetary disk,

and the estimated time needed for a planetary embryo to accrete enough mass to become

a planet, it is understood that collisions among planetary embryos must play an important

part in planet growth and planet formation. But it is also known that planetary embryos

that are embedded in a protoplanetary disk composed of much smaller objects evolve to

move in nearly circular, non-overlapping orbits [28]. However, in 1993, Gladman showed

that any system of two small planets around a central star, with orbits of low eccentricity

and inclination, are stable if the difference in their semi-major axes measured in Hill radii,

which we shall call ∆, is higher than a given critical value, namely ∆crit ≃ 2
√

3 [28]. The

Hill radius of an astronomical body is the radius of a sphere within which smaller objects

will tend to orbit it.

With this knowledge, it was not understood how these systems would evolve into one

on which close encounters between those embryos are possible, allowing for the occurrence

of collisions to occur, with them coalescing into full size planets [28]. This also led to a

thought that systems of 3 or more small planets would behave like concatenations of such

two-planets subsystems and have the same stability behavior, precluding the formation
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of planets altogether. However, in 1996 Chambers et al produced a paper [28] in which

they studied the stability of multi-planet systems. They showed that any system with 3 or

more planets with ∆ < 10 are always unstable, with the time of the first close encounter

given approximately by the relation log(t) = b∆ + c, in which b and c are constants [28].

They use computational methods in obtaining those results.

The results obtained by Chambers et al. are very important in the study of planet

formation, and illustrate the use and importance of the application of computational

methods in the study of physical systems, as they could not be obtained by other means

[28]. The system considered by them was one in which multi-scale phenomena, with very

different scales, were present. A close encounter usually occurs at a scale of days, whereas

the orbits of the planets presented in their work would take months or years to complete.

Given the huge difference in scale between the phenomena, and the importance of the

result presented in the paper, we use this work as a second validation test for the method

being presented in this work, limiting our study to the study of the 3-planets system

presented in the first part of Chambers et al.

Figure 7 – Dependence of the time of the first close encounter between any two bodies on
the value of ∆. We observe the dependence to be the same as that in Chambers
et al.

Our simulation consider a 3-planet system with the same configurations as presented

in Chambers et al, that is, masses of 10−7 times the mass of the central star, set into

initially coplanar, circular orbits with semi-major axes given by a1 = 1, a2 = a1 + RH1,2∆

and a3 = a2 + RH2,3∆ respectively, in which the Rhi,j are the mutual Hill radius between
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planets i and j, which are given by the modified equation

RHi,j =
[

mi + mj

3

]
1

3

(

ai + aj

2

)

(6.1)

and ∆ is the difference in the semi-major axes of their orbits, measured in units of Hill radii.

We use the 3 iterations Hermite Scheme as the integrator, with an accuracy parameter of

0.01. ∆ is used as a parameter, varying from 2.0 up to 10.0, in steps of size 0.2. We run 3

simulations for each value of ∆, with the initial positions of the planets decided randomly

each run, subjected to the condition that they begin with an angular displacement of at

least 20 degrees from each other. Each simulation is carried until a close encounter occur,

or until a total simulation time of 107 years occur, whichever happens first. We consider a

close encounter between planets i and j when RHi,j = 1, and when one occurs we record

the time of the occurrence. The results we obtained are shown in figure 7

The line in the figure was obtained using a least squares regression. Since we used a

different method than that used in the paper, the points weren’t the same, but we observe

the same behavior as shown in Figure 1 of Chambers et al. The logarithmic dependence

of the time of the first close encounter on ∆ is the same as proposed on the paper. For

values below 2
√

3, the results are that as given by Gladman, but we observe that for a

system with N = 3, independently of the size of ∆, the system is always unstable if the

planets begin at initially circular, coplanar orbits. The validation of this results shows that

the Hermite Scheme indeed is capable of processing multi-scale systems, even when the

scales in consideration differ by a great amount, allowing for its usage in a great variety of

physical systems.
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Conclusion

With the development of Computational Physics, many physical systems are studied

using numerical methods, which most of the time are cheaper and easier methods to obtain

the solution, and sometimes are the only way to obtain the solution, but in both being

a faster method to reach the desired result. But when applying computational methods

to physical systems, one have to bear in mind the computational resources available, the

accuracy needed for the physical system being studied, and the computational time needed

for the simulation, so it is of dire importance that the researcher employ numerical methods

that can comply and show a balance between those conditions. A feature of many systems

which many times pose a challenge to this balance is the presence of multi-scale phenomena,

that is, phenomena that happen to the same set of elements in a system but which happen

in different time scales, e.g. molecular dynamics with the presence of collisions. In such

case, it is important to make use of a good numerical method which is able to process

such multi-scale phenomena without sacrifice of time, or loss of performance.

We set to study a numerical method capable of processing such multi-scale phenom-

ena, called the Hermite Scheme, a fourth-order predictor-corrector integrator based on an

Hermite Interpolation. This integrator processes each particle of the system individually,

and is capable of integrating their dynamical equation by making use of time-steps that

are different for each particle. The value of this time-step is related to the intensity of the

interactions to which each particle is subjected, and therefore is directly related to the

time scale at which the given phenomenon is taking place. This should allow the method

to efficiently manage multi-scale systems, without the necessity of changes to its original

formulation. In special, we are interested in the performance of the method when applied

to N-body systems, so in order to verify its accuracy and performance, we applied the

system to a classical N-body problem, making a series of tests and compared the results

to to that of an integrator with the same accuracy, the fourth-order N-body Runge-Kutta.

The first test was a verification of the overall accuracy of the Hermite Scheme when

applied to chaotic physical systems, which is the case of the N-body problem. Such systems

are highly dependent on their initial conditions, and therefore they need an integrator

with a good accuracy in order to avoid numerical errors and non-physical solutions. The

overall accuracy obtained was of fourth-order, as expected from the method, which reflects

in a fifth-order accuracy for the energy and angular momentum. We also observed a

scale parameter threshold of around 0.4 for this accuracy, above which we observe great

numerical error of the method, which shows that the method has a good behavior even

for time-steps of higher values. For a chaotic system such as the N-body problem, a scale

parameter of the order 0.01 is enough, which falls well inside the threshold of the method,
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making the Hermite Scheme a suitable method for studying such systems with a good

enough accuracy. A suitable choice of the scale parameter can even cause the error to fall

below the accuracy of a double precision variable.

Nonetheless, many methods in the literature show a similar, or even the same,

accuracy as observed, which leaves the question on the time performance of the Hermite

Scheme when compared to other such methods. We analysed the time performance of the

Hermite Scheme, and compared the results we obtained to that of another method with the

same accuracy, which widely used in many areas of Physics, the fourth-order Runge-Kutta.

We considered for the test both a 1 and 3 iteration corrector Hermite Schemes. Our results

have shown that when we fix the total simulation time, the Hermite Scheme has a better

overall time performance than the fourth order Runge-Kutta for classical N-body problems

with N ≥ 3, below which it performs better than the 3 iteration Hermite Scheme, but the 1

iteration Hermite Scheme still beats its performance. Nonetheless, when we compare their

time performance considering a fixed number of outputs, the Runge-Kutta fares better

than a 3 iterations Hermite Scheme for any value of N , but poorer than a 1 iteration

Hermite Scheme, except for N = 1. However, in this case both Hermite Schemes solve the

dynamical equations over a greater range of time than the Runge-Kutta, thus performing

"extra work". Also, the 3 iteration Hermite Scheme has a slightly better precision than

the Runge-Kutta due to its extra corrections. This that overall, when we consider the

task that we want to solve in a physical problem, the Hermite Scheme has a better time

performance than the Runge-Kutta for N-body systems, but for other continuous systems,

it might show the same performance.

Finally, since we are interested in the application of the method to solve real-

life systems, it is not enough to just test dummy systems, but it is necessary that the

method can in fact reproduce these real-life phenomena. We then apply the Hermite

Scheme algorithm to two known results of N-body systems, both which present multi-scale

interactions, namely we simulated the three dimensional orbits of the planets of the Solar

Systems and the now Dwarf Planet Pluto, and attempted to reproduce the results from

Chambers et al(1996) on the stability of 3-planet systems. The results we obtained were

satisfactory, with the orbits showing key characteristics of the celestial bodies in our solar

system, such as the two points in which Pluto’s orbit crosses that of Neptune, the low

eccentricity orbit of the Earth and the orbit of the planets. For the Chambers et al(1996)

paper, our result showed the same behavior as observed in the first figure, albeit using

a different method. This demonstrates that the Hermite Scheme is indeed capable of

processing multi-scale systems, even if the scale difference is that between an orbit step

and a close encounter process.

Overall, we see that the Hermite Scheme has a good accuracy, on par with the

most often used integrators in Physics, with a good applicability to chaotic dynamical
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systems. It also presents an overall better time performance when dealing with the N-body

systems when compared to the widely used fourth-order Runge-Kutta, representing an

economy in computational time without loss of accuracy. A fixed time-step method would

need to either use a time-step adapted to the smallest time scale phenomena, or implement

a routine to adapt the time-step when dealing with a multi-scale system. For the Hermite

Scheme, however, the implementation of the Individual Time-Step procedure allows the

algorithm to process multi-scale phenomena naturally, with no necessity for change in

the algorithm, and thus no harm to its time performance or accuracy, making it a more

efficient method to use when dealing with such types of systems. This procedure, coupled

with the fact that the algorithm processes one particle at a time, grants that the system

will be less susceptible to cancellation errors as each body will move according to the time

scale of its interactions. This makes the method very useful when dealing with systems

with both long-range and close-ranged interactions, in which both are important to the

physical process being studied. For physical systems in general and when comparing serial

methods, the Hermite Scheme can provide a great economy in computational time with

the same accuracy as the commonly used methods, without the need for increase in the

computational resources available in each laboratory. Although we used as a sample system

a planetary N-body problem, the results shown in this work are extensible to any N-body

systems, in special it may prove very useful to atomistic systems.



Perspectives

This works was proposed as part of a collaboration between the Simulation Labo-

ratory from the Universidade Federal de Juiz de Fora and the Theoretical Astrophysics

Laboratory from Nagoya University. Its initial goal was to produce an algorithm that is

capable to study late stage planetary formation, in special the formation of the planet

Uranus in our Solar System, by using a N-body simulation. The algorithm needs to be

capable of processing close encounters and collisions, an important process in planetary

formation, without an extra computational cost or sacrifice of accuracy. In the development

of the algorithm, we saw the potential application of the Hermite Scheme for atomistic

systems in Condensed Matter Physics and correlated area. The combination of both ideas

gave birth to the work here presented, in which albeit we use as the sample system a

planetary N-body problem, the results are extensible to any physical N-body system.

As of the writing of this text, the algorithm is capable of identifying a close

encounter between any two bodies, but the procedure that processes the collision shall

yet be implemented in the future. This procedure is important because collisions are an

important mechanism of planetary growth, and it is also observed in atomistic confined

systems. We aim to first implement a simple collision procedure, one which takes into

account only completely inelastic, considering the coupling of the bodies, or elastic collisions,

both without considering fragmentation of any of the bodies. This should allow for a

good approximation of collisional events in planetary formation, and we aim to apply

the algorithm to a study of the formation of the planet Uranus in our Solar System, and

inspect if the presence of Jupiter and Saturn has played any role on its formation. This

simplification also applies to the atomistic systems studied in the Simulation Laboratory

from UFJF, in which fragmentation of the components isn’t present. For these cases, we

are yet to apply the method to a system in Condensed Matter Physics and to verify its

overall performance.

Depending on the performance of the method for atomistic systems, the next

natural step is to consider the parallelization of the algorithm, and to check if there is an

improvement on the performance of the algorithm. For planetary formation, it is arguable

if fragmentation in collisions plays a much important role in the formation process or not.

We shall then further study the collision process, aiming to implement a procedure capable

of taking fragmentation into account. If this is successful, we will be able to determine

its importance in the formation process, as well as to assess its role in the formation of

moons and planetary rings in planetary systems.
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APPENDIX A – Derivation of the Formula

for a Central Body System

Like any other problem in Physics, N-body problem is formulated considering an

unconstrained system of N mutually interacting bodies in an inertial frame. Its main

applications are on the study of the movements of celestial bodies which we can observe

in the night sky, such as in attempts to predict the motion of these bodies, or in order to

test theoretical models in comparison to observational data. When we observe the Cosmos,

however, we see a majority of systems composed of a set of smaller bodies orbiting a

bigger, very massive central body. When studying such systems, most oftentimes one is

more concerned about the movement of the smaller bodies around the central one than in

the overall movement of the entire system about its surroundings.

To focus on the movement of the smaller bodies, which we from now on will refer

to as planets (note that the results here shown are applicable to any situation) about the

central body, whom we will refer to as star, one needs only to look at the equations of

motion of the planets in the reference frame of the star. One needs to be very careful when

doing so, as they might be tempted to use the same equations of motion and integrate

them directly. Remember that the equations of motion of a physical system are invariant

only within a change from an inertial frame to another, however the reference frame of the

star isn’t an inertial frame, since the star suffers the gravitational pull of all the planets

surrounding it, which results in an acceleration. Thus, when studying the motion of the

planets in the reference frame of the star, the equations of motion we shall use will be

slightly different than the ones we began with, as we have shown in the text. In this

appendix, we will show step-by-step how to derive the equations of motion for a central

body system that was shown in the text.

First, let’s consider a N-body system with N + 1 elements. Let the element 0 be

the star, whose mass we consider to be M0, which will be our central body. We define r0

as its initial position at a given inertial frame S. The remaining N planets have masses

Mj (different or not) and initial positions rj, j = 1, .., N in the frame S. The dynamical

equation for body i is given by

Fi = −
N
∑

i6=j

GMiMj
ri − rj

|ri − rj|3
(A.1)

in which we sum on the index j from 0 to N .

We want to change from the frame S to another frame S ′. Denote origin of the S ′
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frame by O′, and let its position in the S frame be r. The positions of all the particles in

the S ′ frame can be written as

r′
i = ri − r (A.2)

the relative position between any two particles in the S ′ frame will be

r′
i,j = r′

i − r′
j (A.3)

Replacing equation A.2 in equation A.3

r′
i,j = ri − r − rj + r

r′
i,j = ri − rj

ri,j = r′
i,j

(A.4)

that is, the relative position of any pair of bodies remains unchanged in the new reference

frame. Now, we can write equation A.1 as

Fi = −GMiM0
ri − r0

|ri − r0|3
−

N
∑

i6=j

GMiMj
ri − rj

|ri − rj|3
(A.5)

if the frame S ′ is an inertial frame, then the equations of motion for all the bodies will

have the same form as equation A.10, only with a change from the non-primed variables

to the primed ones, that is

F′
i = −GMiM0

r′
i − r′

0

|r′
i − r′

0|3
−

N
∑

i6=j

GMiMj
r′

i − r′
j

|r′
i − r′

j|3
(A.6)

We want to study the system in the frame of the star. In this frame, the star is located at

the origin and is static, thus

r = r0

r′
0 = 0

(A.7)

also, for the planets

r′
i = ri − r0 (A.8)
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Since this frame is a non-inertial frame, we can derive equation A.2 twice in order to

obtain the equation of motion for particle i

v′
i = vi − v0

a′
i = ai − a0

(A.9)

on which we have used equation A.7. Now, the acceleration of the star in frame S is

a0 =
N
∑

i=1

GMi
ri − r0

|ri − r0|3
(A.10)

Therefore, using equation A.9, the acceleration of planet i in the frame of the star will be

a′
i = −GM0

ri − r0

|ri − r0|3
−

N
∑

i6=j

GMj
ri − rj

|ri − rj|3
−

N
∑

j=1

GMj
rj − r0

|rj − r0|3
(A.11)

Finally we apply equations A.8 and A.3, arriving at

a′
i = −GM0

r′
i

|r′
i|3

−
N
∑

i6=j

GMj
r′

i − r′
j
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|r′
j|3

(A.12)
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APPENDIX B – Solar System Data

Solar system data based on data obtained from NASA Goddard Space Flight Center,

obtained on 1st of September of 2019[33].

Solar System Data

Quantity MERCURY VENUS EARTH MOON MARS

Mass (1024kg) 0.330 4.87 5.97 0.073 0.642

Diameter (km) 4879 12,104 12,756 3475 6792

Density (kg/m3) 5427 5243 5514 3340 3933

Gravity (m/s2) 3.7 8.9 9.8 1.6 3.7

Escape Velocity (km/s) 4.3 10.4 11.2 2.4 5.0

Rotation Period (hours) 1407.6 -5832.5 23.9 655.7 24.6

Length of Day (hours) 4222.6 2802.0 24.0 708.7 24.7

Distance from Sun (106km) 57.9 108.2 149.6 0.384* 227.9

Perihelion (106km) 46.0 107.5 147.1 0.363* 206.6

Aphelion (106km) 69.8 108.9 152.1 0.406* 249.2

Orbital Period (days) 88.0 224.7 365.2 27.3* 687.0

Orbital Velocity (km/s) 47.4 35.0 29.8 1.0* 24.1

Orbital Inclination (degrees) 7.0 3.4 0.0 5.1 1.9

Orbital Eccentricity 0.205 0.007 0.017 0.055 0.094

Obliquity to Orbit (degrees) 0.034 177.4 23.4 6.7 25.2

Mean Temperature (C) 167 464 15 -20 -65
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Solar System Data

Quantity JUPITER SATURN URANUS NEPTUNE PLUTO

Mass (1024kg) 1898 568 86.8 102 0.0146

Diameter (km) 142,984 120,536 51,118 49,528 2370

Density (kg/m3) 1326 687 1271 1638 2095

Gravity (m/s2) 23.1 9.0 8.7 11.0 0.7

Escape Velocity (km/s) 59.5 35.5 21.3 23.5 1.3

Rotation Period (hours) 9.9 10.7 -17.2 16.1 -153.3

Length of Day (hours) 9.9 10.7 17.2 16.1 153.3

Distance from Sun (106km) 778.6 1433.5 2872.5 4495.1 5906.4

Perihelion (106km) 740.5 1352.6 2741.3 4444.5 4436.8

Aphelion (106km) 816.6 1514.5 3003.6 4545.7 7375.9

Orbital Period (days) 4331 10,747 30,589 59,800 90,560

Orbital Velocity (km/s) 13.1 9.7 6.8 5.4 4.7

Orbital Inclination (degrees) 1.3 2.5 0.8 1.8 17.2

Orbital Eccentricity 0.049 0.057 0.046 0.011 0.244

Obliquity to Orbit (degrees) 3.1 26.7 97.8 28.3 122.5

Mean Temperature (C) -110 -140 -195 -200 -225

*The distance from the sun, perihelion, aphelion, orbital period and orbital velocity are considered

with reference to The Earth for The Moon.
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